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Abstract 

Background: Membrane proteins are vastly underrepresented in structural databases, which has 

led to a lack of computational tools and the corresponding inappropriate use of tools designed for 

soluble proteins. For membrane proteins, lipid accessibility is an essential property. Even though 

programs are available for sequence-based prediction of lipid accessibility and structure-based 

identification of solvent-accessible surface area, the latter does not distinguish between water 

accessible and lipid accessible residues in membrane proteins.  

Results: Here we present mp_lipid_acc, the first method to identify lipid accessible residues 

from the protein structure, implemented in the RosettaMP framework and available as a web-

server. Our method uses protein structures transformed in membrane coordinates, for instance 

from PDBTM or OPM databases, and a defined membrane thickness to classify lipid accessibility 

of residues. mp_lipid_acc is applicable to both a-helical and b-barrel membrane proteins of 

diverse architectures with or without water-filled pores and uses a concave hull algorithm for clas-

sification. We further provide a manually curated benchmark dataset, on which our method 

achieves prediction accuracies of 90%. 

Conclusion: We present a novel tool to classify lipid accessibility from the protein structure, which 

is applicable to proteins of diverse architectures and achieves prediction accuracies of 90% on a 

manually curated database. mp_lipid_acc is part of the Rosetta software suite, available at 

www.rosettacommons.org. The webserver is available at http://rosie.graylab.jhu.edu/mp_li-

pid_acc/submit and the benchmark dataset is available at http://tinyurl.com/mp-lipid-acc-dataset. 

Supplementary information: Supplementary information is available at BMC Bioinformatics. 
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1 Background  

Membrane proteins carry out a variety of essential functions and are targeted by over half of drugs 

in use [1], yet only make up ~2% of proteins in the Protein Data Bank due to difficulties in structure 

elucidation. The dearth of structures has in turn led to a lack of prediction tools, which have typi-

cally focused on either a-helical or b-barrel membrane proteins [2], or on specific features like the 

prediction of membrane pores [3].  One important characteristic of membrane proteins is acces-

sibility to the lipid environment of the bilayer. Knowledge of lipid accessibility is important for our 

understanding of membrane protein structure, stability [4], interactions inside the bilayer, the de-

velopment of membrane protein energy functions, the development of sequence-based predic-

tors, and as an indicator of binding interfaces. While sequence motifs for helix-helix interactions 

in the membrane have been well-studied [5], the broader picture of large protein-protein interfaces 

in the membrane is still developing.  

Prediction of lipid accessibility is not trivial: the protein ‘interior’ can either be water accessible in 

case of pores, or buried hydrophobic residues. For the latter, the hydrophobicity profile of buried 

residues is similar to lipid-facing residues, hence hydrophobicity as a solitary feature would be 

insufficient for classification. Solvent accessible surface area (SASA) is useful to identify acces-

sibility of the residue to the solvent, yet it does not distinguish between lipid or water accessibility. 

Further, geometric considerations might be useful for the structures of b-barrels, as sidechains 

typically either face into the barrel or away from it, but this distinction is typically less clear for a-

helical proteins. Therefore, a combination of different features is required for accurate prediction 

of lipid accessible residues.  

The problem is further complicated by the fact that accessibility to lipid relies on protein embed-

ding in the membrane and experimental measurements of membrane embedding features (like 

depth, angle, and membrane thickness) are challenging. Lipid molecules are only present in a 
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few crystal structures, and the model membrane used for crystallization or structure determination 

is very different from a native membrane environment because it lacks the exact lipid composition 

[6], membrane thickness, asymmetry [7], lateral pressure [8] and shape [9] (compare micelles, 

bicelles, nanodiscs, lipidic cubic phases vs. a flat or curved bilayer). Protein embedding in the 

membrane is therefore predicted using computational approaches that rely on different score 

functions, such as TMDET [10], PPM [11], and iMembrane [12]. However, benchmarking of these 

tools is difficult without high-resolution experimental data. Similarly, for lipid accessibility there are 

no compiled structural databases to test the performance of a predictor from the protein structure, 

hence expert manual curation of such a database is required.  

A range of sequence-based predictors is available that specializes either on transmembrane 

span or topology prediction for a-helical bundles or b-barrels, SASA, or lipid accessibility. Trans-

membrane span predictors classify residues as in the membrane vs. in solution and are able to 

achieve prediction accuracies >90% in the two-state scenario [13], [14]. Topology predictors [15], 

[16] classify residues as inside/outside the cell or organelle and in the membrane (for definitions 

for the OPM (Orientations of Proteins in Membranes) database [11], see 

http://opm.phar.umich.edu/about.php?subject=topology). SASA predictors classify residues as 

buried or exposed to the solvent without specifying whether the solvent is water or lipid. They 

typically use support vector machine approaches and report prediction accuracies in the range of 

70-75%: the ASAP tool can be used for both a-helical and b-barrel membrane proteins [17], the 

MPRAP method is optimized for SASA prediction of both soluble and transmembrane regions of 

membrane proteins [18], and the TMExpo tool predicts embedding angles in addition to SASA 

[19]. Further, pore-lining residues and channels can be predicted from the protein sequence using 

the recently developed tool PRIMSIPLR [3], which achieves a prediction accuracy around 86%. 

Lipid accessibility (lipid exposed versus lipid buried) can be predicted from the protein sequence 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 10, 2016. ; https://doi.org/10.1101/086579doi: bioRxiv preprint 

https://doi.org/10.1101/086579
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

with the LIPS server [20], which uses contact maps between helical faces and residue conserva-

tion for classification. It achieves a prediction accuracy of 88%, according to the authors.  

SASA prediction from the protein structure can be obtained with a few early predictors 

(Naccess [21], MSMS [22], GetArea: http://curie.utmb.edu/getarea.html [23]); unfortunately, some 

of these methods lack benchmarking results, were only tested on a few low-resolution crystal 

structures or lack availability as a web server and/or documentation. The recently developed, well-

documented 3V web interface for volume, solvent exclusion and channel prediction does not com-

pute SASA values per residue [24]. 

Here, we present a method to identify lipid accessible residues from a protein structure that is 

already embedded in membrane coordinates. Our method uses a 2D concave hull algorithm on 

a point cloud generated by projecting Ca coordinates from horizontal slices of the protein within 

the bilayer onto the plane of the membrane. For each slice, the convex hull, the concave hull, and 

a ‘concave shell’ is computed, through which lipid accessible residues are identified (see Imple-

mentation and Fig. 2). The classification of the concave shell is output as adjusted B-factors in 

the PDB file, which can be easily visualized or extracted for further analysis. We compute predic-

tion accuracies on a manually curated benchmark dataset available for download at http://ti-

nyurl.com/mp-lipid-acc-dataset. Our method mp_lipid_acc is also publicly available as a web-

server on ROSIE [25] at http://rosie.graylab.jhu.edu/mp_lipid_acc/submit. To our knowledge, this 

is the first tool to classify lipid exposure of residues from a protein structure. Our method is appli-

cable to both a-helical and b-barrel membrane proteins of any architecture and will be useful for 

a variety of problems from score function derivation, development of sequence-based predictors, 

and structural modeling. 
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2 Implementation 

2.1 Curation of training and benchmark datasets 

We created a small dataset of 14 proteins for the development of the algorithm (Supplementary 

Table 1) and to find an optimal parameter set. These proteins cover a wide range of protein folds 

from one or two transmembrane helices, helical bundles with and without smaller pores (for in-

stance GPCRs, aquaporins), small and large helical pores, transporters (ABC transporter), ion 

channels with voltage sensor domains, oblong helical channels (for instance chloride channel), 

b-barrels with and without internal domains, b-barrel monomers and trimers, and cigar shaped b-

barrels and pore-forming toxins. The PDBIDs for this dataset were 1afo, 1ek9, 1fep, 1kpk, 1qd6, 

2kix, 2r9r, 2rh1, 2wcd, 3emn, 3ne2, 3wmf, 4tnw, 7ahl.  

We curated a benchmark dataset for testing our method (Supplementary Table 2): all membrane 

protein chains were downloaded from the PDBTM database [26], which were then culled with the 

PISCES server [27] with the following parameters: sequence identity £ 25%, resolution £ 3.0 Å, 

R-factor cutoff 0.3, sequence length 40-10,000, include non-Xray entries, exclude Ca-only en-

tries, cull by chain. We then excluded all EM structures with resolutions > 3 Å and removed all 

XFEL structures with resolution “0.0” or proteins for which no method was specified. Further, we 

removed photosynthetic reaction centers and photosystems I and II as they have very loosely 

packed helices complexed with a large number of interstitial chlorophyll molecules. We also re-

moved the proteins present in the training dataset.  

The structures in each set were downloaded from the PDBTM database [26], for which the pro-

teins are already transformed into the membrane coordinate frame: the membrane center is de-

fined as the origin at (x, y, z) = (0, 0, 0) and the membrane normal vector lies along the z-axis 

with (0, 0, 1). To compute the membrane embedding of a protein structure, PDBTM uses the 
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TMDET algorithm [10], [28] that fits the membrane embedding according to an objective function 

that contains measures of hydrophobicity and structural information regarding the Ca-trace within 

a protein slice, such as straightness, turns and termini. Initially, we downloaded structures from 

the OPM database [11], but through visual inspection of the entire database we realized that the 

protein embedding seems generally better in PDBTM. The structures were then cleaned from 

additional atoms (such as ligands and co-factors), renumbered, and the span files were computed 

as described previously [29] with a fixed membrane thickness of 30 Å. We used a fixed membrane 

thickness to avoid a circular influence of the thickness prediction from PDBTM onto our bench-

mark dataset. 

We ran our algorithm over the benchmark dataset (204 proteins) as a first pass, which outputs 

the lipid accessibility as a modified B-factor column in the PDB file. We then manually corrected 

classification errors by visualizing each protein in PyMOL [30], coloring it according to B-factors, 

and then manually adjusting the B-factors for each incorrectly classified residue. Our benchmark 

dataset is described in Supplementary Table 2 and is available for download at http://ti-

nyurl.com/mp-lipid-acc-dataset.  

2.2 Algorithm overview 

The protein was cut into 10 Å thick horizontal slices along the membrane normal (Fig. 1). For 

each slice, the Ca atoms were projected onto the xy plane, from which points the convex hull was 

computed. The convex hull is the smallest set of points on the outer perimeter of the 2D point 

cloud that encloses the entire point cloud; it is computed by a QuickHull algorithm [31], [32] (see 

below). From the convex hull, we computed the concave hull [33], which defines the set of points 

on the outer perimeter of the point cloud. It has a smaller surface area than the convex hull and 

encloses the point cloud by concave surfaces (see below). We then computed the concave shell 
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that includes points (Ca atoms) whose xy coordinates are within a radius of the original boundary 

points. Concave shells were computed for each horizontal slice in the membrane region.  

Residues with Ca atoms in the concave shell are classified as lipid exposed with the following 

exceptions: (1) if the number of TM spans is smaller or equal 2, all residues in the membrane 

region are classified as lipid exposed; (2) for b-barrels, we make the distinction of whether the 

sidechain faces into the interior of the barrel or not. For each slice, we therefore compute the 

center-of-mass (COM) of the Ca atoms and only classify residues with the Cb-Ca-COM angle 

larger than 65 degrees as lipid accessible (for Glycine, we used 2HA to represent ‘Cb’). (3) For 

smaller helical bundles with 7 or less TM spans, the concave shell algorithm over-predicted lipid 

accessible residues in the interior of the protein. To counter balance this over-prediction, we took 

into account an angle cutoff of 45 degrees as described above. 

2.3 Convex and concave hull 

The convex hull algorithm is a classification of a 2D point cloud into three lists: inside the hull, 

outside the hull, and part of the hull (i.e. on the boundary). The Quickhull algorithm starts by 

classifying all points as outside the hull [31], [32]. Then, the points with the smallest x value, 

smallest y, largest x and largest y are connected and moved to the list of points on the boundary. 

The points inside the rectangle are moved to the inside list (Fig. 2A). Then, two neighboring points 

in the boundary list are connected by a line and the point outside with the largest distance in 

clockwise direction is moved to the boundary (Fig. 2B), while the points inside this triangle are 

added to the point list inside the hull. This last step is repeated until all points are either inside the 

hull or on the boundary and the outside list is empty. The convex hull algorithm identifies the 

points on the hull that make up a convex shape (Fig. 2C). However, it fails to identify points on 

the hull that encompass the smallest surface area.  
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The concave hull on the other hand, defines points with the smallest surface area, which requires 

‘cutting into’ the boundaries of the convex hull to create concave surfaces. Starting from the con-

vex hull, two neighboring points on the boundary are connected by a line [33]. If the distance of 

the line segment is larger than a pre-defined distance cutoff, the point inside the hull (counter-

clockwise) is identified that has the smallest sum of angles to the two original boundary points. 

This point is added to the boundary and this last step is repeated until all the distances between 

neighboring points in the boundary list are smaller than the pre-defined cutoff. The cutoff is re-

quired because there is no unique solution to the classification problem as to which points are 

part of the concave hull. The cutoff is therefore a measure similar to a ‘resolution’ that defines 

how rugged the concave surfaces are (compare Fig. 2D and 2E). 

To extend the information of the concave hull back into three dimensions, we classified points 

(i.e. Ca atoms) within a certain xy-distance from the points on the boundary as part of the bound-

ary – we call this the concave shell (Fig. 2F). 

2.4 Adjustable parameters in the algorithm 

Optionally adjustable parameters for this application are: (1) the width of the horizontal slices for 

which the concave shells are computed. As only Ca atoms are considered and to avoid overfitting 

of the convex shell due to data sparsity, the default slice width to is set 10 Å, corresponding to 

approximately 1/3 of the thickness of a physical membrane bilayer. The three slices therefore 

extend over the inner and outer leaflets and the space in between. Further, the membrane thick-

ness should be an integer multiple of the slice width to avoid data sparsity in the last slice. The 

current membrane thickness is fixed at 30 Å. (2) The ‘resolution’ of the concave hull is defined by 

the distance cutoff between points on the hull boundary. 2D line segments between neighboring 

points on the hull are ‘cut in’ if their distance is longer than the distance cutoff (Fig. 2D and E). 

The default value for the distance cutoff is 10 Å, which is approximately the distance between two 
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Ca atoms on the same side of neighboring helices. (3) To map the 2D concave hull back into 

three dimensions, Ca atoms with xy coordinates within a certain radius (shell radius) of the original 

boundary points are added to the hull, which we call the concave shell. The default shell radius is 

6 Å, which is about half the diameter of an a-helix. (4) To distinguish between sidechains facing 

water-filled interiors in b-barrels from sidechains facing the lipid environment, we defined a cutoff 

for the Cb-Ca-COM angle. The default value for the angle cutoff is 65 degrees, which is empiri-

cally determined and slightly smaller than 90 degrees to account for the curvature of b-barrels. 

(5) To classify lipid accessibility we distinguish between an a-helical bundle or b-barrel membrane 

protein, which refers to the secondary structure facing the lipid (i.e. barrel interior secondary struc-

ture is not considered). The type is auto-detected based on the prevalent secondary structure in 

the membrane, as computed by DSSP [34]. In the rare scenario that auto-detection fails, the 

secondary structure type can be set by the user.  

If a residue is classified as lipid accessible, its B-factor is set to 50, otherwise it is set to 0. The 

PDB structure with the adjusted B-factor is output and can be visualized in PyMOL (The PyMOL 

Molecular Graphics System, Version 1.8 Schrödinger, LLC) with the provided script color_b-

factor.pml.  

3 Results and Discussion 

We present an algorithm that classifies lipid exposed residues in membrane protein structures. It 

is applicable to monomeric and oligomeric a-helical and b-barrel membrane proteins with and 

without pores. Our algorithm uses protein structures transformed into membrane coordinates and 

a fixed membrane thickness and is applicable to a wide range of protein architectures. Classifi-

cation is achieved through a 2D concave hull algorithm applied to the point cloud of membrane 

embedded Ca atoms projected onto the membrane plane. mp_lipid_acc then creates a PDB 
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structure file with modified B-factors that can then be visualized by a provided PyMOL script. We 

further provide a publicly accessible webserver to run the classification, which is implemented in 

the ROSIE environment [25], accessible at http://rosie.graylab.jhu.edu/mp_lipid_acc/submit. Ad-

ditionally, we make our manually curated benchmark dataset available to the public 

(http://tinyurl.com/mp-lipid-acc-dataset), which will be useful for the development of sequence-

based predictors and membrane protein scoring functions.  

The prediction accuracies for our benchmark set are shown in Table 1 with counts for true posi-

tives, true negatives, false positives, and false negatives. Accuracy, sensitivity and specificity are 

also computed. As a baseline for comparison, we used the prediction of rASA with a cutoff of 0.2. 

Table 1 shows that while rASA achieves almost as high prediction accuracies as our predictor, it 

is unable to distinguish between lipid accessible and water accessible residues, as demonstrated 

by the low sensitivity. In contrast, our simple algorithm correctly identifies lipid exposed residues, 

achieving a prediction accuracy of 91.2% (Table 1, Fig. 3, Table 2 and Supplementary Table 2), 

with consistently high sensitivity and specificity (~90%).  

We aimed to classify residues in well-packed a-helical proteins, helical pores, plain b-barrels, b-

barrels with plug domains, monomeric and multimeric membrane proteins with and without pores, 

and multimeric ion channels with a large lipid exposed surface area due to their voltage sensor 

domains (Fig. 3). Because we are using a concave hull algorithm, mp_lipid_acc is applicable 

to a wide range of protein architectures that have perimeters of different shapes, for instance 

oblong protein structures (such as the chloride channel in Fig. 3H), ‘winged’ structures (such as 

ion channels with voltage sensor domains in Fig. 3B), and multimeric proteins.   

Runtimes for mp_lipid_acc are consistently short, typically under 1 minute for proteins up to 

2,000 residues, using default parameters (Fig. 4). The algorithm only takes into account Ca atoms 
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in the protein. We tested using all atoms for the calculation of the hulls and the concave shell, 

which increased the runtimes considerably (over 1 hour), especially for large proteins, while 

achieving similar results. We therefore only make the option available to use Ca atoms.  

While improvements to the algorithm might lead to a smaller number of false positives, our algo-

rithm is the first to classify lipid exposed residues from the protein structure, yielding prediction 

accuracies around 90%. It will be useful for molecular modeling and developing score functions 

and more sophisticated sequence-based approaches for the prediction of lipid accessibility. Clas-

sification of lipid accessibility from the structure is also useful to advance our understanding of 

membrane protein folding, stability and their interactions in the membrane bilayer [4]. 

4 Conclusion 

Here we present a novel method to classify lipid accessibility in membrane protein structures. Our 

algorithm is applicable to a-helical and b-barrel membrane proteins with and without pores and 

for diverse protein architectures. mp_lipid_acc is implemented in RosettaMP and uses mem-

brane embedded structures (from PDBTM or OPM) and a fixed membrane thickness to classify 

residues based on a concave hull algorithm. To test our method, we manually curated a bench-

mark dataset, on which mp_lipid_acc achieves accuracies, specificities and sensitivities 

around 90%. We believe that mp_lipid_acc and our benchmark set are an important first step 

for sequence- and structure-based prediction of lipid accessibility, score function optimization, 

and membrane protein modeling in general.   
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Figure 1: Algorithm 

In our algorithm mp_lipid_acc, the protein is cut into horizontal slices (left) and the center-of-

mass in each slice is computed from the coordinates of the Ca atoms. In each slice, the coordi-

nates of the Ca atoms are projected onto the xy-plane, from which points first the convex hull, 

then the concave hull, and then the ‘concave shell’ are computed (see Implementation). For b-

barrels, only residues which are part of the concave shell and have a Ca-Cb-COM angle larger 

than a cutoff value of 65 degrees are classified as lipid accessible (right). For instance, the residue 

with a sidechain orientation represented by the yellow vector in the panel on the right would be 

lipid accessible, whereas the sidechain in blue would be lipid inaccessible.  
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Figure 2: Convex and concave hull algorithms 

Illustration of the convex hull, concave hull, and ‘concave shell’ from a 2D point cloud that was 

projected onto the xy plane from the 3D structure. The example protein is the sodium channel 

with PDBID 4DXW and the points in blue are outside the hull, the points in black are inside the 

hull and the points in red are part of the hull. The convex hull algorithm starts by connecting the 

points with smallest and largest x and y values in counter-clockwise direction and identifying the 

points inside the hull (A). The hull is extended to a convex hull by connecting two points on the 

boundary, finding the point in the outside list that is farthest away from the two boundary points 

and that is in clockwise direction, and adding this point to the boundary (B). The points within the 

triangle between the old two boundary points and the added one are then classified as inside the 

hull. These steps are repeated until all points are inside the convex hull (C). The concave hull is 

then computed by finding the longest distance between two connected points on the boundary, 

finding the point inside the hull that has the smallest enclosing angles with respect to the two 

original boundary points, and adding this new point to the hull boundary. The distance cutoff de-

fines the ‘resolution’ of the hull with a distance cutoff of 15 Å in (D) and 5 Å in (E). This process is 

repeated until all distances between connecting points are smaller than the cutoff distance. Lastly, 

a concave shell is computed by including points within an xy distance radius from the original 

boundary points (from E to F). All boundary points in F are now part of the concave shell and 

classified as lipid exposed.  
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Figure 3: Classifications on selected examples from the benchmark dataset 

Classifications for proteins of diverse architectures. Details about the individual proteins are pro-

vided in Table 2. In panel D, the pore of the protein (framed) is shown on the right, where the 

residues that protrude into solution, are clipped to show the prediction for the pore residues.  
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Figure 4: Runtimes for proteins of different sizes 

Runtime of mp_lipid_acc in seconds for proteins of varying sizes. Runtimes are obtained when 

using the default parameters of a slice width of 10 Å, a distance cutoff of 10 Å, and a shell radius 

of 6 Å. 
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Table 1 

Prediction accuracies in percent for the benchmark set. The first row indicates a prediction using 

relative accessible surface area in the membrane (cutoff 0.2) without lipid accessibility classifica-

tion. The second row shows results for predicted lipid accessibility with our concave hull algorithm. 

Note that mp_lipid_acc is able to identify lipid exposed residues, giving rise to an almost 20% 

increase in sensitivity over a standard rASA algorithm.  

 TP TN FP FN acc sens spec 

rASA 26526 119406 7727 10602 88.8 71.4 93.9 

hull 33191 116548 10585 3937 91.2 89.4 91.7 

TP: number of residues predicted as true positives; TN: true negatives; FP: false positives; FN: false 

negatives; acc: accuracy = (TP+TN)/(TP+TN+FP+FN); sens = TP/(TP+FN); spec = TN/(TN+FP). 
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Table 2 

Proteins for which predictions are shown in Fig. 3. A/B denotes a-helical vs. b-barrel membrane 

proteins. The benchmark dataset is shown in the Supplementary Material.  

PDBID A/B feature family subfigure 

3D9S A aquaporin aquaporin A 

4DXW A ion channel sodium channel B 

3CSL B filled barrel heme binding C 

3W9T B pore-forming toxin lectin D 

2J7A A 1-2TM nitrite reductase E 

1U19 A GPCR bovine rhodopsin F 

3TUI A ABC transporter methionine transporter G 

4ENE A ClC channel chloride channel H 
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