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Abstract 13	

A leading theory holds that neurodevelopmental brain disorders arise from imbalances in 14	

excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-15	

dimensional model is rich enough to capture the multiple neural circuit alterations 16	

underlying brain disorders. Here we combined computational simulations with analysis of in 17	

vivo 2-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a 18	

model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: 1) The E/I 19	

imbalance model cannot account for joint alterations in the observed neural firing rates and 20	

correlations; 2) Neural circuit function is vastly more sensitive to changes in some cellular 21	

components over others; 3) The direction of circuit alterations in Fmr1 KO mice changes 22	

across development. These findings suggest that the basic E/I imbalance model should be 23	

updated to higher-dimensional models that can better capture the multidimensional 24	

computational functions of neural circuits.  25	
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Introduction 26	

The nervous system shows complex organization at many spatial scales: from genes and 27	

molecules, to cells and synapses, to neural circuits. Ultimately, the electrical and chemical 28	

signaling at all of these levels must give rise to the behavioral and cognitive processes seen at 29	

the whole-organism level. When trying to understand prevalent brain disorders such as autism 30	

and schizophrenia, a natural question to ask is: where is the most productive level of 31	

neuroscientific investigation? Traditionally, most major disorders are diagnosed entirely at the 32	

behavioral level, whereas pharmaceutical interventions are targeted at correcting alterations at 33	

the molecular level. However even for the most successful drugs, we have little understanding 34	

of how pharmaceutical actions at the molecular level percolate up the organizational ladder to 35	

affect behavior and cognition. This classic bottom-up approach may even be further 36	

confounded if phenotypic heterogeneity in disorders such as autism turn out not to reflect a 37	

unique cellular pathology, but rather “a perturbation of the network properties that emerge 38	

when neurons interact” (Belmonte et al., 2004). These considerations imply that a more 39	

promising level of analysis might be at the level of neural circuits, since the explanatory gap 40	

between circuits and behavior is smaller than the gap between molecules and behavior. This 41	

circuit-level viewpoint argues for a reverse-engineering approach to tackling brain disorders: 42	

rather than start at the molecular level and working up, we should instead start by asking how 43	

cognitive and behavioral symptoms manifest as alterations at the circuit level, then interpret 44	

these changes at the levels of cells, synapses, and molecules as appropriate. 45	

One prominent circuit-level hypothesis for brain disorders has been the idea of an imbalance in 46	

excitatory and inhibitory signaling. First proposed as a model for autism (Rubenstein and 47	

Merzenich, 2003), the concept has since been applied to many other brain disorders, including 48	

Schizophrenia, Rett syndrome, fragile-X syndrome, tuberous sclerosis, and Angelman 49	

Syndrome. However, a major drawback of this model is that it only considers overall activity, 50	

which is 1-dimensional. It implies that either too much excitation or too much inhibition is 51	

unhealthy (Figure 1A). Although several studies have found evidence that the E/I balance is 52	

indeed upset in multiple brain disorders (Bateup et al., 2011; Dani et al., 2005; Gibson et al., 53	

2008; Kehrer et al., 2008; Wallace et al., 2012), a model’s usefulness should not be judged on 54	
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whether it is nominally true or false, but on its explanatory and predictive powers as compared 55	

with competing alternative models. In this study we argue that that even if the E/I imbalance 56	

model proves correct, its unidimensionality might ultimately limit its applicability, for three 57	

reasons. 58	

First, by placing all disorders on the same single axis, the E/I imbalance model implicitly lumps 59	

together some vastly different disorders, such as epilepsy, schizophrenia and autism (Figure 60	

1A) because they share an excess of excitation. By extension it implies that the symptoms of 61	

diverse disorders could be normalized solely by either enhancing or reducing the level of, say, 62	

GABAergic signaling as appropriate. Although clinical trials for such GABAergic-based 63	

interventions are ongoing (Braat and Kooy, 2015), no treatment for a neurodevelopmental 64	

disorder based on this principle has yet been approved. 65	

A second issue with the unidimensionality of the E/I imbalance model is that it lumps together 66	

all excitatory and inhibitory neural circuit components. In Figure 1B we show a schematic 67	

diagram of a generic neural circuit with excitatory components colored red and inhibitory 68	

components colored blue. The E/I imbalance model implies that varying any of the excitatory 69	

components, such as the strength of recurrent excitatory synapses or the input resistances of 70	

excitatory neurons, would have the same overall effect on circuit function. In contrast, theorists 71	

have found that these equivalences often do not hold even in very simple circuit models 72	

(Wilson and Cowan, 1972).  73	

Third, because the standard E/I imbalance model is given in terms of circuit components, not 74	

circuit function, it does not specify which aspect of a neural circuit’s activity should be 75	

maintained for healthy performance. For example, it leaves unclear which of neuronal firing 76	

rates, synchrony, or reliability of responses might be altered if E/I balance is upset. 77	

To motivate our study, we began by investigating which circuit activity properties are altered in 78	

a model brain disorder. We re-analyzed published in vivo 2-photon Ca2+ imaging data we 79	

previously recorded from somatosensory cortex in Fmr1 knockout mice (Gonçalves et al., 80	

2013), a well-studied animal model for fragile-X syndrome (The Dutch-Belgian Fragile X 81	

Consortium, 1994). We compared the data from wild-type (WT) mice with Fmr1 KO mice, 82	
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across three different developmental time points: just before (P9—11) and after (P14—16) the 83	

critical period for heightened activity-dependent synaptic plasticity in L2/3 barrel cortex, and a 84	

more mature timepoint (P30—40). Example ΔF/F raster plots from each group are shown in 85	

Figure 1C, top left. We binned the data into 1 s timebins (originally imaged at 4 Hz), then 86	

transformed each neuron’s timeseries of ΔF/F values into a probabilistic sequence of binary 87	

ON/OFF values by assuming a Poisson firing model (Methods). We then summarized the 88	

neural population activity from each animal with three statistics: the mean ON probability 89	

across all recorded neurons, the standard deviation (s.d.) in ON probability across neurons, 90	

and the mean correlation between all pairs of neurons (Figure 1C, bar charts right and scatter 91	

plots lower left). Together these measures capture both the statistics of the bulk population 92	

activity and some indication of the heterogeneity across neurons. 93	

 
Figure 1. Mismatch between the E/I imbalance model’s unidimesionality and the multiple 

changes in circuit activity in Fragile-X mouse models. 
A: Schematic of standard E/I imbalance model as a unidimensional axis. 

B: Diagram of a generic neural circuit, showing an excitatory and an inhibitory population of 

neurons and their interconnections. Although the E/I imbalance model implicitly groups all 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/086363doi: bioRxiv preprint 

https://doi.org/10.1101/086363
http://creativecommons.org/licenses/by-nc-nd/4.0/


	  O’Donnell et al. 
	

	 5 

components as either excitatory (red) or inhibitory (blue), in principle any component could 

separately be altered in brain disorders, and may have a distinct effect on circuit function. 

C: Upper left, example Ca2+ imaging dF/F raster plots from a single animal from each of two 

genotypes, WT and Fmr1 KO, and three age groups, P9—11, P14—16 and P30—40. In each 

case 3 minutes of data are shown from 40 neurons. Right and lower left, mean firing 

probability, standard deviation of firing probabilities, and mean pairwise correlation across all 

neurons. Same data in scatter plots lower left and bar charts right. * indicates significant 

difference in group means at p<0.05, by bootstrapping. 

For mean firing rates, the only change we detected was a decrease in firing probability in WT 94	

between P14—16 and P30—40 (p = 0.027), which was coupled with an increased s.d. of firing 95	

rates (p =	 0.015). We also detected a higher firing rate s.d. in P9—11 KO animals than WT (p = 96	

0.031). Finally, as previously reported (Golshani et al., 2009; Gonçalves et al., 2013; Rochefort 97	

et al., 2009), we found a substantial decrease in pairwise correlations in both genotypes 98	

across development, with slightly higher correlations in KO animals than WT at P9—11 (p = 99	

0.029) and P14—16 (p = 0.047). 100	

These results show that multiple statistics of cortical circuit activity are altered in Fmr1 KO 101	

mice. However, two questions remain: 1) Which circuit components are responsible for these 102	

activity alterations? 2) What is the consequence for circuit computation? In the remainder of 103	

this study, we used computational simulations and further data analysis to ask whether the E/I 104	

imbalance model could help address these questions.   105	

We first built a detailed spiking neural circuit model of mouse L2/3 somatosensory cortex to 106	

explore how its various excitatory and inhibitory components affect the circuit’s spiking output, 107	

and found that the E/I imbalance model was not flexible enough to capture key aspects of this 108	

relationship. We then derived an abstract 2-dimensional circuit model that captures more 109	

features of the circuit function than the 1-dimensional E/I imbalance model did. Using this new 110	

model, we found that certain sets of circuit components have redundant effects on circuit 111	

function, and that circuit function is vastly more sensitive to changes in some components over 112	

others. To ask how this 2-D model could help interpret brain circuit abnormalities in a particular 113	

test case, we fit a version of the model to the Ca2+ imaging data from Fragile-X mouse models 114	
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presented above. We found that the model predicts opposite changes in Fmr1 KO circuit 115	

properties at different developmental ages. Finally, we applied a new large-scale neural 116	

population analysis method (O'Donnell et al., 2017) to the same Ca2+ imaging data, and found 117	

systematic shifts in the distribution of neural circuit activity patterns in Fragile-X that were not 118	

predictable from neural firing rates or correlations alone.  119	
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Results 120	

Neural circuits consist of many components that typically interact non-linearly to generate 121	

complex circuit activity dynamics. Although many properties of cortical circuit components 122	

have been found to be altered in animal models of brain disorders, it remains extremely difficult 123	

to predict the net effect of varying any one particular parameter on circuit activity. The E/I 124	

imbalance model seeks to simplify this problem by projecting all circuit alterations onto a one-125	

dimensional axis (Figure 1A) where the goal is to achieve a ‘healthy’ balance of excitation and 126	

inhibition. Under this model, either too much excitation or too much inhibition leads to improper 127	

circuit function. 128	

To explicitly test whether the E/I imbalance model can account for the effects of cellular 129	

component changes on circuit function, we built a detailed computational model of layer (L) 2/3 130	

mouse somatosensory cortex. This circuit has been studied in detail by neurophysiologists, 131	

and several of its properties have been found to be altered during development in mouse 132	

models of Fragile-X syndrome, including parvalbumin-positive interneuron number (Selby et al., 133	

2007), GABA receptor reversal potential (He et al., 2014), dendritic spine dynamics (Cruz-134	

Martin et al., 2010), and L4 excitatory input (Bureau et al., 2008), reviewed by Contractor et al. 135	

(2015). We used numerical computer simulations to perform hypothetical experiments where 136	

we perturbed various parameters of the circuit model and observed the resulting changes in 137	

circuit-level activity. Although we focused on this particular brain circuit for tractability, our 138	

general conclusions and methodology should be readily applicable to other brain circuits (Frye 139	

and Maclean, 2016). 140	

The L2/3 computational model we built (Figure 2A, see Methods for details) consisted of four 141	

interconnected populations of leaky integrate-and-fire neurons: one group of 1700 excitatory 142	

(E) pyramidal neurons and three groups of inhibitory neurons: 115 5HT3AR-expressing neurons, 143	

70 parvalbumin-expressing (PV) neurons, and 45 somatostatin-expressing (SOM) neurons. 144	

This L2/3 circuit was driven by a separate population of 1500 L4 excitatory neurons. Cellular 145	

numbers, intrinsic properties, synaptic strengths, and connectivity statistics were taken from 146	

published in vitro data from P17—22 wild-type mice (Avermann et al., 2012; Lefort et al., 2009; 147	
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Tomm et al., 2014). We chose this level of detail for the model in order to relate experimentally 148	

measureable biophysical properties of neurons to their putative role in the circuit at large. 149	

L2/3 neurons of the rodent somatosensory neocortex respond only sparsely to sensory 150	

stimulation in vivo. For example, twitching a whisker activates, on average, only ~20% of L2/3 151	

neurons in its corresponding barrel, each of which typically emits only one action potential 152	

(Clancy et al., 2015; Kerr et al., 2007; Sato et al., 2007). Hence any individual neuron carries 153	

very little information about the stimulus on its own, implying that information must instead be 154	

encoded at the circuit level as the identities of the subset of neurons that respond. 155	

 
Figure 2. Computational model of L2/3 mouse somatosensory cortex. 

A: Schematic diagram of computational circuit model. 
B: Example raster plots of spiking responses from a subset of neurons from each cell type 

(colors as in panel A), for varying fractions of L4 activated (black). 
C: Probability of spiking as a function of the fraction of L4 neurons activated. Each curve 

represents the response probability of a single neuron, averaged over multiple trials and 

multiple permutations of active L4 cells. 
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D: Each circle plots the fitted logistic slope and threshold values for a single neuron in the 

simulation. Circle color indicates cell type: red is excitatory, green is PV inhibitory, purple is 

5HT3AR inhibitory, blue is SOM inhibitory. Large black circles indicate mean for each cell-type.  

Inset shows an example fitted logistic response function (orange) to the noisy simulation 

results from a single excitatory neuron (black). 

To model whisker stimulation, we simulated a volley of spikes arriving from L4 as input to the 156	

population of L2/3 cells. We chose a random subset of L4 neurons as ON, then sent a single 157	

spike from each of these L4 cells to their target neurons in L2/3, and recorded the responses 158	

of all neurons in L2/3, some of which spiked and some of which did not. We repeated this 159	

identical stimulation multiple times, in order to get an average response probability for each 160	

L2/3 neuron, given the probabilistic vesicle release at synapses in the model. Then we chose a 161	

different random subset of L4 neurons as ON, and repeated the entire procedure. Finally, we 162	

varied the fraction of L4 cells active and plotted the probability of response for each individual 163	

L2/3 neuron as a function of L4 activity level (Figure 2B—C). 164	

We found that the mean response probability of each neuron in the simulation increased from 165	

zero to one monotonically with increasing L4 activity level. This sigmoidal-shaped response 166	

profile of simulated L2/3 neurons mimics the spiking response of mouse L2/3 pyramidal cells to 167	

extracellular L4 stimulation in vitro (Elstrott et al., 2014), while the sparse, noisy and distributed 168	

network responses were reminiscent of in vivo activity following whisker stimulation (Clancy et 169	

al., 2015; Kerr et al., 2007). Neurons of all four cell types in the simulation responded to the L4 170	

stimulus, including the SOM interneurons which did not receive direct L4 input, but were 171	

instead activated by disynaptic connections via L2/3 excitatory neurons. The detailed shape of 172	

the response curve varied systematically across cell types, and was heterogeneous for 173	

different neurons of a given cell type. To quantify these differences, we used logistic 174	

regression to fit the response profile of each neuron with a sigmoid function (Figure 2D, inset), 175	

which has just two parameters: the slope (representing the steepness of the response curve) 176	

and threshold (representing the minimal fraction of L4 neurons needed to activate the cell). 177	

When we plotted the fitted slope and threshold values for each neuron against each other, we 178	

found that each cell type falls into a distinct cluster in this 2-dimensional space. For example, 179	
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all PV inhibitory neurons had a low slope and low threshold, whereas SOM inhibitory neurons 180	

had a steep slope and moderate threshold. We then used these slope-threshold 181	

measurements to summarize the circuit-level input-output function of this ‘default’ model of 182	

L2/3 somatosensory cortex. This 2-D logistic model has two benefits over the 1-D E/I 183	

imbalance model: first, its extra degree of freedom allows for richer and more flexible fits to 184	

data, and second, by describing an input-output mapping for the L2/3 circuit it can capture 185	

some aspects of the computation that the circuit performs for the animal. In contrast, the E/I 186	

imbalance model is specified purely in terms of circuit components, and so is agnostic to the 187	

circuit’s computational function. 188	

The biophysical circuit model contained 100 parameters (Methods). How sensitive is the 189	

circuit’s macroscopic input-output function to alterations in its low-level components? To test 190	

this, we varied 76 of the model parameters in turn by ±20%, and repeated the entire set of 191	

simulations for each case (Methods). For each individual parameter alteration, we fit a new 192	

logistic response function for each model neuron. We summarize the results by plotting the 193	

logistic slope and threshold parameters and comparing their values to those found with the 194	

default model. The outcomes were hugely varied. We show three examples from the set of 195	

seventy-six in Figure 3A, chosen to illustrate three qualitatively different effects that neural 196	

parameter changes can have on circuit function. First, when we increased the amplitude of 197	

postsynaptic potentials (PSPs) of excitatory synapses from L4 to L2/3 excitatory neurons, we 198	

found that the logistic threshold parameter of all cell types shifted leftwards to lower values 199	

(Figure 3A left), implying that fewer L4 neurons were needed to activate the entire L2/3 circuit. 200	

In contrast, when we increased the PSP amplitude of a different excitatory synapse, the 201	

recurrent connections between L2/3 excitatory neurons, we found (Figure 3A center) that 202	

excitatory and SOM inhibitory neurons had increased slope parameters relative to default, with 203	

little change in their threshold parameters. 5HT3AR inhibitory neurons had decreased slopes 204	

and thresholds, while PV neurons had little change at all. As a third example we increased the 205	

probability of inhibitory synaptic connections from L2/3 PV interneurons to L2/3 excitatory 206	

neurons (Figure 3A right). In this case we found that excitatory neurons had a lower slope and 207	

increased threshold, SOM inhibitory neurons had a lower slope, 5HT3AR inhibitory neurons had 208	
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both an increased slope and threshold, and PV neurons showed little change, even though 209	

their outgoing synapses were the parameter that was altered. 210	

 
Figure 3. Heterogeneous effects of varying L2/3 parameters on the circuit input-output 

function. 
A: Shifts in the distribution of fitted slope and threshold parameters as a result of increasing 

the strength of synapses from L4 to L2/3 E neurons (left), increasing the strength of recurrent 

synapses between L2/3 E neurons (center), or increasing the connection probability between 

L2/3 PV interneurons and E neurons (right). Transparent circles represent values for default 

network, heavy circles for altered network. The default and altered group means are large 

yellow and black open circles, respectively. 

B: Absolute values of mean shifts in threshold (upper plot) and slope (lower plot) for Excitatory 

neurons arising from increasing the value of each parameter by +20%. The three example 
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parameters from panel A are labeled and indicated as filled red circles. Note that data are 

presented on a log10 scale. 

C: The shift in mean slope-threshold parameter values for E neurons from the default network 

values, in response to each of the 76 circuit parameter alterations. Light red circles indicate 

+20% increase in parameter value; dark red crosses indicate a -20% decrease in parameter 

value. 

To synthesize the findings from all simulations, for each altered parameter we plotted the shift 211	

in mean slope-threshold values for L2/3 excitatory neurons from the mean values found with 212	

the default model (Figure 3B). We focused on excitatory neurons because they constitute 90% 213	

of the neurons in this layer (Lefort et al., 2009) and are the primary output to downstream 214	

circuits	 (Mao et al., 2011; Petreanu et al., 2007). Overall, we found a very heterogeneous 215	

picture. First, the magnitude of the shift in circuit response varied from parameter to parameter 216	

(Figure 3B—C). Varying some parameters, such as the first two examples given above, had 217	

large effects, whereas varying other parameters such as wI5htE (the strength of synapses from 218	

5HT3AR inhibitory neurons to E neurons) or τmIsom (the membrane time constant of SOM 219	

inhibitory neurons) had little effect. Second, the direction of shift in 2-D slope-threshold space 220	

also depended on parameter (Figure 3C). Increasing some parameters changed either circuit 221	

slope or threshold in isolation, while other parameters changed both slope and threshold 222	

together. All four quadrants of the slope-threshold plane could be reached by various subsets 223	

of the model parameters. Third, basic knowledge of whether a component was ‘excitatory’ or 224	

‘inhibitory’ was insufficient to predict the direction of slope-threshold change. For example, the 225	

two glutamatergic projections considered in Figure 3A had distinct effects on circuit function.  226	

In summary, these simulations indicate that the L2/3 somatosensory cortex circuit has 227	

extremely varied sensitivities to changes in its cellular components, and that the eventual 228	

circuit-level consequences cannot be predicted from knowledge of the class of the perturbed 229	

neurotransmitter alone. Since the E/I imbalance model groups all excitatory and inhibitory 230	

components as respective equals, it cannot account for these results. 231	

Firing rates and correlations from the logistic model 232	
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In the above analysis, we investigated how low-level circuit components affect a high-level 233	

circuit input-output function, as parameterized by the slope and threshold of fitted logistic 234	

functions. But how is this logistic input-output function related to more common measures of 235	

neural population activity, such as firing rates and pairwise correlations between neurons? To 236	

investigate this, we considered the following reduced statistical model of cortical activity. We 237	

assumed for simplicity that the magnitude of the total input to the L2/3 circuit can be described 238	

by a Gaussian distributed random variable, with zero mean and unit standard deviation (Figure 239	

4A lower left). Then we described each L2/3 neuron’s input-output as a logistic function as 240	

before (Figure 4A upper left), with threshold and slope defined relative to the Gaussian input’s 241	

mean and standard deviation, respectively. Given this model, we can numerically calculate the 242	

probability distribution over a neuron’s firing probability, which in general is skewed and non-243	

Gaussian (Figure 4A upper right). From this function we compute (Methods) both the neuron’s 244	

mean firing probability and the pairwise correlation of two identical neurons following this 245	

profile (Figure 4A lower right). Example samples from the model are illustrated in Figure 4B. 246	
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Figure 4. Firing rates and pairwise correlations from the logistic response model. 
A: Logistic model components. We assume a normally distributed input drive (gray distribution, 

bottom left), which is passed through the neuron’s probabilistic spike input-output function (red 

curve, top left), which results in a distribution of spike probabilities (top right) that are 

determined by the input-output function’s slope and threshold parameters. From the output 

distribution we can directly calculate the mean firing rate and correlation between a pair of 

such neurons (Methods). 
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B: Example spikes from the logistic model. The bottom trace (black) shows examples inputs 

over time drawn randomly from the same normal distribution. This is transformed to spike 

probability at each time point (red trace). Example spike trains can then be generated from the 

spike probability trace by drawing Bernoulli samples with the specified probabilities (red ticks, 

top). If each neuron’s spike train is conditionally independent given the same spike 

probabilities, we can see correlations in their spike trains.  
C: Calculated mean firing rate (left) and pairwise correlation (right) color maps as a function of 

the logistic threshold (x-axis) and slope (y-axis) parameters. Contours indicate lines of fixed 

firing rate or correlation in the 2D slope-threshold space. 

D: Pairwise correlation values along the slope-threshold contour for firing rate = 0.1. 

Neural firing rates and correlations had qualitatively different dependencies on the underlying 247	

logistic model’s slope and threshold. Neural firing rate was greatest when threshold was low 248	

and slope was high (top left of phase plot, Figure 4C left), whereas correlations were greatest 249	

when both threshold and slope were high (top right of phase plot, Figure 4C right). This implies 250	

that any change in the circuit’s input-output function slope or threshold will in general have 251	

distinct effects on firing rate versus correlations, and so could not be captured by a 1-252	

dimensional E/I balance model that sought to for example normalize firing rates alone. To 253	

illustrate this fact, we plot the calculated correlation values along a contour where firing 254	

probability is fixed at 0.1 (Figure 4D). In the region of parameter space where both the slope 255	

and threshold are low (Figure 4C bottom left), correlations are low, ~0.01. However, as we 256	

move along the contour for firing rate = 0.1 towards the region of parameter space where slope 257	

and threshold are high (Figure 4C top right), the pairwise correlations increase to ~0.4. This 258	

shows that a 1-dimensional E/I balance rule that exclusively sought to normalize neural firing 259	

rates would leave neural correlations free to achieve arbitrary values. 260	

Previous studies have found evidence for an E/I imbalance in ASD (Lee et al., 2017; Nelson 261	

and Valakh, 2015). Fragile-X syndrome is the leading inherited cause of ASD, and also carries 262	

alterations in excitability (Contractor et al., 2015). We aimed to interpret our Fmr1 KO Ca2+ 263	

imaging data (Figure 1C) via the 2D logistic model. Since our earlier analysis found important 264	

differences in the heterogeneity in firing rates across neurons in Fmr1 KOs (Figure 1C), we 265	
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extended the 2-D logistic model for single neurons to a 5-D neural population version that 266	

captured cell-to-cell heterogeneity. The three extra parameters represented the standard 267	

deviations and correlation in slope and threshold parameters across the neural population (see 268	

Methods for details). We fit the parameters of the logistic model to reproduce the same neural 269	

population Ca2+ imaging data presented in Figure 1C. Given the three summary statistics from 270	

each animal (firing rate mean and s.d., and mean pairwise correlation), we used a gradient 271	

descent algorithm to find the five parameters of the population-level version of the logistic 272	

model that best matched the activity statistics (see Methods). The output statistics of the fitted 273	

models matched well that of the target data (Figure 5 – figure supplement 1). Example neural 274	

population activity patterns drawn from the mean model fits for each group are shown in Figure 275	

5A, along with the fitted slope-threshold functions (Figure 5A insets), to be compared with the 276	

Ca2+ imaging rasters in Figure 1C. For each animal, we also plot the full 5-D parameter fits for 277	

all animals in Figure 5 – figure supplement 2. For the rest of the analysis, we focus on the 278	

mean slope and mean threshold parameters, which showed the most prominent changes. 279	

However we also note an increase in the slope s.d. between P14-16 and P30-40 WT animals 280	

that was not observed in Fmr1 KO, mirroring the increased heterogeneity in firing rates in the 281	

same animals (Figure 1C). In Figure 5B we plot the mean slope and mean threshold fits on top 282	

of the previously calculated (Figure 4C) 2D slope-threshold maps of firing rate and correlation. 283	

We found that in young animals, P9—11, most points were scattered at high values of both 284	

slope and threshold (Figure 5B left). With age, the parameter fits for both genotypes moved 285	

south-west towards the low slope and low threshold region of parameter space (Figure 5B 286	

center and right). The mean location of the cloud of points at each developmental age differed 287	

between WT and KO. We plot the direction of shift in group mean from WT to KO in Figure 5C. 288	

In young animals, P9—11 and P14—16, the KO group had both higher slope and higher 289	

threshold than WT, whereas in adult animals, P30—40, the KO group had a lower slope and 290	

lower threshold than WT. These results demonstrate an opposite direction of circuit parameter 291	

change in young Fragile-X mice compared to adults, which was not be uncovered by 292	

measures of neural firing rates and correlations (Figure 1C). 293	
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Figure 5. Fragile-X fits from logistic model. 
A: Example samples from the fitted logistic models, corresponding to the six groups shown in 

panel A.  Inset shows group mean fitted logistic function, dashed vertical line represents zero. 

B: Fitted logistic mean slope and mean threshold values for data from each WT (black circles) 

and Fmr1 KO (red circles) animal. Values overlaid on same firing rate (top) and correlation 

(bottom) maps from Figure 4C. 

C: Shift in mean logistic slope and threshold values from WT to KO for P9—11 (orange), 

P14—16 (red) and P30—40 (brown). Grey ellipses represent 95% confidence intervals 

(Methods). 

Earlier we asked how sensitive the logistic model slope and threshold parameters were to 294	

alterations in the many underlying neural circuit components (Figure 3). In a similar way, we 295	

can also ask how sensitive the neural firing rates and correlations are to alterations in the 296	

logistic slope and threshold parameters. This is important since inspection of the 2-dimensional 297	

maps in Figure 3C shows that these sensitivities will differ depending on starting location within 298	

the slope-threshold space. To quantify this effect, we calculated the sensitivity of both the firing 299	

rate and correlations to small changes in the slope and threshold (Figure 6A-B, see Methods), 300	

quantified as the partial derivatives local to the fitted logistic parameter values for each animal 301	
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(black and red circles in Figure 5B). In general, increasing the slope or decreasing the 302	

threshold always increased both firing rates and correlations, as can be predicted from Figure 303	

5B. However, the magnitude of sensitivities varied across animals. We found only minor 304	

differences in sensitivities between genotypes (Figure 5 – figure supplement 2), and as a result 305	

we pooled the sensitivity measurements across genotypes to test for statistical differences in 306	

sensitivity with developmental age. In young animals, P9—11, changes in the logistic threshold 307	

(solid bars in Figure 6) had substantial effects on both firing rates and correlation. This 308	

sensitivity decreased with age (p ≤ 0.013 for firing rates, p < 0.01 for correlations from P9—11 309	

to P14—16), so that in adult animals, P30-40, changes in threshold had relatively little effect 310	

on neural activity statistics. A different picture emerged for the logistic slope parameter (striped 311	

bars in Figure 6). There, the firing rate sensitivity increased with from P9—11 to P14—16 (p < 312	

1e-6) (Figure 6A), while correlation sensitivity stayed approximately constant (p ≥ 0.18) (Figure 313	

6B). These results show that the quantitative relationships between neural activity statistics 314	

and the underlying circuit parameters are not fixed across development. 315	
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Figure 6. Sensitivity of firing rate and correlations with respect to logistic model 
parameters, local to the parameter fit for each animal. 

A-B: Sensitivity to a parameter is calculated about a given point in parameter space. In this 

hypothetical example, we plot a slope-threshold parameter fit at the red circle on the firing rate 

contour map (A). The firing rate varies non-linearly if the threshold is varied away from this 

point (B). Sensitivity is calculated as the local derivative, or slope of the tangent, about the 

target point. 

C-D: Sensitivity of firing probability (C) and pairwise correlations (D) to change in threshold 

(solid bars) and slope (striped bars) parameters of logistic model, about the fitted parameter 

values for each animal (circles) displayed in Figure 5B. Bars represent group means. Each 

statistical test compares the mean values between adjacent pairs of age groups, where the 

data were pooled between genotypes. 

What are the functional implications of these alterations in firing rates and correlations in 316	

Fragile-X mice across development? To address this, we calculated the entropy of the neural 317	

population activity for the data from each animal. Entropy is a quantity from information theory, 318	

measured in bits, that puts a hard upper bound on the amount of information that can be 319	

represented by any coding system (Cover and Thomas, 2006). Intuitively, the entropy 320	

measures how uniform the neural population activity pattern distribution is: it is large if the 321	

circuit exhibits many different activity patterns over time, and small if only a few activity 322	

patterns dominate. Entropy is an appealing measure for the present problem because it is 323	

sensitive both to neural firing rates and to correlations at all orders. It is typically highest when 324	

firing rates are high and correlations are low. Although entropy is notoriously difficult to 325	

calculate for large neural populations because most estimation methods require impractically 326	

long data recordings (Quian Quiroga and Panzeri, 2009), we recently developed a new 327	

statistical method for this purpose, called the population tracking model, that scales well to 328	

large numbers of neurons, even for limited data (O'Donnell et al., 2017). This model matches 329	

both the synchrony distribution for the number of neurons simultaneously active, and the 330	

variations in individual cell-to-cell firing rates. We fit this population tracking model to the same 331	

Ca2+ imaging data as analyzed above (Figure 7). An intermediate step in estimating the neural 332	

entropy involves calculating a low-parameter approximation of the entire probability distribution 333	
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over all 2N neural population activity patterns, where N is the number of neurons. The 334	

cumulatives of these probability distributions calculated for 50-neuron subsets of the 335	

recordings are shown in Figure 7A. In young animals P9—11, a small number of activity 336	

patterns accounts for a large fraction of the probability mass (Figure 7A left). For example, 337	

based on these curves, 50% of the time we would expect to see the same 1000—10,000 338	

patterns out of a possible total 250 ≈ 1015 patterns. In contrast, in older animals P14—16 and 339	

P30—40 the cumulative distributions shift rightwards so that more patterns are typically 340	

observed (Figure 7A center, right). In these cases, around 1,000,000 patterns are needed to 341	

account for 50% probability mass. 342	

 
Figure 7. Differing trajectories of WT and KO entropy across development. 

A: Cumulative probability mass as a function of the number of patterns. Patterns ordered from 

most probable to least probable. Thin lines are mean across many randomly-chosen 50-

neuron subsets from a given animal, and thick lines represent means across all animals of a 

given genotype. 
B: Entropy per neuron as a function of the number of neurons analyzed. Thin lines are mean 

across many randomly chosen subsets for a given animal, thick lines are group mean of 
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double exponential fits to the data (see Methods). Age groups (left to right) are as in panel A. 
C: Estimated entropy/neuron for 100 neuron populations. Circles represent individual animals, 

bars are group means. 

 343	

Instead of attempting to quantify these shifts by asking how many patterns are needed to cross 344	

an arbitrary threshold of probability mass, we instead calculated the entropy, which takes into 345	

account the shape of the entire probability distribution. The entropy depends on the number of 346	

neurons analyzed, so we normalized all estimates to calculate the entropy per neuron (Figure 347	

7B—C). Since we are treating neurons as binary, the entropy/neuron was bounded between 0 348	

and 1 bits. For all age groups, and for both WT and Fmr1 KO animals, entropy/neuron 349	

progressively decreased with the number of neurons analyzed (Figure 7B). Because each 350	

imaging session captured a different number of neurons (range 40—198, median 97), we fit 351	

the entropy/neuron versus number of neurons data with a double exponential function (see 352	

Methods) and use the fit to provide a standardized estimate of the entropy/neuron for 100-353	

neuron populations (Figure 7C). In WT animals, entropy/neuron showed a non-monotonic 354	

trajectory across development (O'Donnell et al., 2017). At P9—11 it was low, 0.38 bits (95% c.i. 355	

[0.35:0.41]), before increasing at P14—16 (p < 0.001) to 0.50 bits (95% c.i. [0.48:0.52]), before 356	

decreasing again at P30—40 (p = 0.028) to 0.45 bits (95% c.i. [0.42:0.48]). We found a 357	

different entropy trajectory in Fmr1 KO animals. There, although entropy/neuron also began 358	

low at 0.34 bits (95% c.i. [0.30:0.39]), not different from WT (p=	 0.19), when it increased at 359	

P14—16 (p < 0.001) to 0.465 bits (95% c.i. [0.45:0.48]) it remained lower than for WT (p =	360	

0.048). Finally, instead of decreasing as in the WT case, entropy continued to increase in 361	

P30—40 Fmr1 KO animals (p = 0.033) to 0.51 bits (95% c.i. [0.47:0.55]), higher than WT (p =	362	

0.034). These entropy values estimated directly from Ca2+ imaging data agreed well with 363	

entropy estimates for synthetic data sampled from the previously fit logistic models (Figure 7 – 364	

figure supplement 1). In summary, unlike WT animals, Fmr1 KO mice showed a monotonically 365	

increasing entropy/neuron from P9—11 to P30—40. Furthermore, the direction of change in 366	

entropy between P14—16 and P30—40 was opposite for WT and Fmr1 KO animals, 367	

decreasing in the former and increasing in the latter.  368	
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Discussion 369	

The 1-dimensional E/I imbalance model has been widely used for interpreting neural circuit 370	

changes observed in animal models of diverse brain disorders (Bateup et al., 2011; Dani et al., 371	

2005; Gibson et al., 2008; Kehrer et al., 2008; Wallace et al., 2012). In the case of Fragile-X 372	

syndrome, the hyperexcitability prediction of the E/I imbalance model is consistent with many 373	

of the symptoms of the disease (e.g. seizures, hyperarousal, hyperactivity, hypersensitivity to 374	

sensory stimuli) and the known pathogenic defects implicated in Fmr1 KO mice (diminished 375	

GABA signaling, exaggerated intrinsic excitability, increased neuronal firing rates; reviewed by 376	

Contractor et al., 2015). Here we tested the hypothesis that the E/I imbalance model can 377	

account for alterations in other neural activity statistics beyond the mean firing rates; however, 378	

our results demonstrated that it was inadequate. The model was too inflexible to account for 379	

the joint alterations in both neural firing rates and correlations observed in Fragile-X model 380	

mice. This suggests that future studies of brain disorders may need to consider higher-381	

dimensional models of neural circuit dysfunction. 382	

To test how cellular components affect their circuit function, we built computational models of 383	

mouse L2/3 somatosensory cortex at two levels of abstraction: a detailed, 100-parameter 384	

biophysical model, and a 2-parameter logistic response model. The purpose of the detailed 385	

model was to build a representation of the circuit where each parameter has a one-to-one 386	

mapping with something that could be experimentally measured in a real animal - indeed many 387	

of these parameters have been shown to be altered in Fmr1 KO mice. The purpose of the 388	

logistic model was different: it simple enough to be both derivable from the complex model, 389	

and provide a direct link with measurable activity variables in our in vivo Ca2+ imaging data, 390	

firing rates and correlations. The disadvantages of detailed models are that they contain many 391	

parameters, and so are hard to constrain to data – in this case it was only possible because of 392	

the large dataset from Petersen et al., for P17-22 WT mice (Avermann et al., 2012; Lefort et al., 393	

2009; Tomm et al., 2014). The disadvantages of the simple 2D model is that its logistic input-394	

output structure implies a very strong and specific assumption about the functional purpose of 395	

the circuit – to generate single spikes across a subset of neurons. Although this may be a 396	

physiologically relevant computation for this particular brain circuit (Clancy et al., 2015; Kerr et 397	
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al., 2007; Sato et al., 2007), it is not immediately obvious how to extend this approach to 398	

include temporal correlations, for example, or to apply it to other brain circuits where we may 399	

have less insight into their natural computations. Nevertheless, our approach demonstrates a 400	

new way to tackle such problems. 401	

After building the detailed computational model of L2/3 of mouse somatosensory cortex 402	

(Figure 2), and asked how sensitive the spiking responses of the overall circuit were to 403	

changes in its underlying neural components, many of which are known to be altered in Fmr1 404	

KO mice (Bureau et al., 2008; Gibson et al., 2008; Gonçalves et al., 2013; Harlow et al., 2010; 405	

Hays et al., 2011; Paluszkiewicz et al., 2011; Patel et al., 2013; Testa-Silva et al., 2012). We 406	

found that while changing some neural parameters did have a large effect, changing other 407	

parameters had little or no effect on circuit function (Figure 3B). This redundancy property has 408	

been reported as widely prevalent in computational models of biological systems (Gutenkunst 409	

et al., 2007; O'Leary et al., 2015). Its existence has two important implications for studies of 410	

brain disorders: first, many of the physiological component changes discovered in animal 411	

models may be entirely benign at the circuit level. Second, any treatment designed to correct 412	

circuit function is free to push the system by arbitrary amounts along insensitive directions in 413	

parameter space without consequence, as long as it makes the correct perturbations along the 414	

sensitive directions. The insensitive directions form a null space, which is a subspace of the 415	

parameter space. 416	

An important caveat to our parameter sensitivity analysis is that it was linear and local to a 417	

particular point in the high-dimensional model parameter space, corresponding to WT P17-22 418	

mice. Since the circuit dynamics are nonlinear, it is likely that the particular parameter 419	

sensitivities would be different in other parts of parameter space, especially near bifurcations 420	

where qualitatively different dynamics emerge (Hirsch et al., 2013). However, as long as the 421	

redundancy property is widely preserved, as suggested by studies on computational models of 422	

other biological systems (Fisher et al., 2013; Gutenkunst et al., 2007; Machta et al., 2013; 423	

Panas et al., 2015), then our conclusions for brain disorders remain valid. 424	
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In addition to the varying magnitudes of circuit components’ effect on circuit function, we also 425	

found that different components shifted the circuit input-output function in different directions, 426	

as defined by our 2D logistic response model (Figures 1 and 2). Even circuit parameters that 427	

are nominally of the same type, such as the strength of glutamatergic synapses between 428	

excitatory (E) neurons in L4 to E neurons in L2/3 or synaptic strength between E neurons 429	

within L2/3, had qualitatively different effects on the circuit response to stimulation (Figure 3). 430	

According to the standard E/I imbalance model (Rubenstein and Merzenich, 2003), both of 431	

these parameters should have similar effects on circuit function; but according to the logistic 432	

response model we studied, their differing effects on slope and threshold parameters must 433	

necessarily lead to different magnitudes of change in neural firing rates and correlations 434	

(Figure 4C). Indeed, no 1-dimensional model of circuit function could ever capture the 435	

heterogeneity in parameter sensitivities that we observed (Figure 3B). 436	

Next, we fit the parameters of the logistic response model to match the in vivo firing statistics 437	

of neural populations from WT and Fmr1 KO mice of varying age (Figure 5). Previous studies 438	

had found that neural correlations decrease during development (Golshani et al., 2009; 439	

Rochefort et al., 2009), and that early postnatal Fmr1 KO mice had higher correlations and 440	

firing rates than WT mice (Gonçalves et al., 2013; La Fata et al., 2014). Circuit hypersynchrony 441	

may be a general defect in autism disorders, as it is also found in mouse models of Rett 442	

syndrome (Lu et al., 2016). However, the relationship between these changes in firing statistics 443	

and the underlying neural circuit components were unclear. Our logistic model helps bridge 444	

this gap, leading to two findings: first, the direction of circuit parameter change from WT to KO 445	

was opposite in young (P9—11 and P14—16) versus mature (P30—40) animals (Figure 5C). 446	

Similar opposing switches in sensory cortex properties with age were also recently reported in 447	

Fmr1 KO and WT rats (Berzhanskaya et al., 2016). Second, we found that the sensitivity of 448	

neural firing rates and correlations to changes in underlying circuit components depends on 449	

developmental age (Figure 6). Taken together, these findings imply that qualitatively different 450	

interventions may be needed at different stages of development in Fragile-X, and perhaps 451	

other neurodevelopmental disorders, to shift cortical circuit function towards typical wild-type 452	

operation. 453	
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Spontaneous, intrinsic activity is ubiquitously present in mammalian cerebral cortex. It is highly 454	

structured at multiple spatiotemporal scales (Mitra et al., 2015; Ringach, 2009) and interacts 455	

strongly with the signals evoked by sensory stimulation (Ringach, 2009). Cellular-resolution 456	

recordings in animals have shown that the patterns of spontaneous activity in neural 457	

populations are representative of the ensemble of activity patterns used by the brain to 458	

represent sensory stimuli (Berkes et al., 2011; Luczak et al., 2009; Miller et al., 2014). Here we 459	

found that the entropy of spontaneous activity in WT mouse somatosensory cortex follows an 460	

inverted-U shaped trajectory across development, and that this trajectory is dramatically 461	

altered in the Fmr1 KO mouse model of Fragile-X (Figure 7). Although we saw no reliable 462	

differences across genotypes in early postnatal animals (P9—11), Fmr1 KO animals showed 463	

lower entropy than WT after the second postnatal week (P14—16), while surprisingly switching 464	

to show higher entropy than WT in adult (P30—40). Notably, this switch in the direction of 465	

entropy change from WT to KO during development mirrors the reversing we saw in logistic 466	

model parameter changes in Figure 5C. Together, these findings suggest a perturbed 467	

trajectory of cortical development during the critical period in Fmr1 KO mice (Meredith et al., 468	

2012). However, our results cannot distinguish whether the observed perturbation in L2/3 469	

activity statistics reflects a developmental delay, or a permanently altered developmental 470	

trajectory. Further studies at later developmental time points are needed. 471	

What is the functional significance of these shifts in population entropy? Previous work 472	

suggested that the entropy of neural circuit activity may be optimally tuned at intermediate 473	

levels as a trade-off between maximizing representational capacity at high entropy, versus 474	

maintaining error correction and regularization at low entropy (Schneidman et al., 2006). These 475	

properties can also be thought of as trading off between discrimination and generalization, 476	

respectively (Qian and Lipkin, 2011). If we assume that WT mice are optimally tuned, our 477	

findings predict that young Fmr1 KO mice should show poorer somatosensory discrimination in 478	

behavioral tasks than wild-type animals, while in contrast adult Fmr1 KO mice should perform 479	

more poorly on tasks involving generalization across somatosensory stimuli. 480	

If the unidimensional E/I imbalance model is not sufficiently rich to capture the circuit changes 481	

observed in neurodevelopmental disorders, what should replace it? How many dimensions or 482	
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degrees of freedom should a working model for a brain disorder have? Theoretical 483	

neuroscientists have long studied E/I balance in generic models of recurrent neural circuits 484	

(Brunel, 2000; Tsodyks and Sejnowski, 1995). These models have uncovered important 485	

distinctions between ‘loose’ balanced regimes, where E and I inputs to a neuron are equal only 486	

on average, and fine-tuned ‘tight’ balanced regimes where E and I inputs to a neuron track 487	

each other closely on fast timescales (Deneve and Machens, 2016; Hennequin et al., 2017). In 488	

principle these generic models could be used to investigate multidimensional E/I imbalances in 489	

brain disorders (Vogels and Abbott, 2007). However, it is currently difficult to directly fit these 490	

many-parameter network models to data (although see Arakaki et al., 2017; Fisher et al., 2013;	491	

Stringer et al., 2016), and they are agnostic to circuit function. Instead we suggest an 492	

alternative, complementary approach: start by assuming a computational function for the 493	

particular neural circuit under study, then work backwards to design a model that is both 494	

sophisticated enough to capture the key information processing features of the circuit, but 495	

simple enough to interpret and link to physiological data. In this study we considered a 2-496	

parameter model of L2/3 somatosensory cortex’s input-output function, which could account 497	

for both neural firing rates and correlations. Other brain circuits may demand models with more 498	

degrees of freedom. Crucially, the most informative models need not be those that include the 499	

highest level of physiological detail. All models are ultimately wrong in the sense that they 500	

make abstractions about their underlying parts, and detailed models carry the additional 501	

burden of fitting many parameters, which may be difficult to adequately constrain (O'Leary et 502	

al., 2015). Nonetheless, some models are useful (Box, 1979). 503	

One potential use of simple parametric circuit models such as the ones we employed here may 504	

be as a tool for rationally designing candidate intervention compounds and then screening their 505	

effects on neural population activity. For example, the current study could have been extended 506	

to fit the logistic model to neural activity data from another cohort of Fmr1 KO mice that had 507	

received a candidate treatment, then ask if the fitted model parameters were closer in value to 508	

those from WT animals or Fmr1 KO controls. Approaches like this could complement the 509	

traditional strategy of designing drugs based on reversing molecular deficits and then 510	

assessing the drug’s impact on animal model behavior. Indeed, our results suggest that given 511	
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the multi-dimensionality of circuit properties, it may prove difficult or impossible to find a single 512	

compound that can correctly reverse deficits at any age. This scenario might require a 513	

combination of drugs chosen to push circuit-level properties towards the ‘correct’ region of 514	

parameter space. The framework we have introduced in this study can facilitate this type of 515	

high-dimensional intervention analysis for diverse neurodevelopmental disorders.  516	
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Materials and Methods 517	

Key Resources Table 
Reagent type 
(species) or 
resource 

Designation Source or reference Identifiers 

strain, strain 
background 
(mus musculus) 

c57bl/6J strain 
of wild type 
mice Jackson Labs IMSR_JAX:000664 

genetic reagent 
(mus musculus) 

Fmr1 
knockout 
mouse on a 
c57 
background 

William Greenough (originally from Dutch-
Belgian Fragile X Consortium) RRID:MGI:2665400 

chemical 
compound, drug 

OGB1 AM 
(Oregon 
Green 
BAPTA-1 AM) 

Molecular Probes (ThermoFisher Scientific) 

  

Software, 
algorithm ImageJ NIH RRID:SCR_003070 

software, 
algorithm 

BRIAN 
Simulator 

http://briansimulator.org RRID:SCR_002998 

software, 
algorithm 

MATLAB http://www.mathworks.com/products/matlab RRID:SCR_001622 

Mouse in vivo calcium imaging recording  518	

All Ca2+ imaging data were published previously (Gonçalves et al., 2013). Briefly, data were 519	

collected from male and female C57Bl/6 wild-type and Fmr1 KO mice at P9–40. For each 520	

group the animal numbers were: P9-11, n=13 WT and n=9 Fmr1 KO; P14-16, n=8 WT and 521	

n=10 Fmr1 KO; P30-40, n=7 WT and n=6 Fmr1 KO. There were variations in the number of 522	

cells recorded from each animal. The range of cell numbers for each group were: P9-11, 49-523	

198 cells in WT and 84-144 cells in Fmr1 KO; P14-16, 65-119 cells in WT and 40-149 cells in 524	

Fmr1 KO; P30-40, 60-114 cells in WT and 69-105 cells in Fmr1 KO. Mice were anesthetized 525	

with isoflurane, and a cranial window was fitted over primary somatosensory cortex by 526	

stereotaxic coordinates. Mice were then transferred to a two-photon microscope and headfixed 527	

to the stage while still under isoflurane anesthesia. 2—4 injections of the Ca2+ sensitive 528	

Oregon-Green BAPTA-1 (OGB) dye and sulforhodamine-101 (to visualize astrocytes) were 529	

injected 200 um below the dura. Calcium imaging was performed using a Ti-Sapphire 530	

Chameleon Ultra II laser (Coherent) tuned to 800 nm. Imaging in unanesthetized mice began 531	

within 30-60 min of stopping the flow of isoflurane after the last OGB injection. Images were 532	

acquired using ScanImage software (Pologruto et al., 2004) written in MATLAB (MathWorks; 533	
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RRID:SCR_001622). Whole-field images were collected using a 20× 0.95 NA objective 534	

(Olympus) at an acquisition speed of 3.9 Hz (512 × 128 pixels). Several 3-minute movies were 535	

concatenated and brief segments of motion artifacts were removed (always <10 s total). Data 536	

were corrected for x—y drift. Cell contours were automatically detected and the average ΔF/F 537	

signal of each cell body was calculated at each time point. Each ΔF/F trace was low-pass 538	

filtered using a Butterworth filter (coefficient of 0.16) and deconvolved with a 2 s single-539	

exponential kernel (Yaksi and Friedrich, 2006). To remove baseline noise, the standard 540	

deviation of all points below zero in each deconvolved trace was calculated, multiplied by two, 541	

and set as the positive threshold level below which all points in the deconvolved trace were set 542	

to zero. Estimated firing rates of the neurons, ri(t), were then obtained by multiplying the 543	

deconvolved trace by a factor previously derived empirically from cell-attached recordings in 544	

vivo (Golshani et al., 2009). 545	

Computational methods  546	

Data analysis and logistic model calculations were done using MATLAB (Mathworks; 547	

RRID:SCR_001622). All simulation code is available online at 548	

https://github.com/cianodonnell/ODonnelletal_2017_imbalances, and the population tracking 549	

model code (O’Donnell et al., 2017) is available at 550	

https://github.com/cianodonnell/PopulationTracking. 551	

Detailed layer 2/3 model simulations  552	

Layer 2/3 model simulations (Figures 1 and 2) were implemented with the Python-based 553	

simulator Brian 2 (http://briansimulator.org; RRID:SCR_002998) (Goodman and Brette, 2009), 554	

and results analyzed with MATLAB (Mathworks; RRID:SCR_001622). The model consisted of 555	

four populations of reciprocally connected leaky integrate-and-fire neurons representing a L2/3 556	

somatosensory barrel circuit: 1700 excitatory neurons, 70 PV inhibitory neurons, 115 5HT3AR 557	

inhibitory neurons, and 45 SOM inhibitory neurons, driven by a separate population of 1500 558	

excitatory spike sources representing input from L4. Cell numbers were estimated by 559	

combining layer-specific excitatory and inhibitory cell count information from (Lefort et al., 560	

2009) with the approximate percentages of the three inhibitory cell groups given by (Petersen 561	

and Crochet, 2013). The voltage V of each neuron evolved as 562	
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𝑑𝑉
𝑑𝑡 	= 	 (	𝑅()(	𝑔+(𝐸-+.,+ 	− 	𝑉) 	+	𝑔((𝐸-+.,( 	− 	𝑉)	) 	−	(𝑉 − 𝑉-+34)	)/𝜏7 563	

where Rin is the input resistance, Erev,e and Erev,i are the excitatory and inhibitory synaptic 564	

reversal potentials respectively, τm is the membrane time constant, and ge and gi are the 565	

summed excitatory and inhibitory synaptic input conductances respectively. Between input 566	

events the total excitatory synaptic condunctance ge evolved in time according to the equation 567	

𝑑𝑔+
𝑑𝑡 = −𝑔+/𝜏38),+ 574	

where τsyn,e is the excitatory synaptic time constant. Similar equations governed the inhibitory 568	

conductances. When a spike arrived at a synapse, a Bernoulli random number was drawn with 569	

release probability set according to the particular synaptic connection type. If this number was 570	

equal to one, then the total synaptic conductance for that neuron was instantaneously 571	

incremented by the specific amplitude of the chosen conductance for that individual synapse, 572	

indexed j:  𝑔+ → 𝑔+ + 𝑔:. 573	

All synaptic connections were formed probabilistically by drawing independent random 575	

Bernoulli variables with connection type-specific probabilities. Synaptic PSP amplitudes were 576	

drawn independently for each synapse from a log-normal distribution constrained by the 577	

experimentally reported mean and median values for each particular connection type. The 578	

maximum post-synaptic potential amplitude was set to 8 mV. Synapses in the model were 579	

conductance-based, but since synaptic strengths reported in the literature were typically in 580	

terms of EPSP/IPSP amplitude, in accordance with how the experiments were performed 581	

(Avermann et al., 2012), we set each maximal synaptic conductance as the value needed to 582	

generate a PSP of the desired amplitude when the target neuron started at resting potential in 583	

the case of EPSPs or -55mV in the case of IPSPs, which we computed analytically. Refractory 584	

periods were calculated as the inter-spike-interval corresponding to the maximal 585	

experimentally reported firing rate. Release probability and synaptic strength values for 586	

unconnected neurons are excluded from Table 1. Excitatory synaptic time constants were set 587	

at 2 ms, which is typical for the fast component of AMPA receptor responses, but could not be 588	

estimated from the PSP statistics in (Avermann et al., 2012) because of masking by the slower 589	
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membrane time constant. The mathematical form of our model meant that inhibitory synaptic 590	

time constants needed to be equal for all incoming inhibitory synapses to a neuron. We set 591	

these to 40 ms for E, 5HT3AR and SOM neurons and 16 ms for PV neurons, which were the 592	

typical values of the IPSP decay time constants in the (Avermann et al., 2012) dataset. Due to 593	

lack of direct data for this circuit, connection probabilities for synapses from L4 E neurons to E, 594	

PV and SOM L2/3 neurons was set to a reasonable cortical value of 0.15, while 5HT3AR 595	

neurons did not receive any input from L4 (Gentet et al., 2012). Similarly due to a lack of direct 596	

data, we set synaptic release probabilities for connections from L4 to L2/3 neurons to a typical 597	

cortical value of 0.25, while mean and median L4 excitatory PSP amplitudes onto L2/3 PV and 598	

SOM were set to 0.8 and 0.48 mV, respectively, to match reported data for L4 EPSP 599	

amplitudes onto L2/3 E neurons (Lefort et al., 2009). The differential equations were solved 600	

using the forward Euler method with an integration timestep of 0.01 ms. Each simulation run 601	

was 50 ms long, during which we recorded whether or not each neuron responded. In the rare 602	

cases where a neuron spiked more than once, we disregarded the extra spikes. L4 neuron 603	

dynamics were not explicitly simulated, but instead modeled only as a set of output spike trains. 604	

After selecting the subset of active L4 neurons, spike times were drawn randomly from a 605	

Gaussian distribution with standard deviation of 2 ms. We repeated the simulations 10 times 606	

for this identical input pattern to average over the noise due to probabilistic vesicle release. We 607	

repeated this procedure further 10 times for different random allocations of the ‘ON’ inputs. 608	

Then, a neuron’s ON probability was defined as the fraction of these 10×10 = 100 simulations 609	

for which it responded with one or more spikes. Finally, we repeated the entire procedure for 610	

varying levels of L4 input sparsity. 611	

For the simulations presented in Figure 3 we varied only 76 model parameters, which is 24 612	

less than the total number of 100 model parameters listed in Table 1. We excluded the four 613	

neuronal refractory periods (because in almost all simulations each neuron spiked a maximum 614	

of once, making the refractory period irrelevant), and the six connection probabilities that were 615	

fixed at zero. Finally, we grouped together the mean and median PSP amplitudes for each of 616	

the fourteen non-zero synaptic connections, so that both parameters were increased or 617	
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decreased by the same fraction in tandem. Together these choices reduced the number of test 618	

parameters from 100 to 76. 619	

For all parameters that naturally range from 0 upwards, such as the number of neurons or 620	

release probability, we increased or decreased their values during testing in the most intuitive 621	

way, by adding +/- 20% of the baseline value. However, this method was less useful for other 622	

parameters, such as cell resting voltage, for which we reasoned it made more sense to scale 623	

relative to another parameter, such as spike threshold. As a result, we varied 1) resting voltage 624	

relative to its difference from spike threshold; 2) spike threshold relative to its difference with 625	

resting voltage; 3) excitatory synaptic reversal potentials relative to resting voltage; 4) inhibitory 626	

synaptic reversal potentials relative to spike threshold. 627	

Table 1. L2/3 computational circuit model parameters and mean slope & threshold shifts. 
Parameter Value Source +20% effect on 

slope, thresh 
Parameter Value Source +20% effect on 

slope, thresh 
NE 1700 [1] slope: 6.4 x10-3 

thresh: 5.16 
pconI5htE 0.465 [2] slope: -3.25 x10-3 

thresh: -0.103 
NIpv 70 [1] slope: 4.3 x10-3 

thresh: -1.51 
pconI5htIpv 0.38 [2] slope: -7.13 x10-3 

thresh: -0.298 
NI5ht 115 [1] slope: -0.0104 

thresh: -0.58 
pconI5htI5ht 0.38 [2] slope: 6.07 x10-4 

thresh: 0.175 
NIsom 45 [1] slope: -0.001 

thresh: -0.83 
pconI5htIsom 0 No data Not tested 

NEL4 1500 [1] slope: -0.106 
thresh: 3.43 

pconIsomE 0.5 [5] slope: -6.29 x10-3 
thresh: -0.8919 

VrestE -68 mV [2] slope: 0.049 
thresh: -6.09 

pconIsomIpv 0 No data Not tested 

VrestIpv -68 mV [2] slope: -0.016 
thresh: -0.963 

pconIsomI5ht 0 No data Not tested 

VrestI5ht -62 mV [2] slope: -9.48 x10-4 

thresh: 0.205 
pconIsomIsom 0 No data Not tested 

VrestIsom -57 mV [3] slope: 3.58 x10-3 

thresh: 0.034 
prelEL4E 0.25 No data slope: -0.112 

thresh: 4.21 
VthE -38 mV [2] slope: -3.76 x10-3 

thresh: -0.381 
prelEL4Ipv 0.25 No data slope: 0.0103 

thresh: 0.682 
VthIpv -37.4 mV [2] slope: 3.87 x10-3 

thresh: 0.221 
prelEL4Isom 0.25 No data slope: -2.06 x10-3 

thresh: -0.537 
VthI5ht -36 mV [2] slope: -1.12 x10-3 

thresh: 0.013 
prelEE 0.25 No data slope: 4.99 x10-3 

thresh: 6.074 
VthIsom -40 mV [3] slope: -3.26 x10-3 

thresh: -0.083  
prelEIpv 0.25 No data slope: -4.04 x10-4 

thresh: 0.163 
RinE  160 MΩ [2] slope: 1.95 x10-3 

thresh: -0.283 
prelEI5ht 0.25 No data slope: -9.32 x10-3 

thresh: -0.532 
RinIpv  100 MΩ [2] slope: -8.38 x10-3 

thresh: -0.283 
prelEIsom 0.25 No data slope: -7.32 x10-3 

thresh: -0.3847 
RinI5ht 200 MΩ [2] slope: -3.87 x10-3 

thresh: -0.653 
prelIpvE 0.25 No data slope: 1.03 x10-2 

thresh: -0.941 
RinIsom 250 MΩ [4] slope: 7.55 x10-3 

thresh: 0.465 
prelIpvIpv 0.25 No data slope: 1.21 x10-3 

thresh: -0.061 
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τmE 28 ms [2] slope: -9.59 x10-3 

thresh: 0.268 
prelIpvI5ht 0.25 No data slope: -4.73 x10-3 

thresh: 0.011 
τmIpv 21 ms [2] slope: 4.82 x10-3 

thresh: 0.027 
prelI5htE 0.25 No data slope: -1.63 x10-3 

thresh: -0.379 
τmI5ht 10 ms [2] slope: -5.09 x10-3 

thresh: -0.302 
prelI5htIpv 0.25 No data slope: -3.41 x10-3 

thresh: -0.262 
τmIsom 30 ms [4] slope: -2.89 x10-3 

thresh: -0.159 
prelI5htI5ht 0.25 No data slope: 3.05 x10-3 

thresh: 0.123 
trefE 55.5 ms [2] Not tested prel,IsomE 0.25 No data slope: -2.13 x10-4 

thresh: -0.65 
trefIpv 5.4 ms [2] Not tested wEL4E,mean 0.8 mV [1] slope: -0.142 

thresh: 0.342 
trefI5ht 21.3 ms [2] Not tested wEL4E,median 0.48 mV [1] slope: -0.142 

thresh: 0.342 
trefIsom 20 ms [3] Not tested wEL4Ipv,mean 0.8 mV =wEL4E slope: 3.61 x10-3 

thresh: 6.54 x10-3 
τsynE,e 2 ms Typical slope: 1.37 x10-2 

thresh: -1.79 
wEL4Ipv,median 0.48 mV =wEL4E slope: 3.61 x10-3 

thresh: 6.54 x10-3 
τsynE,i 40 ms [2] slope: -7.29 x10-3 

thresh: 0.48 
wEL4Isom,mean 0.8 mV =wEL4E slope: 5.05 x10-3 

thresh: -0.329 
τsynIpv,e 2 ms Typical slope: -9.79 x10-3 

thresh: -0.477 
wEL4Isom,median 0.48 mV =wEL4E slope: 5.05 x10-3 

thresh: -0.329 
τsynIpv,i 16 ms [2] slope: 1.56 x10-3 

thresh: -0.097 
wEE,mean 0.37 mV [2] slope: 7.44 x10-3 

thresh: 5.34 
τsynI5ht,e 2 ms Typical slope: 4.52 x10-3 

thresh: -0.047 
wEE,median 0.2 mV [2] slope: 7.44 x10-3 

thresh: 5.34 
τsynI5ht,i 40 ms [2] slope: -3.82 x10-3 

thresh: -0.387 
wEIpv,mean 0.82 mV [2] slope: -3.77 x10-4 

thresh: -0.297 
τsynIsom,e 2 ms Typical slope: -0.0126 

thresh: -8.82 x10-3 
wEIpv,median 0.68 mV [2] slope: -3.77 x10-4 

thresh: -0.297 
τsynIsom,i 40 ms [2] slope: -4.88 x10-3 

thresh: -0.301 
wEI5ht,mean 0.39 mV [2] slope: -6.81 x10-3 

thresh: -0.46 
Ereve 0 mV Typical slope: -0.056 

thresh: 1.53 
wEI5ht,median 0.19 mV [2] slope: -6.81 x10-3 

thresh: -0.46 
ErevEi -68 mV =VrestE slope: 3.2x10-3 

thresh: -3.77 
wEIsom,mean 0.5 mV No data slope: -3.61 x10-3 

thresh: -0.359 
ErevIpvi -68 mV =VrestIpv slope: -0.010 

thresh: -0.617 
wEIsom,median 0.4 mV No data slope: -3.61 x10-3 

thresh: -0.359 
ErevI5hti -62 mV =VrestI5ht slope: 3.8x10-3 

thresh: 0.132 
wIpvE,mean 0.52 mV [2] slope: 6.41 x10-3 

thresh: -1.47 
ErevIsomi -57 mV =VrestIsom slope: -4.2x10-3 

thresh: -0.088 
wIpvE,median -0.29 mV [2] slope: 6.41 x10-3 

thresh: -1.47 
pconEL4E 0.15 No data slope: -0.121 

thresh: 2.99 
wIpvIpv,mean -0.56 mV [2] slope: -2.52 x10-3 

thresh: -0.345 
pconEL4Ipv 0.15 No data slope: 1.38x10-3 

thresh: 0.029 
wIpvIpv,median -0.44 mV [2] slope: -2.52 x10-3 

thresh: -0.345 
pconEL4I5ht 0 No data Not tested wIpvI5ht,mean -0.83 mV [2] slope: -4.24 x10-3 

thresh: -0.266 
pconEL4Isom 0.15 No data slope: 7.62 x10-3 

thresh: -0.245 
wIpvI5ht,median -0.6 mV [2] slope: -4.24 x10-3 

thresh: -0.266 
pconEE 0.17 [2] slope: 5.86 x10-3 

thresh: 6.084 
wI5htE,mean -0.49 mV [2] slope: -3.61 x10-4 

thresh: -0.018 
pconEIpv 0.575 [2] slope: -1.17 x10-3 

thresh: -0.099 
wI5htE,median -0.3 mV [2] slope: -3.61 x10-4 

thresh: -0.018 
pconEI5ht 0.24 [2] slope: -6.44 x10-3 

thresh: -0.541 
wI5htIpv,mean -0.49 mV [2] slope: -1.77 x10-3 

thresh: -0.187 

pconEIsom 0.5 [5] slope: -4.37 x10-3 

thresh: -0.27 
wI5htIpv,median -0.15 mV [2] slope: -1.77 x10-3 

thresh: -0.187 
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pconIpvE 0.6 [2] slope: 7.16 x10-3 

thresh: -1.049 
wI5htI5ht,mean -0.37 mV [2] slope: -4.12 x10-3 

thresh: -0.416 
pconIpvIpv 0.55 [2] slope: -2.61 x10-3 

thresh: -0.0456 
wI5htI5ht,median -0.23 mV [2] slope: -4.12 x10-3 

thresh: -0.416 
pconIpvI5ht 0.24 [2] slope: -2.81 x10-3 

thresh: -0.458 
wIsomE,mean -0.5 mV No data slope: -0.013 

thresh: -0.984 
pconIpvIsom 0 No data Not tested wIsomE,median -0.4 mV No data slope: -0.013 

thresh: -0.984 
Source [1] is (Lefort et al., 2009), [2] is (Avermann et al., 2012), [3] is (Fanselow et al., 2008), 628	

[4] is (Kinnischtzke et al., 2012), [5] is (Fino and Yuste, 2011). N is number of neurons, Vrest is 629	

resting potential, Vth is spike voltage threshold, Rin is input resistance, tref is refractory period, 630	

τm is the membrane time constant, τsyn is the synaptic time constant with the first subscript 631	

indicating the postsynaptic neuron type and the second subscript the neurotransmitter type of 632	

the presynaptic neuron (e or i), Erev is the synaptic reversal potential, pcon is the synaptic 633	

connection probability, prel is the synaptic release probability, w is the mean or median post-634	

synaptic potential amplitude as indicated. For all neuronal parameters, the subscript indicates 635	

the neuron type: E is L2/3 excitatory neurons, Ipv is PV neurons, I5ht is 5HT3AR neurons, Isom 636	

is SOM neurons, and EL4 is L4 excitatory neurons. For synaptic parameters, the first and 637	

second subscripts indicate the pre- and post-synaptic neuron types, respectively. 638	

An important caveat is that although this model may be considered detailed by some 639	

measures, it also simplifies many aspects of L2/3 circuit. For example, we assumed that all 640	

5HT3AR cells were homogeneous, even though they likely separate into different subclasses 641	

with type-specific connectivity (Gentet, 2012; Petersen and Crochet, 2013). Layer 2 and layer 642	

3 may also consist of distinct cell populations (Petersen and Crochet, 2013). Not all likely 643	

connections were included in the model (Dalezios et al., 2002; Pfeffer et al., 2013), and 644	

connectivity was assumed to be random, even though it is likely non-random (Tomm et al., 645	

2014). Although these choices will likely not affect the conclusions of the current study, they 646	

may be important to consider for future work that seeks to understand the biological function of 647	

the L2/3 somatosensory microcircuit. 648	

Logistic model  649	

From the L2/3 circuit model simulations, we numerically estimated the probability q that each 650	

neuron in the model fires a spike as a function of the fraction of L4 inputs that were active, f. 651	

We then used the generalized linear model regression tool ‘glmfit’ in MATLAB to find the best 652	
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fit of the two logistic model parameters for each neuron:  653	

𝑞(𝑓) = @
@ABCD	(EF(GEGH/I	))

,  654	

where the parameter β represents the slope, and the parameter f1/2 represents the fraction of 655	

active L4 neurons at which the response probability 𝑞 = 0.5. For clarity of presentation, in the 656	

main text we converted this f1/2 parameter to what we termed the ‘threshold’, fthresh, which we 657	

defined as the fraction of L4 neurons needed to reach a specified spike probability, qthresh. 658	

Throughout the study we fixed 𝑞4L-+3L = 0.01. The threshold is related to f1/2 via the inverse of 659	

the logistic function  660	

𝑓4L-+3L = 𝑓@/M + log
QRSTUVS

@EQRSTUVS
/𝛽. 661	

We computed firing rates and pairwise correlations from the logistic model (Figures 3—4) in 662	

the following way. First, we assumed that the fraction of active L4 neurons is described by a 663	

normally distributed random variable with zero mean and unit variance:  664	

𝑝 𝑓 = BCD	(EGI/M)
MY

= 𝒩(0,1) . 665	

We defined the 𝛽 and 𝑓@/M	 parameters relative to the mean and standard deviation of the input 666	

distribution. Since q is a monotonically increasing function of f, the probability distribution for q 667	

is 668	

𝑝 𝑞 = 𝑝(𝑓 𝑞 )
𝑑𝑓
𝑑𝑞  676	

where 𝑓(𝑞) is the inverse of the logistic function 𝑞(𝑓) and  669	

[G
[Q
=

BCD EF GEGH/I A@
I

F BCD(EF(GEGH/I))
. We calculate a neuron’s mean firing rate 𝜇 as the expectation of q, 670	

𝜇 = 𝔼 𝑞 = 𝑞×𝑝 𝑞 𝑑𝑞 = 𝑞×𝑝 𝑓(𝑞) [G
[Q

𝑑𝑞@
^	

@
^	 .  671	

We calculate the pairwise covariance of two homogeneous neurons driven by a common input 672	

f as   673	

cov = 𝔼 𝑞M − 𝔼 𝑞 M = 𝔼 𝑞M − 𝜇M = 𝑞M×𝑝 𝑓 𝑞 [G
[Q

𝑑𝑞@
^	 − 𝜇M , then find the pairwise 674	

correlation by normalizing the covariance by the neurons’ shared variance,	var = 𝜇(1 − 𝜇).  675	
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For fitting the logistic model to the recorded neural firing rates and correlations (Figure 5), we 677	

considered a population model where the joint probability distribution across threshold and 678	

slope was specified by a 2D Gaussian, which has five parameters: threshold mean and s.d., 679	

slope mean and s.d., and slope-threshold correlation. The three constraint statistics we 680	

considered from the neural population data were the mean neural ON probability, the s.d. of 681	

neural ON probabilities, and the mean pairwise correlations. We found the best-fit model 682	

parameters for each dataset using stochastic gradient descent (code available at 683	

https://github.com/cianodonnell/ODonnelletal_2017_imbalances). Briefly, the fitting procedure 684	

followed: 1) initialize the parameters at a starting guess points, 2) compute the predicted three 685	

output firing statistics via numerical integration over the model’s probability distributions, 3) 686	

compute the fitting error as the summed squared difference between the model output 687	

predictions and the target values, 4) generate a new set of parameter values by adding a small 688	

perturbation of a zero-mean Gaussian random number to each parameter, 5) compute the new 689	

output statistics, 5) recompute the fitting error, 6) if the new error is smaller than the old error, 690	

accept the updated parameter values, otherwise reject them and revert to the old parameters, 691	

7) return to step 4 unless the error is lower than the desired tolerance. We checked for fit 692	

convergence by sampling a large number of logistic model parameters from the fitted 2D 693	

Gaussian, drawing binary samples from these logistic model neurons and computing the ON 694	

probability mean and s.d., and mean pairwise correlation from the synthetic binary samples, 695	

and comparing the computed statistical values to the original data statistics (Figure 5 – 696	

supplemental figure 1). For the sensitivity analysis presented in Figure 6, we numerically 697	

computed the partial derivative in mean firing rate and pairwise correlation with respect to the 698	

mean slope and mean threshold parameters in the population logistical model, using standard 699	

finite difference methods.  700	

Statistical tests  701	

To avoid parametric assumptions, all statistical tests were done using standard bootstrapping 702	

methods with custom-written MATLAB scripts. For example when assessing the observed 703	

difference between two group means Δμobs we performed the following procedure to calculate 704	

a p-value. First we pool the data points from the two groups to create a null set Snull. We then 705	
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construct two hypothetical groups of samples S1 and S2 from this by randomly drawing n1 and 706	

n2 samples with replacement from Snull, where n1 and n2 are the number of data points in the 707	

original groups 1 and 2 respectively. We take the mean of both hypothetical sets Δμ1 and Δμ2 708	

and calculate their difference Δμnull = Δμ1 – Δμ2. We then repeat the entire procedure 107 709	

times to build up a histogram of Δμnull. This distribution is always centered at zero. After 710	

normalizing, this can be interpreted as the probability distribution f(Δμnull) for observing a group 711	

mean difference of Δμnull purely by chance if the data were actually sampled from the same 712	

null distribution. Then the final p-value for the probability of finding a group difference of at 713	

least Δμobs in either direction is given by 𝑝 = 𝑓 𝛥𝜇)dee 𝑑𝛥𝜇)dee + 𝑓 𝛥𝜇)dee 𝑑𝛥𝜇)dee
∞

fghiV
EfghiV
E∞ . 714	

For Figure 5C we estimated 2-dimensional 95% confidence ellipses for the shift in mean slope-715	

threshold parameters between Fmr1 KO and WT by computing the sample error variances and 716	

covariance through bootstrapping. Then the 95% confidence ellipse can be computed using 717	

the Chi-squared distribution. We plotted the confidence interval ellipse using the MATLAB 718	

function error_ellipse.m, downloaded from 719	

https://www.mathworks.com/matlabcentral/fileexchange/4705-error-ellipse. 720	

Conversion from firing rate to ON/OFF probabilities for Ca2+   imaging data  721	

For the Ca2+ imaging data, we began with estimated firing rate time series ri(t) for each neuron 722	

i recorded as part of a population of N neurons. For later parts of the analysis we needed to 723	

convert these firing rates to binary ON/OFF values. This conversion involves a choice. One 724	

option would be to simply threshold the data, but this would throw away information about the 725	

magnitude of the firing rate. We instead take a probabilistic approach where rather than 726	

deciding definitively whether a given neuron was ON or OFF in a given time bin, we calculate 727	

the probability that the neuron was ON or OFF by assuming that neurons fire action potentials 728	

according to an inhomogeneous Poisson process with rate ri(t). The mean number of spikes 729	

λi(t) expected in a time bin of width Δt is λi(t)= ri(t)Δt. We choose Δt = 1 second. Under the 730	

Poisson model the actual number of spikes m in a particular time bin is a random variable that 731	

follows the Poisson distribution P(m=k) = λk exp(-λ) / k!. We considered a neuron active (ON) if 732	

it is firing one or more spikes in a given time bin. Hence the probability that a neuron is ON is 733	

pon(t)=1-P(m=0)=1-exp(λ). This approach has two advantages over thresholding: 1) it 734	
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preserves some information about the magnitude of firing rates, and 2) it acts to regularize the 735	

probability distribution for the number of neurons active by essentially smoothing nearby 736	

values together. 737	

Entropy estimation for large numbers of neurons  738	

Entropy was estimated by fitting a statistical model we recently developed, called the 739	

population tracking model (O'Donnell et al., 2017), to the binarized Ca2+ imaging data. Briefly, 740	

the population tracking model fits two aspects of the data: the probability distribution for the 741	

number of neurons synchronously active in the population, and also the conditional firing 742	

probability that each individual neuron is active given the population count. Hence the model 743	

captures both some aggregate statistics of the population activity, and some aspects of the 744	

heterogeneity across neurons. See (O'Donnell et al., 2017) for complete details and validation 745	

of the method. Code for fitting the model to data is available at 746	

https://github.com/cianodonnell/PopulationTracking. 747	

The entropy/neuron generally decreased with the number of neurons considered as result of 748	

the population correlations (Figure 7B), so we needed to control for neural population size 749	

when comparing data from different experimental groups. On the one hand, we would like to 750	

study as large a number of neurons as possible, because we expect the effects of collective 751	

network dynamics to be stronger for large population sizes and this may be the regime where 752	

differences between the groups emerge. On the other hand, our recording methods allowed us 753	

to sample only typically around ~100 neurons at a time, and as few as 40 neurons in some 754	

animals. Hence we proceeded by first estimating the entropy/neuron in each animal by 755	

calculating the entropy of random subsets of neurons of varying size from 10 to 100 (if 756	

possible) in steps of 10. For each population size we sampled a large number of independent 757	

subsets, calculated the entropy of each. Finally, for each dataset we fit a double exponential 758	

function to the estimated entropy/neuron as a function of the number of neurons: H/N = 759	

A*exp(-b*N) + C*exp(-d*N) + e, and used this fit to estimate H/N for 100 neurons. 760	
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Figure Supplements 976	

 

Figure 5 – figure supplement 1. Agreement between population logistic model activity 

statistics and raw data statistics. 
Black circles are WT, red are Fmr1 KO. Each data point corresponds to a recording from a 

single animal. Each plot shows model prediction versus raw data target value. Plots in each 

row correspond to data from a different age group (P9—11, P14—16, and P30—40), and each 

column corresponds to one of the three target activity statistics (mean firing rate, s.d. in firing 

rate, and mean pairwise correlation). Blue line is identity. 

 977	

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 8, 2017. ; https://doi.org/10.1101/086363doi: bioRxiv preprint 

https://doi.org/10.1101/086363
http://creativecommons.org/licenses/by-nc-nd/4.0/


	  O’Donnell et al. 
	

	 48 

 

Figure 5 – figure supplement 2. Variation in population logistic model parameter fits 

with developmental age group and genotype. 
Black symbols are WT, red are Fmr1 KO. Each data point corresponds to a recording from a 

single animal, bars correspond to group means. In all cases, horizontal bar with asterisk 

indicates a significant difference in group means (p<0.05 via bootstrapping). 

A: Logistic threshold parameter mean (left) and s.d. (right). 

B: Logistic slope parameter mean (left) and s.d. (right). 

C: Slope-threshold correlation parameter. 
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Figure 6 – figure supplement 1. Agreement between entropy estimated from raw data 

with entropy estimated from samples from fitted logistic models. 

Black symbols are WT, red are Fmr1 KO. Crosses are P9—11, circles P14—16, triangles 

P30—40. Blue line is identity, the R2 value of which is reported in the inset. 
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