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Abstract

In an effort to understand the underlying biology of radiation response along with whole transcriptome

effects of preoperative radiotherapy in early-stage breast tumors, we propose two efficient score-based statis-

tical methods that exploit gene expression patterns across all available gene transcript isoforms and identify

potential biomarkers in the form of differentially expressed genes and differentially enriched gene-sets. We

demonstrate the effectiveness of these two methods using extensive simulation studies that show that both

of our methods give improved performance, in terms of statistical power, over the most commonly used

methods. By exploiting radiation-induced changes in all available gene transcript isoforms, we identified

several statistically significant differentially expressed genes related to PI3K-AKT and JAK-STAT signal-

ing pathways along with radiation-induced oncogenic signaling pathways and tumor microenvironment gene

signatures that could be potential targets to improve response to radiotherapy in breast tumors.

Background

Radiation therapy or radiotherapy is utilized as a curative therapy in many solid tumors including gyneco-

logic, head and neck, gastrointestinal, breast, prostate, lung, central nervous system and pediatric malignancies.

Approximately 60% of cancer patients receive radiotherapy as part of their treatment either as a stand alone

pre-operative therapy or combined with other modalities such as chemotherapy following surgery in an adjuvant

setting [1]. Radiotherapy has played a significant role in treating both invasive and non-invasive breast tumors

over the years. However, response to radiation in breast cancer patients has not been uniform across all breast

tumor subtypes (for example, basal, luminal, etc.) leading to a significant percentage of patients being either

over- or under-treated [2, 3]. This can be attributed to variable transcriptional response (through variable acti-

vation of transcription factors) to radiation, which is very similar to response to chemotherapy except that the
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mechanisms underlying radiation response have not been well understood and studied [4, 5]. Many genes have

multiple transcript isoforms that result from alternative-splicing events. We measure the overall gene expression

of a given gene by measuring the relative abundances of these isoforms, which may provide new insights into

disease and biology.

Constantly evolving high-throughput gene expression profiling technologies, such as RNA-Seq or ultra high-

resolution microarrays, have enabled us to interrogate all transcript isoforms in the human transcriptome by

targeting coding transcripts, exon-exon splice junctions, and non-coding transcripts. The end goal of using these

technologies is to exploit the gene expression patterns across multiple isoforms or gene transcripts in order to

map biomarkers such as genes and gene-sets that help illuminate the molecular pathology of complex diseases

at the RNA level. Existing analytic tools or methods for biomarker analysis such as differential expression anal-

ysis involves combining gene expression over all gene isoforms prior to data analysis, resulting in a gene-level

interrogation of biological conditions [6, 7, 8, 9, 10, 11]. For example, the overall expression level of a gene can

be represented by a single number and is measured by averaging the signals of many transcripts for the gene.

Individual transcripts that have high variability compared to the average expression of a gene will be removed

from the analysis (outliers). Such an approach has at least two significant limitations. First, it fails to fully

exploit expression patterns across gene isoforms either by combining information across multiple transcripts or

by not explicitly identifying effects that differ across transcripts. Second, and more importantly, it fails to ac-

count for alternative splicing or alternative 3′ poly-adenylation events by removing gene isoforms that seems to

be significantly differentially expressed. We propose two distinct approaches, one to identify radiation-induced

gene expression biomarkers in an isoform-specific differential expression (DE) analysis and another to perform

isoform-specific gene-set or pathway enrichment analysis. We test these methods extensively using simulation

studies and then evaluate the effectiveness of these two methods on a microarray-based gene expression dataset

containing 26 paired early-stage breast cancer patient samples. Briefly, these tumor samples originated from

a unique preoperative radiotherapy Phase I trial [2], and were assayed on the new Affymetrix Human Tran-

scriptome 2.0 array [29]. The transcriptome response to radiation exposure was derived by comparing gene

expression in samples before and after irradiation. While demonstrating the effectiveness of our method to iden-

tify differentially enriched gene-sets, we investigated the effects of radiation on 7 tumor microenvironment and

24 hallmark oncogenic signaling gene-sets that are associated with radiation response.

We hypothesize that our methods are effective in identifying biomarkers (in this case, differentially expressed

genes and differentially enriched gene-sets) when compared to most commonly used approaches. Investigating

the tumor microenvironment and the oncogenic signaling pathways before and after radiation will help us under-

stand any radiation-induced changes in individual patients, which may serve as a surrogate to understand patient
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response to radiation and can make for potential therapeutic targets.

Materials and Methods

Microarray analysis of the breast cancer dataset

Raw microarray data for twenty six early-stage breast cancer patients were obtained from NCBI’s gene ex-

pression omnibus (GEO ID: GSE65505) repository [28]. All the patients are at least 55 years old, clinically

node negative, ER-positive and/or PR-positive, HER2-negative (biologically favorable tumors) with T1 invasive

carcinomas or low-intermediate grade in situ disease ≤ 2cm. These patients received pre-operative radiother-

apy (radiation dose prior to surgical resection of tumor). All the samples were arrayed on Affymetrix Human

Transcriptome Array 2.0 [29], which was designed with approximately ten probes per exon and four probes

per exon-exon splice junction. At the top level, each transcript cluster roughly corresponds to a gene. Each

transcript cluster is comprised of exon clusters that a) shared splice sites, b) or were derived from overlapping

exonic sequences, c) or were single-exon clusters bounded on the genome by spliced content. Each exon cluster

is further fragmented into probe selection regions (PSRs), which are non-overlapping contiguous sequences.

Gene-level and gene isoform/transcript-level expression data were obtained using R/Bioconductor packages

oligo [30], affyio [31] and pd.hta.2.0 [32], and pre-processed by robust multi-array average (RMA) method

[7, 30, 31], which summarizes the probe level expression data into a probe set level expression value. Principal

component analysis was conducted to check for batch effects in both gene-level and transcript-level data, and

any batch effects that were identified were corrected using a popular Empirical Bayes approach (ComBat) [33].

DE analysis was performed on genes with at least two transcript isoforms. This resulted in a dataset with more

than 800,000 transcripts.

Strategy to identify gene expression biomarkers of radiation: Differential Expression (DE) anal-

ysis

Given two distinct biological groups (before and after radiation treatment), gene expression for each gene tran-

script, Y , can be modeled in the following way

Y = Tα + Rβ + Au + Bv + ξ (1)
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where Y is a ntg × 1 matrix of expression values, T is a ntg × t dimensional matrix of gene expresion levels

in t isoforms of a gene in g groups and n individuals, α is a fixed effect representing the isoform-specific

intercepts, R is a ngt × 1-dimensional matrix of radiation dose identifiers such that R ∈ {0, 1}, 0 indicates

no radiation and 1 indicates radiation, β is a fixed effect indicating the average effect of radiation on gene

expression. u ∼ N
(
0, τAAT

)
indicates subject-specific random intercept, v ∼ N

(
0, γBBT

)
is random effect that

denotes the interaction between gene-isoform and radiation (isoform-specific radiation effect), and ξ ∼ N (0, εI).

I is ntg × ntg dimensional identity matrix . The matrices J, A and B are design matrices with B being a function

of radiation dose. J is ntg× t dimensional matrix denoting the design matrix for the tissue-specific intercepts. A

is ntg × n design matrix for the subject-specific intercepts. B is a ntg × t design matrix of stacked radiation dose

identifiers.

We test the null hypothesis that H0 : β = 0; γ = 0 i.e radiation does not affect gene expression. From our model

above, we derive our score test statistic, Uψ as

Uψ ≡ ŶT Σ̂−1
[
aβ

(
R − R̄

) (
R − R̄

)T
+ aγ

(
1
2

BBT
)]

Σ̂−1Ŷ , (2)

where aβ and aγ are scalar constants chosen to minimize the variance of Uψ (see Supplementary methods). The

p values are approximated using Satterthwaite method [34]. The maximum likelihood estimates, obtained from

fitting a standard linear mixed model using lme4 [35], are computed only once per gene since under the null,

there is no effect due to radiation on the gene expression. The p values obtained from applying our method were

adjusted for multiple hypothesis within the false discovery rate (FDR) framework. Genes with FDR adjusted

p values (q values) less than 0.05 were selected to be differentially expressed. More information on our method

is available in the supplementary methods. As a side note, this model is very similar to a previous one we

proposed [36] with the exception that this is a paired data.

Strategy to perform radiation-induced isoform-specific gene-set enrichment analysis

Gene expression data for each pathway, Y , is modeled in the following way

Y = Tα + Gλ + Rβ + Au + Bv + Cw + ξ (3)

where Y is nt jg × 1 dimensional matrix of expression values, T is a nt jg × t-dimensional matrix of expression

levels in t isoforms of a gene, j genes, g groups and n individuals, α is a fixed effect representing t isoform-

specific intercepts, λ is a fixed effect representing g gene-specific intercepts, R is a nt jg × 1 dimensional matrix
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of radiation dose identifiers such that R ∈ {0, 1}, 0 indicates no radiation and 1 indicates radiation, β is a fixed

effect indicating the average effect of radiation on a pathway or gene-set. u ∼ N
(
0, τAAT

)
indicates subject-

specific random intercept, v ∼ N
(
0, γBBT

)
is a random effect that denotes the interaction between gene-isoform

and radiation (isoform-specific radiation effect), w ∼ N
(
0, φCCT

)
is a random effect that denotes the interaction

between gene and radiation (gene-specific radiation effect), and ξ ∼ N (0, εI). I is nt jg × nt jg-dimensional

identity matrix . The matrices J, A and B are design matrices with B being a function of radiation dose. J is

nt jg × t dimensional matrix denoting the design matrix for the tissue-specific intercepts. A is nt jg × n design

matrix for the subject-specific intercepts. B is a nt jg × t design matrix of stacked radiation dose identifiers and

C is a nt jg × g dimensional design matrix of the R ×G effect.

We test the null hypothesis that H0 : β = 0; γ = 0; φ = 0 i.e radiation does not affect gene expression. From our

model above, we derive our score test statistic, Uζ as

Uζ ≡ ŶT Σ̂−1
[
aβ

(
R − R̄

) (
R − R̄

)T
+ aγ

(
1
2

BBT
)

+ aφ

(
1
2

CCT
)]

Σ̂−1Ŷ , (4)

where aβ, aγ and aφ are scalar constants chosen to minimize the variance of Uζ . The p values are approximated

using Satterthwaite method [34]. Similar to our earlier method, the maximum likelihood estimates, obtained

from fitting a standard linear mixed model using lme4 [35], are computed only once per gene-set since under

the null, there is no effect due to radiation on the gene expression. The p values obtained from applying our

method were adjusted for multiple hypothesis within the false discovery rate (FDR) framework. Genes with

FDR adjusted p values (q values) less than 0.05 were selected to be differentially expressed. More details on our

method are available in supplementary methods.

Simulations

Testing our method for DE analysis

We have performed the following two simulation studies in order to verify our approach. In our first study, we

simulated one gene at a time from the following linear model and varied the following parameters- β (additive

effect due to radiation), the proportion of variation explained by γ or R×T effect
(
PVEγ ≡

(
γ
τ+ε

))
and the number

of transcripts. For a positive integer tg that represents the combined number of transcripts (t) and groups (g),

if 1 denotes a column vector of tg ones and I denotes the corresponding tg × tg diagonal matrix, following the

tg-variate normal law denoted by Ntg
[
µ,Σ

]
with mean µ ∈ Rtg and variance Σ ∈ Rtg×tg, expression levels of a
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target gene j by using the following vectorized form of the linear mixed model –

yi jg = α j + β jrg + 1ai + b jrg + ξi jg ξi jg
i.i.d.
∼ N (0, εI) (5)

where yi jg is a tg × 1 vector of gene expression data, αt is the transcript-specific intercept (αt ∈ R
t), β j describes

the main additive effect (β j ∈ R
1), rg is a vector of length tg such that r ∈ (0t, 1t). The random effect b j ∈ R

tg

represents transcript-specific interaction effect of radiation, and ai ∈ R
1 is a subject-specific random intercept.

We assume that all the random effects are independent and that ai ∼ N1 (0, τ), b j ∼ Ntg (0, γI). A linear mixed

effects model was fit using the package lme4[35] in the statistical environment R (R Core Team).

We then compared our method with a standard paired t-test and a non-parametric alternative in Wilcoxon’s test

[37]. The test statistic in case of transcript-by-transcript (TBT) analysis is the minimum p value over the total

number of transcripts from either t-test or Wilcoxon’s test performed separately in each transcript for each paired

sample. A gene-level test was constructed over all the transcripts by taking the median expression value across

the transcripts followed by a standard paired t-test. Statistical significance was determined at a nominal p value

of 0.05 for all power simulations (in case of TBT analysis, it is 0.05
k , where k is the number of transcripts). We

used 10,000 data replicates to evaluate the type I error and 1,000 data replicates for power calculations.

We have also tested our method on a synthetic dataset simulated from a multivariate normal distribution contain-

ing two classes of data. Each gene was simulated to have variable number of transcripts. We used this dataset

with increasing number of genes (by also keeping a small proportion differentially expressed) and tested our

approach at both transcript-level (paired t-test and Wilcoxon’s test) and gene-level. The most commonly used

method to combine p values of all the transcripts of a gene is Fisher’s method however, under the assumption

that all the p values are independent [14]. This assumption may be frequently violated since different isoforms

of a gene may be correlated and the resulting p values are dependent on each other. At the gene-level, paired

t-tests were run on gene expression values of a gene that were aggregated over its transcripts by either their

median expression values or Winsorized mean [38] expression values.

Testing our method for gene-set enrichment analysis

Similar to the above analyses, we have performed two simulations studies in order to verify our approach. In

our first study, we simulated one gene-set at a time from the following linear model and varied the following

parameters- β (additive effect due to radiation), the proportion of variation explained by γ or R × T effect(
PVEγ ≡

(
γ

τ+φ+ε

))
, the proportion of variation explained by φ or R ×G effect

(
PVEφ ≡

(
φ

τ+φ+ε

))
and the number

of transcripts. For a positive integer t jg that represents the combined number of transcripts (t), genes ( j) and
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groups (g), if 1 denotes a column vector of t jg ones and I denotes the corresponding t jg × t jg diagonal matrix,

following the t jg-variate normal law denoted by Nt jg
[
µ,Σ

]
with mean µ ∈ Rt jg and variance Σ ∈ Rt jg×t jg,

expression levels of a target geneset k by using the following vectorized form of the linear mixed model –

yi jkg = α j + βkrg + λk + 1ai + b jrg + ckrg + ξi jkg ξi jkg
i.i.d.
∼ N (0, εI) (6)

where yi jkg is a t jg×1 vector of gene expression data, αt is the transcript-specific intercept (αt ∈ R
t), βk describes

the main additive effect (βk ∈ R
1), rg is a vector of length t jg such that r ∈

(
0tg, 1tg

)
. The random effect bt ∈ R

t jg

represents transcript-specific interaction effect of radiation, the random effect c j ∈ R
t jg represents transcript-

specific interaction effect of radiation, and ai ∈ R
1 is a subject-specific random intercept. We assume that all

the random effects are independent and that ai ∼ N1 (0, τ), bt ∼ Ntg (0, γI) and c j ∼ N jg (0, γI). A linear mixed

effects model was fit using the package lme4[35] in the statistical environment R (R Core Team).

We then compared our method with a standard paired t-test and a non-parametric alternative in Wilcoxon’s test

[37]. The test statistic in case of transcript-by-transcript (TBT) within a gene analysis is the minimum p value

over the total number of transcripts and genes from either t-test or Wilcoxon’s test performed separately in

each transcript for each paired sample. A gene-level test was constructed over all the transcripts by taking the

median expression value across the transcripts followed by a standard paired t-test. Statistical significance was

determined at a nominal p value of 0.05 for all power simulations (in case of TBT analysis, it is 0.05
k , where k is

the product of the number of transcripts and genes). We used 10,000 data replicates to evaluate the type I error

and 1,000 data replicates for power calculations.

A second set of simulations involved generating a synthetic gene expression data from a multivariate normal

distribution containing two classes of data. Each gene was simulated to have variable number of transcripts. We

defined two types of gene-sets, one with overlapping genes and the other with non-overlapping genes, and ran-

domly assigned some gene-sets to to contain differentially expressed genes. Since most, if not all of the current

methods involve gene-set analysis at the gene level, we compared our method with Gene Set Variational Analysis

(GSVA) [10], Pathway Level Analysis of Gene Expression (PLAGE) [39], single sample GSEA (ssGSEA) [40]

and the combined z-score (ZSCORE) [41] methods. Both, PLAGE and the ZSCORE are parametric and assume

that gene expression profiles are jointly normally distributed. More about these methods in the supplementary

material.
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Defining the gene-sets and gene-set analysis

All the hallmark oncogenic signaling pathways used in our primary data analysis were obtained from the Molec-

ular Signature Database version 3 (MSigDB) collection [20]. We focussed our attention on 24 specific oncogenic

signaling pathways that were most likely associated with radiation response. We defined tumor microenviron-

ment as a collection of proteins produced by cells present in and around the tumor that support the growth of

the cancer cells. We included gene-sets representing hypoxia [42], invasiveness/metastases gene signature [43],

epigenetic stem cell signature in cancer [44], inflammatory pathway involving tumor necrosis factors [45], an-

giogenesis [46], immune signatures [47] and a form of genomic instability called chromosomal instability [48],

which determines the tumor cell’s ability to respond to its microenvironment. In order to visualize sample set

enrichment of these gene-sets (enrichment level of a gene-set in a sample), we employed Gene Set Analysis

(GSA) software [49], which implements a supervised method (class labels are known before the analysis) that

computes a ”maxmean” summary statistic for each gene-set. Briefly, GSA computes the average of both positive

and negative aspects of gene-scores (for example, fold changes) over each gene in a gene-set, and choose the

one that is larger in absolute value [8].

Multiple hypothesis correction

Wherever applicable, we use multiple hypothesis correction based on the Benjamini-Hochberg (BH) approach

[51] to obtain corrected p values. In case of gene-set analysis, BH approach may result in a conservative estimate

of the false discovery rate (FDR) because of overlapping gene-sets that have highly correlated genes. We used

the BH method only as a demonstration of statistical power.

Results

Whole transcriptome expression profile analysis usually focuses on a gene-level analysis by combining gene

expression data over all transcripts of a gene. This approach has a significant limitation in that it fails to exploit

expression patterns across the transcripts by not explicitly identifying effects that differ among the gene tran-

scripts. Marginal analyses of individual gene transcripts may also lead to a proliferation of hypotheses tested,

which can negatively impact the power of biomarker discovery. Popular method used to combine p values such

as Fisher’s approach assume independence among all the transcripts of a gene, which may not be entirely true

in this case. We address the aforementioned issues by proposing two score-test based approaches, one to dis-

cover differentially expressed genes and another to identify differentially enriched gene-sets. Score test-based
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approaches do not require parameter estimation under the alternative hypothesis. As a result, model parameters

only have to be estimated once per genome, significantly decreasing computation time. Further, our score-based

approaches only require estimation of the first two moments of the random effects, and therefore are robust to

misspecification of the random effect distribution [12].

Evaluating our method to identify differentially expressed (DE) genes using simulated data

We evaluated our method to detect DE genes using two simulation studies. Briefly, each Monte Carlo simulated

dataset from the first simulation study was comprised of data for a single gene, whose expression is measured

across 5 or 10 transcripts in 50 paired individuals. Each individual pair’s radiation status is either a zero or a one

indicating before and after radiotherapy, respectively. Since the transcript-specific effect is modeled as a random

effect, a test of whether there is any transcript-specific effect due to radiation is equivalent to testing whether

the variance of the random effect (γ) is zero. Thus, our model to detect DE genes involves testing two scalar

parameters in β and γ. Simulations under the null hypothesis (no effect of radiation on overall gene expression)

confirm that our method has the right type I error. More details in the supplementary section.

Additive Effect PVEγ(%) DE Score Test TBT Paired t-test TBT Wilcoxon’s test Gene-level paired t-test
Number of transcripts per gene = 5

NO 0 0.051 [0.038-0.067] 0.052 [0.036-0.073] 0.054 [0.037-0.075] 0.044 [0.032-0.059]
NO 9 0.36 [0.33-0.391] 0.291 [0.255-0.329] 0.263 [0.228-0.3] 0.114 [0.095-0.135]
NO 13 0.629 [0.598-0.659] 0.536 [0.495-0.577] 0.504 [0.463-0.545] 0.205 [0.18-0.231]
YES 0 0.373 [0.343-0.404] 0.259 [0.224-0.296] 0.239 [0.205-0.275] 0.385 [0.355-0.416]
YES 9 0.634 [0.603-0.664] 0.515 [0.474-0.556] 0.493 [0.452-0.534] 0.418 [0.387-0.449]
YES 13 0.759 [0.731-0.785] 0.66 [0.62-0.698] 0.627 [0.587-0.666] 0.447 [0.416-0.478]

Number of transcripts per gene = 10
NO 0 0.053 [0.04-0.069] 0.043 [0.027-0.064] 0.039 [0.024-0.059] 0.059 [0.045-0.075]
NO 9 0.534 [0.503-0.565] 0.352 [0.31-0.396] 0.318 [0.277-0.361] 0.135 [0.114-0.158]
NO 13 0.861 [0.838-0.882] 0.682 [0.639-0.723] 0.642 [0.598-0.684] 0.21 [0.185-0.237]
YES 0 0.539 [0.508-0.57] 0.302 [0.262-0.344] 0.264 [0.226-0.305] 0.646 [0.615-0.676]
YES 9 0.831 [0.806-0.854] 0.633 [0.589-0.675] 0.588 [0.543-0.632] 0.63 [0.599-0.66]
YES 13 0.92 [0.901-0.936] 0.832 [0.796-0.864] 0.803 [0.766-0.837] 0.604 [0.573-0.634]

Table 1: DE of genes - Simulation results at 5% FDR with 95% confidence interval. We varied additive effect
i.e. average effect of radiation on the whole transcriptome and proportion of variation explained by γ i.e.

radiation × transcripts interaction effect. Our score test is referred to as “DE Score Test”.

Power simulations were performed by varying the following parameters- 1) additive effect of radiation (β), 2)

the proportion of variation explained by the interaction effect between radiation and transcript (PVEγ) and 3)

the number of transcripts. The results in table 1 shows that our method significantly outperforms transcript-

by-transcript paired t-test and Wilcoxon test (a non-parametric alternative to t-test) in all simulated situations.

However, the gene-level paired t-test seems to work the best when there is an overall shift in gene expression
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due to radiation but absence of any transcript-specific effects.

In the second simulation study, each Monte Carlo dataset, comprised of gene expression data for 50 genes over 50

observations, each gene with unequal number of isoforms, was simulated from a multivariate normal distribution

with a known variance-covariance matrix. We varied the mean difference in differential gene expression between

the two phenotypes (signal-to-noise ratio), and the proportion of differentially expressed gene-isoforms. At

the transcript level, we applied paired t-test and a non-parametric alternative in Wilcoxon’s paired t-test and

combined the p values over all the transcripts of a gene using Fisher’s method. At the gene-level, we combined

the gene expression values by computing either the median or Winsorized mean of all the transcripts within a

given gene. Paired t-test was run on this gene-level data. We varied the proportion of genes that are differentially

expressed and the signal-to-noise ratio. Statistical power and empirical type I error rates were estimated based on

a nominal FDR of 5%. Figure 1 displays the performance of all the methods, measured both in terms of statistical

power and area under the curve (AUC). AUC for all the methods was estimated using R package ROCR [13].

We see that our method does well compared to the rest of the methods based on AUC plot. Given how the

gene expression data were generated, every gene may have a fraction of transcripts differentially expressed.

Consequently, any method for identifying DE genes must account for this transcript-specific variability. By

combining gene expression values over all the transcripts of a gene (as evidenced by any gene-level methods),

we are not able to fully exploit transcript-specific gene expression patterns. This is evident in Figures 1a and 1b,

where the gene-level tests perform poorly compared to the transcript-level tests, including our approach.

Evaluating our method to identify DE gene-sets using simulated data

We evaluated our method to detect DE gene-sets or pathways using two simulation studies. Briefly, each Monte

Carlo simulated dataset from the first simulation study was comprised of data for a single gene-set compris-

ing of 5 genes, whose expression is measured across 3 transcripts in 50 paired individuals. Each individual

pair’s radiation status is either a zero or a one indicating before and after radiotherapy, respectively. Since the

transcript-specific effect is modeled as a random effect, a test of whether there is any transcript-specific effect

on the gene-sets due to radiation is equivalent to testing whether the variances of the random effects (γ and φ)

are zero. Thus, our model to detect enriched gene-sets involves testing three scalar parameters in β, γ and φ.

Simulations under the null hypothesis (no effect of radiation on overall gene expression) confirm that our method

has the right type I error (see supplementary material).

Power simulations were performed by varying the following parameters- 1) additive effect of radiation (β), 2)

the proportion of variation explained by the interaction effect between radiation and transcript (PVEγ) and 3)

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 8, 2016. ; https://doi.org/10.1101/086322doi: bioRxiv preprint 

https://doi.org/10.1101/086322


Acharya et al

LOW S2N MED S2N HIGH S2N

0.0

0.2

0.4

0.6

0.8

LOW MED HIGH LOW MED HIGH LOW MED HIGH
Differentially Expressed Genes

S
ta

tis
tic

al
 P

ow
er

Score Test Paired t−test Paired Wilcoxon test Gene−level test (med) Gene−level test (WM)

(a) Power simulations

LOW S2N MED S2N HIGH S2N

0.00

0.25

0.50

0.75

1.00

LOW MED HIGH LOW MED HIGH LOW MED HIGH
Differentially Expressed Genes

A
re

a 
U

nd
er

 th
e 

C
ur

ve

Score Test Paired t−test Paired Wilcoxon test Gene−level test (med) Gene−level test (WM)

(b) Area under the ROC curve

Figure 1: The performance of all the methods in detecting DE genes. A) Bar plot depicting the statistical power
of each method under changing number of differentially expressed genes and the mean difference in gene

expression (signal-to-noise ratio; S2N) between the two phenotypes (before and after radiation). We compared
our method with two transcript-level tests in paired t-test and paired wilcoxon test (p values combined at

gene-level by Fisher’s method), and with two gene-level tests, where the gene expression values are combined
by median and Winsorized mean values followed by a paired t-test. B) Bar plot depicting the area under the

curve (AUC) of all the methods under the aforementioned conditions.

Additive Effect PVEγ(%) PVEφ(%) Gene-set Score Test TBT Paired t-test TBT Wilcoxon’s test Gene-level paired t-test
NO 0 0 0.048 [ 0.036-0.063] 0.047 [ 0.03-0.07 ] 0.044 [ 0.027-0.066 ] 0.042 [ 0.027-0.061 ]
NO 0 7 0.546 [ 0.515-0.577 ] 0.234 [ 0.196-0.275 ] 0.198 [ 0.162-0.237 ] 0.316 [ 0.279-0.355 ]
NO 0 9 0.753 [ 0.725-0.779 ] 0.384 [ 0.339-0.43 ] 0.313 [ 0.271-0.358 ] 0.465 [ 0.424-0.506 ]
NO 7 0 0.408 [ 0.377-0.439 ] 0.202 [ 0.166-0.242 ] 0.17 [ 0.137-0.207 ] 0.12 [ 0.095-0.149 ]
NO 7 7 0.756 [ 0.728-0.782 ] 0.413 [ 0.367-0.46 ] 0.386 [ 0.341-0.432 ] 0.376 [ 0.337-0.416 ]
NO 6 9 0.859 [ 0.836-0.88 ] 0.558 [ 0.511-0.604 ] 0.515 [ 0.468-0.562 ] 0.526 [ 0.485-0.567 ]
NO 9 0 0.584 [ 0.553-0.615 ] 0.353 [ 0.309-0.399 ] 0.294 [ 0.253-0.338 ] 0.178 [ 0.148-0.211 ]
NO 9 6 0.806 [ 0.78-0.83 ] 0.546 [ 0.499-0.592 ] 0.481 [ 0.434-0.528 ] 0.415 [ 0.375-0.456 ]
NO 8 8 0.897 [ 0.876-0.915 ] 0.655 [ 0.61-0.699 ] 0.601 [ 0.555-0.646 ] 0.606 [ 0.565-0.646 ]
YES 0 0 0.716 [ 0.687-0.744 ] 0.178 [ 0.144-0.216 ] 0.167 [ 0.134-0.204 ] 0.289 [ 0.253-0.327 ]
YES 0 7 0.801 [ 0.775-0.825 ] 0.386 [ 0.341-0.432 ] 0.334 [ 0.291-0.379 ] 0.483 [ 0.442-0.524 ]
YES 0 9 0.878 [ 0.856-0.898 ] 0.542 [ 0.495-0.588 ] 0.483 [ 0.436-0.53 ] 0.651 [ 0.611-0.69 ]
YES 7 0 0.738 [ 0.71-0.765 ] 0.414 [ 0.368-0.461 ] 0.365 [ 0.321-0.411 ] 0.334 [ 0.296-0.374 ]
YES 7 7 0.876 [ 0.854-0.896 ] 0.588 [ 0.541-0.634 ] 0.538 [ 0.491-0.584 ] 0.549 [ 0.508-0.59 ]
YES 6 9 0.924 [ 0.906-0.94 ] 0.654 [ 0.609-0.698 ] 0.607 [ 0.561-0.652 ] 0.66 [ 0.62-0.698 ]
YES 9 0 0.763 [ 0.735-0.789 ] 0.478 [ 0.431-0.525 ] 0.438 [ 0.392-0.485 ] 0.349 [ 0.31-0.389 ]
YES 9 6 0.88 [ 0.858-0.899 ] 0.654 [ 0.609-0.698 ] 0.598 [ 0.551-0.643 ] 0.57 [ 0.529-0.61 ]
YES 8 8 0.944 [ 0.928-0.957 ] 0.727 [ 0.684-0.767 ] 0.682 [ 0.637-0.725 ] 0.65 [ 0.61-0.689 ]

Table 2: DE of gene-sets - Gene-set simulation results at 5% FDR with 95% confidence interval. We varied
additive effect i.e. average effect of radiation on the whole transcriptome, proportion of variation explained by
γ i.e. radiation × transcripts interaction effect, and the proportion of variation explained by φ i.e. radiation ×

genes interaction effect. Our score test is referred to as ”DE Score Test”.
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the proportion of variation explained by the interaction effect between radiation and gene (PVEφ) . We kept the

number of transcripts and genes constant for all these simulations. The results in table 2 show that our method

significantly outperforms both transcript-level and gene-level methods. More specifically, our method captures

the transcript-specific variability due to radiation within each gene more efficiently than the other tests.
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(a) Power simulations
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(b) Area under the ROC curve

Figure 2: The performance of all the methods in detecting differentially enriched gene-sets when each gene-set
is comprised of unique set of genes. A) Bar plot depicting the statistical power of each method under changing
number of differentially enriched gene-sets and the mean difference in gene expression (signal-to-noise ratio)
between the two phenotypes (before and after radiation). We compared our method with several gene-level
tests,by computing the median gene expression values across all the transcripts within a gene. B) Bar plot

depicting the area under the curve (AUC) of all the methods under the aforementioned conditions

In our second simulation study, each Monte Carlo simulation consisted of 100 genes over 5 observations across

the two phenotypes. We generated gene expression data using the same approach as described in the previous

section. We simulated 10 gene-sets under both scenarios (with non-overlapping and overlapping genes) and

compared the performance of our method with the other gene-set enrichment methods at the gene-level. We

varied the sizes of gene-sets between 2 and 10 genes. Gene-level analysis is performed by computing the

median gene expression values across all the transcripts within a gene followed by an implementation of gene

set variational analysis (GSVA), Pathway Level analysis of Gene Expression (PLAGE), single sample GSEA

(ssGSEA) and the combined z-score (ZSCORE). We estimated the empirical type I error rate at 5% FDR both

in the presence and absence of any gene overlap among the simulated gene-sets. See supplementary methods

for more details. In case on no gene overlap, we simulated 10 gene-sets with varying degrees of gene overlap

(20%, 50% and 80%), and varying the signal-to-noise ratio between low, medium and high. We compared the
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performance of all the methods by measuring statistical power and area under the curve in case of gene-sets with

no overlapping genes. In the case where gene-sets shared genes, we measured only statistical power.
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Figure 3: The performance of all the methods in detecting differentially enriched gene-sets when each gene-set
is comprised of shared genes. Bar plot depicting the statistical power of each method under changing number

of differentially enriched gene-sets and the mean difference in gene expression (signal-to-noise ratio; S2N)
between the two phenotypes (before and after radiation). We compared our method with several gene-level

tests,by computing the median gene expression values across all the transcripts within a gene.

Figues 2a and 2b show the performance of all the methods when the gene-sets do not share any genes. Even

though, this is not a general scenario, our method is competitive with the rest of the methods. In situations where

the power of our method is low (relative to the other methods), the accuracy of our method is high given the

AUC values. Figure 3 displays the performance of all the methods when the gene-sets have over-lapping genes

or shared genes. This is the most common scenario and our method performs well, in terms of statistical power,

in almost all cases.
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Transcriptome-wide response to radiotherapy in breast tumors

Isoform-specific DE analysis

Transcriptome expression profiling of the early-stage breast cancer patients before and after preoperative radio-

therapy using our method has revealed many DE genes. Current methods perform DE analysis at the gene-level

and not at the transcript-level. One method performs a standard paired t-test at the transcript-level and combines

the resulting p values using Fisher’s method [14, 15]. Fisher’s method tests a global null hypothesis that the

combined p values are jointly significant. However, Fisher’s method assumes that the transcript-level p values

for each gene are independent. Standard paired t-test followed by Fisher’s method identified 11,944 genes at 5%

FDR. Another most commonly used approach is to combine the gene expression values of all transcripts of a

gene a priori by computing either the median expression values or Winsorized mean expression values (which is

robust to any outliers). Paired t-tests were then run on the combined data. These two ways of combining the data

identified 4,729 and 3,353 genes, respectively at 5% FDR. Our method identified a total of 12,414 DE genes

at 5% FDR, which is more than the ones identified by the aforementioned methods. To assess the biological

relevance of the DE genes, we performed a KEGG pathway term enrichment analysis [16] for each set of re-

sults separately. KEGG pathways were considered overrepresented if a set of at least three genes from different

linked regions is observed to be overrepresented with an adjusted significance level of an adjusted p value <

0.05, calculated from a hypergeometric test [17].

KEGG ID Description p values Adjusted p values q value
hsa05200 Pathways in cancer 4.56E-09 1.34E-06 7.68E-07
hsa04151 PI3K-AKT signaling pathway 3.69E-08 5.45E-06 3.11E-06
hsa01100 Metabolic pathways 1.64E-07 1.61E-05 9.20E-06
hsa04060 Cytokine-cytokine receptor interaction 1.21E-06 8.91E-05 5.09E-05
hsa04510 Focal adhesion 1.59E-06 9.38E-05 5.36E-05
hsa04630 JAK-STAT signaling pathway 3.35E-06 0.000164626 9.40E-05
hsa04144 Endocytosis 9.88E-06 0.000386927 0.000220904
hsa05166 HTLV-I infection 1.13E-05 0.000386927 0.000220904
hsa04360 Axon guidance 1.24E-05 0.000386927 0.000220904
hsa04210 Apoptosis 1.43E-05 0.000386927 0.000220904

Table 3: A list of top 10 over-represented KEGG pathways based on the functional enrichment of our DE gene
list.

The results in table 3 show a list of top 10 signaling pathways that were shown be overrepresented in the dataset

without any specifics on the directionality (up- or down-regulation) of the pathway deregulation. For example,

PI3K-AKT signaling pathway shown in the table, a potential target for radiosensitizing cancer cells, is one the
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many pro-survival signaling pathways that get activated by radiation that may lead to suppression of apoptosis,

initiation of DNA repair mechanisms and induction of cell-cycle arrest [18]. Together with mTOR signaling

pathway, PI3K-AKT are activated in many different cancers. Drugs like rapamycin, CCI-779 and RAD-001

target mTOR signaling pathway while perofisine, PX-866 target AKT pathway [19].

Isoform-specific gene-set analysis

Instead of focusing on individual genes, we turned our focus on functionally related genes referred to as gene-sets

or pathways and assess their behavior before and after treatment with radiation. Gene-set enrichment analysis

(GSEA) and other similar methods such as Gene Set Analysis (GSA) make use of the entire gene expression

profile in order to assess changes of small magnitude in functionally related genes. The aforementioned methods

are supervised, which require an a priori knowledge of the phenotypes. In contrast, methods such as single

sample GSEA [40], GSVA [10], PLAGE [39], and ZSCORE [41] are unsupervised and focus on the relative

enrichment of pathways across all the samples rather than the absolute enrichment with respect to a phenotype.

All of these methods work at a gene-level and require us to combine gene expression values at the transcript

level before any analysis. Our method identified differentially expressed gene-sets by leveraging transcript-

specific effects without having to aggregate gene expression over all the probes of a gene. On this basis, we

interrogated critical radiation-associated oncogenic signaling pathways and tumor microenvironment signatures

and compared the performance of our method with the rest of the methods. Many of the radiation-associated

oncogenic signaling pathways were obtained from the hallmark gene-set collection of the Molecular Signatures

Database (MSigDB), which were generated by a hybrid approach that combines an automated computational

procedure with manual expert curation [20]. All of the investigated 24 oncogenic signaling pathways and 7

tumor microenvironment gene signatures were found to be statistically significant at 5% FDR by our method.

All other methods were applied at the gene-level i.e. aggregated gene expression values over all isoforms using

median expression values. GSVA identified 22 gene-sets (70.9%), PLAGE identified 26 gene-sets (83.8%),

ssGSEA identified 25 gene-sets (80.6%), and ZSCORE identified 27 gene-sets (87%) at 5% FDR. In order to

visualize the patterns of pathway regulation, we obtained a matrix containing sample set enrichment scores

of all the 31 gene-sets over all the samples using the popular GSA method. From the heat plots in figure 4,

radiation induces a hypoxic state, enhances tumor necrosis factors and suppresses angiogenesis. Radiation-

induced inflammatory pathways and immune response signatures can be targeted by therapeutics that improve

the clinical outcome of radiotherapy by enhancing the radiosensitivity and decreasing any putative metabolic

effects.
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Figure 4: Heat plot showing differentially enriched oncogenic signaling pathways and signatures of tumor
microenvironment between patients before and after receiving radiotherapy. The matrix containing sample set

enrichment score as computed by the GSA software were used to generate this heat plot. Red indicates a higher
collective expression and blue indicates a lower collective expression of genes in that gene-set.

Discussion

Tailoring a patient’s treatment to exploit an individual’s tumor biology remains an elusive goal in cancer ther-

apy. Similar to cytotoxic therapy, response to radiation in a given population of ‘eligible’ patients is markedly

heterogeneous. While chemotherapy serves to address systemic disease, radiation acts as effective local therapy.

In many instances, patients resistant to radiation have limited to no options to control local disease [21, 22, 23];

thus, prospectively determining tumor radiosensitivity is important to identify cohorts of patients most likely

to respond and to minimize the incidence of radiation-related adverse events in patients who might not other-

wise respond. Also, if the molecular underpinnings of radiation response can be elucidated and exploited, the

radioresistance of tumors could potentially be abrogated with novel therapeutics. While many mechanisms of

radiation resistance, including alterations in DNA repair mechanisms [24], upregulation of pathways regulating

angiogenesis [25], apoptosis [26] and cell cycle [27], have been previously described, a comprehensive evalua-

tion of biological events to identify key oncogenic signaling events regulating radiation response, at a genomic

and transcriptomic level, is largely unknown. Recent technological advances in quantifying gene expression

(i.e. high-throughput sequencing assays) will allow us to interrogate whole exomes or transcriptomes with a

higher precision than mRNA expression microarrays thus, overcoming the limitations in detecting and quantify-

ing coding transcript isoforms. However, current statistical methods allow us to interrogate genes and gene-sets

at the gene-level by aggregating gene expression across all possible gene isoforms thus, not taking advantage of
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alternative splicing mechanisms that result in multiple isoforms of the same gene.

Overall, our efforts are primarily directed to understanding two very specific aspects - 1) the effect of radiation-

induced gene isoform-level variability on gene expression, oncogenic signaling pathways involved in radiation

response and tumor microenvironment, and 2) the overall effect of radiation on gene expression. Currently,

there are no established methods that leverage gene isoform-specific effects in order to quantify gene expression

and investigate tumor biology at a higher resolution. Our methods provide an efficient framework to model

transcript-specific and gene-specific effects to map biomarkers association with radiation response. The dataset

used here used a high-resolution array-based platform that includes an overwhelming number of gene transcripts

in the human transcriptome with >6 million probes targeting coding transcripts, exon-exon splice junctions, and

non-coding transcripts. We predict that our methods will also be applicable to gene expression data quantified

using RNA-Seq analysis since we make distributional assumptions that preclude their direct application to RNA-

Seq count data.

Finally, our methods and analyses are only helpful in generating biological hypotheses, which require substantial

verification using in vitro and in vivo model systems. Eventually, by correctly interpreting these data, we enhance

our ability to accurately identify individuals most likely to be resistant to radiotherapy based on the patterns of

pathway activation, which further emphasizes the need to identify novel compounds/drugs that could modulate

radiation response and function as radiosensitizers.
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