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Abstract

Base composition is highly variable among and within plant genomes, especially
at third codon positions, ranging from GC-poor and homogeneous species to GC-rich and
highly heterogeneous ones (particularly Monocots). Consequently, synonymous codon
usage is biased in most species, even when base composition is relatively homogeneous.
The causes of these variations are still under debate, with three main forces being
possibly involved: mutational bias, selection and GC-biased gene conversion (gBGC). So
far, both selection and gBGC have been detected in some species but how their relative
strength varies among and within species remains unclear. Population genetics
approaches allow to jointly estimating the intensity of selection, gBGC and mutational
bias. We extended a recently developed method and applied it to a large population
genomic datasets based on transcriptome sequencing of 11 angiosperm species spread
across the phylogeny. We found that base composition is far from mutation-drift
equilibrium in most genomes and that gBGC is a widespread and stronger process than
selection. gBGC could strongly contribute to base composition variation among plant
species, implying that it should be taken into account in plant genome analyses,

especially for GC-rich ones.
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Introduction

Base composition strongly varies across and within plant genomes [1]. This is
especially striking at the coding sequence level for synonymous sites where highly
contrasted patterns are observed. Most Gymnosperms, basal Angiosperms and Eudicots
have relatively GC-poor and homogeneous genomes. In contrast, Monocot species
present a much wider range of variation from GC-poor species to GC-rich and highly
heterogeneous ones, some with bimodal GC content distribution among genes, these
differences being mainly driven by GC content at third codon position (GC3) [1].
Commelinids (a group containing palm trees, banana and grasses, among others) have
particularly GC-rich and heterogeneous genomes but GC-richness and bimodality have
been showed to be ancestral to Monocots, suggesting erosion of GC content in some
lineages and maintenance in others [2]. As a consequence, in most species, synonymous
codons are not used in equal frequency with some codons more frequently used than
others, a feature that is called the codon usage bias [reviewed in 3]. This is true even in
relatively homogeneous genomes such as in Arabidopsis thaliana [e.g. 4].

Which forces drive the evolution of genome base composition and codon usage is
still under debate. Mutational processes can contribute to observed variations between
species and within genomes [e.g. 5]. However, mutation can hardly explain a strong bias
towards G and C bases, as it is biased towards A and T in most organisms studied so far
[Chapter 6 in 6]. Selection on codon usage (SCU) has thus appeared as one of the key
forces shaping codon usage as it has been demonstrated in many organisms both in
prokaryotes and eukaryotes [reviewed in 3]. Codon bias can thus result from the
balance between mutation, natural selection and genetic drift [7]. The main cause for
SCU is likely that preferred codons increase the accuracy and/or the efficiency of
translation but other mechanisms involving mRNA stability, protein folding, splicing
regulation and robustness to translational errors could also play a role [3,8,9]. In some
species, SCU appears to be very weak or inexistent, typically when effective sizes are
small [10], as typically assumed for mammals [but see 8]. However, mammalian
genomes exhibit strong variations in base composition, the so-called isochore structure
[11], which are mainly driven by GC-biased gene conversion (gBGC) [12]. gBGC is a
neutral recombination-associated process favouring the fixation of G and C (hereafter S
for strong) over A and T (hereafter W for weak) alleles because of biased mismatch

repair following heteroduplex formation during meiosis [13]. Although gBGC is a neutral
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process - ie. the fate of S vs W alleles is not driven by their effect on fitness - gBGC
induces a transmission dynamic during reproduction identical to natural selection for
population genetics [14]. Therefore, we here refer to it as a “selective-like” process as
opposed to mutation and drift. gBGC has been experimentally demonstrated in yeast
[15,16], humans [17,18], birds [19] and rice [20]. Many indirect genomic evidences also
supported gBGC in eukaryotes [21,22] and even recently in some prokaryotes [23].

In plants, both SCU [4,24,25] and gBGC [21,26,27] have been documented, but
how their magnitudes and relative strength vary among species remains unclear.
Recently, it has been proposed that the wide variations in genic GC content distribution
observed in Angiosperms could be explained by the interaction between gene structure,
recombination pattern and gBGC [28]. Increasing evidence suggests that in various
organism, including plants, recombination occurs preferentially in promoter regions of
genes, or near transcription initiation sites [29,30,31], generating a 5’-3’ recombination
gradient, and consequently a gBGC gradient. A mechanistic consequence is that short
genes, especially with no or few introns, are on average GC-richer [32]. A stronger gBGC
gradient and/or a higher proportion of short genes would increase the average GC
content and simple changes in the gBGC gradient can explain a wide range of GC content
distribution from unimodal to bimodal ones [28].

So far, the magnitude of gBGC and SCU has only been quantified in a handful of
plant species [24,25,27,33]. As in other species studied, weak SCU and gBGC intensities
were estimated. The population-scale coefficients, 4Nes or 4N.b, are usually of the order
of 1, where N. is the effective population size and s and b the intensity of SCU and gBGC
respectively [24,25,27,33,34,35]. However, high gBGC values (4Neb > 10) have been
estimated in the close vicinity of recombination hotspots in mammals [33,36] and across
the entire genome in honeybee [37]. Differences in population-scale intensities can be
due to variation in N, and/or in s or b. For gBGC, b is the product of the recombination
rate r and the basal conversion rate per recombination event, bo. Within a genome,
variations in gBGC intensities are mainly due to variation in recombination rate [e.g. 33].
Among species, bo can also vary. For instance, b was estimated to be 2.5 times lower in
honeybees than in humans but recombination rate is more than 18 times higher [37],
suggesting that bo could be 45 times lower in honeybees than in humans. The very
intense population-scale gBGC in honeybees is thus explained by the combination of a

large N. and extremely high recombination rates [37].
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Several methods have been developed to estimate the intensity of SCU and gBGC,
either from polymorphism data alone, or from the combination of polymorphism and
divergence data [e.g. 33,35,38]. These methods rely on the fact that preferred codons
(for SCU) or GC alleles (for gBGC) are expected to segregate with higher frequency than
neutral and un-preferred or AT alleles, fitting a population genetics model with selection
or gBGC to the different site frequency spectra (SFS). As demography affects SFS, it must
be taken into account in the model. Moreover, mutations must be polarized, i.e. the
ancestral or derived state of mutations must be determined using one or several
outgroup species. Otherwise, selection or gBGC can be estimated from the shape of the
folded SFS only under the assumption of equilibrium base composition [e.g. 35,38],
which is not the case in mammals [39] and some Monocots [2], for example. As errors in
the polarization of mutations can lead to spurious signatures of selection or gBGC [40],
this issue must also be taken into account.

Here we used and extended the recent method developed by Glémin et al. [33]
that controls for both demography and polarization errors. We applied it to a large
population genomic dataset of 11 species spread across the Angiosperm phylogeny to
detect and quantify the forces affecting synonymous positions. We specifically address
the following questions: (i) is base composition mainly affected by neutral or selective
forces? (ii) if active, what are the intensities of gBGC and SCU and how do they vary
across species? (iii) are the average gBGC and the 5’-3’ gBGC gradient stronger in GC-
rich genomes? Our results show that base composition is far from mutation-drift
equilibrium in most genomes, that gBGC is a widespread process being the major force
acting on synonymous sites, overwhelming the effect of SCU and contributing to explain
the difference between GC-rich (Commelinids, here) and GC-poor genomes (Eudicots

and yam, here).

Results

Building a large dataset of sequence polymorphism and divergence in 11

plant species

We focused on 11 plant species spread across the Angiosperm phylogeny with
contrasted base composition and mating systems (Figure 1 and Table 1). To survey the

wide variation observed in Monocots, and in line with the sampling of a previous study
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[2], we sampled one basal Monocots (Dioscorea abyssinica, yam), two non-grass
Commelinids (Musa acuminata, banana and Elaeis guineensis, palm tree) and three
grasses with contrasted mating system (Pennisetum glaucum, pearl millet, Sorghum
bicolor, sorghum and Triticum monococcum, einkorn wheat). In Eudicots, both Rosids
(Theobroma cacao, cacao and Vitis vinifera, grapevine) and Asterids (Coffea canephora,
coffee tree, Olea europaea, olive tree and Solanum pimpinellifolium, tomato) are
represented. For practical reasons cultivated species have been chosen but we only
sampled wild individuals over the species range, except for palm tree for which
cultivated individuals were sampled (See Table S1 for sampling details). In this species
cultivation is very recent without real domestication process (19t century [41]). For
each species we used RNA-seq techniques to sequence the transcriptome of about ten
individuals plus two individuals from two outgroup species, giving a total of 130
individual transcriptomes. When a well annotated reference genome was available (see
Material and Methods), we used it as a reference to map sequenced reads, otherwise we
used a de novo transcriptome assembly already obtained for these species (focal +
outgroups) [42] (Tables 1 and S2). After quality trimming and mapping of the raw reads,
we kept contigs with at least one read mapped in every individual. This initial dataset
was used for gene expression analyses (see below). Genotype calling and filtering of
paralogous sequences were performed using the readZsnp software [43] for each
species separately, and coding sequence regions were extracted (see Material and
Methods). The resulting datasets were used to compute diversity statistics that did not
require any outgroup information. The number of identified SNPs varies from 4,409 in T.
monococcum (which suffered from the lowest depth of sequencing) to 115,483 in C.
canephora. Variations in the numbers of SNPs also revealed the large variation in
polymorphism levels with ms ranging from 0.17% in E. guineensis to 1.22% in M.
acuminata. The level of constraints on proteins, as measured by the mn/ms ratio, varies
between 0.122 in T. monococcum and 0.261 in E. guineensis (Table 2). For the analyses
requiring polarized SNPs, we also added orthologous sequences from two outgroups to
each sequence alignment of the focal species individuals (see Material and Methods).
The number of polarized SNPs ranged from 3,253 in S. pimpinellifolium to 89,793 in M.
acuminata. Other details about the datasets are given in Table 2. Overall, the dataset
does not represent the full transcriptome of each species but allows large-scale

comparative analyses.
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Base composition, patterns of codon usage and codon preferences vary

across species

We first looked at base composition: GC3 varies from 0.38 to 0.44 in Eudicots and
from 0.46 to 0.56 in Monocots (Table 2). As observed in previous studies [2,39], these
values tend to be lower than genome wide averages (when available) but the relative
differences in base composition among species are conserved, notably the GC-poorness
of Eudicots compared to Monocots. Grass species exhibit a bimodal GC3 distribution
except T. monococcum where bimodality is not apparent (Figure S1). This is likely
because the sequencing depth was lower for this species so that GC-rich genes (most
likely short ones) have been under sampled. We also characterized codon usage in each
species by computing the Relative Synonymous Codon Usage (RSCU) for every codon as
the frequency of a particular codon normalised by the frequency of the amino-acid it
codes for (Table S3, Figure S2). Patterns of RSCU are relatively consistent between
species but reflect differences of GC content between them, notably a higher usage of G
or C-ending codons in GC-rich species.

In order to evaluate the possible effect of selection on codon usage, we defined
the sets of preferred (P) and un-preferred (U) codons for each species. The fitness
consequences of using optimal or suboptimal codons should be higher in highly
expressed genes, causing the usage of optimal codons to increase with gene expression
(and that of non-optimal ones to decrease). Thus, we defined preferred (resp. un-
preferred) codons as codons for which RSCU increases (resp. decreases) with gene
expression as in [44] (see Materials & Methods for more details). Table S3 shows
detailed results for each species. In contrast with genome-wide codon usage, nearly all
species show a bias towards preferred codons ending in G or C (Table 2, Figure 2 and
Table S3), only P. glaucum and S. bicolor showing a more balanced AT/GC sharing of
codon preference. Preferences for two-fold degenerated codons are highly conserved
across species, with only GC-ending preferred codon except for aspartic acid and
tyrosine in P. glaucum (Figure 2, Table S3). Preferences for other amino-acids are
slightly more labile but there are always one preferred GC-ending and one un-preferred
AT-ending codon common to all species. Frequency of optimal codons of a gene (Fop, i.e.
the frequency of preferred codons [45]), increases with expression as expected but the
difference in Fop between the most highly and most lowly expressed genes is weak to

moderate (from ~5% in C. canephora to 15% in T. monococcum and M. acuminata) and
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tends to be higher in Commelinid species (Figure 3). Because most preferred codons end

with G or C, GC3 and expression are also positively correlated in all species.

Selective-like evolutionary forces affect base composition

To determine which forces affect variation in base composition and codon usage
among species, we first evaluated whether base composition at synonymous sites was at
mutation-drift equilibrium. Glémin et al. [33] showed that the asymmetry of the
distribution of non-polarized GC allele frequencies (measured by the skewness
coefficient) is a robust test of this equilibrium. This statistic is not affected by possible
polarization errors (see later for more on polarization errors). Null skewness is
expected under equilibrium whereas negative (resp. positive) skewness means higher
(resp. lower) GC content than expected under mutation-drift equilibrium. The same
rationale can be applied to codon frequencies. We found that GC content and the
frequency of preferred codons are significantly higher than predicted by mutational
effects in all species, with the exception of coffee, which interestingly showed a lower GC
content than expected under mutation-drift balance (Table 3).

As base composition equilibrates slowly under mutation pressure [28], non-
equilibrium conditions could be due to long-term changes in mutational patterns. To
test further whether selective-like forces can explain the excess of GC and preferred
codons, we developed a modified MacDonald Kreitman test [46] comparing W—>S (resp.
U->P) to S2W (resp. P>U) polymorphic and divergent sites (Material & Methods and
Text S1). SNPs and fixed mutations (substitutions) were polarized by parsimony using
two outgroup taxa for each focal species. We built contingency tables by counting the
number of polymorphic or divergent sites for each of the two mutational categories.
From these contingency tables, we computed neutrality, NI, [47] and direction of
selection, DoS, [48] indices. In the case of selective-like forces favouring the fixation of
W->S or U->P mutation, we expect NI values to be lower than 1 and DoS values to be
positive. P-values were computed from a Chi-squared test on the contingency tables.
Results show that NI is lower than 1 and DoS positive in all species except S.
pimpinellifolium (Table 3), indicating that selective-like forces drive the fixation of GC
and preferred codon alleles. In P. glaucum, although significant, the departure from the
neutral expectation for GC content is minute, which can be explained by very weak gBGC

but also by a recent increase in its intensity (see results below and Text S1). Overall, this
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analysis showed that in most species selective-like forces tend to drive base and codon
composition away from their mutational equilibrium. Selection and gBGC are the two

known alternatives which effects have to be distinguished.

Disentangling gBGC and SCU?

Although they may have different mechanistic causes and biological
consequences, selection and gBGC leave similar evolutionary footprints and are not easy
to disentangle, especially in species where most preferred codons end in G or C (Table
2). We first applied correlative approaches to try to disentangle both processes. Then we
tried to quantify their respective intensities.

Under the SCU hypothesis, departure from neutrality should be stronger for
highly expressed genes and/or genes with strongly biased codon composition. Under
the gBGC hypothesis, departure from neutrality should increase with recombination
rates. However, recombination data is not available in our datasets. As gBGC leads to an
increase in GC content, departure from neutrality should thus also increases with GC
content. We split synonymous SNPs and substitutions into eight groups of same size
according to their GC3 or their gene expression level (measured by the mean RPKM
values across all individuals of a given population), and computed the NI and DoS
indices for each category based on W/S or U/P changes. For all species except D.
abyssinica and S. bicolor, we found a strong positive (resp. negative) correlation between
GC3 and DoS (resp. NI), indicating a stronger bias in favour of S alleles in GC-rich genes
(Figure 4). In contrast, the relationship between expression level and DoS or NI
measured on codon usage is weaker, with more variable and on average lower
correlation coefficients (Figure 4). These results tend to point out gBGC as a stronger
force than SCU affecting synonymous variations in our datasets.

We then split our datasets into four independent categories based on two GC3
groups crossed by two expression level groups to test which factor has the strongest
effect on the bias towards S or P alleles. The rationale is that SCU should make the bias
towards P alleles increase with gene expression independently of GC3. On the other
hand, gBGC should increase the bias towards S alleles with GC3 independently of gene
expression. We found that DoS clearly increases with GC3 in all species for both lowly
and highly expressed genes, except in D. abyssinica and S. bicolor where it decreases for

lowly expressed genes. On the other hand, the effect of expression on DoS is inconsistent
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or only weak in most species (Figure 5). These results confirm that the effect of gBGC

appears stronger than the effect of SCU.

Estimation of gBGC/SCU intensity and mutational bias

To evaluate further the forces affecting base composition we estimated the
intensity of selection (S = 4N.s) and gBGC (B = 4N.b) from site frequency spectra (SFS).
SFS for all species are given in Figure S3. We used the method recently developed by
Glémin et al. [33] that takes SNP polarization errors into account, which avoids
observing spurious signature of selection or gBGC. As mentioned above, the observed
pattern in P. glaucum (excess of GC content but almost no departure from neutrality
according to the NI and DoS indices, see Table 3) suggests a recent change in the
intensity of selection and/or gBGC. Also, transition to selfing, which usually can be very
recent in plants [49], could have effectively shut down gBGC in the recent past due to a
deficit in heterozygous positions. To capture these possible changes of fixation bias
through time, we extended the model of [33] by combining frequency spectra and
divergence estimates as summarized on Figure 6 (and see Text S2 for full details).
Divergence is determined by both mutation and selection/gBGC so it is not possible to
disentangle these two factors from the divergence data alone. However, if we assume
constant and identical mutation bias at the polymorphism and the divergence level,
there are enough degrees of freedom to fit an additional S or B parameter. Thus, we
assumed a single mutation bias but two different selection/gBGC intensities, one fitted
on polymorphism data and the other on divergence. We evaluated the statistical
significance of the shift in intensity by a likelihood ratio test with the model where the
two intensities are equal (i.e. no change over time). Simulations showed that not taking
polarization errors into account can bias selection/gBGC estimates as already shown in
[33] and also leads to spurious detection of changes in selection/gBGC intensities (Text
S2). Simulations also showed that the estimated differences between the two intensities
are often underestimated. This is expected as B values estimated in the model
correspond to averages over the conditions that mutations have experienced during
their lifetime (drift and gBGC/selection intensities), so it depends on when changes
occurred. Overall, the test of heterogeneity of selection/gBGC is a conservative

approach.
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We applied the method to the total frequency spectra, either for W/S or U/P
polymorphisms and substitutions. In all species, significant (at the 5% level) gBGC or
SCU were detected but at low intensity (B or S < 1, Table 4). In four species (P. glaucum,
E. guineensis, D. abyssinica and V. vinifera) we found significant differences between
ancestral and recent intensities for gBGC and/or SCU. In particular, the recent increase
in gBGC/SCU in P. glaucum explains why NI is very close to one (or DoS close to zero)
(see above and Text S1). On average, Monocots, especially Commelinids species tend to
exhibit stronger gBGC than Eudicots and B tends to increase with mean GC3, but no
relationship is significant with only 11 species when either By or B; are used. However,
using the constant B estimates (Table S4), weakly significant relationships were found
for the difference between Commelinids and other species (Wilcoxon test: p-value =
0.0519) and the correlation between B and GC3 (pspearman = 0.691, p-value = 0.023). No
significant relationship was found for SCU.

As the two processes are entangled, it is difficult to properly and separately
estimate their respective intensities. To do so, we developed a second extension of the
method of [33]. Combining the two processes, nine kinds of mutations can occur (see
Text S2). By assuming that selection and gBGC act additively, it is in theory possible to
estimate separately the two effects. We fit a general model to the nine SFS and the nine
substitution counts, with a constant mutation bias, two B and two S values. The details of
the model are reported in Text S2. Simulations show that the method can efficiently
estimate both gBGC and SCU but tends to slightly underestimate recent gBGC and
overestimate recent SCU (Text S2). When the distributions of SNPs and substitutions are
highly unbalanced (typically S/P and W/U states are confounded), it is more difficult to
detect both effects with a significant level (Text S2). For both selection and gBGC and
both ancestral and recent periods, we either fixed the value to 0 or let it be freely
estimated, leading to 16 different models. For each species, the best model according to
AIC criteria (see methods) is given in Table 5 while all results are given in Table S5. In
six species the model with only gBGC is the best one, this could also include M.
acuminata where it was not possible to disentangle between gBGC and SCU. For three
species, the best model includes both gBGC and SCU and only S. pimpinellifolium appears
to be affected by SCU but not gBGC. Overall, this confirms that synonymous sites are

mostly affected by gBGC in plant species and that SCU only plays a minor role. This

11
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result is expected to be robust and conservative because simulations suggest that SCU is
slightly more easily detected than gBGC.

This method also allows us to estimate mutation bias. As already observed in
most species, mutation is biased towards AT alleles, with a bias slightly ranging from 1.6
to 2.2 (Table 4), which is of the same order as what was found in humans [33,50].
Interestingly, C. canephora is again an exception with almost no mutational bias (A =

1.05).

Variation along genes

So far, we considered either global effects at the transcriptome scale or variations
among genes belonging to different categories. However, most plant species exhibit a
more or less pronounced gradient in base composition from 5" to 3’ [1], which is
strongly linked to exon-intron structure [32]. In particular, in some species the first exon
is much GC-richer than other exons. Moreover, it has been proposed that this gradient
could be due to a gBGC gradient associated with a recombination gradient [28]. To
quantitatively test this hypothesis, we separated SNPs and fixed derived mutations as a
function of their position along genes. The best choice would have been to split them
according to exon ranking [32]. However, as exon annotation is lacking (or imprecise)
for most species in our datasets, we split contigs into two sets: the first 252 base pairs,
corresponding to the median length of the first exon in Arabidopsis, banana and rice
(Gramene database [51]), used as a proxy for the first exon, and the rest of the contig.
We then estimated B on these two sets of contigs.

For all species except D. abyssinica and S. pimpinellifolium, the ancestral B is
higher in the first part than in the rest of contigs but the signature is less clear for recent
B as far less values are significant though ancestral and recent B are not significantly
different in most species (Table S6). To illustrate the global pattern, Figure 7 shows
average gBGC gradients for all species, i.e. assuming the same ancestral and recent B
values. Interestingly, while there is no clear taxonomic effect on global gBGC estimates
(Table 4), there is a sharp difference between Commelinid species and the others for the
first part of contigs (Wilcoxon test p-value = 0.030, Figure 7C), in agreement with the
strong 5’ - 3’ GC gradient observed in these species [1,2]. Moreover, B values and GC3
tends to be more positively correlated on the first part of contigs (pspearman = 0.591, p-

value = 0.061) than in the rest (pspearman = 0.382, p-value = 0.248). These analyses were
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performed on all contigs but some of them do not start by a start codon. We restricted
the analyses to the subset of contigs starting by a start codon and we found very similar
results with stronger statistical supports (Table S6 and Figure S4). In line with previous
results showing that first exons contribute to most of the variation in GC content among
species [2,28,32], these results show that species also mostly differ in their gBGC

intensities in the first part of genes.

Discussion

Selective-like evolution of synonymous variations in plant genomes

It has already been shown that base composition in grass genomes is not at
mutation-drift equilibrium with both gBGC and selection increasing GC content despite
mutational bias toward A/T [26]. Our results demonstrate that even in GC-poor
genomes base composition is not at mutation-drift equilibrium, implying that selective-
like forces are widespread in all the 11 plant species we studied. In all species, either the
skewness and/or the DoS/NI statistics show evidence of departure from equilibrium
and purely neutral evolution (Table 3). All species except C. canephora have higher GC
content than predicted by mutational effect alone, which could be explained by a
mutation/gBGC (or selection)/drift balance.

The case of C. canephora remains intriguing. Mutation seems not to be biased
towards AT as observed in all mutation accumulation experiments [reviewed in 52] and
through indirect methods [53]. So far, GC biased mutation has only been observed in the
bacteria Burkholderia cenocepacia [52]. However, despite no apparent or very weak AT
mutational bias and evidence of both recent and ancestral gBGC (Table 4), GC content is
rather low (GC3 = 0.42, Table 2) and lower than expected under mutation pressure
alone (1/(1+A) = 0.49) as revealed by the positive skewness statistics (Table 3).
Preferred codons mostly end in G or C (Table 2) so that SCU is not a possible explanation
for this low GC content. Rather, a recent change in mutation bias is a more probable
explanation. Using Bo = 0.154 or B; = 0.243 (Table 4), a mutational bias of 1.61 or 1.76
would be necessary to reach the observed GC3 (= 0.42). Such values are in the same
range as observed for the other species. So further investigation of mutational patterns
in this species would be useful to understand better its intriguing base composition

pattern.
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Beyond departure from equilibrium, comparison of ancestral and recent gBGC or
selection also reveals the dynamic nature of forces affecting base composition. At least
four species (P. glaucum, E. guineensis, D. abyssinica and V. vinifera) show evidence of
significant change in gBGC and/or SCU intensity over time (Table 4). If we consider the
first part of genes only, changes also occurred in M. acuminata and T. cacao (Table S6).
Moreover, our method is conservative (see Text S2) so we may have missed variations
in other species. Changes occurred in both directions. In the three selfing or mixed
mating species (S. pimpinellifolium, T. monococcum, and S. bicolor) the ancestral gBGC or
SCU intensity is significantly positive but the recent one is null. This is supported by the
rather recent evolution of selfing in these species, which nullifies the effect of gBGC
through the increase in homozygosity levels and reduces the efficacy of selection [54]. In
other species, gBGC or SCU have increased (e.g. P. glaucum) or decreased (e.g. V.
vinifera). Recalling that B = 4N.rbo (see introduction), this could be explained by changes
in effective population size (N.) recombination rate (r), gBGC intensity per
recombination event (bo) and also conversion tract length, which might also vary among
species [55]. To date, we know nothing about the stability of bo and how fast it can
evolve. In some species, such as mammals, recombination can evolve very rapidly, at
least at the hotspot scale [56] but it can be more stable in other species like in birds [57],
yeast [58] or maize [59]. Moreover, we average gBGC over the whole transcriptome so
recent genome-scale changes in recombination should be necessary to explain changes
in B. Although recent changes in r and bo are possible, changes in effective population
size over time appears to be the most likely explanation.

Selective-like evolution and non-equilibrium conditions can have practical impacts
on several genomic analyses. First, gBGC can lead to spurious signatures of positive
selection [60], significantly increasing the rate of false positive in genome scan
approaches in mammals [61]. This problem should also be taken into account in plant
genomes, even in GC-poor ones. Second, SCU/gBGC and non-stationary evolution, due
for instance to changes in population size, can strongly affect the estimation of the rate
of adaptive evolution through McDonald-Kreitman approaches, especially at high GC
content [62]. In species far from equilibrium such as Commelinids, it should be an issue

to consider.
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gBGC, SCU or both?

Technical issues

We found clear evidences that base composition evolution is not driven only by
mutation. However, it was more difficult to distinguish gBGC from SCU because we only
used coding regions in our study. Unfortunately, we were not able to use 5’ or 3’ flanking
regions to compare them with synonymous coding positions. These flanking regions
were too short and of lower sequencing coverage and quality: they were not frequently
sequenced and corresponded to sequence ends. Comparison with introns or non-coding
regions would be helpful in the future to confirm our findings, as it was done in rice [26]
or maize [27]. To bypass this problem, we developed a new method that jointly
estimates gBGC and SCU and allows testing which processes are significant. However,
the two processes are especially difficult to distinguish in species where most preferred
codons end in G or C, such as M. acuminata and T. monococcum (Tables 2 and 5 and Text
S2). However, simulations suggest that weaker SCU than gBGC could be estimated even
for a highly unbalanced dataset (at least ancestral SCU, see Text S2). Finally, correlative
approaches with GC content and expression can also help distinguishing the two
processes. Overall, although each individual result (species-specific and or approach-
specific) can be insufficiently conclusive, they collectively point towards the general
conclusion of a major contribution of gBCG over SCU to explain synonymous variation in

the studied plant species.

gBGC seems to predominate

The combination of our different results clearly shows that gBGC prevails over
SCU in the studied plants. While signatures of gBGC were detected in all species but S.
pimpinellifolium, SCU was detected only in four or five species (Table 5). However, in
these species, the change in NI/DoS with expression is consistent with SCU only in P.
glaucum (Figure 4). These poorly supported results do not necessarily mean that SCU is
not active. Indeed, we were able to defined preferred codons in all our species, and Fop
increases with expression level in all of them (Figure 2). However, changes in Fop with
expression are moderate to low (15% to 5%) and on average lower to what was
observed in Drosophila (15%) or Caenorhabditis (25%), but slightly higher than
Arabidopsis (5%) [44]. Thus, SCU is likely active but at a level too low to be detected by

our methodology in some species, especially because gBGC masks its effect. A larger

15


https://doi.org/10.1101/086231
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086231; this version posted November 7, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

dataset (increasing both the number of SNPs and of individuals) would probably be
necessary to properly estimate SCU in the presence of gBGC, especially when the most
preferred codons end with G or C. It should be noted that in P. glaucum, one of the
species where SCU was quite confidently detected, a high number of SNPs and a rather

equilibrated patterns of codon preference were identified.

Coevolution between GC and codon usage?

The difficulty in distinguishing gBGC and SCU also raises the question of the
interaction between these two processes. The predominance of GC ending preferred
codons has also been observed in many bacteria [63]. The bias towards GC ending
preferred codons increases with genomic GC content, with species having a GC content
higher than 40% being strongly biased towards GC preference [63]. The classical
Bulmer’s model of coevolution between preferred codons and tRNA predicts a match
between the frequency of tRNAs and preferred codons with two equivalent stable states
(either AT or GC preference), and so does not explain the observed bias in preference
[64]. However, our results are compatible with a modified version of this model in which
an external force on base composition is introduced [65]. gBGC could act as such a force.
By increasing GC content, gBGC could disrupt the co-evolutionary equilibrium between
preferred codons and tRNAs abundance towards a higher level of GC preference. This

would in turn leads to the confounding effects of gBGC and SCU.

GC content gradient and the gBGC hypothesis

We detected gBGC in all but one species but its intensity is rather weak (Tables 4
and 5 and S4 and S5), of the same order to what was estimated in humans [33] but
lower than in other mammals [34], maize [66], and particularly honey bee [37]. Low
values can be explained by the fact that we only estimated average B values. In many
plants studied so far, recombination was found to be heterogeneous along chromosomes
[e.g. 31] and locally occurring in hotspots [e.g. 29,30,59], so that gBGC can be locally
much higher than average estimates. However we did not apply the hotspot model
proposed by [33] because it behaves poorly when not constrained by additional
information on hotspot structure, which we lack in the species studied here. In addition,
recombination hotspots are preferentially located outside genes, especially in 5’

upstream regions (and 3’ downstream regions to a lesser extent) [29,30,31]. As we
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estimated gBGC intensities within coding regions, this can also explain why we only
estimated rather weak B values.

A consequence of this specific recombination hotspot location is the induction of
a 5’ - 3’ recombination gradient along genes (or more generally an exterior to interior
gradient if also considering downstream location) [29,30]. Recently, it has been
proposed that this recombination gradient could explain the 5’ - 3’ gradient observed in
grasses and more generally in many plant species [28]. We tested this model by looking
at signatures of gBGC along contigs in our datasets. In agreement with this model, we
found stronger gBGC signatures at the 5’ end of contigs compared to the rest of contigs
in most of our species (Figure 7). The fact that we observed this gBGC gradient in both
Eudicots and Monocots suggests that all these species share the same meiotic
recombination structure with preferential location of recombination in upstream
regions of gene, which was hypothesized to be the ancestral mode of recombination
location in Eukaryotes [67].

Glémin et al. [28] also proposed that changes in the steepness of the
recombination/gBGC gradient could explain variation in GC content distributions among
species, from unimodal GC-poor to bimodal GC-rich distributions. Alternatively, if
gradients are stable among species, changes in gene structure, especially the number of
short mono-exonic genes and the distribution of length of first introns, could also
generate variations in GC content distribution [28,32]. Here we found that, in the first
part of genes, gBGC is the highest in Commelinid species, which exhibit the richest and
most heterogeneous GC content distributions (Figure 7). This result parallels the sharp
difference in GC content in first exons between rice and Arabidopsis whereas the centres
of genes have a very similar base composition [32]. Our results support the hypothesis
that genic base composition in GC-rich and heterogeneous genomes has been driven by
high gBGC/recombination gradients. As GC-content bimodality is likely ancestral to
monocot species and has been lost several times later [2], our results suggest that an
increase in gBGC and or recombination rates occurred at the origin of the Monocot

lineage.
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Conclusion

Overall, we show that selection on codon usage only plays a minor role in shaping
base composition evolution at synonymous sites in plant genomes and that gBGC is the
main driving force. Our study comes along an increasing number of results showing that
gBGC is at work in many organisms. Plants are no exception. If, as we suggest, gBGC is
the main contributor to base composition variation among plant species, it shifts the
question towards understanding why gBGC may vary between species and more
generally why gBGC evolved. Our results also imply that gBGC should be taken into
account when analysing plant genomes, especially GC-rich ones. Typically, claims of
adaptive significance of variation in GC content should be viewed with caution and
properly tested against the “extended null hypothesis” of molecular evolution including

the possible effect of gBGC [60].

Materials & Methods

Dataset

We focused our study of synonymous variations on 11 species spread across the
Angiosperm phylogeny with contrasted base composition and mating systems, Coffea
canephora, Olea europaea, Solanum pimpinellifolium, Theobroma cacao, Vitis vinifera,
Dioscorea abyssinica, Elaeis guineensis, Musa acuminata, Pennisetum glaucum, Sorghum
bicolor and Triticum monococcum. A phylogeny of these species is shown in Figure 1. For
practical reasons, we chose diploid cultivated species but focused our analysis on wild
populations except in Elaeis guineensis where domestication is very recent and limited
(19th century [41]). Using the same methodology as [42], we sequenced for each species
the transcriptome of ten individuals (12 in the case of C. canephora and V. vinifera, nine
in the case of S. bicolor and five in the case of D. abyssinica) plus two individuals coming
from two outgroup species, using RNA-seq (See Text S3 for details). After cleaning, reads
were either mapped on the transcriptome extracted from the reference genome (when
available, see Table 1) or on the de novo transcriptome of each species (including
outgroups) obtained from [42]. For C. canephora and its outgroups, no transcriptome
was available. We thus applied the same methodology and pipeline as in [42] to

assemble and annotate contigs. For banana, M. acuminata, Robusta coffee tree, C.
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canephora, and for the outgroup Phoenix dactylifera, genome sequences were available
but the quality of mapping was rather poor because of problem of definition of
exon/intron boundaries. We thus prefer to assemble a new transcriptome from our data
using the same protocol. Details of the assemblies for all species are given in Table S2.
Details of data processing are provided in Text S4. Only contigs with at least one mapped
read for each individual was kept for further analysis. Expression levels for each
individual in each contig were computed as RPKM values (i.e. the number of Reads per
Kilobase per Millions mapped reads). We called genotypes and filtered out paralogs for
each species individually using the readZsnp software [43] (see Text S4 for details).
Genotypes were called when the coverage was at least 10x and the posterior probability
of the genotype higher than 0.95. Otherwise, the genotype of the individual was
considered as missing data. Orthology between focal and outgroup individuals was
determined by best reciprocal blast hit. Finally, we aligned orthologous contigs (focal

and outgroup individuals) sequences using MACSE [68].

SNPs detection and polarization

We scanned contig alignments in each focal species for polymorphic sites. We
only considered gapless sites for which all focal individuals were genotyped. Only bi-
allelic SNPs were considered. In the highly selfing T. monococcum, the deficit in
heterozygous sites can lead to abnormal site frequency spectra that are difficult to
analyse. We thus used an allele sampling procedure that effectively divides the number
of chromosomes by two by merging together homologous chromosomes in each
individual. For heterozygous sites, one allele was randomly chosen. For the mixed
mating S. bicolor and S. pimpinellifolium, we used the full SFSs.

SNPs were polarized using parsimony by comparing alleles in focal individuals to
orthologous positions in outgroups. For each polymorphic site, the ancestral allele was
inferred to be the one identical to both outgroup species, while the other allele was
inferred to be derived. All polarized SNPs are marked ancestral - derived for the
remainder of the paper. A and T bases were grouped together as W (for weak) while G
and C bases were grouped together as S (for strong). We thus classified mutations as

W->S, S>W or neutral with respect to gBGC (S&—=2S or W&E>W).
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SNPs and preferred codons

In each species, preferred (P) and un-preferred (U) codons were defined using
the ARSCU method [44]. In each contig, we computed for each codon its RSCU value, or
relative frequency (i.e. its number of occurrences in a contig normalized by the number
of occurrences of its amino-acid in the same contig). Contigs were divided into eight
groups of identical size based on their expression levels (RPKM values averaged over all
individuals). For each codon, we compared its RSCU in the first (least expressed) and
last (most expressed) class using a Mann-Whitney U test. Codons were annotated as
preferred (resp. un-preferred) if their RSCU increased (resp. decreased) significantly
with gene expression levels. All other codons were marked as non-significant. All
synonymous SNPs for which an ancestral allele is unambiguously identified were
annotated with regards to codon preference: mutations increasing codon preference
(from un-preferred to either non-significant or preferred, or from non-significant to
preferred) were annotated U->P while mutations decreasing codon preference (from
preferred to either un-preferred or non-significant, or from non-significant to un-
preferred) were annotated P> U. Mutations not affecting preference were considered as

neutral with respect to SCU.

Substitutions

Using the three species alignments (Focal + two outgroups), we also counted and
polarized substitutions specific to the focal species lineage. Divergent sites were
determined as sites that were fixed in the focal population and different from both
outgroups. Only sites identical in both outgroups were considered. As described above
for SNPs, substitutions were classified as W=>S, S2W or neutral, and U=>P, P=>U and

neutral.

Modified MK-test, neutrality and direction of selection indices

We performed a modified McDonald-Kreitman (MK) test [46], comparing W—>S
to S2>W polymorphic and divergent sites on one hand (gBGC set) and U>P to P>U
polymorphic and divergent sites on the other (SCU set). The underlying theory is
detailed in Text S1. For each category, the total number of synonymous polymorphic and
divergent sites was computed following the criteria detailed above. We performed a Chi-

squared test for each set. Significant tests indicate that sequences do not evolve only
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under mutation pressure: selection and/or gBGC must be at work. Furthermore, we
computed for each set a neutrality [47] and a direction of selection [48] indices as

follows:
_ Pys/ Psy
Dy s/ Dsy

Dws — Pws
Dws + Dsyy  Pyws + Psy

Where Py,s and Pgyyare the number of W->S and S>W SNPs and Dy, and Dg, the

NI

DoS =

number of W->S and S>W substitutions respectively. Assuming constant mutational
bias, NI values lower than 1 or positive DoS values indicate SCU and/or gBGC of similar
or stronger intensity at the divergence than at the polymorphism level. Respectively, NI
values higher than 1, or negative DoS values indicate stronger selection and/or gBGC at
the polymorphism than at the divergence level (see Sup. Text S1).

Because these statistics rely on polarized polymorphisms and substitutions, they
are potentially sensitive to polarization errors, which could lead to spurious signature of
selection/gBGC [33,40]. Importantly, we showed in Text S1 that the sign of both
statistics is insensitive to polarization errors (as far as they are lower than 50%) and
that polarization errors decrease the magnitude of the statistics, which makes our tests

conservative to polarization errors.

Estimation of gBGC and SCU

To estimate gBGC and SCU we extended the method of Glémin et al. [33] as
detailed in Text S2. The rationale of the approach is to fit population genetic models to
the three derived SFS including fixed mutations (W-=>S or U=>P, S>W or P->U, and
neutral). Parameters estimated are ancestral (Bo or So) and recent (B1 or S1) gBGC or
selection, mutational bias (A), as well as other parameters (see Text S2 for details). We
ran a series of nested models where By and B (or So and S1) are either fixed to zero or
freely estimated, plus one model where they are set to be equal. Models were compared
by the appropriate likelihood ratio tests (LRT). To jointly estimate gBGC and selection,
we also extended the model by fitting nine SFS corresponding to the combination of the
three basic SFS (e.g. WS and P> U see Table S2.1 in Text S2 for the complete list). We
tested all combinations of models where each parameter can be either null or freely
estimated, so from the null neutral model, By = B1 = So = S1 = 0, to the model with the

four parameters being freely estimated. As all models are not nested, we then chose the
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best model using the Akaike Information Criterium (AIC). When AICs were very close we

chose the model with the lowest number of free parameters.
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Table 1: List of studied species and datasets characteristics

* Simply noted Olea europaea in the rest of the article

Species Name Group Mating system Outgroup 1 Outgroup 2 Reference # of individuals
Sorghum bicolor Sorghum Monocot - Commelinid Mixed Sorghum brachypodum Zea mays Genome 9
Pennisetum glaucum Pearl millet Monocot - Commelinid  Outcrossing Pennisetum polystachion Pennisetum alopecuroides  Transcriptome 10
Triticum monococcum Einkorn wheat Monocot - Commelinid Selfing Taeniatherum caput-medusae  Eremopyrum bonaepartis ~ Transcriptome 10
Musa acuminata Banana Monocot - Commelinid  Outcrossing  Musa balbisiana Musa becarii Transcriptome 10
Elaeis guineensis Oil palm tree  Monocot - Commelinid  Outcrossing Phoenix dactylifera Mauritia flexuosa Transcriptome 10
Dioscorea abyssinica Yam Monocot - Basal Outcrossing  Dioscorea praheensilis Dioscorea trifida Transcriptome 5
Coffea canephora Coffee tree Eudicot - Asterid Outcrossing  Empogona ruandensis Coffea pseudozanguebariae Transcriptome 12
Solanum pimpinellifolium Tomato Eudicot - Asterid Mixed Solanum melongena Capsicum annuum Genome 10
Olea europaea subsp. europaea* Olive tree Eudicot - Asterid Outcrossing  Olea europaea subsp. cuspidata Phillyrea angustifloia Transcriptome 10
Theobroma cacao Cocoa Eudicot - Rosid Outcrossing  Herrania nititda Theobroma speciosa Genome 10
Vitis vinifera Grape vine Eudicot - Rosid Outcrossing  Vitis romaneti Vitis riparia Genome 12
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Table 2: Global statistics for each dataset
GC and GC3 have been computed on the total number of contigs

* # of preferred codons ending in G or C / endingin Aor T

# of contigs Total length # of SNPS Base composition Polymorphism

Species Total Genotyped With outgroup Total Polarized GC GC3 Average ENC Codon Preference® Cor(GC3,Expressi0n)b 7ts (in %) my (in %) wn/ns
Sorghum bicolor 29448 18518 3884 25849393 77703 12201 0.52 0.56 40.33 15/7 0.30 0.407 0.065 0.161
Pennisetum glaucum 24618 12443 9616 8870196 95068 78360 0.48 0.53 39.75 13 /10 0.27 0.710 0.121  0.170
Triticum monococcum 33381 3766 1319 1758789 4409 3522 0.46 0.48 40.06 26 /2 0.38 0.272 0.033  0.122
Musa acuminata 36115 14 366 10 546 6796494 113585 89793 049 0.52 39.42 28/1 0.31 1.223 0.237  0.194
Elaeis guineensis 26791 14970 9144 10623105 28097 27514 047 047 39.33 28/4 0.28 0.175 0.046  0.261
Dioscorea abyssinica 30551 18497 11544 16125630 84961 49552 046 0.46 41.10 26 /12 0.17 0.417 0.085  0.205
Coffea canephora 28975 13290 9064 11180913 115483 78519 045 0.42 40.68 27/6 0.22 0.593 0.145  0.245
Solanum pimpinellifolium 34727 12357 1074 9438177 25392 3253 0.43 0.38 42.79 22/8 0.18 0.213 0.051 0.238
Olea europaea 45389 12816 8512 6718947 90397 68299 044 042 39.09 28/6 0.23 1.070 0.231 0.216
Theobroma cacao 28798 9918 7901 5510955 37455 32674 045 042 44.06 27/8 0.31 0.484 0.124  0.257
Vitis vinifera 29971 12398 9325 12513219 101351 68315 0.46 0.45 44.30 27 /8 0.21 0.744 0.147  0.197
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Table 3: Skewness, NI and DoS statistics for GC content and codon usage

Mean allele

GC content

Mean

Codon usage

Species frequency of GC Skewness p-value NI DoS p-value frequency of Skewness p-value NI DoS p-value
alleles Pref alleles
Sorghum bicolor 0.576 -0.351 <10E-16 0.834 0.043 7.50E-07 0.535 -0.164 5.45E-06 0.94 0.02 0.256
Pennisetum glaucum 0.562 -0.294 <10E-16 0.963 0.009 0.007 0.534 -0.158 <10E-16 0.87 0.03 3.72E-15
Triticum monococcum 0.547 -0.222 1.81E-05 0.728 0.078 8.70E-11 0.550 -0.236 1.16E-05 0.71 0.08 3.84E-11
Musa acuminata 0.570 -0.343 <10E-16 0.827 0.047 <10E-16 0.570 -0.344 <10E-16 0.83 0.05 7.01E-15
Elaeis guineensis 0.540 -0.201 <10E-16 0.819 0.050 3.30E-09 0.535 -0.170 3.06E-13 0.82 0.05 1.79E-08
Dioscorea abyssinica 0.554 -0.277 <10E-16 0.856 0.037 0.035 0.549 -0.252 <10E-16 0.87 0.03 0.112
Coffea canephora 0.450 0.234 <10E-16 0.913 0.022 3.13E-05 0.458 0.199 <10E-16 0.92 0.02 5.47E-04
Solanum pimpinellifolium 0.534 -0.152 0.019 1.132 -0.031 0.051 0.539 -0.174 0.016 0.73 0.08 1.04E-06
Olea europaea 0.509 -0.047 0.001 0.884 0.031 0.003 0.510 -0.051 0.001 0.89 0.03 0.017
Theobroma cacao 0.515 -0.071 4.66E-04 0.838 0.044 7.14E-14 0.510 -0.045 0.053 0.88 0.03 5.38E-06
Vitis vinifera 0.550 -0.229 <10E-16 0.737 0.075 <10E-16 0.538 -0.172 <10E-16 0.66 0.10 3.80E-88
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Table 4: Separated estimations of recent and ancestral gBGC (B = 4N.b) and SCU (S = 4N.s)

gBGC
Species lambda 4N.b ancestral 4N_.b recent p-value ancestral =0 p-valuerecent=0 p-value recent = ancestral
Sorghum bicolor 1.61[1.51-2.69] 0.378[0.290-0.516] 0.078[-0.492 - 0.739] 2.73E-14 0.758 0.189
Pennisetum glaucum 1.73[1.69-1.83] 0.224[0.189-0.261] 0.524[0.383-0.661] <10E-16 1.15E-13 2.18E-06
Triticum monococcum 1.99 [1.67 - 2.25] 0.448[0.269 - 0.613] -0.008[-0.824 - 0.691] 1.39E-05 0.985 0.164
Musa acuminata 1.71[1.66-1.80] 0.313[0.253-0.370] 0.397[0.234 - 0.546] <10E-16 2.68E-06 0.343
Elaeis guineensis 1.84 [1.77 - 1.93] 0.328[0.267 - 0.400] 0.516[0.328-0.702] <10E-16 1.76E-07 0.034
Dioscorea abyssinica 2.20[2.10-2.47] 1.171[0.127 -4.067] 0.008[-0.221 - 0.264] 0.032 0.949 0.072
Coffea canephora 1.05[1.02-1.10] 0.154[0.110-0.202] 0.243[0.113-0.366] 9.47E-11 3.77E-04 0.171
Solanum pimpinellifolium 2.05 [1.74 - 2.63] 0.114 [-0.057 - 0.392] 0.759 [-0.491 - 3.785] 0.215 0.153 0.193
Olea europaea 1.58 [1.53-1.64] 0.167 [0.080-0.268] 0.031[-0.127 - 0.168] <10E-16 0.687 0.132
Theobroma cacao 1.67 [1.59-1.74] 0.316[0.258-0.377] 0.465[0.222 - 0.683] <10E-16 6.54E-05 0.135
Vitis vinifera 2.15[2.08 - 2.22] 0.360[0.318-0.413] 0.024[-0.101 - 0.153] <10E-16 0.71 1.55E-08
Continued
SCU

Species lambda 4N.s ancestral 4N srecent p-value ancestral =0 p-valuerecent=0 p-value recent = ancestral
Sorghum bicolor 2.04 [1.70 - 2.47] 0.139[0.023-0.260] 0.439 [-0.251 - 1.083] 0.010 0.143 0.341
Pennisetum glaucum 1.76 [1.70 - 1.87] 0.181[0.137-0.226] 0.126 [-0.062 - 0.289] 2.33E-15 0.165 0.484
Triticum monococcum 2.84[2.33-3.31] 0.534[0.353-0.718] 0.236[-0.610 - 1.029] 1.14E-06 0.581 0.409
Musa acuminata 2.02[1.96 - 2.15] 0.315[0.256-0.362] 0.392[0.221 - 0.553] <10E-16 5.21E-06 0.394
Elaeis guineensis 1.58 [1.50 - 1.66] 0.324[0.233-0.396] 0.512[0.322-0.704] 3.00E-15 6.51E-07 0.043
Dioscorea abyssinica 1.68[1.39-1.74] 1.909[0.306-9.994] -0.101[-0.311 - 0.135] 0.023 0.470 0.037
Coffea canephora 0.89[0.86 - 0.95] 0.148[0.079-0.197] 0.196 [0.039 - 0.330] 5.91E-08 0.012 0.515
Solanum pimpinellifolium 1.56 [1.32 - 2.05] 0.465 [0.270- 0.857] 0.566 [-0.567 - 3.900] 3.39E-06 0.285 0.834
Olea europaea 1.18[1.13-1.22] 0.148[0.040-0.241] 0.025[-0.162 - 0.186] 0.004 0.772 0.214
Theobroma cacao 1.09[1.02-1.16] 0.245[0.167 - 0.339] 0.397[0.107 - 0.673] 2.85E-11 3.00E-03 0.185
Vitis vinifera 1.26 [1.22-1.32] 0.470[0.421-0.525] 0.118[-0.028 - 0.258] <10E-16 0.103 7.09E-08
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Table 5: Best model for the joined estimations of recent and ancestral gBGC (B =

4Ncb) and SCU (S = 4N.s).

For Musa acuminata the two best models with very close AIC values are given.

Species 4N_b ancestral 4N_ b recent 4N.s ancestral 4N.s recent
Sorghum bicolor 0.439 [0.334 - 0.525]] 0 0 0
Pennisetum glaucum 0.218[0.182-0.253] 0.561 [0.393 -0.689] 0.139[0.106 - 0.175] 0
Triticum monococcum 0.264 [0.042 - 0.443] 0 0.247 [0.027 - 0.468] 0
Musa acuminata 1 0.312[0.281-0.395] 0.394[0.241-0.580] 0 0
Musa acuminata 2 0 0 0.317 [0.284 - 0.400] 0.398 [0.176 - 0.540]
Elaeis guineensis 0.329[0.241-0.383] 0.517[0.234 - 0.744] 0 0
Dioscorea abyssinica 1.256 [0.564 - 2.202] 0 0 0
Coffea canephora 0.154 [0.119 - 0.227] 0.244[0.070-0.361] 0 0
Solanum pimpinellifolium 0 0 0.459[0.311 - 0.603] 0

Olea europaea 0.168 [0.074 - 0.250] 0 0 0
Theobroma cacao 0.318[0.241-0.383] 0.474[0.234-0.744] 0 0

Vitis vinifera 0.256 [0.216 - 0.295] 0 0.380[0.323 - 0.439] 0
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Figures

Figure 1: Phylogeny of the species used in this study.

Figure 2: Patterns of codon preference among the 11 studied species

Figure 3: Relationship between the frequency of optimal codons (FOP) and expression

in the 11 studied species

Figure 4: DoS statistics as a function of GC3 and expression level

Figure 5: Combined effect of GC3 and expression level on DoS statistics

Figure 6: Schematic presentation of the method to estimate recent and ancestral gBGC

or SCU

Figure 7: GC3 and gBGC gradients along genes
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Figure 1: Phylogeny of the species used in this study.
Phylogenetic relationship of the species in this study. The phylogeny was computed with
PhyML [69] on a set of 33 1-1 orthologous protein clusters obtained with SiLiX [70]. All

images were obtained from the wikicommons website.
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Figure 2: Patterns of codon preference among the 11 studied species.

The colour scale indicates the magnitude of ARSCU, the difference in the Relative Synonymous Codon Usage between highly and lowly

expressed genes. The greenest codons are the most preferred and the reddest the least preferred. Codons ending in G or C are in red and

those ending in A or T in blue.
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Figure 3: Relationship between the frequency of optimal codons (FOP) and
expression in the 11 studied species

For each species, genes have been split into eight categories of expression (based on
RPKM) of same size and the mean FOP for each category is plotted with its 95%

confidence interval.
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Figure 4: DoS statistics as a function of GC3 and expression level

Correlation between GC3 and DoS computed on WS changes (left panel) or between expression level (measured through RPKM) and DoS

computed on UP changes (wright). Pearson correlation coefficients are given for each species (red: significant at the 5% level, blue non-

significant).
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Figure 5: Combined effect of GC3 and expression level on DoS statistics

The DoS statistics was computed on W/S (gBGC) or U/P (SCU) changes for four gene categories: GC-rich and highly expressed, GC-rich

and lowly expressed, GC-poor and highly expressed, GC-poor and lowly expressed.
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Figure 6: schematic presentation of the method to estimate recent and ancestral
gBGC or SCU

In addition to polymorphic derived mutations used to infer recent gBGC or selection
(B1/S1) as in [33] we also consider substitutions (ie. fixed derived mutations) on the
branch leading to the focal species. Each box corresponds to a site position in a sequence
alignment. Both kinds of mutations are polarized with the two same outgroups and are
thus sensitive to the same probability of polarization error. We assume that gBGC and
selection may have change so that fixed mutations may have undergo a different
intensity. Note that these two B or S values correspond to average of potentially more

complex variations over the two periods.
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Figure 7: GC3 and gBGC gradients along genes
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