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Abstract 
Laboratory evolution has traditionally been used to optimize complex phenotypes of engineered 
microbial strains. However, only a subset of the resulting mutations may affect the phenotype of 
interest and many others may have unintended effects. Targeted methods like multiplex 
genome editing can complement evolutionary approaches by creating combinatorial variants of 
specific changes, but it remains challenging to identify which alleles influence the desired 
phenotype. Here, we present a method for identifying a minimal set of genomic modifications 
that optimizes a complex phenotype by combining iterative cycles of multiplex genome 
engineering and predictive modeling. We applied our method to the 63-codon E. coli  strain 
C321.∆A, which has 676 mutations relative to its wild-type ancestor, and identified six single 
nucleotide mutations that together recover 59% of the fitness defect exhibited by the strain. The 
resulting optimized strain, C321.DA.opt, is an improved chassis for production of proteins 
containing non-standard amino acids. We show how multiple cycles of multiplex automated 
genome engineering (MAGE) and inexpensive sequencing can generate rich genotypic and 
phenotypic diversity that can be combined with linear regression techniques to quantify 
individual allelic effects. While laboratory evolution relies on enrichment as a proxy for allelic 
effect, we find that our model-guided approach is less susceptible to bias from population 
dynamics and recombination efficiency, can be effectively used on large numbers of target 
alleles, and can additionally identify beneficial de novo  mutations arising in the background of a 
targeted approach. Beyond improving engineered genomes, our work provides a 
proof-of-principle for high-throughput quantification of allelic effects which can be combined with 
any method for generating targeted genotypic diversity. 
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Introduction 
Genome editing and DNA synthesis technologies are enabling the construction of engineered 
organisms with synthetic metabolic pathways 1, reduced and refactored genomes 2–5, and 
expanded genetic codes 6,7. However, genome-scale engineering can come at the cost of 
reduced fitness 2,6,7 caused by synthesis errors, collateral mutations acquired during selection 
bottlenecks 6, or design flaws that fail to preserve biologically-important features relevant to 
rapid growth 7,8. It remains challenging to identify the alleles that contribute to these complex 
phenotypes, and it becomes prohibitive to test large numbers of targets individually. Laboratory 
evolution has traditionally been used to improve desired phenotypes and navigate genetic 
landscapes 9, but this process generates collateral changes that may disrupt synthetic designs 
or traits not maintained under selection. In contrast, targeted approaches like CRISPR/Cas9 10,11 
and multiplex automated genome engineering (MAGE) 12 can rationally explore genetic space 
by altering the genome at chosen loci, but as the number of loci considered increases, it 
becomes difficult to quantify the effects of individual changes. There remains a need for a 
method which can rapidly identify subsets of beneficial alleles from a large list of candidates. 

Leveraging recent improvements in the cost and speed of microbial whole genome 
sequencing, we present a method for identifying precise genomic changes that optimize 
complex phenotypes, combining multiplex genome engineering, genotyping, and predictive 
modeling (Fig. 1). Multiple rounds of genome editing are used to generate a population enriched 
with combinatorial diversity at the targeted loci. Throughout the editing process, many clones 
from the population are subject to whole-genome sequencing and are screened for phenotype. 
The genotype and phenotype data is used to update a model which predicts the effects of 
individual alleles. These steps are repeated on a reduced set of candidate alleles informed by 
the model, or on a new set of targets. Finally, the highest impact alleles are rationally introduced 
into the original organism, minimizing alterations to the organism’s original genotype while 
optimizing the desired phenotype. 

We applied this method to the genomically recoded organism (GRO) C321.∆A, a strain 
of E. coli  engineered for non-standard amino acid (nsAA) incorporation 6. This GRO was 
constructed by replacing all 321 UAG stop codons with synonymous UAA codons and deleting 
UAG-mediated release factor prfA . Over the course of the construction process, C321.∆A 
acquired 355 off-target mutations and developed a 60% greater doubling time relative to its 
non-recoded parent strain, E. coli  MG1655. An improved C321.∆A strain would accelerate the 
pace of research involving GROs and further enable applications leveraging expanded genetic 
codes, including biocontainment 13, virus resistance 6,14 and expanded protein properties 15. We 
expected that a subset of the off-target mutations caused a significant fraction of the fitness 
defect, providing a starting hypothesis for iterative improvement. 

Results 
To select an initial set of candidate alleles, we first used the genome engineering and 

analysis software Millstone  (Goodman et al., submitted) to analyze sequencing data from 
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C321.∆A. Millstone  uses SnpEff 16 to annotate affected genes and predicted severity for each 
mutation. We further annotated each coding mutation with its associated growth defect in LB 
medium upon knockout of the affected gene after 22 hours (LB_22), as reported in the Keio 
collection 17. Based on this analysis, we identified 127 mutations in proteins and non-coding 
RNA as the top candidates responsible for fitness impairment. Our candidate alleles included all 
frameshift and non-synonymous mutations, mutations in non-coding RNA, and synonymous 
changes in genes with LB_22 < 0.7. We partitioned the targets into three priority categories 
according to predicted effect (Supplementary Table 1 and Supplementary Table 2). 

MAGE introduces combinations of genome edits with approximately 10-20% of cells 
receiving at least one edit per cycle 12. It should be noted that CRISPR alone cannot be used for 
genome editing in E. coli  due to the absence of double-strand break repair. To generate a 
diverse population of mutants enriched for reversions at multiple loci, we performed up to 50 
cycles of MAGE in three lineages. The first lineage used a pool of 26 oligonucleotides targeting 
only the highest category of mutations, the second lineage targeted the top 49 sites, and the 
third lineage targeted all 127 (Supplementary Fig. 1). 
 We sampled a total of 87 clones from multiple time points and lineages during MAGE 
cycling. We also sequenced three separate clones of the starting strain. We then performed 
whole genome sequencing and measured doubling time for each clone. Millstone  was used to 
process sequencing data and to report variants for all 90 samples in parallel. We observed 
fitness improvement across all three lineages with a diversity of genotypes and fitness 
phenotypes across the multiple time points (Fig. 2 and Fig. 3a,b). Clones selected from the final 
time point recovered 40-58% (mean 49%) of the fitness defect compared to MG1655 and had 
between 5 and 15 (mean 10.2) successfully reverted mutations. Of the 127 targeted mutations, 
99 were observed in at least one clone, with as many as 19 successful reversions in a clone 
from the 127-oligo lineage. Additionally, we observed 1,329 unique de novo  mutations across all 
clones (although only 135 were called in more than one clone), accumulating at a rate of 
roughly one per MAGE cycle in each clone (Fig. 2d,e). This elevated mutation rate was caused 
by defective mismatch repair (mutS- ), which both increases MAGE allele replacement frequency 
and provides a source of new mutations that could improve fitness. 

The combinatorial diversity produced by multiplex genome engineering generates a 
dataset well-suited for analysis by linear regression. We made a simplifying assumption that 
doubling time is determined by the independent effects of individual alleles and employed a 
first-order multiplicative model that predicts doubling time based on allele occurrence (Online 
Methods and Supplementary Note 1). As features for the model, we considered the 99 
reversions and 135 de novo  mutations that occurred in at least two clones. Multiple linear 
regression was used to fit the model, with feature coefficients indicating the predicted effect of 
the respective allele. We expected a small number of alleles to contribute significantly to fitness 
improvement and thus used elastic net regularization 18 to impose this sparsity constraint on 
regression while accounting for high levels of co-occurrence among some alleles. To limit 
overfitting, we performed multiple rounds of k-fold cross-validation (k=5) and selected alleles 
that were assigned a non-zero coefficient on average. The method identified four targeted 
reversions and four de novo  mutations that had the greatest putative effect on fitness (Fig. 3c,d 
and Supplementary Table 3). 
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To validate the eight alleles prioritized in the 50-cycle MAGE experiment, we performed 
nine cycles of MAGE using a pool of eight oligos (Supplementary Table 3) applied to the 
starting C321.∆A strain. We then screened each clone using MASC-PCR and measured 
doubling time (Supplementary Fig. 2). Modeling revealed strong effects for two reversions 
(T1263523C and A4102449G) and one de novo  mutation (C3990077T), along with weaker 
effects for two additional reversions (C200214T and C672170A). These mutations are 
discussed in Supplementary Note 2. A clone with all five of these mutations was isolated and 
measured to have recovered 51% of the fitness defect in C321.∆A. The three remaining de 
novo  mutations did not show evidence of improving fitness despite being highlighted in the initial 
modeling, illustrating the importance of subsequent validation of model-selected alleles. 

To identify mutations that further improved the fitness of C321.∆A, we extended our 
search to off-target mutations occurring in regulatory regions using these smaller pool sizes. We 
identified seven non-coding mutations predicted to disrupt gene regulation 8 (Online Methods 
and Supplementary Table 4). Applying nine rounds of MAGE followed by linear modeling 
revealed that reverting a single mutation in the -35 box of the folA  promoter recovers a predicted 
27% of the fitness defect (Supplementary Fig. 3). To test whether any of the designed 
UAG-to-UAA mutations caused a fitness defect in the C321 background, we followed the same 
procedure with 20 previously recoded UAA codons predicted to have a potential disruptive 
effect. (Supplementary Table 5). We tested reversion back to UAG in a prfA + variant of C321 
capable of terminating translation at UAG codons. We observed no evidence of a beneficial 
fitness effect from any individual UAA-to-UAG reversion. 

Finally, we used MAGE to introduce the best six mutations (Supplementary Table 6) 
into the original C321.∆A strain (Online Methods), creating an optimized strain C321.∆A.opt 
that restores 59 +/- 11% of the fitness defect in C321.∆A (Fig. 4a). Whole genome sequencing 
of the final strain confirmed that no UAG codons were reintroduced. Nine additional de novo 
mutations arose, but these are predicted to have a neutral effect (Supplementary Table 7). The 
doubling time of C321.∆A.opt was re-measured together with all 87 clones from the 50-cycle 
MAGE experiment and found to be approximately equal to the fastest clones (Fig. 4a), which 
had 6-13 reversions and 31-38 de novo  mutations. We characterized UAG-dependent 
incorporation of the nsAAs p-acetyl-L-phenylalanine (pAcF) in C321.∆A.opt using sfGFP 
variants with 0, 1, and 3 residues replaced by the UAG codon and confirmed that C321.∆A.opt 
maintains nsAA-dependent protein expression (Fig. 4b).  

To address the potential benefit of introducing additional changes, and to measure 
potential interactions among the six alleles identified, we characterized fitness of 359 clones 
with intermediate genotypes generated during the construction of the final strain (Fig. 4a, x/6 
best allele columns). We applied linear modeling with higher order interaction terms (Fig. 5a) 
and observed that combinations of mutations tended to produce diminishing returns 19, 
suggesting that additional beneficial alleles would only contribute marginally to fitness (Fig. 5b). 
We also found evidence of positive epistatic interactions between some alleles (Fig. 5a, left). 
These findings demonstrate the potential use of multiplex genome engineering and predictive 
modeling for studying epistasis. 
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Discussion 
In summary, we used an iterative strategy of multiplex genome engineering and model-guided 
feature selection to converge on six alleles that together improve the fitness of C321.∆A by 
59%. This method allowed us to quantify the effects of hundreds of individual alleles and then 
rationally introduce only the minimal set of beneficial genetic changes, reducing unintended 
effects from additional off-target mutations. 

This approach solves several problems inherent in more traditional directed evolution of 
bacterial strains. Our data show that alleles enriched over rounds of selection are not 
necessarily well-correlated with fitness. Allele enrichment may be affected by differences in 
recombination efficiency, competition among beneficial alleles through clonal interference, and 
genetic drift. Iterative targeted editing overcomes these obstacles by allowing the measurement 
of each allele in many genetic backgrounds, so that linear modeling can quantify its average 
individual effect. 

A similar model-guided approach could be used to augment other multiplex genome 
modification techniques, including yeast oligo-mediated genome engineering 20 or multiplex 
CRISPR/Cas9-based genome engineering in organisms that support homology-directed 
double-stranded break repair 20,21. Biosensors tied to selections or screens 22 can extend this 
method to optimize biosynthetic pathways in addition to fitness. Economic improvements in 
multiplex genome sequencing 23 will allow this method to scale to thousands of whole genomes, 
increasing statistical power and enabling the use of more complex models. Chip-based oligo 
synthesis enables scaling the number of genomic sites targeted, allowing thousands of alleles to 
be tested simultaneously 24–26. Finally, making such changes trackable 27 for targeted 
sequencing could further increase the economy, speed, and throughput of this approach. 

Efficiently quantifying the effects of many alleles on complex phenotypes is critical not 
only for tuning synthetic organisms and improving industrially relevant phenotypes, but also 
understanding genome architecture, function, and evolution. While our method is used here to 
identify and repair detrimental alleles to improve fitness, it will also enable rapid prototyping of 
design alternatives and interrogation of genomic design constraints. Beyond engineering, 
iteratively measuring and modeling the effects of large numbers of genomic changes in 
multiplex is a powerful approach which could also be used to answer questions about the 
function and evolution of natural genetic systems. 

 

Online Methods 
Media and reagents. All experiments were performed in LB-Lennox (LBL) medium (10 g/L 
bacto tryptone, 5 g/L sodium chloride, 5 g/L yeast extract) with pH adjusted to 7.45 using 10 M 
NaOH. LBL agar plates were made from LBL plus 15 g/L Bacto Agar. Selective agents were 
used at the following concentrations: carbenicillin (50 µg/mL), chloramphenicol (20 µg /mL), 
gentamycin (5 µg/mL), kanamycin (30 µg/mL), spectinomycin (95 µg/mL), and SDS (0.005% 
w/v). 
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Starting strain. The construction and genotype of engineered E. coli  strain C321.∆A was 
previously described in detail 6. Here, before improving fitness, we constructed strain 
C321.∆A.mutSfix.KO.tolCfix.∆bla:E  by further modifying C321.∆A to introduce the following 
changes: 1) the mutS  gene was reinserted into the C321.∆A strain in its original locus, and 
MAGE was used to disable the gene by introduction of two internal stop codons and a 
frameshift, and 2) the carbenicillin-resistance marker bla  was swapped for gentamicin resistance 
marker aacC1  in the lambda red insertion locus.  
 
Millstone , software for multiplex genome analysis and engineering. Millstone  (Goodman et 
al., submitted) was used throughout the project to rapidly process whole genome sequencing 
data and identify variants in each sample relative to the reference genome, to explore variant 
data, and to design oligonucleotides for MAGE. The Millstone  analysis pipeline takes as input 
raw FASTQ reads for up to hundreds of clones and a reference genome as Genbank or FASTA 
format. The software then automates alignment of reads to the reference using the 
Burrows-Wheeler Aligner (BWA-MEM) followed by single nucleotide variant (SNV) calling using 
Freebayes. Millstone  performs variant calling in diploid mode, even for bacterial genomes. This 
accounts for paralogy in the genome and results in mutation calls being reported as 
“homozygous alternate” (strong wild-type), “heterozygous” (marginal), or wild-type, along with an 
“alternate fraction” (AF) field that quantifies the fraction of aligned reads at the locus showing 
the alternate allele. Marginal calls were inspected on a case-by-case basis using Millstone’s 
JBrowse integration to visualize raw read alignments. Millstone  provides an interface for 
exploring and comparing variants across samples. After initial exploration and triage in 
Millstone , we exported the variant report from Millstone  for further analysis and predictive 
modeling. In follow-up analysis, we labeled variant calls as ‘marginal’ if the alternate allele 
fraction was between 0.1 and 0.7. 
 
Identifying off-target mutations for reversions. For the 50-cycle MAGE experiment, we 
considered only mutations occurring in regions annotated as coding for a protein or functional 
RNA. Using Millstone  annotations of predicted effect and Keio knock-out collection annotation of 
essentiality 17, we defined three priority categories according to expected effect on fitness 
(Supplementary Table 1). A total of 127 targets were allocated to the three categories to be 
used for the 50-cycle MAGE experiment. 

For a separate experiment, off-target mutations in regulatory regions were selected 
based on the criteria of predicted regulatory disruption of essential genes and several 
non-essential genes with particularly strong predicted disruption. Regulatory disruption was 
determined based on calculating change in 5’ mRNA folding or ribosome binding site (RBS) 
motif strength for mutations occurring up to 30 bases upstream of a gene. We calculated mRNA 
folding and ribosome binding site (RBS) motif disruption as described in 8. Briefly, the minimum 
free energy (MFE) of the 5-prime mRNA structure was calculated using Unafold’s 
hybrid-ss-min function 28 (T=37 °C), taking the average MFE between windows of RNA 
(-30, +100) and (-15, +100) relative to the start codon of the gene. Mutations that caused a 
change in MFE of the mRNA of over 10% relative to the wild-type context were prioritized for 
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testing. To predict RBS disruption, the Salis RBS Calculator 29 was provided with sequence 
starting 20 bases upstream of the gene ATG and including the ATG. Mutations that caused a 
greater than 10-fold change in predicted expression were included for testing. Finally, we also 
considered mutations that overlapped promoters of essential genes based on annotations from 
RegulonDB30. 

The 20 UAG-reversion targets were chosen when UAGs occurred in essential genes, 
introduced non-synonymous changes in overlapping genes, or disrupted a predicted regulatory 
feature as above. 
 
Multiplex automated genome engineering. Single-stranded DNA oligonucleotides for MAGE 
were designed using Millstone’s  optMAGE integration (https://github.com/churchlab/optmage). 
Oligos were designed to be 90 base pairs long with the mutation located at least 20 base pairs 
away from either end. We used the C321.∆A reference genome (Genbank accession 
CP006698.1) for oligo design to avoid inadvertently reverting intentional UAG-to-UAA changes. 
OptMAGE avoids strong secondary structure (< −12 kcal mol−1) and chooses the sense of the 
oligo to target the lagging strand of the replication fork12. Phosphorothioate bonds were 
introduced between the first and second and second and third nucleotides at the 5-prime end of 
each oligo to inhibit exonuclease degradation12. All DNA oligonucleotides were purchased with 
standard purification and desalting from Integrated DNA Technologies and dissolved in dH20. 

MAGE was performed as described in 12, with the following specifications: 1) Cells were 
grown at 34 °C between cycles. 2) We noted that C321.∆A exhibits electroporation resistance 
so a voltage of 2.2 kV (BioRad GenePulser, 2.2 kV, 200 ohms, 25 µF was used for cuvettes with 
1mm gap) was chosen based on optimization using a lacZ blue-white screen. 3) Total 
concentration of the DNA oligonucleotide mixture was 5 µM for all electroporations (i.e., the 
concentration of each oligo was adjusted depending on how many oligos were included in the 
pool).  

The 50-cycle MAGE experiment was carried out in three lineages, with oligo pool sizes 
of 26, 49, and 127 consisting of oligos from priority categories {1}, {1,2}, and {1,2,3}, 
respectively (Supplementary Table 1). Note that we originally began with just two pools--the 
top 26 and all 127 oligos--, but after 5 MAGE cycles the lineage exposed to all 127 oligos was 
branched to have a separate lineage with only the 49 category {1, 2} oligos in order to obtain 
more enrichment of the higher priority targets. In order to prevent any population from acquiring 
permanent resistance to recombination, we toggled the dual-selectable marker tolC at 
recombinations 23, 31, and 26 for the three lineages, respectively, as described in 31. Briefly, an 
oligo introducing an internal stop codon in tolC  was included in the recombination, and after at 
least 5 hours of recovery, cells were selected in media containing colicin E1, which is toxic in 
tolC +  E. coli . In the subsequent recombination, an oligo restoring tolC  function was included in 
the pool after which cells were selected in the presence of 0.005% SDS (w/v). 

Validation MAGE experiments composed of 10 or fewer oligos were carried out for up to 
9 MAGE cycles, as we expected adequate diversity based on previous experience with MAGE 
efficiency. 
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Whole genome sequencing. Genomic DNA (gDNA) preparation for whole genome sequencing 
of 96 clones (only 87 considered in manuscript because sequencing analysis revealed that 9 
cultures were polyclonal) was performed as in 31. Briefly, gDNA was prepared by shearing using 
a Covaris E210 AFA Ultrasonication machine. Illumina libraries were prepared for pooled 
sequencing as previously described 32. Barcoded Illumina adapters were used to barcode each 
strain in a 96-well plate. All 96 genomes were sequenced together on a single lane of a HiSeq 
2500 PE150 (Supplementary Table 8). Alternative inexpensive WGS library preparation 
methods have since become available 23. 

WGS data was processed to identify clonal genotypes in Millstone . Demultiplexed .fastq 
reads were aligned to the MG1655 reference genome. SNVs were reported with Millstone,  as 
described above. During analysis, marginal calls were visually confirmed by examining 
alignments using Millstone’s  JBrowse integration. 
 
Multiplex allele-specific colony PCR (MASC-PCR). MASC-PCR was used to assess 
successful reversions in validation experiments of <= 10 targeted mutations and typically 
performed for 96 clones in parallel. The protocol was performed as previously described 6. 
Briefly, two separate PCRs, each interrogating up to 10 positions simultaneously, were 
performed on each clone to detect whether the C321.∆A or reverted allele was present at each 
position. For each position, the two reactions shared a common reverse primer but used distinct 
forward primers differing in at least one nucleotide at the 3’ end to match the SNV being 
assayed specifically. Positive and negative controls were included when available to aid in 
discriminating cases of non-specific amplification. 
 
Measuring fitness. Fitness was determined from kinetic growth (OD600) on a Biotek H-series 
plate reader. Cells were grown at 34 °C in 150 µL LBL in a flat-bottom 96-well plate at 300 rpm 
linear shaking. To achieve consistent cell state before reading, clones were picked from agar 
plates or glycerol, grown overnight to confluence, passaged 1:100 into fresh media, grown again 
to mid-log (~3 hours), and passaged 1:100 again before starting the read. OD measurements 
were recorded at 5 minute intervals until confluence. Doubling times were calculated according 
to tdouble = c * ln(2) / m, where c = 5 minutes per time point and m is the maximum slope of 
ln(OD600). The maximum slope was determined using a sliding window linear regression 
through 8 contiguous time points (40 minutes) points rather than between two predetermined 
OD600 values because not all of the growth curves were the same shape or reached the same 
max OD600. The script used for analyzing doubling time is available at 
https://github.com/churchlab/analyze_plate_reader_growth. 
 
Predictive modeling of allele causality. Choosing alleles for subsequent validation was 
framed as a feature selection problem. We used predictive modeling to prioritize features. Both 
targeted reversions introduced by MAGE and de novo  mutations were considered. 

For most analyses, we used a first-order multiplicative allele effect model, where each 
allele (reversion or de novo  mutation) is represented by a single feature and the fitted coefficient 
corresponding to that feature represents the allele’s effect on doubling time. To find coefficient 
values, we fit a linear model where genotypes (WGS or MASC-PCR) predict the logarithm of 
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doubling time. Alleles corresponding to features with the most negative coefficients were 
selected for validation in smaller sets. An additive model was also tested and yielded similar 
results, as previously noted by others 19. 

While we anticipated the possibility of epistatic effects among alleles tested, a first-order 
model of the 50-cycle MAGE experiment already had 239 features (99 reversions + 140 de 
novos  observed at least twice) and 87 samples, so we omitted higher-order interaction terms to 
avoid overfitting due to model complexity. We discuss implications of this independence 
assumption and other details of our allele effect modeling strategy in Supplementary Note 1. 

Elastic net regularization 18, which includes both L1 and L2 regularization penalties, was 
used in model-fitting. L1 regularization enforces sparsity, capturing the assumption that a 
handful of alleles will explain a majority of the fitness effect. L2 regularization prevents any one 
of a subset of highly correlated alleles from dominating the effect of those alleles, balancing the 
tendency of L1 to drop subsets of highly co-occurring alleles. 
 
Accordingly, the elastic net loss function used was 
 

(λ , , )L 1 λ2 β = |y−Xβ|2 + λ |β|1 1 + λ |β|2  
2  

 
where 

β ||β|1 = ∑
p

j=1
| j  

|β| 
2 = ∑

p

j=1
βj

2  

 
And the coefficients were estimated according to: 
 

(L(λ , , ))β̂ = argminβ 1 λ2 β  
 

Elastic net regression was performed using the ElasticNetCV module from scikit-learn 
(Pedregosa et al.). This module introduces the hyperparameters alpha  =  andλ1 + λ2  
l1_ratio  = and uses k-fold cross validation (k=5) to identify the best choice ofλ1

λ ,+λ1 2
 

hyperparameters for a given training dataset. We specified the range of l1_ratio  to search 
over as [.1, .3, .5, .7, .9, .95, .99, 1], which tests with higher resolution near L1-only penalty. This 
fits our hypothesis that a small number of mutations are responsible for a majority of the fitness 
effect. For alpha , we followed the default of allowing scikit-learn to search over 100 alpha 
values automatically computed based on l1_ratio . 

To avoid overfitting due to the undersampled nature of the data in the 50-cycle MAGE 
experiment, we performed 100 repetitions of scikit-learn’s cross-validated elastic net regression 
procedure, and for each repetition, we randomly held-out 15 samples that could be used to 
evaluate the model fit by that iteration. The average model coefficient for each allele was then 
calculated across all 100 repetitions. Only model coefficients with a negative value (some 
putative fitness improvement) were considered in a second round of 100 repeats of 
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cross-validated elastic net regression, again with 15 samples held-out in each repeat to 
evaluate the model fit. The average coefficient values over this second set of 100 repetitions 
were used to determine the top alleles for experimental validation in a 9-cycle MAGE 
experiment. 

To evaluate the results of the 9-cycle MAGE validation experiments, we used 
unregularized linear regression. With <= 10 parameters and ~90 clones, only a single iteration 
of cross-validated regression applied to the full dataset was required to assign predicted effects 
without requiring the testing of individual alleles. 
 
Final strain construction. C321.∆A.opt was constructed by adding the six alleles identified by 
the optimization workflow (Supplementary Table 6) to C321.∆A.mutSfix.KO.tolCfix.∆bla:E. A 
total of seven cycles of MAGE were required, with a MASC-PCR screening step every three 
cycles to select a clone with the best genotype so far (Fig. 3a), minimizing the total number of 
cycles required. Three cycles of MAGE were performed using oligos targeting all six alleles. 
Ninety-six clones were screened by MASC-PCR, and one clone with 3/6 alleles (C49765T, 
T1263523C, A4102449G) was chosen for the next round of MAGE. Three more rounds of 
MAGE were performed on top of the clone with 3/6 alleles using only the three remaining oligos. 
MASC-PCR identified a clone with 5/6 alleles (C49765T, C200214T, C672170A, T1263523C, 
A4102449G). One more round of MAGE was performed using the remaining oligo and a clone 
with all six alleles was obtained. Additional off-target mutations acquired during construction as 
identified by whole genome sequencing of the final clone are listed in Supplementary Table 7. 
 
Characterizing non-standard amino acid incorporation. nsAA incorporation was measured 
as previously described 6. 1-UAG-sfGFP, and 3-UAG-sfGFP reporters were produced by PCR 
mutagenesis from sfGFP (Supplementary Note 3), and isothermal assembly was used to clone 
0-UAG-sfGFP (unmodified sfGFP), 1-UAG-sfGFP, and 3-UAG-sfGFP into the pZE21 vector 
backbone 33.  We used the pEVOL-pAcF plasmid to incorporate the non-standard amino acid 
p-acetyl-L-phenylalanine. Reagents were used at the following concentrations: 
anhydrotetracycline (30 ng/μL), L-arabinose (0.2% w/v), pAcF (1 mM). 
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Figures 

 

Figure 1. Workflow for improving phenotypes through model-guided multiplex genome 
editing. 
First, an initial set of target alleles (hundreds to thousands) is chosen for testing based on 
starting hypotheses. These targets may be designed based on differences from a reference 
strain, synthesis or design errors, or biophysical modeling. Multiplex genome editing creates a 
set of modified clones enriched with combinations of the targeted changes. Clones are 
screened for genotype and phenotype, and predictive modeling is used to quantify allele effects. 
The workflow is repeated to validate and test new alleles. Beneficial alleles are combined to 
create an optimized genotype. 
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Figure 2. Mutation dynamics over many cycles of MAGE allele reversion. 
(a) Increase in combinatorial diversity and reversion count versus number of MAGE cycles. (b) 
Number of reversions per clone vs MAGE cycle. (c) The rate of reversions per MAGE cycle 
among the different allele categories, showing a higher rate per cycle for cells exposed to all 
127 oligos. (d) The number of de novo  mutations per clone over successive MAGE cycles. (e) 
Rate of de novo  mutations per MAGE cycle. (f) The average ratio between number of de novo 
mutations and reverted alleles per MAGE cycle remains constant throughout the experiment. (g) 
Doubling time (min) improvement per clone from the C321.∆A starting strain (top dotted line) 
towards the ECNR2 parent strain (bottom dotted line). Blue line is a LOESS fit. 
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Figure 3. Genotypic and phenotypic diversity in 87 clones sampled across 50 MAGE 
cycles enabled model-guided prioritization of top single nucleotide variants (SNVs) for 
further validation. 
(a) Percent of C321.∆A fitness defect recovered across MAGE cycles (shown with bar color and 
height). The number of SNVs reverted or introduced are shown below. (b) Presence of targeted 
reversions and de novo  mutations in each clone colored according to fitness. A subset of the 
most enriched mutations are shown, ordered by enrichment (full dataset available in 
Supplementary Table 9). (c) Example model fit using top 8 alleles as features with 15 samples 
left out as a test set (blue points) and used to evaluate R2. Training points are plotted in orange. 
The inset shows distribution of R2 values for 100 different simulations with 15 random samples 
left out to calculate R2 for each. Example fit was chosen to exemplify a median R2 value from 
this distribution. (d) Average model fit coefficients for top 8 alleles assigned non-zero values 
over repeated cross-validated linear regression (Online Methods) indicates their predicted 
contribution to fitness improvement. 
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Figure 4. Construction and characterization of final strain C321.∆A.opt. 
(a) Doubling time of clones isolated during construction and optimization of C321.∆A. Strain 
C321.∆A.opt was constructed in seven cycles of MAGE in batches of up to three cycles 
separated by MASC-PCR screening to pick clones with the maximum number of alleles 
converted (see Online Methods). The two dotted horizontal lines correspond to the relative 
doubling times for the original GRO and the wild-type strain. (b) Testing nsAA-dependent 
protein expression using the nsAA p-acetyl-L-phenylalanine (pAcF) in sfGFP variants with 0, 1, 
or 3 residues replaced with UAG codons. Normalized GFP fluorescence was calculated by 
taking the ratio of absolute fluorescence to OD600 of cells suspended in Phosphate Buffered 
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Saline (PBS) for each sample and normalizing to the fluorescence ratio of non-recoded strain 
EcNR1.mutS.KO expressing 0 UAG sfGFP plasmid. 
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Figure 5. Interactions among top six alleles show evidence of epistasis. 
Genotypes and fitness measurements were obtained from 359 intermediate clones generated 
during the  the construction of the final strain containing the six best alleles (Supplementary 
Table 6). Each clone was genotyped using MASC-PCR and doubling time was measured 
during allele validation experiments and final strain construction. (a) Individual model 
coefficients for the top six alleles, as well as three significant interaction terms identified during 
combinatorial construction. These values are from a linear model with interaction terms between 
each pair of alleles. The bars signify the standard error of the mean of the model coefficients, 
and the significance codes for a non-zero effect size are  '***' : p < 0.001,  '**' p < 0.01,  '*' p < 
0.05, ‘n.s.’ not significant. (b) Each data point represents the amount of fitness recovered when 
adding the allele specified to an identical starting genotype background. Horizontal error bars 
correspond to the standard deviation of fitness defect among all clones with this starting 
genotype. Vertical error bars represent the standard deviation of all differences between clones 
with and without the respective allele. For each plot, the thick colored line represents a simple 
linear fit through the points, corresponding to the r  and p  values given in each plot. The dotted 
line corresponds to the predicted fit for a simple multiplicative model of fitness where the allele 
always recovers a constant percent of the remaining fitness defect regardless of the 
background. For all alleles except A4102449G (pink), adding the allele to C321 showed a 
recovery of the fitness defect (>0 on the y axis), with the percentage of defect recovered 
decreasing as other alleles are also reverted, consistent with a first-order multiplicative model. In 
some cases the fitness improvement drops more rapidly than predicted by the multiplicative 
model (i.e. points below the dotted lines), suggesting diminishing returns epistasis. This is 
supported by the negative-coefficient interaction terms in panel a. In the case of A4102449G 
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there appears to be a negative effect with the mutation alone, but an increase in the presence of 
other alleles, suggesting possible sign epistasis.  
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Supplementary Figure 1 
 
Detailed Experimental Workflow 
 
Depiction of the specific steps used to identify the six alleles that optimized the fitness of 
C321.∆A. Millstone  (Goodman et al., submitted) was used to annotate mutations in C321.∆A. 
127 prioritized coding mutations were tested in C321.∆A over 50 cycles of MAGE in 3 lineages. 
Eighty-seven clones were genotyped by whole genome sequencing and annotated using 
Millstone , and their doubling times were measured. Modeling by multiple linear regression 
identified 8 alleles for subsequent validation. After the second iteration, 5 alleles were chosen, 
with 3 alleles having a significant linear model coefficient and 2 more reversions having subtle 
effects. In a parallel experiment, a small pool of 7 non-coding mutations was tested, and 
modeling identified one allele that was found to have a strong effect. In another parallel 
experiment, 20 UAA-to-UAG reversions were tested on a C321 background with prfA still 
present, but no reversions were found to affect fitness. The top 6 alleles were combined in a 
final optimized strain, and clones with intermediate combinations of alleles were used to 
characterize their interaction effects (Supplementary Fig. 5). 
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Supplementary Figure 2 
 
Empirical testing to validate top eight alleles from 50-cycle MAGE experiment. 
 
The top eight alleles (Supplementary Table 3) were tested in the original C321.∆A background 
using nine cycles of MAGE. We selected 96 clones from the final population and measured 
doubling times and performed MASC-PCR to assess genotypes. Clones are sorted by fitness 
on the x axis and alleles are listed on the y axis in order of enrichment. Linear modeling 
revealed a strong predicted effect for reversions T1263523C and A4102449G and de novo 
mutation in C3990077T, with weaker predicted effects for reversions C672170T and C200214T 
and de novo  mutation T1511492C. For construction of the final strain, we chose to keep the 
three high-predicted-effect alleles (T1263523C, A4102449G, C3990077T) and the two 
weak-predicted-effect reversions (C672170T, C200214T), but we omitted the three weak-effect 
de novo  mutations. 
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Supplementary Figure 3 
 
Empirical testing identifies high-effect non-coding mutation. 
  
Genotypes and fitness from testing a set of seven non-coding mutations (Supplementary Table 
4). Upper right: the top model-selected allele is not apparent from enrichment alone, and it is 
later experimentally validated to have a significant effect (Figure 4). 
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Supplementary Notes 
 
Supplementary Note 1 
  
Further discussion of allele effect modeling and feature selection. 
 
Adaptive laboratory evolution (ALE) typically uses enrichment of mutated genes observed 
across replicate lineages evolved in parallel to select meaningful features 34,35. We selected 
linear modeling as an alternative to enrichment as initial tests suggested that it was a better 
method for predicting SNPs that recovered fitness in our experiments. For some alleles, high 
model coefficients corresponded to high levels of enrichment. For example, the reversion of 
mutation T1263523C had the highest enrichment after 50 cycles of MAGE (occurring in 78 out 
of 87 clones) and was also selected by modeling for validation, eventually being verified to 
confer fitness improvement (Fig. 2). On the other hand, when testing the pool of seven 
non-coding reversions, the single allele selected by the model C49765T (also later 
experimentally validated) occurred in only 4 out of 96 clones. Meanwhile, three other alleles 
occurred in over 25 out of 96 clones, but they were not predicted to have a strong effect by 
linear modeling (Supplementary Fig. 4). There were many other cases where linear regression 
assigned low coefficients to alleles that were highly enriched. The discrepancy between 
enrichment and model-predicted effect may be due to differences in MAGE oligonucleotide 
recombination frequency 6,36, insufficient time for mutations to achieve enrichment, or stochastic 
enrichment of passenger mutations in a lineage during MAGE cycling. Altogether, linear 
modeling provided a more robust strategy of predicting fitness effect for individual alleles. 

An important consideration with linear modeling is whether to include higher-order 
interaction terms. For our 50-cycle MAGE experiment, we made an assumption that 
independent allele effects would dominate relative to complex epistatic effects and included only 
first-order terms in the model. For validation in pools of <= 10 oligos, we typically selected 96 
clones and experimented with second- and higher-order models, but also found that the 
first-order model was typically sufficiently informative of allele effect. 

To investigate how higher-order model terms can inform interpretation of epistatic 
effects, we assembled a dataset of 359 intermediate genotyped clones obtained from validation 
experiments or from screening during construction of the final strain with all six top alleles 
(Supplementary Fig. 5). Interestingly, linear modeling with second-order interaction terms 
indicated evidence of possible diminishing returns epistasis among certain alleles 37 and also a 
possible positive epistasis effect between A4102449G and C3990077T. Alleles that contribute 
to fitness through a positive epistasis effect could be lost during validation of small numbers of 
alleles, supporting our validation of high impact alleles in pools.  

Even with targeted engineering by MAGE, de novo  mutations can play a role in fitness 
improvement. The mismatch repair-deficient context in which this study was conducted elevates 
the background mutation rate >100-fold 38 and resulted in the accumulation of four de novo 
mutations for every reversion (Supplemental Fig. 2f). We considered de novo  mutations in 

 
 
 

23 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 20, 2016. ; https://doi.org/10.1101/086595doi: bioRxiv preprint 

https://paperpile.com/c/gqyPat/JCB9+8iGK
https://paperpile.com/c/gqyPat/ioRd+BPiw
https://paperpile.com/c/gqyPat/I3oX
https://paperpile.com/c/gqyPat/odch
https://doi.org/10.1101/086595


 
 
 

modeling experiment data, but omitted any de novo  mutation that was never observed in more 
than one clone, reducing the number of features corresponding to de novo  mutations from 1329 
to 135. Linear regression of data obtained over 50-cycles of MAGE identified four de novo 
mutations with a putative effect. Validation of these alleles determined that three of these were 
false positives or only beneficial in a specific context. The fourth de novo  C3990077T, however, 
showed a strong effect upon validation, demonstrating that linear regression can be an effective 
strategy for identifying causal de novo  mutations and may be generally applicable in laboratory 
evolution studies. 

Additional features beyond allele occurrence can be added to the linear model such as 
terms that capture prior expectation of an allele’s effect. For application to ALE, mutations could 
be merged according to affected gene and its interacting partners. Higher order terms can be 
iteratively introduce as the candidate feature set is pruned. 
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Supplementary Note 2 
 
Discussion of alleles chosen to construct final strain. 
 
The final strain was constructed by introducing six mutations into the starting C321.∆A 
background: five alleles reverted to their MG1655 starting point and one de novo  mutation not 
previously present in MG1655 (Supplementary Table 6). 

Four of five reversions were coding mutations in essential genes prioritized in the highest 
category in the 50-cycle MAGE experiment, supporting the strength of the initial prioritization 
method. The fifth reversion was identified in screening noncoding off-target mutations predicted 
to disrupted gene regulation, demonstrating computational prediction of regulatory disruption as 
an important strategy in tuning organisms 8. The sixth mutation  

We characterized intermediate genotypes created while constructing the final strain 
(Supplementary Fig. 5) and determined that three of the mutations (reversions of C49765T, 
T1263523C and de novo  C3990077T) had especially strong individual effects. Two reversions 
(C672170T, C200214T) had weaker individual effects that diminished in backgrounds with 
multiple mutations (Supplementary Fig. 5b ). The last reversion A4102449G did not have a 
strong effect alone, and may even have been slightly detrimental alone, but appeared to provide 
a benefit in the presence of C3990077T (Supplementary Fig. 5a). 

We suspected that the de novo  cyaA  mutation (C3990077T) is a beneficial suppressor in 
the C321.∆A background but not the non-recoded background. Testing the mutation in 
EcNR1.mutS.KO revealed a minor detrimental effect on fitness, increasing doubling time by 
2.94% (p=0.002; one-tailed t-test).  
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Supplementary Note 3 
 
Nucleotide sequences for 0-UAG-sfGFP, 1-UAG-sfGFP, 3-UAG-sfGFP used for 
characterizing nsAA incorporation. 
 
>0-UAG-sfGFP 
ATGCATCACCACCATCATCACAAAGGTGAAGAACTGTTTACCGGCGTTGTTCCGATCCTGGTTGAACTG
GACGGTGACGTGAACGGTCATAAATTCTCCGTACGTGGTGAAGGTGAGGGTGACGCGACCAACGGTA
AGCTGACTCTGAAATTCATCTGCACCACCGGCAAACTGCCGGTTCCGTGGCCGACGCTGGTTACGACC
CTGACCTACGGTGTTCAGTGCTTCGCGCGTTACCCGGACCATATGAAGCAGCACGACTTCTTCAAATCT
GCGATGCCGGAAGGTTACGTTCAGGAACGTACCATCTCTTTCAAAGACGACGGTACCTACAAAACCCG
TGCGGAAGTTAAATTCGAAGGCGACACCCTGGTTAATCGTATCGAACTGAAAGGTATCGACTTCAAGGA
AGACGGCAATATTCTGGGTCACAAACTGGAATACAACTTCAACTCTCACAATGTTTACATCACCGCGGA
CAAACAGAAAAATGGTATCAAAGCAAATTTCAAAATCCGTCATAACGTTGAGGACGGCTCTGTACAACT
GGCGGACCACTACCAACAAAACACCCCGATTGGTGACGGTCCGGTCCTGCTGCCGGACAACCATTACC
TGTCTACCCAGTCTGTTCTGTCTAAAGACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCG
TTACCGCAGCGGGTATCACCCACGGTATGGACGAGCTGTATTAA 
 
>1-UAG-sfGFP 
ATGCATCACCACCATCATCACAAAGGTGAAGAACTGTTTACCGGCGTTGTTCCGATCCTGGTTGAACTG
GACGGTGACGTGAACGGTCATAAATTCTCCGTACGTGGTGAAGGTGAGGGTGACGCGACCAACGGTA
AGCTGACTCTGAAATTCATCTGCACCACCGGCAAACTGCCGGTTCCGTGGCCGACGCTGGTTACGACC
CTGACCTACGGTGTTCAGTGCTTCGCGCGTTACCCGGACCATATGAAGCAGCACGACTTCTTCAAATCT
GCGATGCCGGAAGGTTACGTTCAGGAACGTACCATCTCTTTCAAAGACGACGGTACCTACAAAACCCG
TGCGGAAGTTAAATTCGAAGGCGACACCCTGGTTAATCGTATCGAACTGAAAGGTATCGACTTCAAGGA
AGACGGCAATATTCTGGGTCACAAACTGGAATACAACTTCAACTCTCACAATGTTTAGATCACCGCGGA
CAAACAGAAAAATGGTATCAAAGCAAATTTCAAAATCCGTCATAACGTTGAGGACGGCTCTGTACAACT
GGCGGACCACTACCAACAAAACACCCCGATTGGTGACGGTCCGGTCCTGCTGCCGGACAACCATTACC
TGTCTACCCAGTCTGTTCTGTCTAAAGACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTCG
TTACCGCAGCGGGTATCACCCACGGTATGGACGAGCTGTATTAA 
 
>3-UAG-sfGFP 
ATGCATCACCACCATCATCACAAAGGTGAAGAACTGTTTACCGGCGTTGTTCCGATCCTGGTTGAACTG
GACGGTGACGTGAACGGTCATAAATTCTCCGTACGTGGTGAAGGTGAGGGTGACGCGACCTAGGGTA
AGCTGACTCTGAAATTCATCTGCACCACCGGCAAACTGCCGGTTCCGTGGCCGACGCTGGTTACGACC
CTGACCTACGGTGTTCAGTGCTTCGCGCGTTACCCGGACCATATGAAGCAGCACGACTTCTTCAAATCT
GCGATGCCGGAAGGTTACGTTCAGGAACGTACCATCTCTTTCAAAGACGACGGTACCTACAAAACCCG
TGCGGAAGTTAAATTCGAAGGCGACACCCTGGTTAATCGTATCGAACTGAAAGGTATCGACTTCAAGGA
AGACGGCAATATTCTGGGTCACAAACTGGAATACAACTTCAACTCTCACAATGTTTAGATCACCGCGGA
CAAACAGAAAAATGGTATCAAAGCAAATTTCAAAATCCGTCATAACGTTGAGGACGGCTCTGTACAACT
GGCGGACCACTAGCAACAAAACACCCCGATTGGTGACGGTCCGGTCCTGCTGCCGGACAACCATTAC
CTGTCTACCCAGTCTGTTCTGTCTAAAGACCCGAACGAAAAACGTGACCACATGGTTCTGCTGGAATTC
GTTACCGCAGCGGGTATCACCCACGGTATGGACGAGCTGTATTAA 
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