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Abstract 28 

Automated geometric morphometric methods are promising tools for shape analysis in 29 

comparative biology: they improve researchers’ abilities to quantify biological variation 30 

extensively (by permitting more specimens to be analyzed) and intensively (by characterizing 31 

shapes with greater fidelity). Although use of these methods has increased, automated methods 32 

have some notable limitations: pairwise correspondences are frequently inaccurate or lack 33 

transitivity (i.e., they are not defined with reference to the full sample). In this study, we reassess 34 

the accuracy of two previously published automated methods, cPDist [1] and auto3Dgm [2], and 35 

evaluate several modifications to these methods. We show that a substantial fraction of 36 

alignments and pairwise maps between specimens of highly dissimilar geometries were 37 

inaccurate in the study of Boyer et al. [1], despite a taxonomically sensitive variance structure of 38 

continuous Procrustes distances. We also show these inaccuracies can be remedied by utilizing a 39 

globally informed methodology within a collection of shapes, instead of only comparing shapes 40 

in a pairwise manner (c.f. [2]). Unfortunately, while global information generally enhances maps 41 

between dissimilar objects, it can degrade the quality of correspondences between similar objects 42 

due to the accumulation of numerical error. We explore a number of approaches to mitigate this 43 

degradation, quantify the performance of these approaches, and compare the generated pairwise 44 

maps (as well as the shape space characterized by these maps) to a “ground truth” obtained from 45 

landmarks manually collected by geometric morphometricians. Novel methods both improve the 46 

quality of the pairwise correspondences relative to cPDist, and achieve a taxonomic 47 

distinctiveness comparable to auto3Dgm. 48 

 49 
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Introduction 50 

Quantifying and comparing complex shapes is a key component of fields as diverse as 51 

evolutionary morphology, molecular biochemistry, computer vision, and computational anatomy. 52 

A variety of analytical methods have been developed to achieve this goal, including landmark-53 

based geometric morphometrics [3-6], voxel-based morphometry [7], and spherical harmonics 54 

[8-9]. Of these methods, three-dimensional geometric morphometrics (3DGM) based on the 55 

alignment of spatial coordinates through Procrustes superimposition is particularly widespread in 56 

evolutionary morphological studies (for reviews, see [10-12]). Though popular, 3DGM is 57 

nonetheless a time-consuming and labor-intensive process, requiring a substantial number of 58 

landmarks to be placed on each specimen by the researcher [13-15]. The simulation study of [16] 59 

suggested shape characterization is unstable without at least 30 landmarks, a number which may 60 

not be feasible in samples spanning multiple genera (e.g., [1]). For researchers utilizing 3DGM, 61 

the reliance on user-determined landmarks generates a trade-off between sample size and detail 62 

of morphological representation for a given time spent collecting data, and thus limits the 63 

explanatory power of morphological data. Without significant methodological advances, future 64 

geometric morphometric morphological studies are likely to remain limited.  65 

In order to more thoroughly characterize shape variation and decrease processing time, 66 

geometric morphometric approaches have become increasingly automated, including both semi-67 

automated (based on semilandmarks [17-22] or eigensurfaces [13,23]) and fully automated 68 

[1,2,24,25] shape characterization methods. Automated 3DGM methods improve researchers’ 69 

ability to sample phenotypes intensively (by increasing the resolution of shape characterization) 70 

and extensively (by permitting the inclusion of more specimens). These outcomes neatly align 71 
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with Houle et al.’s [26] recommendations for advancing phenomics – the study of high-72 

dimensional phenotypic data. 73 

Initial evaluations of automated 3DGM methods recover performance similar to or better 74 

than user-determined landmarks for species discrimination [1,2] and shape characterization of 75 

certain types of shapes [27]. Still, as with user-based approaches, current automated 3DGM 76 

methods suffer from limitations. The first limitation concerns sample availability: a significant 77 

investment of time is required to convert specimens into 3D digital models. This limitation will 78 

be reduced as researchers continue to contribute data to online repositories such as 79 

MorphoSource [28]. The second limitation concerns the analytical workflow: while the fully 80 

automated method published in [1], the continuous Procustes distance method (cPDist), 81 

successfully classifies specimens by species, the output of the method cannot be analyzed in a 82 

way analogous to user-determined landmarks due to the lack of transitivity of the resulting 83 

pairwise maps (i.e., the direct map from A to C is not the same as the map from A to B to C). 84 

Because automated landmarks are defined only on a pairwise basis, rather than the whole 85 

collection of samples, cPDist does not produce a set of globally consistent landmarks as required 86 

for downstream 3DGM analyses. The third limitation stems from the computational intensity of 87 

automated 3DGM methods: the method published in [2], auto3Dgm, produces a transitive set of 88 

“pseudolandmarks” that is applicable to the entire collection of samples, but the method does not 89 

begin to yield consistent results unless over 1,000 pseudolandmarks are identified on each 90 

specimen (at least when each specimen is discretized as a mesh of ~5,000 vertices) [29]. Even 91 

with a relatively powerful computer, auto3Dgm may take weeks to analyze a dataset of 200 92 

specimens without access to parallel computational resources. 93 
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Despite these limitations, initial results and applications of automated 3DGM methods 94 

are encouraging [1,2,24,27,30,31]. Still, the ability of fully automated methods to achieve certain 95 

goals in biological research has not been thoroughly explored. This study addresses the key 96 

issues concerning previously published automated 3DGM methods [1,2], including: 97 

1) Assessing error rates of cPDist and identifying general properties of shapes which may 98 

indicate whether automated mappings are likely to be accurate; 99 

2) Evaluating the ability of an MST-based approach (cPMST, a variant of cPDist inspired by 100 

auto3Dgm) to avoid bad alignments; 101 

3) Describing quantitative and qualitative differences in ordinated shape spaces recovered 102 

by automated 3DGM methods. 103 

In addition to examining previously published automated methods, we also develop and evaluate 104 

several approaches for transitively joining dissimilar shapes with intermediate shape sequences. 105 

Since these approaches utilize global geometric information in the entire shape collection, we 106 

refer to these novel methods as “globally informed methods”. To increase ease of application of 107 

the methods introduced in this study, MATLAB code is provided for each method in the 108 

supporting information. 109 

Background on previous and related automated 3DGM methods 110 

The cPDist method [1,24] begins by flattening disc-type shapes (such as a tooth crown 111 

without roots) into planar discs using a conformal (angle-preserving) projection. The algorithm 112 

then exhaustively searches the space of all conformal maps between the flattened shapes for an 113 

“optimal conformal map” minimizing an energy functional. Conformal maps between discs are 114 

characterized by the choice of a pair of correspondence points and an in-plane rotation (thus only 115 

three degrees of freedom), which makes the exhaustive search highly efficient. The resulting 116 
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conformal map then serves as an initialization for a final thin plate spline (TPS) procedure, 117 

which strives to stretch the two flattened shapes so that regions of “high curvature” (e.g., cusp 118 

tips or tuberosities) align. The value of the energy functional on the final map (composition of 119 

TPS and the optimal conformal map) defines a distance between the pair of shapes, which we 120 

refer to as the continuous Procrustes (cP) distance [32]. When the cP distance is small, the final 121 

map is usually of high quality and can be leveraged to reveal interspecific variation (cf. [1]). 122 

As an initial assessment of the biological relevance of these correspondence maps, Boyer 123 

et al. [1] compared the classification success rates of cPDist and Procrustes distances computed 124 

from user-determined landmarks (a more traditional morphometric approach) on a mammalian 125 

molar dataset. The comparison showed that cPDist was able to taxonomically classify specimens 126 

at a rate better than or equal to the method based on user-determined landmarks. Since then, 127 

Boyer et al. [24] used cPDist to confirm the attribution of a newly discovered fossil to a species 128 

previously believed to be much younger than indicated by dating of the fossil. However, due to 129 

lack of transitivity, it is not clear how the resulting correspondence maps of cPDist pipeline 130 

should be incorporated in a more traditional geometric morphometric workflow. Furthermore, 131 

when inspecting pairwise correspondence maps between specimens in detail, Boyer et al. [24] 132 

observed anomalies in some of the maps (e.g., reversed alignments of the buccolingual axis). 133 

Though the distance matrices and ordinations based on them produced intelligible results, these 134 

errors raised questions about possible inaccuracies lurking in the analysis. We examine these 135 

inaccuracies in more detail here. 136 

Boyer et al. [2] reported a different automated method, auto3Dgm, which guarantees 137 

transitivity, thereby permitting more familiar modes of downstream analysis. First, auto3Dgm 138 

computes all pairwise alignments and distances with a modified version of the Iterative Closest 139 
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Points (ICP) algorithm [33]. Transitivity is then imposed with the following procedure based on 140 

a Minimum Spanning Tree (MST) for the entire collection: 1) view the collection of shapes as a 141 

complete weighted graph (in which edge weights are defined by the pairwise distances), and 142 

extract an MST for this graph; 2) for any pair of shapes, the alignment between them is obtained 143 

by identifying the unique shortest path connecting them in the MST and composing the pairwise 144 

alignments along the edges constituting this path. By the nature of the MST, only alignments that 145 

yield small pairwise distances are involved in the final alignments. Auto3Dgm outputs a 146 

“pseudolandmark file” that can be analyzed with standard geometric morphometric software 147 

such as morphologika2 [34] or MorphoJ [35]. Boyer et al. [2] argued that this procedure should 148 

generally reduce the mapping errors, and verified this claim with three osteological datasets. R 149 

code for auto3Dgm is available based on its original MATLAB implementation [36]. 150 

Recently, Koehl and Haas [25] suggested minimizing a novel metric, the symmetric 151 

deformation energy, when searching for a globally optimal conformal map between two closed 152 

surfaces. Based on their analysis, the program MatchSurface outperforms cPDist in 153 

approximating the ground truth pairwise distances computed from user-determined landmarks, in 154 

correctly classifying specimens to taxonomic groups, and in generating phenetic trees that more 155 

closely resemble trees generated from user-determined landmarks. However, MatchSurface may 156 

suffer from similar problems we have noted with cPDist (i.e., potential anomalies in pairwise 157 

maps, lack of transitivity, inability to utilize the method in a traditional morphometric workflow). 158 

In addition, because user-based approaches such as 3DGM have their own methodological 159 

challenges, it is unclear if automated 3DGM methods should be evaluated primarily by their 160 

ability to replicate pairwise distances computed from user-determined landmarks (although this 161 

is also the approach we use in this study). An in-depth comparative analysis of MatchSurface and 162 
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the methods introduced here is beyond the scope of this paper, but will be important for further 163 

development of automated geometric morphometric methods. 164 

In a broader context, the development of automated 3DGM methods resonates with the 165 

emerging interest in the analysis of collections of shapes in the computer graphics community 166 

(e.g., [37-40], among others). The starting point is the observation that pairwise shape 167 

registration often yields more accurate results between pairs of similar shapes than dissimilar 168 

ones: the resulting pairwise correspondence maps are much more meaningful when the shapes 169 

are near-isometric. Therefore, when working with a large collection of shapes, one can usually 170 

find a sequence of (pairwise similar) intermediate shapes between any pair of dissimilar shapes, 171 

and build the correspondence map between them by composing the more accurate pairwise 172 

correspondences along this sequence. This composition strategy leads to more accurate maps 173 

than direct pairwise comparisons. The novel methods presented in this paper are all derived from 174 

this general idea, leveraging the size of the dataset and high-quality maps between similar shapes 175 

to improve the accuracy of correspondence maps between dissimilar shapes. 176 

Methods and materials 177 

We assess the qualities of automated correspondence analyses using the dataset originally 178 

published in Boyer et al. [1], and available through various sources [41-43]. The sample consists 179 

of 116 mandibular second molars of living and fossil primates and their close relatives. Further 180 

details (such as included species and specimen information) can be found in the supplementary 181 

data of Boyer et al. [1]. Our main approach is to compare automated results of anatomical 182 

correspondence and geometric similarity among shapes in this dataset to a “ground truth” – a set 183 

of 16 user-determined landmarks placed on each specimen by experienced geometric 184 

morphometricians. As noted above, we have reservations about regarding user-determined 185 
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landmarks as the performance standard for automated correspondence analyses, but this 186 

framework facilitates comparisons between user-based and automated approaches. 187 

Quantifying errors of cPDist 188 

The accuracy of pairwise correspondences can be quantified using Mean Square Error 189 

(MSE). MSE is calculated by first mapping user-determined landmarks from one tooth to another 190 

using the automated pairwise correspondence (creating a set of “propagated landmarks” on the 191 

second tooth), and then taking the average of the squared Euclidean distances between the user-192 

determined and propagated landmarks. Larger MSEs indicate greater deviations between the two 193 

sets of landmarks (and a greater discordance between the user-determined and automated 194 

assessments). While there are other approaches to assess accuracy relative to user-determined 195 

landmarks (including directly comparing distance matrices generated by each method or the 196 

ordinations resulting from those matrices), MSE benefits by focusing on the “local” inaccuracy 197 

of correspondence maps at the level of individual landmarks. 198 

Boyer et al. [1] assessed cPDist’s error rate by computing a variant of MSE between user-199 

determined and propagated landmarks (Supplementary Table 8 of [1]), which realigned 200 

propagated and user-determined landmarks with an additional Procrustes superimposition. 201 

Unfortunately, this realignment could potentially mask several types of mapping errors (Fig 1). 202 

Most notably, the cPDist algorithm may result in an axial inversion in which incorrect sides are 203 

matched to one another (buccal-lingual [Fig 1c] or anterior-posterior [Fig 1d] inversions). To 204 

assess the prevalence of mapping errors in the analysis of Boyer et al. [1], we perform an 205 

extensive (though not exhaustive) visual check of 16 propagated landmarks in 588 pairwise 206 

mappings. We observed five types of errors; the four primary errors are shown in Fig 1 (the fifth 207 

error type, a 90 ° rotation, occurred in only three of 161 instances of error). To test whether errors 208 
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occur between dissimilar teeth, we compare the pairwise cP distances observed in the good and 209 

bad maps of this test sample. 210 

We also test the hypothesis that more dissimilar teeth generate erroneous maps by 211 

comparing their Dirichlet Normal Energy (DNE), a measure of the bending energy of a surface 212 

that has been shown to partition species by diet reliably [44-46]. For a reduced sample of 213 

comparisons between specimens from extant species (n=138), species mean DNE values are 214 

taken from [44], and the absolute value of the difference between the source and target teeth 215 

calculated. Poor maps are expected to occur between teeth that exhibit a large difference in DNE. 216 

Finally, we examine the skewness of the distribution of candidate maps for good and poor 217 

maps. In order to find an optimal map with minimum energy, cPDist searches among a large 218 

number (typically tens of thousands) of candidate conformal maps between two surfaces. In 219 

general, we expect good maps to be more strongly distinguished from the population of 220 

candidate maps than poor maps, as there are often many candidate maps with comparably low 221 

energy when a poor map forms the minimum in the exhaustive search. By measuring the 222 

skewness of the energy distribution of candidate maps, we assess the distinctiveness of the 223 

optimal map: if the optimal map is less distinct, the histogram of candidate maps should be 224 

skewed to the right (positive skew), forcing cPDist to select from several candidate maps with 225 

similar cP distances. 226 

Evaluating accuracy of a minimum-spanning tree approach 227 

As described above, auto3Dgm [2] improves alignments between dissimilar shapes and 228 

imposes transitivity for the entire collection using MST. However, while MST improves pairwise 229 

cP maps, the quality of the resulting maps is not guaranteed. The visually inspected test sample 230 

permits the identification of a threshold cP distance below which all maps are good maps. To 231 
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gauge the accuracy of the MST approach, we evaluate if any edge lengths in the MST exceed 232 

this threshold. 233 

We also compare the landmark MSEs of cPDist to cPMST, another MST-based approach 234 

inspired by auto3Dgm [2]. While auto3Dgm’s representation of surfaces through 235 

pseudolandmarks is analogous to user-determined landmarks (increasing the method’s utility to 236 

comparative morphologists), these pseudolandmarks are not globally consistent in the same 237 

manner as user-determined landmarks. In auto3Dgm, pseudolandmarks are randomly sampled on 238 

each surface in a collection, without knowledge of the exact sampling procedure for other 239 

surfaces. The full set of user-determined landmarks is likely to be excluded from the set of 240 

pseudolandmarks, making it impossible to calculate landmark MSEs for auto3Dgm. Here, we 241 

evaluate the accuracy of cPMST, an upgraded version of cPDist that generates globally 242 

consistent maps between all pairs of shapes within a collection, motivated by the MST approach 243 

first adopted in auto3Dgm. With cPMST, pairwise maps are defined for the pair of surfaces in 244 

their entirety (and necessarily including user-determined landmarks), so that landmark MSEs can 245 

be computed. 246 

Development and refinement of globally informed methods 247 

Though using an MST improves pairwise correspondences between dissimilar shapes, 248 

this approach could potentially degrade the quality of maps between similar shapes. Directly 249 

aligning similar teeth avoids the accumulation of random errors in pairwise comparisons, while 250 

composing alignments along a path through the MST involves intermediate shapes and can 251 

amplify random error. MSTs minimize the total sum of edge lengths in a subgraph connecting all 252 

the vertices; this global minimization permits large distortion of local distances. Many 253 
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intermediate vertices may separate a pair of reasonably close vertices, so that the sum of the 254 

length of all intermediate hops may be larger than the direct pairwise distance.  255 

The potential for map degradation with MST-based approaches and the results of our 256 

accuracy analyses (see Results) made it clear that there was ample room for improving 257 

previously published automated 3DGM methods. We propose several approaches that maintain 258 

global transitivity but also attempt to reduce the potential for local distance distortion. These 259 

approaches are based on the research of tree-based metric space approximation and dynamic 260 

programming in computer science. We examine the effects of several different methodological 261 

variations: 1) alternative methods to avoid map degradation, 2) alternative root shapes for 262 

landmark propagation when transforming maps into pseudolandmarks, 3) alternative methods for 263 

post-processing maps, and 4) the effects of pseudolandmark sampling resolution. All examined 264 

methods are summarized in Table 1 and described in detail below. 265 

Table 1. Globally informed methods developed for and analyzed in the current study. 266 

Method type 
Variations 

Root shape 
Feature-

fixing 
Pseudolandmark 

resolution 
Source 

Alpha Angle weight 
cPDist - - 

Random; 
minimum 

distance to all 
others 

- 

64; 256; 1024 

Boyer et al. 2011 

cPMST - - 

Off; on 

Boyer et al. 2015; 
this study 

LAST Mean; balance - This study 

Composed LAST 
Mean; median; 

balance; 1 - This study 
Viterbi - 0%; 25%; 50% This study 

 267 

Alternative methods to avoid map degradation 268 

Our first attempt to avoid potential degradation when mapping through intermediate 269 

shapes is to restrict the depth of the minimum spanning tree, and impose that any pair of shapes 270 

in the MST be separated by a controlled number (no greater than twice the tree depth) of 271 

intermediate shapes. This type of graph theoretic construction, known as a bounded-hop MST 272 

problem, is nondeterministic polynomial-time hard and has no practical polynomial-time and 273 
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constant-factor approximation in general [47]. However, rather than globally minimizing the sum 274 

of edge lengths, it is almost trivial to minimize the number of hops along the tree that separates 275 

any pair of vertices: the best strategy is to designate one vertex as the root and connect any other 276 

vertices to it. Generalizing from counting the number of hops to measuring the length of the path, 277 

researchers study shortest-path trees (SPT) of a graph G, which are trees that span the graph with 278 

the property that any path connecting a vertex to the root is also the shortest path in the graph G 279 

between that particular vertex and the root. SPTs strive to minimize local distance distortions 280 

without controlling the total edge length, while MSTs minimize the latter but sacrifice the 281 

former. Leveraging the advantages of both MSTs and SPTs, the concept of Light Approximate 282 

Shortest-Path Tree (LAST) was developed to balance local distance distortion and total edge 283 

length [48]. We use LAST to alleviate the quality degradation of correspondences between 284 

similar teeth in the cP distance framework. Because LAST is also a tree, global transitivity is 285 

achieved. 286 

Unlike MST and SPT, which are calculated directly from the data, LAST depends on a 287 

parameter, α (≥1), that controls the trade-off between the advantages of MST and SPT. When α is 288 

close to 1, the LAST becomes more like a SPT; as α approaches infinity, the LAST becomes 289 

more similar to an MST. We focus on experimenting with two candidates for α: the mean of the 290 

local distance distortions on an MST and the special value � � 1 � √2 , which generates a 291 

LAST “balanced” between the SPT and MST. 292 

By altering how local distance distortion is computed, we develop a second set of LAST 293 

methods. Normally, computing the distance distortion of a tree between two vertices involves 294 

finding the shortest path on the tree that connects the pair, and then dividing the path length by 295 

the direct distance between the vertices. However, since the cP distance is defined as the 296 
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minimum of an energy functional, a potentially more meaningful definition of local distance 297 

distortion uses the value of the energy functional obtained by composing pairwise 298 

correspondences along the shortest path (rather than the cumulative path length) in the 299 

numerator. We evaluate “composed” LAST methods with four candidates for α: the mean and 300 

median of the composed local distance distortions, the special value � � 1 � √2, and � � 1 301 

(which does not generate an SPT with composed local distance distortion1). 302 

We also attempted to fix map degradation with an approach that does not rely on trees 303 

(though this method is not strictly transitive). For any pair of shapes, the goal is to find the best 304 

path between them such that the composition of pairwise correspondences along the hops gives 305 

the most meaningful map. In the spirit of cP distance, which produces a map that minimizes an 306 

energy functional, we use the value of the same energy functional (called the “cP value”) as an 307 

indicator for the quality of pairwise correspondences. Though the number of shapes in a 308 

collection is finite, the set of possible paths connecting a pair of shapes is exponentially large, 309 

making it difficult to search exhaustively for the optimum; computational complexity is even 310 

larger when looking for optimal paths between all pairs of shapes. This computational difficulty 311 

is tackled with a dynamical programming algorithm motivated by the Viterbi algorithm in the 312 

context of hidden Markov models. Each shape, viewed as a vertex in the complete distance 313 

graph, is treated as a hidden state of a Markov chain, and the transition probability from one state 314 

to another is determined by the cP distance between the two shapes, with smaller distances 315 

indicating greater probability. In this setup, the optimal path of composition between a pair of 316 

                                                           
1 Note that when local distance distortion is measured by the ratio between energy of the 
composed map and the direct distance (i.e. energy of the direct map), it is possible for α=1 even 
when the two maps are different. This is in contrast with measuring local distance distortion by 
the ratio between the length of the minimum path and the direct distance, in which case α=1 
requires the minimum path to equal the direct link and thus forcing the entire tree to be a SPT. 
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shapes can be interpreted as the most likely path connecting the two states. When the length of 317 

the path is fixed, optimal path searching can be done using the Viterbi algorithm (assuming the 318 

hidden state is identical to the observed state).  319 

Due to the efficiency of the Viterbi algorithm, it is easy to compute the optimal paths of 320 

all possible numbers of hops (ranging from 1 to one less than the total number of shapes in the 321 

collection), and to choose the path along which the composition of pairwise correspondences 322 

leads to the lowest possible cP value. This method is denoted as “Viterbi”. Since direct links 323 

between two shapes are the only paths with 1 hop, the Viterbi method is guaranteed to keep 324 

direct pairwise maps if they produce the lowest cP values among all paths of different number of 325 

hops, thus avoiding the accumulation of random errors through propagation along long paths in 326 

an MST. Though global transitivity is not maintained, the determination of the unique optimal 327 

path connecting any two shapes leads to good correspondence maps. 328 

For the Viterbi method, the transition probability between any two states can depend on 329 

metric geometric information other than path distance, such as the angle between consecutive 330 

hops in a path. More obtuse angles (i.e., closer to 180 degrees) between consecutive hops are 331 

likely preferable, as more acute angles lead to more torturous paths, which may increase random 332 

error accumulation. After proper renormalization, distances and angles can be combined with 333 

convex weights to determine the transition probability. In this study, we compare the effect of 334 

angles weighted at 0%, 25%, and 50% in the computation of transition probability. 335 

Alternative root shapes for pseudolandmark propagation 336 

For these novel methods, globally consistent pseudolandmarks can be generated by 337 

randomly sampling a number of vertices and then propagating these pseudolandmarks to all 338 

remaining shapes after pairwise correspondences are established. These pseudolandmarks 339 
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depend on the distribution of points sampled on the initial shape, but are independent of the 340 

choice of the initial shape (although since Viterbi methods are not strictly globally transitive, the 341 

initial shape does affect pseudolandmarks). To evaluate the effect of the choice of root shape on 342 

shape characterization, we generate pseudolandmarks from two different root shapes (a randomly 343 

chosen tooth [Chronolestes simul IVPP V10696-2] and the tooth with minimum average distance 344 

from other teeth in the collection) for all methods. 345 

Alternative methods of post-processing 346 

The final novel development examined here is a post-processing step that performs an 347 

additional TPS procedure to align geometric characteristics (e.g., vertices of locally maximum 348 

conformal factors, locally maximum/minimum Gaussian curvatures) of two shapes. Since these 349 

geometric characteristics may be generally understood as “features”, we call this step “Feature-350 

Fix”. Feature-fixing is similar to the last step in the computation of cP distances in Boyer et al. 351 

[1], which helps to correct the random errors accumulated through correspondence compositions 352 

but sometimes introduces artificiality in regions without geometric characteristics. We implement 353 

all novel methods with and without feature-fixing. 354 

Sampling density of pseudolandmarks 355 

 Several previous studies have highlighted the importance of landmark sampling density 356 

for shape characterization [16,29]. Vitek et al. [29] suggested that auto3Dgm does not produce 357 

consistent results unless 1000 pseudolandmarks are generated on each specimen. To examine the 358 

influence of sampling density on methods developed in this study, we implement all methods 359 

with 64, 256, and 1024 pseudolandmarks sampled. 360 

Comparing effects of globally informed methods on the 361 

characterization of geometric affinities 362 
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The different types of globally informed methods (n=8: MST, LAST, Viterbi and their 363 

variations), the root shape used to generate pseudolandmarks (n=2), the use of feature-fixing in 364 

post-processing (n=2), and the sampling density of pseudolandmarks (n=3) can be understood as 365 

“parameters” of the cP distance improvement framework. To compare variance patterns within 366 

and among these parameters, we first generate pseudolandmarks for the sample using all 120 367 

distinct parameter combinations. Each combination can be represented by a scatterplot of 116 368 

points (one for each tooth in the dataset) and compared using Procrustes analysis. To accomplish 369 

this, we reshape the x-y-z spatial coordinates of all pseudolandmarks on each tooth into a vector, 370 

and run principal component analysis (PCA) on the 116 vectors. The PCA generates 116 371 

principal component scores for each of the 116 teeth in the dataset. Using the first three principal 372 

component scores as coordinates of the teeth creates a scatterplot in three-dimensional Euclidean 373 

space. This procedure essentially embeds an abstract metric structure into a Euclidean space of 374 

reduced dimensionality, to which a traditional landmark-based Procrustes analysis can be 375 

applied. Finally, we run generalized Procrustes analysis on these scatterplots in morphologika2.5 
376 

[34], and take the first 26 principal scores (the minimum number accounting for at least 95% of 377 

the variance) as a 26-dimensional feature vector encoding a parameter combination (S1 378 

Appendix). 379 

We implemented vector equivalents of one-way ANOVA, two-way ANOVA, and a linear 380 

mixed model in MATLAB (for further detail, see S2 Appendix). One-way ANOVA is used to 381 

evaluate the significance of each parameter. Two-way ANOVA reveals pairwise interaction 382 

effects among all parameters; we focus on interactions between “method” and each of the other 383 

parameters. The linear mixed model is used to determine which factors lead to shape 384 

characterizations that are most similar to the user-determined ground truth of the dataset. 385 
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Evaluating accuracy of globally informed methods 386 

We gauge the accuracy of the novel globally informed methods in two ways. First, we 387 

compare the landmark MSEs of all new methods to the landmark MSE generated by cPDist. The 388 

performance of cPMST (without feature-fixing) relative to cPDist was chose as a baseline for 389 

evaluating the accuracy of the globally informed methods presented here. A novel method is 390 

deemed preferable to the cPMST baseline if: 1) there are fewer pairwise mappings in which the 391 

landmark MSE of the novel method is greater than landmark MSE of cPDist (i.e., there are fewer 392 

positive residuals when the landmark MSEs of a novel method are plotted against the landmark 393 

MSEs of cPDist), or 2) the mean or maximum positive residual of a novel method is less than the 394 

mean or maximum positive residual of cPMST. Either of these patterns may indicate that the 395 

novel method does not accumulate random error through intermediate correspondences. 396 

Comparing the distribution of landmark MSEs under each method provides another way 397 

to evaluate the accuracy of different methods. For inaccurate methods, the distribution of 398 

landmark MSEs may have a higher mean or display greater variance (or both) than the landmark 399 

MSE distribution of a more accurate method. Here we compare the landmark MSE distance 400 

matrices of all main methods using a Multiple Response Permutation Procedure (MRPP), which 401 

tests for significant differences between sampling units (method+feature-fixing in this study) 402 

[49]. As MRPP compares within and between group dissimilarities, it is similar to multivariate 403 

analysis of variance, but does not require data to exhibit multivariate normality [49], making the 404 

method appropriate for comparing MSE matrices. MRPP evaluates observed within-group 405 

distances relative to average between-group distances of two random groups; the groups may be 406 

regarded as significantly different if average within-group distances are less than average 407 

between-group distances. MRPP was performed using the mrpp function in the R package vegan 408 
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[50]. The analysis returns several values of note: observed delta (δ), the overall mean of group 409 

mean distances, weighted by the number of groups; expected delta E(δ), expected delta under the 410 

null hypothesis of no group structure; A, a chance-corrected estimate of the proportion of 411 

variance explained by group membership; and p, the significance of the test. Each MRPP 412 

analysis was run with 999 permutations. The number of permuted between-group distances that 413 

are less than the observed within-group δ determines the test’s significance. Additionally, as 414 

significant between-group differences may be the result of a difference in means (location) or a 415 

difference of variance (dispersion) [51], the homogeneity of variance of each method was also 416 

compared. Analysis of multivariate homogeneity of variance was performed with the betadisper 417 

function in vegan [50]; significance was evaluated with Tukey’s Honest Significant Differences. 418 

Due to the positive correlation between MSE and cP distances, methods that reduce cP 419 

distances between shapes may reduce the MSE of propagated landmarks. However, this 420 

phenomenon is undesirable since reduced cP distances may imply that the method is less 421 

sensitive to shape differences. To examine the interaction of MSE and cP distance, we generated 422 

matrices of MSE scaled to cP distances (√(MSE)/cP distance), and performed MRPP and 423 

homogeneity of variance analyses on this set of matrices as well. Matrix heat maps of MSE, cP 424 

distances, and scaled MSE for each method are in the S2 Appendix.  425 

Results 426 

Quantifying errors of cPDist 427 

Visual inspection of many pairwise mappings reveals that alignment errors in cPDist 428 

occur with undesirable frequency. Of the 583 pairwise mappings inspected, 161 (27.6%) exhibit 429 

some type of error. The majority of these errors are relatively subtle and represent some 430 

landmark distortion at either the anterior or posterior end of the tooth (trigonid clustering [n=57, 431 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086280doi: bioRxiv preprint 

https://doi.org/10.1101/086280
http://creativecommons.org/licenses/by-nc-nd/4.0/


9.8%], talonid drift [41, 7.0%]). The remaining 63 mappings display major errors, either buccal-432 

lingual inversions (33, 5.7%), anterior-posterior inversions (27, 4.6%), or 90° rotations (3, <1%).  433 

Errors generally arose when landmarks were propagated between dissimilar teeth. To our 434 

advantage, dissimilarity can be quantified using cP distances. The cP distances between teeth 435 

with good maps averaged 0.058 (max=0.116, min=0.025, sd=0.014), while cP distances between 436 

teeth with bad maps averaged 0.073 (max=0.114, min=0.046, sd=0.013). The difference between 437 

these distributions is highly significant (Tukey’s Q=17.44, p<0.001). There are also significant 438 

differences between the cP distances of good maps and all particular error types except 90° 439 

rotation (Table 2). Although there are no significant differences in the cP distances between any 440 

two error classes, the more subtle errors of trigonid clustering and talonid drift tend to occur in 441 

pairwise comparisons involving smaller cP distances than the side-to-side inversions or 90° 442 

rotation (Fig 2a). 443 

Table 2. Mann-Whitney U-test results for cP distances, skewness, and Dirichlet Normal 444 

Energy (DNE) of good and bad maps. 445 

Mann-Whitney U/Bonferroni corrected p-
values 

    

cP distances       
 Good maps Trigonid 

clustering 
Talonid drift BL reversed AP reversed Rotated 90° 

Good maps  5790 4200 1730 1690 59 
Trigonid 
clustering 

***  1099 674 570 38 

Talonid drift *** 1.0000  419 383 18 
BL reversed *** 0.3890 0.0779  429 29 
AP reversed *** 0.8498 0.4966 1.0000  24 
Rotated 90 0.1024 1.0000 0.6790 1.0000 1.0000  

       
Skewness       

 Good maps Trigonid 
cluster 

Talonid drift BL reversed AP reversed Rotated 90° 

Good  9319 4867 5130 4223 95 
Trigonid 0.0866  907 940 720 15 
Talonid *** 0.9023  509 464 19 
BL reversed 0.1765 1.0000 1.0000  428 9 
AP reversed 0.3627 1.0000 1.0000 1.0000  10 
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Rotated 90 0.1685 0.2638 0.7577 0.3308 0.5713  
       

Dirichlet Normal Energy      
 Good Trigonid 

clustering 
Talonid drift BL reversed AP reversed  

Good  240.5 114.5 263 347.5  
Trigonid 1.0000  8 16 14.5  
Talonid 0.3151 1.0000  12 30  
BL reversed 0.2433 1.0000 1.0000  52.5  
AP reversed 
 
***p<0.001, 
**p<0.01, 
*p<0.05 

0.0941 1.0000 1.0000 1.0000   
 
 

 446 

The difference in DNE was significantly lower (Tukey’s Q=5.44, p<0.001) for good 447 

mappings (mean=46.2, max=121.7, min=0, sd=34.5) than for bad maps (mean=74.6, min=5.6, 448 

max=145.8, sd=41.5). However, there were no significant differences between DNE contrasts of 449 

good mappings and any particular error type (Table 2, Fig 2b). These results confirm our 450 

hypothesis that bad mappings occur when landmarks are propagated between highly dissimilar 451 

teeth. 452 

Finally, we calculated the skewness of the distributions of the candidate maps for all 583 453 

pairwise mappings. For 422 good mappings, map distributions had a mean skewness of 0.007 454 

(min=-1.21, max=1.30, sd=0.42), which is not significantly different from 0 (p=0.84). The 161 455 

bad maps had a mean skewness of 0.22 (min=-1.28, max=1.66, sd=0.39), which is significantly 456 

different from 0 (p<0.001), indicating that the distribution of candidate maps exhibits significant 457 

positive skew when cPDist selects a bad map. Significant differences were recovered in the 458 

skewness of good and bad maps (Tukey’s Q=7.88, p<0.001), as well as between good maps and 459 

those with talonid drift, trigonid clustering, and buccal-lingual inversions (Table 2, Fig 2c). 460 

These results confirm the prediction that good maps are much more distinct from other candidate 461 

maps than bad maps. When candidate maps are normally distributed, the map with the smallest 462 
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cP distance is likely to be an accurate map. When candidate maps are positively skewed, cPDist 463 

chooses between several maps with similar cP distances. Given the plurality of possibilities and 464 

numerical error, the algorithm is more likely to select a bad map. 465 

Evaluating accuracy of a minimum spanning tree approach 466 

Visual inspection of propagated landmark errors reveals that bad maps are generated 467 

when two shapes are quite dissimilar from one another. If any of the branches of the MST 468 

utilized by cPMST connect dissimilar shapes, the global map could also do a poor job 469 

propagating landmarks. Given the distribution of cP distances of all 161 observed bad maps, cP 470 

distances of less than 0.047 are outside the 95% confidence interval (mean=0.073, sd=0.013). 471 

Only one inspected bad map had a cP distance less than 0.047; this map exhibited trigonid 472 

clustering, a relatively minor propagation error. Of the 115 branches in the MST, only 3 branches 473 

(2.6%) had cP distances greater than 0.047. Additionally, only one MST branch had a cP distance 474 

greater than the mean of all observed good mappings (0.062, Galago senegalensis K05 – 475 

Cynocephalus volans u16). Thus, it seems likely that propagating landmarks through the MST 476 

greatly reduces the likelihood of serious errors such as inversions or rotations. Fig 3 compares 477 

the landmark MSEs of cPDist with cPMST (without feature-fixing), and demonstrates that the 478 

latter has a much lower MSE than the former. However, as discussed above, the MST approach 479 

also has the undesirable property of increasing landmark MSE between shapes that are similar; 480 

we evaluate the accuracy of the novel globally informed methods relative to cPDist below. 481 

Comparing effects of globally informed methods on the 482 

characterization of geometric affinities 483 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086280doi: bioRxiv preprint 

https://doi.org/10.1101/086280
http://creativecommons.org/licenses/by-nc-nd/4.0/


Of the five one-way ANOVAs run (Table 3), only sampling resolution was non-484 

significant. The most significant factor was feature-fixing (p<<0.0001). The method of 485 

sequential comparison (MST v. LAST or Viterbi, etc.) was also highly significant (p=0.0005), 486 

followed by the propagation root of pseudolandmarks (p=0.005), and composedness for LAST 487 

trees (p=0.01). 488 

Table 3. Results of one-way ANOVA assessing parameter effects on shape space. 489 

Method 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 9.0277 7 1.2897 4.0731 *** 
Error 35.4626 112 0.3166 

  Total 44.4902 119 
   

      Feature-Fix 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 6.9913 1 6.9913 21.9998 *** 
Error 37.499 118 0.3178 

  Total 44.4902 119 
   

      Root 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 2.867 1 2.867 8.1278 ** 
Error 41.6232 118 0.3527 

  Total 44.4902 119 
   

      Resolution 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 0.1671 2 0.0836 0.22057 0.80239 
Error 44.3231 117 0.3788 

  Total 44.4902 119 
   

      Composedness (48 methods only) 
   Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 2.1184 1 2.1184 7.097 * 
Error 13.7304 46 0.2985 

  Total 15.8487 47 
   

      ***p<0.001,**p<0.01,*p<0.05 
    490 
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Two-way ANOVAs were used to determine whether interaction effects existed between 491 

any pairs of factors. Because our assessment of error in propagated user-determined landmarks 492 

was explained largely by the choice of different methods (see results of linear mixed model 493 

analysis below), we checked for interaction effects between method and each of the other factors. 494 

Significant interaction effects were found between method and feature-fixing, as well as method 495 

and composedness (Table 4). Neither propagation root nor sampling resolution interacted 496 

significantly with method type (Table 4). In order to include composedness in the two-way 497 

ANOVA with method, we were limited to using only the 48 data points that included balanced 498 

distribution of method types for each of the composed groups. 499 

Table 4. Results of two-way ANOVA assessing parameter effects on shape space.  500 

Method vs. Feature-fix 
    Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Method 9.0277 7 1.2897 5.8952 *** 
Feature-fix 6.9913 1 6.9913 31.9575 *** 
Method:Feature-fix 5.7195 7 0.8171 3.7349 *** 
Error 22.7518 104 0.2188 

  Total 44.4902 119 
   

      Method vs. Root 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Method 9.0277 7 1.2897 4.6674 *** 
Root 2.8670 1 2.8670 10.3758 ** 
Method:Root 3.8587 7 0.5512 1.9949 0.0627 
Error 28.7369 104 0.2763 

  Total 44.4902 119 
   

      Method vs. Resolution 
     Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Method 9.0277 7 1.2897 3.5524 ** 
Resolution 0.1671 2 0.0836 0.2302 0.7948 
Method:Resolution 0.4435 14 0.0317 0.0873 1.0000 
Error 34.8519 96 0.3630 

  Total 44.4902 119 
   

      Method vs. Composedness (only 48 methods) 
   Source Sum Sq. DF Mean Sum Sq. F-value p-value 

method 1.5290 1 1.5290 6.3377 * 
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composedness 2.1184 1 2.1184 8.7806 ** 
method:composedness 1.5862 1 1.5862 6.5746 * 
Error 10.6152 44 0.2413 

  Total 15.8487 47 
   

      ***p<0.001,**p<0.01,*p<0.05 
     501 

A linear mixed model including all factors and interaction effects (Table 5) shows a 502 

pattern of relative significance comparable to ANOVA results, although method explains more 503 

variance than feature-fixing does. Sequentially dropping non-significant terms and re-running the 504 

analysis leads to a final model with three terms, included method, feature-fixing, and an 505 

interaction term between the two (Table 5). This result is strongly consistent with ANOVA results 506 

(Table 3-4). 507 

Table 5. Linear mixed model for assessment of parameters explain variance from user-508 

based landmark approach. The initial model included all four factors (method, feature-fixing, 509 

root, and resolution) and interactions between method and the other three factors. Non-510 

significant factors were sequentially dropped to arrive at the final model. 511 

Initial model 
     Factor Sum Sq. DF Mean Sum Sq. F-value p-value 

Method 0.4086 7 0.0584 4.7011 *** 
Feature-fix 0.0966 1 0.0966 7.7771 ** 
Method:Feature-fix 0.2452 7 0.0350 2.8211 * 
Root 0.0402 1 0.0402 3.2365 0.0758 
Resolution 0.0349 2 0.0174 1.4040 0.2516 
Method:Root 0.0704 7 0.0101 0.8102 0.5814 
Method:Resolution 0.0541 14 0.0039 0.3113 0.9911 
Error 0.9934 80 0.0124 

  
      Final model 

     Factor Sum Sq. DF Mean Sum Sq. F-value p-value 
Method 0.4086 7 0.0584 5.0890 *** 
Feature-fix 0.0966 1 0.0966 8.4187 ** 
Method:Feature-fix 0.2452 7 0.0350 3.0538 ** 
Error 1.1930 104 0.0115 

  
      ***p<0.001,**p<0.01,*p<0.05 
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 512 

The ANOVA and linear mixed model results highlight the importance of method, feature-513 

fixing, and their interaction. To further assess how feature-fixing influence method effects, we 514 

split the dataset into two subsets. The first subset contained analyses that used feature-fixing, 515 

while the second subset contained analyses that did not use feature-fixing. We then ran one-way 516 

ANOVA with method as the factor. Results of this one-way ANOVA indicate that method is 517 

much more significant when feature-fixing is not used (Table 6). 518 

Table 6. Conditional ANOVAs for assessment of interaction effects between method and 519 

feature-fixing, and method and composedness. 520 

Methods conditioned with feature-fixing 
  Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 7.3487 7 1.0498 3.3596 ** 
Error 16.2492 52 0.3125 

  Total 23.598 59 
   

      Methods conditioned without feature-fixing 
  Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 7.3984 7 1.0569 8.4520 *** 
Error 6.5026 52 0.1250 

  Total 13.901 59 
   

      Methods conditioned on composed maps 
  Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 1.5079 1 1.5079 5.4329 * 
Error 6.1061 22 0.2775 

  Total 7.614 23 
   

      Methods conditioned on uncomposed maps 
  Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 1.6073 1 1.6073 7.8418 *** 
Error 4.5092 22 0.2050 

  Total 6.1164 23 
   

      ***p<0.001,**p<0.01,*p<0.05 
    521 
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Due to unequal sample sizes, we could not test the effect of composedness in our linear 522 

model. However, composedness was a significant parameter in one-way ANOVA and exhibited 523 

significant interaction effects with method. Splitting the dataset into composed and uncomposed 524 

subsets and running one-way ANOVAs with method as a factor indicates that method is more 525 

significant on uncomposed maps (Table 6). 526 

Evaluating accuracy of globally informed methods 527 

With the exceptions of LAST (α = balance) and the Viterbi methods (with or without 528 

feature-fixing), all of the proposed globally informed methods have much lower maximum 529 

landmark MSEs than cPDist, suggesting that these globally informed methods successfully avoid 530 

large-scale misalignments and correspondingly elevated landmark MSE between user-531 

determined and propogated landmarks (Table 7). Since LAST (α = balance) and the Viterbi 532 

methods (with or without feature-fixing) have maximum landmark MSEs that are comparable to 533 

the maximum landmark MSE of cPDist, these methods may be susceptible to misalignments of 534 

similar magnitude as cPDist. Among the novel methods with much lower maximum landmark 535 

MSEs than cPDist, only composed LAST (α = median; no feature-fixing) has a lower maximum 536 

landmark MSE value than the performance baseline established by cPMST (without feature-537 

fixing) (maximum landmark MSEs = 0.1507 and 0.1583 respectively). Still, many other methods 538 

that do not utilize feature-fixing (e.g., LAST [α = mean], composed LAST [α = balance], 539 

composed LAST [α = mean]) have similarly low maximum landmark MSEs (Table 7). 540 

Table 7. Summary statistics of differences in landmark MSE under each globally informed 541 

method relative to cPDist. Positive residuals indicate the globally informed method has greater 542 

landmark MSE than cPDist, while negative residuals indicate globally informed method has 543 

smaller landmark MSE than cPDist. “Maximum landmark MSE” indicates the inflection point 544 
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above which the globally informed method always decreases MSE relative to cPDist. Note that 545 

the % of points above or below the line y=x may not sum to 100, as some points may be on the 546 

line. Bold text represents maximum or minimum values as appropriate. SD, standard deviation. 547 

Positive residuals Negative residuals 

Method Variant 
Feature-

fixing 

Maximum 
landmark 

MSE 

% of 
points 

above y=x Mean Median Maximum SD 

% of 
points 

below y=x Mean Median Maximum SD 
cPDist - N 0.7003 na na na na na na na na na na 
cPMST - N 0.1583 56.0 0.0092 0.0070 0.0645 0.0082 42.6 0.0629 0.0082 0.5785 0.1239 
LAST Mean N 0.1617 55.2 0.0115 0.0082 0.0787 0.0106 43.4 0.0623 0.0086 0.5785 0.1230 
LAST Balance N 0.6901 55.2 0.0170 0.0059 0.6048 0.0641 43.3 0.0526 0.0060 0.5500 0.1099 
Composed 
LAST 1 N 0.4488 66.3 0.0313 0.0106 0.3844 0.0721 32.4 0.0628 0.0093 0.6033 0.1272 
Composed 
LAST Balance N 0.1583 56.0 0.0092 0.0070 0.0645 0.0082 42.6 0.0629 0.0082 0.5785 0.1239 
Composed 
LAST Mean N 0.1627 65.3 0.0164 0.0145 0.0652 0.0123 33.3 0.0773 0.0103 0.5785 0.1350 
Composed 
LAST Median N 0.1507 57.6 0.0098 0.0078 0.0573 0.0080 41.0 0.0653 0.0085 0.5785 0.1261 
Viterbi 0.0 N 0.6801 35.1 0.0169 0.0066 0.4930 0.0455 41.8 0.0479 0.0072 0.5972 0.1101 
Viterbi 0.25 N 0.6679 35.4 0.0131 0.0060 0.4658 0.0366 42.9 0.0461 0.0072 0.6026 0.1071 
Viterbi 0.5 N 0.6801 35.9 0.0131 0.0060 0.4658 0.0362 42.7 0.0461 0.0071 0.6165 0.1080 
cPMST - Y 0.1854 45.8 0.0099 0.0076 0.0752 0.0088 54.2 0.0528 0.0096 0.5886 0.1125 
LAST Mean Y 0.1968 47.9 0.0109 0.0082 0.0810 0.0100 52.1 0.0548 0.0099 0.5886 0.1141 
LAST Balance Y 0.6737 43.5 0.0192 0.0072 0.5869 0.0655 56.5 0.0443 0.0091 0.5464 0.0975 
Composed 
LAST 1 Y 0.4750 55.5 0.0341 0.0102 0.3825 0.0762 44.5 0.0488 0.0091 0.6085 0.1110 
Composed 
LAST Balance Y 0.1854 45.8 0.0099 0.0076 0.0752 0.0088 54.2 0.0528 0.0096 0.5886 0.1125 
Composed 
LAST Mean Y 0.1887 52.1 0.0118 0.0092 0.0726 0.0102 47.9 0.0578 0.0101 0.5967 0.1174 
Composed 
LAST Median Y 0.1796 48.3 0.0105 0.0083 0.0809 0.0091 51.7 0.0546 0.0095 0.5886 0.1146 
Viterbi 0.0 Y 0.6844 44.2 0.0147 0.0068 0.4872 0.0396 55.8 0.0385 0.0087 0.6129 0.0964 
Viterbi 0.25 Y 0.6163 43.5 0.0124 0.0066 0.4876 0.0325 56.5 0.0378 0.0088 0.5949 0.0944 
Viterbi 0.5 Y 0.6844 43.7 0.0124 0.0065 0.4876 0.0321 56.3 0.0378 0.0087 0.6117 0.0950 

 548 

Two trends are apparent when feature-fixing is implemented: 1) methods with feature-549 

fixing have greater maximum landmark MSE than the same method without feature-fixing, and 550 

2) methods with feature-fixing are appear to be less susceptible to the accumulation of numerical 551 

error during landmark propagation, as indicated by the percentage of points above the line y=x 552 

(Table 7). These positive residuals indicate pairwise mappings in which landmark MSE has 553 

increased for the novel method relative to the landmark MSE observed for cPDist (Fig 3 554 

provides an example for cPMST). While no single method has the lowest mean, median, or 555 

maximum positive residual, the set of cPMST, LAST (α = mean), and three composed LAST (α 556 
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= balance, mean, or median) methods share low positive residuals with low dispersion (Table 7). 557 

When feature-fixing is implemented with these methods, both the magnitude and dispersion of 558 

these residuals increase, but the number of positive residuals decreases. The decrease in the 559 

number of positive residuals is observed for all methods except the Viterbi methods. 560 

Compared to cPMST, Viterbi methods (with or without feature-fixing) have smaller 561 

median positive residuals and larger mean positive residuals. Based on the percentage of points 562 

above y=x, Viterbi methods (with or without feature-fixing) experience less inflation of 563 

landmark MSE during landmark propagation (Table 7). However, all Viterbi methods have large 564 

maximum positive residuals and high variance in the distribution of these residuals. Further, 565 

while the Viterbi methods have the greatest number of points below y=x (indicating that cPDist 566 

has greater landmark MSE), the means and medians of these negative residuals are smaller and 567 

the standard deviations are lower than the values recovered for cPMST. So while Viterbi methods 568 

experience less inflation of landmark MSE due to the accumulation of numerical error, these 569 

methods are likely to be more prone to large-scale misalignments (similar to cPDist). Essentially, 570 

compared to all other methods, landmark MSEs of the Viterbi methods have higher correlations 571 

with the landmark MSE of cPDist, which can be seen in bivariate plots of the landmark MSEs of 572 

these methods (S2 Appendix). 573 

Results from multivariate homogeneity of variance tests confirm significant differences 574 

in the dispersion of landmark MSE under different methods (S1 Appendix, S2 Appendix). cPDist 575 

has the highest variance (measured as the Euclidean distance from each matrix entry to the 576 

centroid of the matrix), and all Viterbi methods exhibit similarly high dispersion. The variance of 577 

landmark MSEs for cPDist and all Viterbi methods is significantly greater than any other 578 

method, and cPDist has significantly greater variance than all Viterbi methods (S1 Appendix, S2 579 
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Appendix). A slightly different pattern of variance emerges when MSEs are scaled to pairwise cP 580 

distances (S1 Appendix, S2 Appendix). cPDist maintains the greatest dispersion, but all methods 581 

that utilize feature-fixing have reduced variance relative to their non-feature-fixing counterparts 582 

(S1 Appendix, S2 Appendix). In most cases, pairwise comparisons of the same method with and 583 

without feature-fixing produce significant differences in terms of variance; methods with feature-584 

fixing always have lower variance than methods without. Viterbi methods without feature-fixing 585 

also have relatively high dispersion, similar to the unscaled MSE results. 586 

The observed heterogeneity of variance renders any test of significant differences in 587 

method means suspect. With this caveat, MRPP indicates there are significant differences 588 

between methods, as gauged by both MSE and scaled MSE comparisons (MSE: δ=0.47, 589 

E(δ)=0.60, A=0.21, p=0.001; scaled MSE: δ=12.8, E(δ)=14.64, A=0.13, p=0.001). Both within- 590 

and between-method MSE and scaled MSE are detailed in the S1 Appendix. To compensate for 591 

the observed heterogeneity of variance, we also performed MRPP analysis for a reduced sample 592 

of MSE matrices, excluding all methods with significantly higher dispersion (cPDist, all six 593 

Viterbi methods). In this analysis, significant differences between methods were still recovered 594 

(δ=0.31, E(δ)=0.47, A=0.34, p=0.001). The observed patterns of heterogeneity in scaled MSE 595 

comparisons were too diffuse to permit a similarly restricted analysis.  596 

Table 8 provides summary statistics for cP distances, landmark MSE, and scaled MSE for 597 

all methods. cPMST (with feature-fixing) has the lowest mean landmark MSE (0.062), while 598 

LAST (α = mean, feature-fixing) has the highest mean cP distance and the lowest mean scaled 599 

MSE (3.165). When considering only those methods without feature-fixing, the set of cPMST, 600 

LAST (α = mean), and three composed LAST (α = balance, mean, or median) methods share 601 

similar characteristics: moderate mean and maximum cP distances, low mean and maximum 602 
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landmark MSEs, and the lowest mean and maximum scaled MSEs (Table 8). Compared to other 603 

methods without feature-fixing, this set of methods also exhibits lower standard deviations for 604 

landmark and scaled MSE. 605 

Table 8. Summary statistics of pairwise cPdistances, landmark MSE, and scaled MSE by 606 

method. Bold text represents maximum or minimum values as appropriate. MSE, mean square 607 

error; SD, standard deviation. 608 

cP Distance Landmark MSE Scaled MSE 

Method Variant 
Feature- 

fixing Mean Maximum SD Mean Maximum SD Mean Maximum SD 
cPDist - - 0.0665 0.1599 0.0202 0.0859 0.7003 0.0962 4.1559 13.1445 1.3491 
cPMST - N 0.0646 0.1360 0.0177 0.0645 0.1583 0.0215 3.9989 11.8016 0.9091 
LAST Mean N 0.0702 0.1373 0.0211 0.0654 0.1617 0.0223 3.7563 11.8016 0.9511 
LAST Balance N 0.0645 0.1470 0.0186 0.0727 0.6901 0.0764 4.0782 11.8016 1.0101 
Composed LAST 1 N 0.0699 0.1402 0.0186 0.0863 0.4488 0.0753 4.0415 11.8016 1.1308 
Composed LAST Balance N 0.0646 0.1360 0.0177 0.0645 0.1583 0.0215 3.9989 11.8016 0.9091 
Composed LAST Mean N 0.0682 0.1422 0.0179 0.0710 0.1638 0.0222 3.9690 11.8016 0.8617 
Composed LAST Median N 0.0652 0.1360 0.0174 0.0650 0.1555 0.0214 3.9757 11.8016 0.8951 
Viterbi 0.0 N 0.0581 0.1205 0.0145 0.0719 0.6800 0.0616 4.4542 13.1445 1.1375 
Viterbi 0.25 N 0.0582 0.1207 0.0150 0.0709 0.6679 0.0609 4.4364 13.1445 1.1354 
Viterbi 0.5 N 0.0581 0.1222 0.0149 0.0710 0.6800 0.0612 4.4432 13.1070 1.1312 
cPMST - Y 0.0771 0.1788 0.0216 0.0620 0.1854 0.0230 3.2714 8.4501 0.7432 
LAST Mean Y 0.0805 0.1727 0.0235 0.0628 0.1968 0.0239 3.1649 8.4501 0.7548 
LAST Balance Y 0.0764 0.1696 0.0214 0.0694 0.6737 0.0722 3.3382 8.3625 0.8365 
Composed LAST 1 Y 0.0797 0.1872 0.0214 0.0832 0.4750 0.0759 3.4331 8.7927 0.9775 
Composed LAST Balance Y 0.0771 0.1788 0.0216 0.0620 0.1854 0.0230 3.2714 8.4501 0.7432 
Composed LAST Mean Y 0.0795 0.1777 0.0213 0.0646 0.1887 0.0235 3.2285 8.4501 0.7276 
Composed LAST Median Y 0.0777 0.1745 0.0213 0.0630 0.1796 0.0232 3.2636 8.4501 0.7404 
Viterbi 0.0 Y 0.0742 0.1755 0.0203 0.0711 0.6844 0.0612 3.4847 12.1532 0.9508 
Viterbi 0.25 Y 0.0742 0.1595 0.0202 0.0701 0.6163 0.0608 3.4681 12.1532 0.9571 
Viterbi 0.5 Y 0.0743 0.1644 0.0202 0.0702 0.6844 0.0612 3.4679 10.6384 0.9497 

 609 

There are several trends across methods when feature-fixing is implemented. Relative to 610 

the same method without feature-fixing, the mean, maximum, and standard deviation of cP 611 

distances increase for all methods with feature-fixing (Table 8). For scaled MSE, the mean, 612 

maximum, and standard deviation all decrease with feature-fixing. For landmark MSE, not all 613 

methods exhibit the same trends when feature-fixing is implemented. While mean landmark 614 

MSE decreases with feature-fixing for all methods, maximum landmark MSE increases for all 615 

methods except LAST (α = balance) and Viterbi (angle weight = 25%). The variance of landmark 616 
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MSE increases for all methods except LAST (α = balance) and all three Viterbi methods (Table 617 

8). Finally, while the Viterbi methods (with or without feature-fixing) have the lowest mean 618 

scaled MSE, they share the highest maximum scaled MSE with cPDist, and have high variance 619 

relative to other methods (Table 8).  620 

Discussion 621 

Quantifying errors of cPDist 622 

When comparing highly dissimilar shapes, the pairwise correspondence found by cPDist 623 

is particularly error-prone in terms of landmark MSE. This substantial error rate presents a minor 624 

paradox: despite the errors lurking in the dataset, Boyer et al. [1] still recovered a strong 625 

correlation between user-determined and automatically determined distances and had a nearly 626 

equivalent success rate in taxonomic classification. We reconcile this paradox by noting that 627 

errors of cPDist occur most often between geometrically dissimilar shapes, resulting in large cP 628 

distances due to the restricted search space (conformal maps plus TPS) as opposed to faithfully 629 

capturing the geometric dissimilarity. Consequently, cPDist gets the “right answer” for the wrong 630 

reasons when comparing very different shapes. Furthermore, the classification method used in 631 

[1] assessed only whether small cP distances are taxonomically reliable. Since we have 632 

confirmed that only large cP distances are unreliable, there is no real contradiction between our 633 

results and Boyer et al.’s [1] assessment. However, it highlights that the approach of [1] does not 634 

provide sufficiently informative pairwise correspondences, which are essential for geometric 635 

morphological studies. 636 

Evaluating accuracy of a minimum spanning tree approach 637 
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Since all edges of the MST have smaller cP distances than the minimum cP distance of 638 

the observed bad maps, it is quite likely that using a MST sufficiently addresses the issue of 639 

aligning structures with very different morphologies. In our test case, branches within the MST 640 

were small enough to alleviate concerns of major misalignments. However, more work should be 641 

done on a wider variety of data sets to determine more precisely the sample properties (e.g., the 642 

morphological gaps between objects or the range of morphologies) that increase risk for 643 

misalignments even with MST. Additionally, cPMST has the unfortunate side effect of increasing 644 

landmark propagation error (reflected in the cP distances) when two similar shapes are not 645 

directly connected by an edge of the MST. This issue is partially addressed by subsequent tree-646 

based methods and is discussed further below. 647 

Comparing effects of globally informed methods on the 648 

characterization of geometric affinities 649 

Using ANOVA and linear mixed models, we ascertained the effects of five different 650 

factors on the characterization of shape affinities by the globally informed approaches developed 651 

for this study (Tables 3-5). The strongest effects were produced by the choice of method and 652 

whether or not feature-fixing was used. These two factors had an interaction effect such that 653 

including feature-fixing in the protocol reduced the impact of method. From this information 654 

alone, it is unclear if feature-fixing is beneficial. Reduction of the method effect through feature-655 

fixing may be beneficial if the results became both more consistent and biologically meaningful. 656 

On the other hand, feature-fixing may increase random error in the results, creating the observed 657 

statistical effect, thus leading to more variable and less biologically meaningful results. To 658 

determine which is more likely for this particular dataset, we assess shape space characterization 659 

of a few example methods below. 660 
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The root for pseudolandmark propagation had little obvious effect on the results (Tables 661 

3-5). Our analyses suggest that the best approach is to use the specimen with the minimum 662 

average difference from all other specimens in the collection as the starting point for landmark 663 

propagation. Thought the root shape chosen this way is not the same among all 120 analyses, no 664 

significant interaction between the root and the choice of method was recovered (Tables 4-5). If 665 

root had a strong direct effect, we should observe a significant interaction between root and 666 

method (since the root was different under each method). Though the effect of the root was 667 

minimal in this analysis, it may still be an important parameter for other datasets, particularly 668 

those that include highly dissimilar shapes (e.g., the combined astragalus and calcaneus dataset 669 

of [2]). 670 

For our dataset, the impact of composed vs. uncomposed maps seems more important 671 

than the root, since the composedness has a significant interaction with method. However, as 672 

stated above, it could not be included in the linear model due to unequal sample sizes (and 673 

unbalanced experiment design) relative to other factors. One-way ANOVA run on method using 674 

a composed/uncomposed split sample suggests that composed maps tend to decrease differences 675 

between methods. Therefore, it is probably more desirable to account for cP distances measured 676 

for composed maps when sequentially concatenating pairwise correspondences between similar 677 

shapes (unless there is a reason to prefer properties of an individual method). 678 

Finally, pseudolandmark sampling density had virtually no effect. This is highly 679 

encouraging, and suggests that relatively fewer pseudolandmarks may be used to decrease the 680 

computational intensity of downstream analyses. 681 

Evaluating accuracy of globally informed methods 682 
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The alternative tree-based approaches presented here were developed primarily to 683 

minimize the accumulation of numerical error as landmarks are propagated through a tree. Based 684 

on the analysis of landmark MSE residuals above, a set of methods perform similar to cPMST, 685 

including LAST (α = mean) and three composed LAST (α = balance, mean, or median) methods. 686 

While none of these approaches has substantially better performance than cPMST, composed 687 

LAST (α = median) does exhibit fewer positive landmark MSE residuals, a lower maximum 688 

positive residual, and lower variance of these residuals (Table 7), indicating that it may be 689 

somewhat preferable to cPMST. In addition, with or without feature-fixing, composed LAST (α 690 

= median) exhibits a higher mean cP distance and lower scaled MSE than cPMST (Table 8). 691 

Because feature-fixing aims to match geometric characteristics on the shapes (e.g. cusp 692 

tips or basins) and many user-determined landmarks lie near these positions, we expected 693 

feature-fixing to reduce landmark MSE. However, based on the analysis of MSE residuals, 694 

feature-fixing appears to have a mixed effect on landmark MSE. The procedure tends to increase 695 

maximum landmark MSE, but decrease the number of positive MSE residuals (for all except the 696 

Viterbi methods) (Table 7). Further, because feature-fixing increases cP distances, scaled MSEs 697 

are lower when feature-fixing is implemented (Table 8). Thus, based on landmark MSE, the 698 

potential benefits of feature-fixing are ambiguous. 699 

Multivariate homogeneity of variance tests performed on MSE matrices (S1 Appendix) 700 

reveal that cPDist and all six Viterbi methods have significantly greater variance than any other 701 

method. This result is not surprising, as visual inspection of pairwise cPDist mappings revealed 702 

multiple instances of propagation error (reflected by high landmark MSEs). Reduced variance in 703 

the MST-based methods suggests that erroneous mappings have been largely eliminated, which 704 

was a primary goal in developing these subsequent tree-based methods. The Viterbi methods are 705 
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different from other tree-based methods since they aim to minimize the distance functional but 706 

sacrifice global transitivity.  707 

Homogeneity of variance tests performed on the scaled MSE matrices reveal a pattern not 708 

seen in the MSE matrices (S1 Appendix). With scaled MSE, all methods utilizing feature-fixing 709 

have lower variance than their counterparts without feature-fixing. The variance of Viterbi 710 

methods utilizing feature-fixing is similar to the variance of non-Viterbi methods without 711 

feature-fixing. In general, scaled MSE distances are substantially reduced since feature-fixing 712 

tends to increase pairwise cP distances but not landmark MSEs. This effect can also be seen in 713 

the matrix heat maps (S2 Appendix), and supports the significance of feature-fixing as a 714 

important parameter for the performance of the tree-based improvement methods. 715 

Quantitative comparison of ordinations generated by globally 716 

informed methods  717 

The previous analyses permit the identification of those methodological parameters with 718 

strong effects on shape space characterization, but they are not informative regarding certain 719 

aspects (e.g., is feature-fixing beneficial?). Our final analysis compares the ordinated shape 720 

spaces of those globally informed methods that are most and least similar to the shape space 721 

characterized by user-determined landmarks. Principal components analysis of the vectors 722 

encoding method parameter combinations (S1 Appendix) reveals these methods (Fig 4), which 723 

are subsequently referred to as GLobal-informed Automated Method 1 (GLAM1: LAST; α = 724 

balance; no feature-fixing), GLAM2 (LAST; composed; α = balance; no feature-fixing), and 725 

GLAM3 (LAST; composed; α = balance; feature-fixing). In addition to these three novel 726 

methods, we also compare the shape spaces generated by user-determined landmarks and 727 

auto3Dgm. 728 
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In order to compare the ordinated shape spaces of these five methods, we first identified 729 

18 phylogenetically cohesive taxonomic groups (S1 Appendix) that were fairly distinctive when 730 

visualized on the first two principal components of the user-determined landmarks (Fig 5a). We 731 

then ran one-way ANOVAs on a vector representing the first 46 principal component scores (S1 732 

Appendix). As might be expected from the taxonomic separation apparent in Fig 5, we found all 733 

samples to have highly significant interspecific variance (Table 9), with the highest significance 734 

level for the user-determined landmarks. Treatments more similar to the user-determined 735 

landmarks in Fig 5 (GLAM1 and GLAM2) had higher significance levels than the treatments 736 

farther removed from the ground truth (GLAM3). Though auto3Dgm does not specify explicit 737 

maps relating surfaces, its ordinated shape space appears to be most similar to the user-based 738 

result in this limited (though potentially representative) analysis. 739 

Table 9. One-way ANOVA on taxomonic groups to assess which parameter combinations 740 

result in shape spaces with greatest between-group distinctiveness. 741 

User-determined landmarks 
   Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 3.0454 17 0.1791 17.2013 6.51E-022 
Error 0.9894 95 0.0104 

  Total 4.0347 112 
   

      cPLASTbalance-FFoff 
    Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 1.5673 17 0.0922 9.0052 2.36E-013 
Error 0.9726 95 0.0102 

  Total 2.5399 112 
   

      cPCompLASTbalance-FFoff 
   Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 1.7827 17 0.1049 10.4511 3.94E-015 
Error 0.9532 95 0.0100 

  Total 2.7359 112 
   

      cPCompLASTbalance-FFon 
   Source Sum Sq. DF Mean Sum Sq. F-value p-value 

Groups 2.1162 17 0.1245 5.8937 5.55E-009 
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Error 2.0065 95 0.0211 
  Total 4.1228 112 

   
      Auto3Dgm 

     Source Sum Sq. DF Mean Sum Sq. F-value p-value 
Groups 2.5471 17 0.1498 15.5601 1.88E-020 
Error 0.9148 95 0.0096 

  Total 3.4618 112 
    742 

User-determined landmarks recover substantially more between-taxon variance than 743 

globally informed methods (Table 9). The increase in between-group variance suggests that user-744 

determined landmarks are better at capturing “real” between-taxon differences. It is quite likely 745 

that user-determined landmarks are focused on those features that exhibit a large amount of 746 

between-group variance, so that morphological expertise permits more variance to be captured 747 

by relatively fewer landmarks. This focus has been argued to be the primary advantage that semi-748 

automated methods have over fully automated alternatives [52]. However, since the manual 749 

landmarks were collected with a priori taxonomic knowledge, it is also possible the researcher 750 

inadvertently biased their landmarking to maintain intraspecific consistency. Repeating manual 751 

landmark data collection would mitigate such bias and insure the absence of such effects. 752 

However, to avoid adding more sources of error, any additional data collection would have to be 753 

done by a researcher with equivalent anatomical expertise, which risks introducing a similar bias 754 

if they remember species-specific morphological patterns well. A possible approach would be to 755 

collect landmark data in random taxonomic order over a widely spaced time interval. 756 

Finally, we were surprised to find that feature-fixing generally reduced the similarity 757 

between globally informed methods and user-determined landmarks (Fig 4). Since user-758 

determined landmarks are often close to (but not necessarily exactly coincident with) positions of 759 

extreme geometric configuration, the discrepancy between user-determined and feature-fixed 760 
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landmarks can be as large as several edges away on the discretized triangular mesh. Such a 761 

difference is comparable to the magnitude of some landmark MSEs between very similar shapes. 762 

Additionally, the TPS procedure does not control for shape distortion at regions lacking anchor 763 

points, though some user-determined landmarks are positioned in such regions. Therefore, an 764 

alternative approach to TPS, with guaranteed low distortion on the regions of shapes even 765 

without geometric characteristics, may be preferable for geometric morphological analysis. 766 

Qualitative assessment and biological implications of ordinations 767 

generated by globally informed methods 768 

In order to understand how geometric affinities of particular taxonomic groups differ 769 

qualitatively across methods, we now focus on the details exhibited by each ordination. Fig 6 770 

provides terminology for some notable features of therian (marsupial and placental mammals) 771 

mandibular molars, and Fig 7 provides examples of these teeth for the sample used in this study. 772 

For all methods, the presence and prominence of the paraconid, the most anterior cusp of the 773 

tooth, drives variation on PC1 (Fig 5). User-determined landmarks and auto3Dgm are most 774 

similar in this pattern: for these two methods, there is a slight gap between the distributions of 775 

extant strepsirrhines (all lack a paraconid) plus Adapis (which has a relatively small paraconid) 776 

and tarsiers, non-primates, and the remaining fossil taxa (all of which have prominent 777 

paraconids) (Fig 7). This distinction blurs in the ordinations of globally informed methods as 778 

those strepsirrhines with relatively prominent trigonids invade the space of paraconid-bearing 779 

taxa. Specifically, lorisiforms (galagos, Nycticebus, Perodicticus, Loris and Arctocebus), 780 

Lepilemur, and all cheirogaleids except Cheirogaleus (which has a strongly reduced trigonid) 781 

overlap with early fossil euprimates (Teilhardina, Cantius, and Donrussellia), certain 782 

plesiadapiforms (e.g. Pronothodectes), and the treeshrew Ptilocercus in the three globally 783 
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informed methods. Among these methods, the overlap is least pronounced in GLAM1, which 784 

also happens to be the globally informed method that is closest to user-determined landmarks in 785 

Fig 4.  786 

PC2 of the user-determined landmark plot (Fig 5a) separates teeth with a hypoconulid 787 

close to the entoconid and substantially posterior to the hypoconid (e.g., Lepilemur and Tupaia) 788 

from teeth with a more mesially and buccally positioned hypoconulid (e.g., Cheirogaleus). 789 

Trends of variation in PC2 of some globally informed methods are similar to the user-determined 790 

landmarks in certain respects. However, none of the automated 3DGM methods reflect variation 791 

in the talonid cusps on PC2, as indicated by the different positions of Cynocephalus, galagos, and 792 

certain lorisids (these taxa all have strongly lingually positioned hypoconulid). The auto3Dgm 793 

plot, with the smallest within-group distributions, is most similar to the hypoconulid-driven trend 794 

of the user-determined landmarks, but differs in the recovered overlap of galagos and 795 

cheirogaleids. In contrast, the user-determined landmarks pull galagos toward lemurids and 796 

indriids. Likewise, the interspecific distribution of lorisids is inverted between the user-based 797 

approach and auto3Dgm. With user-determined landmarks, Arctocebus and Loris overlap more 798 

with indriids and lemurids, while Perodicticus and Nycticebus overlap with cheirogaleids. In 799 

auto3Dgm, the trend is reversed (though galagos overlap most extensively with Arctocebus and 800 

Loris in both methods). In fact, auto3Dgm shows tight clustering of these taxa, revealing strong 801 

affinities of Nycticebus and Perodicticus with indriids and lemurids, and affinities of Loris and 802 

Arctocebus with cheirogaleids and galagos. From a phylogenetic perspective, these alternative 803 

groupings are not intuitive. However, from a functional perspective, the user-determined 804 

landmarks group frugivorous lorisids (e.g., Perodicticus) and omnivorous cheirogaleids (e.g., 805 
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Microcebus) in one region and insectivorous lorisiforms (e.g., Arctocebus and galagos) with 806 

folivorous indriids (e.g., Avahi) in another. 807 

The globally informed method most similar to the user-based approach in Fig 4 808 

(GLAM1, Fig 5b) does not exhibit any obvious trends on PC2 for strepsirrhines, but shows a 809 

distribution of the four lorisids more consistent with a dietary interpretation (low relief 810 

frugivorous lorises overlapping with omnivorous cheirogaleids, and high relief insectivorous 811 

lorisiforms overlap with insectivorous galagids and folivorous indriids). In other automated 812 

methods, taxonomic groups overlap too extensively for succinct description, including among 813 

lorisids. Nonetheless, all three of the globally informed methods (Fig 5b-d) preserve separation 814 

between galagos and cheirogaleids (like user-determined landmarks but unlike auto3Dgm) while 815 

also maintaining a large separation between galagos and indriids (unlike user-determined 816 

landmarks). Therefore, from a phylogenetic perspective, the globally informed methods return 817 

more intuitive results than either user-determined landmarks or auto3Dgm. 818 

The relative positions of non-primate taxa and primitive fossil primates are similar in the 819 

five example plots (Fig 5). The extreme values are typically tupaiid treeshrews (an extant non-820 

primate that is insectivorous), and tend to cluster close to Leptacodon (a fossil non-primate) and 821 

Purgatorius (the oldest and most basal known stem-primate). Ptilocercus, a more omnivorous 822 

treeshrew, is typically separated from this cluster. The ambiguous fossil taxon Altanius (either 823 

euprimate or stem-primate) also plots near this cluster but typically has less extreme PC2 values. 824 

Eosimiidae, a group of purported stem-anthropoid primates, also plots near the tupaiid-825 

Leptacodon-Purgatorius cluster with at least one individual always plotting close to Ptilocercus. 826 

Early euprimates Cantius, Teilhardina, and Donrussellia are near one another with slightly less 827 

extreme PC1 and PC2 scores. Stem-primates more derived than Purgatorius (Paromomys, 828 
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Plesiolestes, Pronothodectes, Chronolestes, Elphidotarsius) tend to plot separately from the early 829 

euprimates (but further from treeshrews, Purgatorius, Eosimiidae, Altanius, etc.) while 830 

overlapping Tarsius (an extant haplorrhine).  831 

Finally, the non-primate Cynocephalus plots with treeshrews in the user-based method, a 832 

result consistent with these taxa being outgroups to primates. Similarities between Cynocephalus 833 

and Tupaia in the user-based result are driven by the strongly lingual and posterior position of 834 

the hypoconulid. In contrast, all of the globally informed methods show Cynocephalus 835 

overlapping primarily with Tarsius, linking a dermopteran to a crown haplorhine. The automated 836 

results seem to reflect gross similarities between Cynocephalus and Tarsius (e.g., both taxa have 837 

relatively square occlusal outlines), but they are not phylogenetically intuitive. 838 

Of the methods compared, GLAM3, the only method utilizing feature-fixing, shows the 839 

least taxonomic differentiation (Fig 5d). It is also the only method that does not place the 840 

subfossil Megaladapis in the region occupied by Adapis and lemurids. The early euprimate 841 

Cantius is scattered across the entire plot area. Stem-primates, Leptacodon, Purgatorius, and 842 

Teilhardina are largely overlapping and oddly plot near Lepilemur (Fig 5d). Cheirogaleus spans 843 

over half the range of PC2 values. This scatter is reflected in the relatively low value obtained by 844 

taxonomic ANOVA for this group as well (Table 9).  845 

Two observations suggest that GLAM1 and GLAM2 (which do not use feature-fixing) 846 

reflect sample geometry better than GLAM3 (which uses feature-fixing). First, in the plot of 847 

method by treatment type (Fig 4), they were closer to the result from user-determined landmarks. 848 

Second, the one-way ANOVA on taxonomic groups of the vector distribution of ordinations 849 

produced by GLAM1 has a higher p-value than GLAM3, suggesting greater taxonomic 850 

distinctiveness (Table 9). It was surprising that auto3Dgm has a pattern and magnitude of 851 
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taxonomic distinctiveness more similar to the user-determined landmarks; in many ways, 852 

auto3Dgm is relatively naïve compared to other tree-based techniques presented in this paper. 853 

The observation that feature-fixing degrades taxonomic signal is worth further 854 

investigation. TPS, the main technique involved in feature-fixing, strives to align specified 855 

corresponding anchor points and generate a smooth interpolation between the shapes without 856 

guaranteed control for the distortion of the final map. The cP distance, in a certain sense, 857 

measures the minimum global average distortion of a class of candidate maps between two 858 

surfaces. Therefore, maintaining low global distortion may be more important for producing cP 859 

distances that faithfully reflect the geometric dissimilarity than precisely matching geometrically 860 

characteristic point features. Furthermore, the quality of the interpolated map depends heavily on 861 

the choice of anchor points: if two corresponding anchors appear to close to each other, TPS will 862 

face numerical stability issues. If the correspondences between anchor points are incomplete or 863 

wrongly specified (e.g. for teeth of low relief and probably fewer detectable extremal points such 864 

as the omnivorous Cheirogaleus), TPS may generate less biologically meaningful maps. It is 865 

therefore possible that the various sources of map and distance distortion in feature-fixing 866 

methods generate less taxonomically cohesive results. Rather than a major improvement for the 867 

automated 3DGM methods, feature-fixing may primarily facilitate map visualization compared 868 

to existing geometric morphological analysis. 869 

Conclusions 870 

In this study, we have addressed and overcome limitations of previously published 871 

automated 3DGM methods, cPDist and auto3Dgm, [1,2] and provided a detailed description of 872 

how the results of existing and novel automated methods compare to a user-determined landmark 873 

approach. Both the globally informed methods proposed here and auto3Dgm reflect the similar 874 
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geometric patterns as user-based methods. Relative to cPDist, the dramatic reduction in MSE of 875 

propagated landmarks of the globally informed methods shows that global sample information is 876 

a critical component of automated analysis on samples with large shape differences. Other 877 

modifications did not definitively improve the similarity to a user-based approach. In particular, 878 

feature-fixing, or the automatic manipulation of maps to maintain type II landmark [53] 879 

representation, appears to add error and reduce taxonomic cohesiveness. Though composed 880 

LAST methods may potentially reduce the increased map inaccuracy between similar shapes that 881 

are not directly connected by an edge in the MST, no approach permits full retention of map 882 

quality of direct comparisons between similar shapes. This suggests that developing alternative 883 

approaches for analyzing collections of highly dissimilar shapes remains an interesting and 884 

challenging problem. 885 

Comparison of novel globally informed methods and auto3Dgm 886 

We were surprised that auto3Dgm produced ordinations with cohesive taxonomic groups 887 

that were also phylogenetically and geometrically intuitive given our understanding of feature 888 

variation in the sample (Fig 5e, Table 9). Though it is not entirely clear that tight taxonomic 889 

clustering is the most accurate expression of shape differences in the sample, the recovered 890 

pattern does lead to the question of whether or not any of the novel methods presented here are 891 

superior to auto3Dgm in regard to their characterization of shape affinities. We believe the novel 892 

globally informed methods represent improvements for three reasons: 1) pseudolandmark 893 

sampling density does not appear to affect the novel methods of this study, 2) the novel methods 894 

produce more intuitive ordinations, and 3) the novel methods evenly fill the ordination space. 895 

First, Vitek et al. [29] found that ordinations produced by auto3Dgm are sensitive to 896 

pseudolandmark sampling density (i.e., number of points per tooth). In this study, because 897 
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downstream analyses were not sensitive to sampling density, this does not appear to be a problem 898 

for the methods presented in this study. Second, several inter-taxonomic affinities in the 899 

auto3Dgm result differ strongly from user-determined landmarks and are less functionally or 900 

geometrically intuitive than results from the novel methods of this study. In the case of the 901 

relative positions of galagos, cheirogaleids, and indriids, results from the novel methods are more 902 

intuitive, in both a functional and phylogenetic sense. 903 

Finally, the novel methods evenly fill the ordination space in a manner more similar to 904 

the user-based approach (Fig 5). The distribution of specimens in the auto3Dgm ordinations 905 

often form a Y pattern in which points cluster linearly through regions of space, giving a much 906 

different perspective on how filled the shape space is compared to user-based methods (Fig 5). 907 

The Y pattern also seems to appear in interspecific PCA ordinations generated by Generalized 908 

Procrustes Surface Analysis [54], a recent shape analysis method of similarly high 909 

dimensionality. The diffuse distribution seems problematic, as it may reflect a highly skewed 910 

distribution of values in the correlation matrix of the PCA. Gonzalez et al. [27] recommend 911 

converting pseudolandmarks to sliding landmarks to minimize surface bending energy or average 912 

Procrustes distance between specimens. In this way, they eliminate the Y pattern; however, this 913 

may potentially reflect the addition of random noise. Alternatively, replacing PCA with a 914 

dimension reduction method more suitable for high dimensional data (such as t-distributed 915 

stochastic neighbor embedding [55]), may reduce the strength of the Y pattern. Whatever the 916 

remedy for auto3Dgm, the Y pattern does not manifest in any of the novel methods presented 917 

here, suggesting they are indeed improvements to existing automated methods. 918 

Optimal applications for automated approaches 919 
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Because the examined parameter combinations of globally informed methods and 920 

auto3Dgm produce similar shape ordinations that are largely consistent with results of a user-921 

based approach, we recommend using automated approaches when: 1) the primary questions 922 

concern patterns of overall variation in biological shapes, 2) a large number of type II landmarks 923 

(defined in [53] as areas of high local curvature) are not consistently available, or 3) 924 

measurement/landmark selection may increase the potential for biased results. These 925 

recommendations are similar to those of Gonzalez et al. [27], who evaluated the performance of 926 

auto3Dgm against a semi-automated landmark method. The first two conditions are related, since 927 

fewer type II landmarks limit the ability to assess overall variation. User-based approaches for 928 

assessing shape disparity (which refers to the overall structure of interest) become increasingly 929 

limited as sample diversity increases. Polly [56] highlights the limitation of user-based 930 

approaches that require many biologically equivalent landmarks to represent patterns of shape 931 

variation and emphasizes the importance of methods that lack this requirement. How can one 932 

represent the absence of a paraconid quantitatively if the feature does not exist in all specimens? 933 

The researcher could landmark the space where the paraconid “would be”, but this is obviously 934 

subjective. Automated 3DGM methods do not make such explicit assumptions about feature 935 

equivalence and therefore can more comprehensively measure shape variation.  936 

The third scenario, reducing the potential for user bias, is particularly salient when the 937 

anatomical structure of a fossil has been linked to a particular taxonomic identification or 938 

phylogenetic hypothesis. In these cases, it is critical that the researcher’s qualitative assessments 939 

match quantitative approaches and that selective choice of measurements and/or landmarks has 940 

not unfairly weighted the evidence toward a particular hypothesis. Boyer et al. [24] used an 941 

automated analysis for this role: a newly discovered fossil was shown objectively to be a range 942 
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extension of a previously unknown species. In the dataset considered in this paper, the family 943 

Eosimiidae has controversial affinities. The group is typically assigned to anthropoid primates 944 

[57-61]), but this assessment has been questioned [62-66]. Even if the diagnosis as an anthropoid 945 

relative is accepted, it is unclear what the geometry of eosimiid tooth structure might reveal 946 

about initial stages of anthropoid evolution.  947 

Given these issues, our more quantitative, more comprehensive, and more objective 948 

assessment of eosimiid tooth form should interest anthropologists and paleontologists, as results 949 

show the second mandibular molar of eosimiids is distinctively more similar to non-primates and 950 

stem-primates of the sample than to early euprimates or tarsiers. This result is recovered by all 951 

methods compared here, including user-determined landmarks. It is consistent with the 952 

perspective that Eosimiidae may be positioned more basally than stem Anthropoidea (contra [57-953 

59]), and questions purported similarities between Eosimiidae and Tarsiidae. Furthermore, the 954 

recovered dental affinities are consistent with recent results from analyses of Eosimiidae ankle 955 

bones [31,67,68] that suggest eosimiid ankle morphology is similar to that inferred for the 956 

common ancestor of primates of modern aspect. In our opinion, these findings point to the need 957 

for continued examination of eosimiid relationships, anthropoid relationships, and certain 958 

patterns of early primate evolution. 959 

 In sum, this study affirms the utility and reliability of automated approaches through 960 

thorough comparisons of automated approaches and user-based approaches. The globally 961 

informed methods presented here have several important advantages over user-based approaches 962 

and previously published automated 3DGM methods. Future work will improve the use of global 963 

sample information in computing correspondence maps between objects and will hopefully 964 

recover even greater geometric fidelity in automated morphometric analysis. 965 
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Supporting Information 966 

S1 Appendix. Supplementary tables. Includes principal components scores for the method 967 

ANOVA, results of MSE variance tests, MRPP results, groups included in taxonomic ANOVAs, 968 

and principal component scores for taxonomic ANOVAs (XLS). 969 

S2 Appendix. Supplementary figures and code. Includes matrix heat maps, bivariate plots of 970 

landmark MSES for globally informed methods, MSE variance boxplots, explanations of 971 

ANOVA and linear mixed model equivalents, and MATLAB code for the vector equivalents 972 

(PDF). 973 
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 1150 

 1151 

Figure captions 1152 

Fig 1. Classification of errors made by cPDist using MATLAB interface. Each panel shows 1153 

the root surface with user-determined landmarks (lower right), user-determined landmarks on 1154 

target surface (upper left), and propagated landmarks on target surface (upper right). The 1155 

distribution of the values of the continuous Procrustes functional of candidate maps are shown in 1156 

the lower left of each panel. The four main error types are pictured here and include A) Trigonid 1157 

clustering: landmarks bunched in anterior portion of tooth; B) Talonid drift: landmarks spread 1158 
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over posterior portion of tooth; C) buccal-lingual (BL) inversion: landmarks are reversed from 1159 

side-to-side; and D) anterior-posterior (AP) inversion: landmarks are reversed from front-to-1160 

back. A fifth error type, 90° rotation, is not shown, but was only observed three times. 1161 

 1162 

Fig 2. Boxplots of cP distances (A), Dirichlet Normal Energy (B), and skewness of the 1163 

distribution of candidate maps (C) for good maps, bad maps, and maps of each error type. 1164 

Asterisks denote significant differences (p<0.001) between group means. Boxes include 25-75% 1165 

quartiles; whiskers extend to furthest points less than 1.5 times the interquartile range. Circles 1166 

indicate outliers. 1167 

 1168 

Fig 3. Pairwise comparisons of landmark MSE generated by cPDist and cPMST (without 1169 

feature-fixing). For many pairwise comparisons, cPMST (without feature-fixing) has much 1170 

lower landmark MSE than cPDist. In particular, large (>0.1583) MSEs are reduced with cPMST 1171 

(without feature-fixing) compare to cPDist. Red line indicates line of equivalence (y=x). 1172 

 1173 

Fig 4. Results of principal component analysis comparing different parameter 1174 

combinations of automated alignment and mapping.  Each point represents an automated 1175 

analysis of 116 tooth surfaces from [1]. Points that plot close together represent analytic 1176 

protocols yielding similar representations of shape affinities for the surfaces in the test dataset. 1177 

Note that only around 36% of the total variance is represented on these first two principal 1178 

components. As confirmed by the statistical analyses detailed in the text, this plot indicates 1179 

feature-fixing has the strongest effect on shape affinities among sampled teeth. To our surprise, 1180 

analyses without feature-fixing characterize shape affinities in a way more similar to the user-1181 

based “ground truth”. Three treatments are examined in more detail: A) user-determined 1182 
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landmarks; B) GLAM1 (LAST; α = balance; no feature-fixing), the approach most similar to the 1183 

“ground-truth”; C) GLAM2 (LAST; composed; α = balance; no feature-fixing); and D) GLAM3 1184 

(LAST; composed; α = balance; feature-fixing). The separation between A and both C and D 1185 

suggest the latter two approaches characterize shape affinities in a distinct manner relative to A. 1186 

As each of these treatments was run with three different pseudolandmark resolutions, each 1187 

treatment is represented three times. The relatively minor variance of each treatment under 1188 

differing resolutions demonstrates that pseudolandmark sampling has little effect on shape space 1189 

characterization (also confirmed by statistical analyses in the text). 1190 

 1191 

Fig 5. Principal components analyses characterizing shape affinities in a sample of 116 1192 

teeth using five alternative approaches. Approaches include: A) User-determined landmarks; 1193 

B) GLAM1 (LAST; α = balance; no feature-fixing), the approach most similar to the “ground-1194 

truth” in Fig 4; C) GLAM2 (LAST; composed; α = balance; no feature-fixing); D) GLAM3 1195 

(LAST; composed; α = balance; feature-fixing); and E) auto3Dgm. Neither C nor D was 1196 

expected to look similar to A or B based on Fig 4. Minimum convex polygons include individual 1197 

specimens of closely related species expected to be similar based on visual inspection and 1198 

traditional comparative analyses. The degree to which each method successfully distinguished 1199 

groups was evaluated with a series of vector ANOVAs in which taxonomic groups shown in 1200 

these images were the treatment effects. From these analyses it appears that A, B, and E do the 1201 

best job of separating taxonomic groups (Table 9). The specific surfaces used in each group and 1202 

the data for each analysis is provided (S1 Appendix). Exemplar teeth of each group are shown in 1203 

Fig 7.  1204 

 1205 

Fig 6. Nomenclature of the primary features of a therian mandibular molar. Occlusal view. 1206 
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 1207 

Fig 7. Images of teeth of representative taxa in this study. For each taxon, views are buccal 1208 

(upper), occlusal (lower left), and a three-quarter profile (lower right). Colors correspond to 1209 

minimum convex polygons shown in Fig 5. 1210 
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