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Under normal cellular conditions, the tumor suppressor protein p53 is kept at a low levels in part due to
ubiquitination by MDM2, a process initiated by binding of MDM2 to the intrinsically disordered transacti-
vation domain (TAD) of p53. Although many experimental and simulation studies suggest that disordered
domains such as p53 TAD bind their targets nonspecifically before folding to a tightly-associated conforma-
tion, the molecular details are unclear. Toward a detailed prediction of binding mechanism, pathways and
rates, we have performed large-scale unbiased all-atom simulations of p53-MDM2 binding. Markov State
Models (MSMs) constructed from the trajectory data predict p53 TAD peptide binding pathways and on-
rates in good agreement with experiment. The MSM reveals that two key bound intermediates, each with
a non-native arrangement of hydrophobic residues in the MDM2 binding cleft, control the overall on-rate.
Using microscopic rate information from the MSM, we parameterize a simple four-state kinetic model to (1)
determine that induced-fit pathways dominate the binding flux over a large range of concentrations, and (2)
predict how modulation of residual p53 helicity affects binding, in good agreement with experiment. These
results suggest new ways in which microscopic models of bound-state ensembles can be used to understand
biological function on a macroscopic scale.

AUTHOR SUMMARY

Many cell signaling pathways involve protein-protein
interactions in which an intrinsically disordered peptide
folds upon binding its target. Determining the molec-
ular mechanisms that control these binding rates is im-
portant for understanding how such systems are regu-
lated. In this paper, we show how extensive all-atom
simulations combined with kinetic network models pro-
vide a detailed mechanistic understanding of how tu-
mor suppressor protein p53 binds to MDM2, an impor-
tant target of new cancer therapeutics. A simple four-
state model parameterized from the simulations shows
a binding-then-folding mechanism, and recapitulates ex-
periments in which residual helicity boosts binding. This
work goes beyond previous simulations of small-molecule
binding, to achieve pathways and binding rates for a large
peptide, in good agreement with experiment.

INTRODUCTION

The transcription activator p53 plays a central role in
tumor suppression1. Cellular levels of p53 are normally
kept low by targeted degradation by the E3 ubiquitin lig-
ase MDM2 (mouse double minute 2), whose N-terminal
domain binds residues 17-29 of the p53 transactivation
domain (TAD) in a deep hydrophobic cleft2. The p53
TAD is intrinsically disordered3, but forms a helix when
bound to MDM2. Various types of cellular stresses such
as DNA damage leads to disruption of p53-MDM2 bind-
ing and an increase in p53 expression, which in turn
promotes cellular repair or apoptosis. Thus, the discov-
ery of potent competitive inhibitors that can disrupt the
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p53-MDM2 binding interaction has been an important
strategy for developing new cancer therapeutics4,5. The
availability of structural information has also made p53-
MDM2 a valuable model system for the study of protein-
protein interactions and the development of new classes
of peptidomimetics6–9 often alongside computational de-
sign efforts10,11.

A consensus of experimental and simulation studies
suggest that intrinsically disordered protein (IDP) do-
mains such as p53 TAD bind their receptors through
an induced-fit ”fly-casting” mechanism, whereby binding
occurs first, followed by structuring into higher-affinity
poses12–17. It has been proposed that this mechanism
facilitates binding to multiple partners in complex reg-
ulatory networks, and may enable fast association rates
important for signaling. The structural and kinetic prop-
erties of IDPs are thought to fine-tune many signaling
interactions18. Recently, Borcherds et al. have shown
that the extent of residual helicity of p53 TAD can mod-
ulate p53-MDM2 binding affinity as well as signaling dy-
namics in cells19. An important challenge for molecular
simulation is thus to predict binding pathways and as-
sociation rates of IDPs to their targets, and the detailed
molecular mechanisms responsible for shaping them.

In this work, we use extensive all-atom molecular sim-
ulations in explicit solvent, combined with state-of-the-
art Markov State Model (MSM) approaches, to investi-
gate the p53-MDM2 binding mechanism. Recent MSM
studies have examined the mechanisms by which protein
receptors recognize small molecules20–23 and here we ex-
tend similar methods to model the coupled folding and
binding of a larger peptide (p53 TAD peptide) to MDM2.
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METHODS

Molecular simulation

Simulations starting from unbound states were per-
formed on the the Folding@home distributed comput-
ing platform24 with Gromacs 4.5.425 using the Amber
ff99sb-ildn-nmr force field26 and TIP3P explicit solvent.
A number of initial starting configurations were selected
from conformational clustering of implicit-solvent REMD
simulations, each placed at different distances within 12
Å from the binding site. A total 2776 trajectories were
generated amounting to ∼ 831µs of aggregate simulation
data (Figure S1).

MSM construction

Recent methodological advances have exploited the
variational approach to conformational dynamics27 to
enable the construction of optimal MSMs given the
available trajectory data28,29. To implement this ap-
proach, we used time-structure-based Independent Com-
ponent Analysis (tICA)30,31 to project the trajectory
data to a low-dimensional subspace that best preserves
the slowest conformational transitions. Using all pair dis-
tances between Cα + Cβ atoms of p53 and the bind-
ing pocket of MDM2 (see Supporting Information for
details), we constructed a time-lagged correlation ma-
trix C(∆t) and corresponding covariance matrix from the
pair distances using a ∆t = 5 ns lagtime. The tICA
components α are found by maximizing the objective
function 〈αi|C(∆t)|αi〉 subjected to certain constraints30.
Once projected to the tICA subspace, distance-based
clustering using the k-means algorithm was performed
to obtain MSM metastable state definitions. To select
hyper-parameters such as the number of tICA compo-
nents, clustering method, MSM lag time, and the num-
ber of MSM microstates, we performed variational cross-
validation using the GMRQ method of McGibbon et al.28

on over 120 MSMs. As in previous work32, we find that
tICA distance metrics are better than rmsd or dihedral
angle metrics, and k-means clustering performs better
than k-centers. The optimal MSM, used in all subse-
quent analysis, is constructed using 10 tICA components,
600 microstates and a 5 ns MSM lag time τlag (Figure
S2). The MSM transition matrix T(τlag) was estimated
using a maximum likelihood method33,34. The model
is validated by implied timescales which plateau near
the chosen lag time of 5 ns (Figure S3), and Chapman-
Kolmogorov tests (Figure S4). All models were built us-
ing MSMbuilder 3.333 and MDTraj 1.535 software pack-
ages.

FIG. 1. Simulation trajectory data projected to p53-MDM2
distance and the p53 rmsd-to-native show a preference for
binding before folding. Colored boxes highlight the parti-
tioning into four states based on these reaction coordinates:
folded-bound (blue), unfolded-bound (green), folded-unbound
(red), and unfolded-unbound (cyan). Black circles show the
locations of cluster centers of the 600 MSM microstates.

RESULTS

Binding precedes folding. A projection of the simula-
tion data to two reaction coordinates–the rmsd of p53
to its native structure, and the distance of p53 to the
MDM2 binding pocket–suggests that binding of p53 pre-
cedes folding of p53, consistent with the “fly-casting”
mechanism (Figure 1). The distance vs. rmsd landscape
can be manually partitioned into four states: folded-
bound (blue), unfolded-bound (green), folded-unbound
(red), and unfolded-unbound (cyan). These states were
defined using a bound-state distance cutoff of 1.2 nm,
and rmsd cutoff of 0.2 nm. Projecting the 600 MSM
microstates to this landscape, we find most of the pop-
ulation in the bound states, with only one microstate
corresponding to the folded-unbound state (red).

Projections of the simulation data to the two largest
tICA components, corresponding to the slowest confor-
mational dynamics, show a very different landscape (Fig-
ure 2). The folded-bound state (blue) is composed of
a single well-populated basin, closely matching within
1.3 Å backbone rmsd to the native co-crystal structure,
with the side chains of F19, W23 and L26 correctly in-
serted into the binding pocket of MDM2. In contrast,
the unfolded-bound state (green) is distributed through-
out the tICA landscape. The two predominant basins
of the unfolded-bound state correspond to p53 bound in
two different misfolded states, each with residue F19 in
its native binding groove, but W23 outside of the binding
cleft. As can be seen by the eigenvector structure of the
MSM (Figure S5) transitions from these basins control
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FIG. 2. Trajectory data projected to the 2D tICA landscape,
with microstates color-coded and overlaid with color-shaded
cartoons to highlight the locations of the four states. The 100
highest-flux binding pathways calculated from TPT (black
lines) fall into two groups, each dominated by a different
unfolded-bound basin with W23 misregistered outside of the
binding cleft. Representative structures for these two basins,
the folded-bound native state, and the unfolded-unbound
state are shown in circles.

the slowest timescales of binding.
Transition pathways and rates. To estimate path-

ways, fluxes and rates of p53 association, we used Transi-
tion Path Theory (TPT), which we briefly describe here
and refer readers to other references for more details36–38.
In TPT, source states (A) and sink states (B) first need
to be defined for the transition process of interest. The
remaining states are considered to be intermediate states
(I). Next, committor probabilities q+

i , defined as the
probability that a trajectory started from state i will
reach B before state A, are computed from the MSM
transition matrix. The total folding flux giving the ex-
pected number of observed A → B transitions per time
unit τ is: F =

∑
i∈A

∑
j /∈A πiTijq

+
j . The rate of reaction

A→ B, kAB can then be computed as:

kAB =
F

τ
∑m
i=1 πiq

−
i

(1)

We first used TPT to estimate overall p53 binding
on- and off-rates (kon and koff) from the 600-microstate
MSM, using the unfolded-unbound and folded-bound
states as the source and sink states for kon, respec-
tively (and vice versa for estimating koff). For compar-
ison, we constructed a four-macrostate MSM by manu-
ally lumping the 600 microstates according to our four-
state definitions. The results (Table I) show that the

TABLE I. Comparison of experimental and simulated rates.

Methods kon (M−1 s−1) koff (s−1)
Experiment39 9.2× 106 2.0
TPT 600-state MSM 2.5× 107 1.9× 105

TPT 4-state MSM 5.2× 107 6.0× 105

kon estimated from the 600-microstate MSM is very
close to the experimental kon (within a factor of 2.7).
Macrostate lumping into four states further accelerates
the dynamic timescales, with kon predictions still within
a factor of 5.6. As expected given the available trajec-
tory lengths, koff estimates from both models are severely
over-estimated.

A four-state kinetic model predicts an induced-fit mech-
anism for p53 binding. To analyze whether the binding
mechanism follows a conformational selection (CS) or in-
duced fit (IF) mechanism (or aspects of both), we com-
puted the reactive flux for each mechanism according to
the method introduced by Hammes et al.40, illustrated
in Figure 3. In this model, association of a ligand can
occur either through a weak-binding (w) form of p53, or
a tight-binding (t) form, with interconversions between
these two possible when unbound or bound. Here, we
slightly modify our interpretation of the model for use
with disordered peptide binding; in our case it is the re-
ceptor MDM2 which can select or induce folded (helical)
states of p53 TAD peptide. Following Hammes et al.,
we compute the reactive flux for conformational selec-
tion pathways as:

FCS =

(
1

kwt[p53weak]
+

1

kton[p53tight][MDM2]f

)−1

(2)

and the flux for induced fit pathways as

FIF =

(
1

kwon[p53weak][MDM2]f
+

1

kMDM2
wt [MDM2 · p53weak]

)−1

(3)
where [MDM2]f is the free MDM2 concentration. The
derivation is shown in the Supporting Information.

To obtain the relative amounts of reactive flux that oc-
cur by conformational selection vs. induced fit pathways,
we use our MSM model to make initial estimates of all
eight rates in the four-state kinetic model shown in Fig-
ure 3. We tried two different approaches to make these
initial estimates: (1) directly from the transition proba-
bilities of a four-macrostate MSM derived for our state
classifications, and (2) using TPT with pairs of relevant
states selected as the source and sink states. Both sets
of estimates are listed in Table S1. We find that the two
methods yield very similar results, except that kton esti-
mates from the transition matrix are more than an order
of magnitude larger than the estimate from TPT, due to
enforcing detailed balance with a low equilibrium popu-
lation predicted for the folded-unbound state. Therefore,
in the following analysis we use only the parameters es-
timated from TPT. From this initial estimate, we then
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FIG. 3. A four-state model of possible p53-MDM2 bind-
ing mechanisms includes both induced-fit (IF) and confor-
mational selection (CS) pathways.

scale the off-rates kwoff and ktoff to reproduce the experi-
mental binding affinity of p53 to MDM2 (see Supporting
Information).

Unlike our MSM, which was constructed from sim-
ulations performed at a fixed concentration ([p53] =
[MDM2] = 7.1 mM), the resulting four-state kinetic
model can be used to extrapolate the binding fluxes at
any desired concentrations. In all cases, we find that
binding is dominated by an induced-fit mechanism, con-
sistent with “fly-casting”. The fraction of flux that oc-
curs by an induced-fit mechanism, FIF/(FCS + FIF) is
nearly 100% regardless of the concentrations of p53 and
MDM2. This is mainly due to the fact that the simulated
helicity of p53 is very low (0.11%, Figure 4).

Increased residual helicity leads to enhanced p53 bind-
ing and a shift toward conformational selection. To es-
timate the effect of residual helicity of p53 on bind-
ing mechanism and affinity, we use a maximum cal-
iber approach to infer how the rates kwt and ktw
between unfolded-unbound states (cyan) and folded-
unbound states (red) change in response to new helix-coil
equilibrium populations (see Supporting Information),

using the relation kab ∝
√
πb/πa

41. The helicity of p53
predicted by our 4-state model is 0.11%. To model the
experimental system of Borcherds et al., we increase the
helix population of unbound p53 to 28% and 64%, val-
ues measured for wild-type and P27A variants of the p53
TAD19. The inferred rates are shown in Table S3.

The four-state kinetic model predicts that increasing
residual helicity increases the flux of conformational se-
lection at low MDM2 concentration; however, in the limit
of excess of MDM2, induced-fit binding flux increases to
almost 100% (Figure 4). The reason for this is the rel-
atively high kwon value, a key feature of intrinsically dis-
ordered proteins that we have calculated directly from

0.11% helicity

28% helicity

64% helicity
Color [p53]

7.1	μM
7.1mM
7.1	μM
7.1mM
7.1	μM
7.1mM

excess of p53 excess of MDM2

FIG. 4. Fraction of binding flux going through induced-fit
(IF) pathways at different p53 concentrations and helicities
versus total MDM2 concentration. Dashed lines denote the
p53 concentrations shown. 7.1 mM is the concentration of
p53 and MDM2 in the molecular simulations.

the MSM model. In the limit of excess of MDM2, kwon
would have to be reduced by several orders of magnitude
to convert the binding mechanism to conformational se-
lection. In the limit of excess p53, a shift towards a
conformational selection binding mechanism is observed,
although a strong preference for induced-fit binding path-
ways (more than 30% of the binding flux) remains even
at high levels of residual helicity (64%) and in the excess
of p53.

In agreement with experiment, the four-state model
predicts a greater apparent binding affinity of P27A p53
TAD compared to wild-type, with absolute and relative
binding free energies similar to experimental values (see
Figure 5). The predicted apparent ∆G of binding for
p53 wild-type and P27A are -7.5 and -9.0 kcal·mol−1,
respectively, while the experimental values are -9.1 ± 0.2
and -10.4 ±0.1 kcal·mol−1, respectively. We predict that
the ∆∆G incurred by increasing the helicity of p53 from
28% to 64% is -1.5 kcal·mol−1, which also agrees very
well with experiment (-1.3±0.3 kcal·mol−1).

DISCUSSION

Recently, Zwier et al. has reported efficient implicit-
solvent simulations of p53 TAD peptide binding to
MDM2 carried out using a weighted-ensemble path sam-
pling strategy42 on 3500 CPU cores of TACC Stampede
for 15 days, with an aggregate simulation time of 120
µs.43 The authors report similarly accurate predictions of
on-rates, and a mechanism whereby diffusion-controlled
formation of a specific encounter complex is the rate-
limiting step. While their study predicts a high helical
propensity for the p53 TAD peptide, our study predicts
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FIG. 5. Predicted p53-MDM2 binding affinities versus MDM2
concentration from the four-state kinetic model. Increasing
the residual helicity of p53 TAD from 28% to 64% increases
affinity by ∆∆G = −1.5 kcal/mol, in good agreement with
experiment (-1.3 ± 0.3 kcal/mol).

less helicity, possibly due to differences in the forcefield
and solvent model used, as well as differences in initial
starting conformations.

An advantage of our approach of parameterizing a four-
state binding flux model from a detailed MSM is the abil-
ity to extrapolate differences in binding mechanisms that
result from various helical propensities of p53 TAD pep-
tide and various ligand and receptor concentrations. At
the effective concentrations used in our simulation, resid-
ual helicity exerts a large influence on dominant binding
flux, but has less influence in excess MDM2 (see Figure
4).

Notably, both our study and the Zwier et al. study sug-
gest a bright future using adaptive sampling simulations
to model protein-peptide binding. With a high-quality
MSM of p53 binding now constructed, we aim to exploit
new MSM-based adaptive sampling approaches to model
binding rates and mechanisms for multiple sequences44.
A remaining challenge of course is to efficiently sample
off-rates as well as on-rates. With the advent of multiple-
ensemble MSM techniques45, this too may be within
reach in the near future. We expect that the mecha-
nistic detail provided by MSM approaches may suggest
new ways to design inhibitors that compete with natural
substrates.

CONCLUSION

We have used ab initio binding simulations and
Markov State Models to construct a detailed kinetic net-
work model of p53 TAD peptide binding to MDM2. The
MSM predicts binding on-rates in agreement with exper-
iment, as well an ensemble of encounter complex struc-

tures that control the overall binding pathways and rates.
Predicted MSM rates, along with experimental affinities,
were used to parameterize a four-state kinetic model,
which predicts an induced-fit “fly-casting” mechanism
over a wide range of concentrations, and shows increased
binding affinity for p53 variants with higher amounts of
residual structure, in agreement with recent experiments.
This work demonstrates how combining detailed all-atom
MSMs and simple few-state kinetic models can be very
useful in understanding how disordered protein domains
bind their target receptors. The results also suggest new
ways to design inhibitors that compete with natural sub-
strates, by rationalizing how specific binding modes may
modulate key rate processes, in the context of physiolog-
ical concentrations.
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Physics 138, 164113 (2013).

35R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein,
J. M. Swails, C. X. Hernández, C. R. Schwantes, L.-P. Wang,
T. J. Lane, and V. S. Pande, Biophysical Journal 109, 1528
(2015).

36E. Vanden-Eijnden, Journal of Statistical Physics 123, 503
(2006).
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National Academy of Sciences of the United States of America ,

201525092 (2016).

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 17, 2016. ; https://doi.org/10.1101/086272doi: bioRxiv preprint 

https://doi.org/10.1101/086272


S1

SUPPORTING INFORMATION

Supporting Text

Preparation of initial p53-MDM2 configurations for
simulation. Four non-native structures of the p53 frag-
ment were chosen from 500 ns of replica exchange molec-
ular dynamics (REMD) simulations of the p53 fragment
(residues 17-26) taken from PDB structure 1YCR. The
Amber ff96 force field with the OBC GBSA implicit
solvent model were used to simulate 16 exponentially-
spaced temperature replicas between 300 and 450 K.
Conformational clustering was performed on the lowest-
temperarture replica using a backbone-RMSD distance
metric, from which representative structures of p53 were
chosen. Of these structures, two were partial helical, one
were hairpin-like and one was random coil. These four
p53 TAD peptide structures, in addition to the native
structure, were used to prepare 30 initial structures of the
p53-MDM2 complex at a variety of distances between the
p53 fragment and the MDM2 binding pocket by placing
six replicas of each p53 fragment at 2 Å intervals (2, 4,
6, 8, 10 and 12 Å) along a vector from the MDM2 cen-
ter of mass to the p53 center of mass the 1YCR crystal
structure.

Pairwise atom distances used for time-lagged indepen-
dent component analysis (tICA). To perform tICA, the
simulation trajectory data was first projected to a set of
1953 distance coordinates, from which a time-lagged cor-
relation matrix was constructed. We used all pairwise
distances between Cα and Cβ atoms in selected residues
of p53 (Glu17, Thr18, Phe19, Ser20, Asp21, Leu22,
Trp23, Lys24, Leu25, Leu26, Pro27, Glu28, Asn29) and
MDM2 (Glu25, Thr26, Met50, Lys51, Leu54, Leu57,
Gly58, Ile61, Met62, Tyr67, Gln71, Gln72, His73, Val75,
Phe91, Val93, Lys94, His96, Ile99).

Distance between p53 and the MDM2 binding pocket.
Figure 1 in the main text uses as a structural observ-
able the distance of p53 to the MDM2 binding pocket.
We define this distance as the average of six p53-MDM2
pairwise Cα distances: (p53-Phe19, MDM2-Met62),
(p53-Phe19, MDM2-Gln72), (p53-Trp23, MDM2-Gly58),
(p53-Trp23, MDM2-Val93), (p53-Leu26, MDM2-Leu54),
and (p53-Leu26, MDM2-His96). Selected residues are
highlighted in red in Figure S6.

Correction of off-rates to accurately reproduce experi-
ment. While TPT analysis of our Markov State Model
predicts binding on-rates accurately (see Table 1, main
text), off-rates are over-estimated by about five orders of
magnitude. This is not surprising given the timescales
sampling in our simulations. To obtain realistic off-rates
for the four-state binding mechanism model, we correct
the values of kwoff and ktoff (see Figure 2, main text) ac-
cording to the experimental off-rate through a scaling
factor, γ.

γ =
kexpoff

ksimoff

=
2.0 s−1

6.0× 105 s−1
≈ 3.3× 10−6 (4)

kwoff(corrected) = γkwoff (5)

ktoff(corrected) = γktoff (6)

Here, ksimoff is the off-rate estimated using TPT from
the 4-state MSM (see Table 1, main text), and kexpoff is the
experimentally measured off-rate. The original estimates
used for correction are from TPT estimation (600-state
MSM) as shown in Table S1 and the corrected values are
shown in Table S2.

Correction of p53 folding rates to model residual helic-
ity. The helicity of p53 is defined to be the fraction of
population in the helical state:

hp53 =
πhelix

πhelix + πcoil
=

πp53tight

πp53tight
+ πp53weak

(7)

where πp53tight
and πp53weak

are estimated equilibrium
populations. The helicity estimated from the MSM
model is hp53 = 0.11%.

To model other values of residual helicity in the context
of the four-state kinetic model, we must adjust the folding
and unfolding rates of unbound p53 TAD peptide, i.e.
kwt and ktw, respectively. This is an under-constrained
problem, as many ratios of rates can lead to the same
helix-coil equilibrium constant. Therefore, we turn to a
maximum-caliber (MaxCal) approach to infer these rates
from the helix/coil population changes, using the relation

kab ∝
√

πb

πa
derived in Dixit et al. Given a desired helicity

h
′

p53, the inferred rates are

k
′

wt = kwt

(
π

′

tπw
π′
wπt

)0.5

= kwt

[
h

′

p53(1− hp53)

hp53(1− h′
p53)

]0.5

(8)

k
′

tw = ktw

(
π

′

wπt
π

′
tπw

)0.5

= ktw

[
hp53(1− h′

p53)

h
′
p53(1− hp53)

]0.5

(9)

The inferred values are shown in Table S3.

Derivation of key equations for flux analysis. The
four-state model of Hammes et al. gives expressions for
the reactive flux of conformational selection (CS) and
induced-fit (IF) pathways in terms of rates and con-
centrations [p53weak], [p53tight], [MDM2 · p53weak] and
[MDM2]f , the free (unbound) concentration of MDM2.
These concentrations can be computed entirely from the
rate parameters and the total concentrations [MDM2]tot

and [p53]tot, as described in Hammes et al. In their orig-
inal publication, we noticed a typographical error in the
expression for [MDM2]f , and present the correct expres-
sion here:
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f = [MDM2]tot − [p53weak ·MDM2]− [p53tight ·MDM2]

= [MDM2]tot − [p53weak][MDM2]f

(
1

KW
d

+
KWT
eq

KT
d

)
(10)

Here, KW
d and KT

d are the dissociation constants of [p53weak ·MDM2] and [p53tight ·MDM2], respectively; KWT
eq is

the equilibrium constant for the reaction p53weak 
 p53tight.
The concentration of p53weak is calculated using the following equation:

[p53weak] =
[p53]tot

1 +
[MDM2]f
KW

d

+KWT
eq

(
1 +

[MDM2]f
KT

d

) (11)

Substituting Eq. 11 into Eq. 10 yields a quadratic equation for [MDM2]f :

[MDM2]2f +
(
[p53]tot − [MDM2]tot + a

)
[MDM2]f − a[MDM2]tot = 0 (12)

where

a =
1 +KWT

eq

1
KW

d

+
KWT

eq

KT
d

(13)

The positive solution of Eq. 12 is the concentration of [MDM2]f . Once this value is obtained, the concentration of
other species can be calculated using the following equations:

[p53tight] = KWT
eq [p53weak]

[p53weak ·MDM2] =
[p53weak]

KW
d

[MDM2]f

[p53tight ·MDM2] =
KWT
eq [p53weak]

KT
d

[MDM2]f

(14)

We note that the Hammes et al. model was derived in the context of protein-ligand association, and applied to
systems in which the receptor is thought to undergo conformational change that can be either selected or induced
by the association of a ligand. In our model, it is p53 that is analogous to the protein receptor, as it undergoes
conformational change between a tight-binding helical state and weak-binding coil state, and MDM2 is analogous to
the ligand, as it can select or induce helical states of p53 by association.

Estimation of p53-MDM2 binding affinities at different values of residual helicities. We calculated the binding
affinity ∆G at different values of p53 helicities according to ∆G = RT lnKd. We estimate the disassociation constant
Kd based on the four-state model, considering p53tight ·MDM2 as the bound state, and the other three states to be
unbound states. Thus, the equation used to estimate Kd is

Kd =
[p53][MDM2]

[p53 ·MDM2]

Kd =
([p53weak] + [p53tight] + [p53weak ·MDM2])([MDM2]f + [p53weak ·MDM2])

[p53tight ·MDM2]

(15)

SI Figures
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FIG. S1. Distribution of simulation trajectory lengths. A
total of 2776 trajectories were generated on the Folding@home
distributed computing platform, amounting to ∼ 831µs of
aggregate simulation data.
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FIG. S2. GMRQ scores for MSMs built from various sets of
hyper-parameters. Error bars are from 5-fold cross-validation.
The hyper-parameters with the best score, marked by a red
circle, was chosen for the construction of the final MSM.
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FIG. S3. Implied timescales vs MSM lag time. Shown are the
ten slowest implied timescales.
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FIG. S4. Chapman-Kolmogorov test applied to the nine
most populated states in the 600-microstate MSM. Red
dashed curves are 〈P (i, t+ τ |i, t)〉 for state i, calculated from
the MD simulations, and blue solid curves are populations
[(T(∆t))nδi]i propagated from the MSM transition matrix,
where δi is an initial population vector with state i containing
the entire population, and n∆t = τ where τ = 5 ns. Error
bars are calculated from five bootstraps.
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FIG. S5. Relaxation eigenmodes of the 600-state MSM. Re-
laxation dynamics from an initial population vector p(0) is

given by p(t) =
∑
n〈ψn|p(0)〉φne−t/τn , where ψn and φn are

the left and right eigenvectors of the MSM transition matrix,
respectively. Shown are the four slowest relaxation eigen-
modes φn, including the stationary state (i.e. equilibrium
populations), φ0, projected to coordinates tIC1 and tIC2. The
size of each circle is proportional to the equilibrium popula-
tion, while the color corresponds to the eigenvector structure,
with population flux along each eigenmode flowing from blue
to red. The slowest relaxation, φ1 mainly corresponds to bind-
ing flux along tIC1 while φ2 corresponds to binding flux along
tIC2, both on ∼ 1 µs timescales (see Figure S3).

FIG. S6. A visualization of residues selected for the com-
putation of p53 distances to the MDM2 binding pocket (see
Supporting Methods).

p53 TAD peptide

MDM2
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B

FIG. S7. (A) The five initial starting conformations of p53
TAD peptide used in the simulations. These conformations
were taken from REMD simulations of p53 TAD peptide in
implicit solvent. (B) An example starting configuration of a
simulation, with p53 TAD peptide center of mass 12 Å from
the binding site.
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Supporting Tables

TABLE S1. Estimated rates for flux analysis.

Parameter Value (Tmatrix) Value (TPT)
kwon 1.8× 109 M−1 s−1 1.2× 109 M−1 s−1

kwoff 2.9× 106 s−1 1.8× 106 s−1

kwt 1.1× 104 s−1 1.7× 104 s−1

ktw 1.0× 107 s−1 9.0× 105 s−1

kMDM2
wt 9.6× 105 s−1 1.1× 106 s−1

kMDM2
tw 3.9× 106 s−1 4.4× 106 s−1

kton 4.0× 109 M−1 s−1 8.7× 107 M−1 s−1

ktoff 2.9× 104 s−1 1.8× 104 s−1

TABLE S2. Corrected off-rates for the four-state binding
mechanism model

Parameter Corrected value
kwoff 6.0 s−1

ktoff 0.06 s−1

TABLE S3. Inferred rates for high p53 helicity

Parameter Inferred rates
kwt (h% = 28%) 3.2× 105 s−1

ktw (h% = 28%) 4.7× 104 s−1

kwt (h% = 64%) 6.9× 105 s−1

ktw (h% = 64%) 2.2× 104 s−1
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