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1 Abstract

We present a simple, intuitive algorithm for visualizing time-varying flow fields that can

reveal complex flow structures with minimal user intervention. We apply this technique to

a variety of biological systems, including the swimming currents of invertebrates and the

collective motion of swarms of insects. We compare our results to more experimentally-

difficult and mathematically-sophisticated techniques for identifying patterns in fluid flows,

and suggest that our tool represents an essential “middle ground” allowing experimental-

ists to easily determine whether a system exhibits interesting flow patterns and coherent

structures without the need to resort to more intensive techniques. In addition to being in-

formative, the visualizations generated by our tool are often striking and elegant, illustrating
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coherent structures directly from videos without the need for computational overlays. Our

tool is available as fully-documented open-source code available for MATLAB, Python, or

ImageJ at www.flowtrace.org.

2 Introduction

Flow visualization is an essential technique for studying biological processes arising in many

diverse areas, including ecology,1 biomechanics,2 and molecular biology.3, 4 Observations of

the trajectories of many tracer particles—whether fluorescent beads, microbubbles, vesicles

inside a moving cell, or flocking bacteria—can reveal rich information about the way that

biological motion such as molecular transport, ciliary flows, or active force generation is

coordinated over many length and timescales.5–8 Additionally, flow visualization aids in

characterization and secondary validation of many standard techniques, such as microfluidics

and flow cytometry9, 10

The simplest qualitative flow visualization techniques involve observations of the motion

of passive scalars, like dyes or smoke, as they are advected by the flow. These experiments

have the benefit of being relatively straightforward to perform, and can often yield immediate

insight into the global structure and mixing properties of a flow.11 However, at length and

time scales dominated by diffusive effects, or in flows characterized by large separations in the

timescales of different processes, the results of such studies can be difficult to interpret.12, 13

As a result, in many contexts quantitative flow characterization techniques based on the

motion of tracer particles are preferable.14–16

However, standard quantitative flow visualization techniques—particle tracking and par-

ticle image velocimetry (PIV)—are sufficiently difficult to implement and optimize that

rigorous fluid dynamical visualization techniques remain prohibitive in many experimental

contexts.13 While PIV and related techniques have been widely-applied and optimized for

certain systems, such as the study of fish swimming17 or bloodflow mechanics,8 in less-
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established contexts these techniques require specialized modifications of apparatuses such

as laser light sheets or point probes to be constructed.4, 18 As a result, system-dependent

techniques are often necessary,19 particularly when particle motion is only partially visible

in the data, such as from image streaks9 or out of focus drift due to limited depth of field.20

This issue is even more prominent for flows in non-traditional media, such as in the collective

motion of flocks and herds.21–23

Nonetheless, many standard concepts in fluid mechanics—such as vortices, jets, and

turbulence—are widely-known to researchers throughout the sciences, who may recognize

the likely presence of these features in their data even without the need for quantitative flow

characterization tools.24, 25 This suggests that additional flow visualization tools are neces-

sary for systems for which dye-based qualitative techniques are unavailable, but quantitative

tracer-particle studies are unnecessary.

Here, we present Flowtrace, an intuitive, qualitative visualization technique that can re-

veal the presence of various flow structures in experimental videos, allowing it to be used

either as a primary analysis tool for presence/absence studies or to motivate the use of more

complicated flow quantification techniques. Our technique is based purely on image pro-

cessing of the input data, rather than numerical reconstruction of scalar fields like vorticity,

allowing it to be used as a straightforward “first pass” characterization technique for bio-

logical systems where traditional techniques are either unnecessary to support qualitative

observations, or prohibitively difficult due to the length and timescales involved. While our

technique is straightforward and intuitive, we were unable to find previous reports of it in

the literature—and, importantly, we find that it has surprising utility for studying patterns

in a wide range of biological data sets.
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3 Method

3.1 Algorithm

Our algorithm generalizes a common technique for generating long-exposure photographs

from videos, in which the maximum (or minimum) intensity projection of a time series is

taken in order to generate pathlines for bright objects moving against a dark background—

resulting in “motion streaks” across the image.5 This technique has previously been used

to create star trails, a popular astronomical visualization generated by taking the maximum

intensity projection of a stabilized video of the night sky.26

Our primary extension of this technique is to take a single long video, and then take

the maximum intensity projection of small groups of successive frames, in order to generate

sequential images showing pathlines at different times. The resulting time series of pathline

images shows how the shapes of the pathlines change over time. Concretely, for a 100 frame

video, a Flowtrace video with 30-frame traces consists of the maximum intensity projection

of frames 1-31, 2-32, 3-33, etc, and so forth. The sequence ends when frames 70-100 are

projected, resulting in a 70 frame video. In addition to this basic operation, various other

operations can be combined with the maximum intensity projection operator in order to

yield improved results. The process is illustrated graphically in Figure 1C.

Symbolically, let each frame of the movie be a vector of pixel values and locations, vij[t],

where t = 1, 2, ..., N represents the index of a frame in a video consisting of N frames, and

i and j denote the coordinates of a pixel in the image. Suppose that the tracer particles are

brightly-colored objects moving against a dark background. In this case, we define a series

of maximum-intensity projections, p[t], in terms of a forward convolution operator,

p[t] = (P ∗ v)[t]

where (Pij ∗ vij)[t] ≡ max
t′∈{1,2,...,M}

vt+t′

ij
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where M < N is some subset of the frames in the video. As the time index t “slides”

forward across successive indices 1, 2, 3, ..., the maximum intensity projection is taken across

successive runs of M frames that each differ by two images (the first and the last). This

results in a set of maximum intensity projections, ptij, t = 1, 2, ..., N −M , that constitute a

new video generated from the original data set. Importantly, the number of frames in the

generated video (N −M) is almost equal to the number of frames in the original video (N).

In this paper, we refer to each subsequence of M images as a substack, and the sequence of

positions taken by a single particle moving across M frames as a pathline. The parameter

M , the timescale over which particle pathlines are visualized in each frame, represents the

only parameter that the user must specify in order to use the tool.

During convolution, the projection operator P “slides” across the entire sequence of

frames, operating on the video in overlapping sets of M frames. This operator can be

composed with other pre-processing operations in order to achieve different effects; in the

code described below, other operations defined include median subtraction (to remove slowly-

moving objects), color inversion (for dark objects moving against a lighter background),

differential weighing (coloring or darkening each frame in the M frame sequence a different

amount, in order to show a gradient across the pathlines indicating time), and pairwise

differencing (to isolate objects that move faster than 1 px/frame). Each of these operations

symbolically represents composition before convolution, such that the final image series is

((P ◦G) ∗ v)[t], where G is the pre-processing operation.

3.2 Software package and options

Our algorithm is implemented as “Flowtrace,” an open-source package for MATLAB, Python,

or ImageJ at www.flowtrace.org. Full tutorials and sample image sets are provided there.

Table 1 summarizes the primary user-specified arguments and options available for the code;

optional arguments are passed as a struct object in MATLAB, as keyword arguments in

Python, and as checkboxes in a GUI for ImageJ.
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Oftentimes a dataset features two well-separated velocity scales; one for tracer particles

and another slow component for gradual drift, bulk flow, etc. In such cases Flowtrace

performs best when the projection length M is set so that the fast particles travel far within

the field of view, while objects moving at the slower speed move relatively little. This is true

for the pathlines shown for the two feeding current-generating organisms shown in Figure 1,

which are drawn for projection periods that are long compared to the transit time of tracer

particles, but short compared to the gradual motion of each organism’s body. As a results

the features of each organism’s anatomy remain sharp in the image.

In some cases, these timescales are not well separated (resulting in motion blur for slowly-

moving objects), or there are stationary objects and obstacles in the image that obscure the

pathlines. For these situations, it is useful to apply a background subtraction operation to

each substack before performing the projection. For objects moving slowly relative to the

tracer particles, but fast enough to exhibit noticeable motion blur, the most aggressive back-

ground option is “take difference”, which takes the pairwise differences among all consecutive

images before applying the projection. However, if some tracer particles move slowly relative

to others, these will also vanish from the image. For nearly-stationary background objects,

“subtract first” or “substract median” yield similar results based on the types of objects.

Occasionally it is convenient to highlight the directionality of time in the resulting path-

lines, particularly when still frames from the output time series are used for analysis. In this

case, directionality can be indicated by applying a color gradient across time using the op-

tional argument “color series”, or by applying a linear intensity gradient using the optional

argument “fade tails”.

4 Results and Discussion

We have applied Flowtrace to a variety of biological systems, and it proves surprisingly

effective in illustrating the complicated dynamics of unsteady flows arising in a variety of
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Table 1 Options and parameters for Flowtrace. Full documentation for individual versions of Flow-
trace for ImageJ, Python, and MATLAB can be found at www.flowtrace.org

Required Argument (type) Description
frames to merge (integer) The number of input frames to

combine per output frame
image dir (string) The location to save output files
Optional Argument (type) Description (default)
invert color (boolean) For images comprising dark ob-

jects moving against a light back-
ground (false)

subtract median (boolean) Subtract the median of the sub-
stack from the substack before
projection (false)

take difference (boolean) Take the pairwise differences of
images before projection (false)

subtract first (boolean) Subtract the first image of each
substack from the substack before
projection (false)

add first (boolean) Add the first image of each sub-
stack to each projected image
(false)

color series (boolean) Apply a color gradient across
pathlines (false)

frames to skip (integer) Number of alternate frames to
omit from each projection (0)

use parallel (boolean;
Python only)

Use multithreading across cores
(false)

max cores (integer; Python
only)

The maximum number of threads
to use when running in parallel
(4)

fade tails (boolean; MAT-
LAB only)

Apply an intensity gradient
across pathlines (false)
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contexts. By varying the projection time interval, τ (and thus the pathline lengths), we

have studied biological phenomena occurring over a wide range of length and time scales.

Methods for each of the experiments briefly described below are discussed further in the

Supplementary Materials.

Figure 1A shows three representative frames from a Flowtrace movie of a starfish larva,

which in previous work we have shown creates dynamic vortex arrays around its body as it

continuously adjusts its feeding currents.27 The full Flowtrace movie from which the video

was generated shows the different vortex patterns smoothly transitioning into one another

over time, indicating how these different, dynamic flow patterns evolve due to the animal’s

control mechanisms (see Supplementary Video 11 of the referenced paper).27 In Figure 1B

we explore similar ciliary flows generated during filter feeding by the protozoan Stentor sp.

(size ∼ 50µm). The videos and images (τ = 3 s) capture the helical motion of algae particles

as the organism slowly rotates its stalk (Supplementary Video S1).

In the sea anemone Aiptasia pallida (∼ 1 mm), an inverted-color video (τ = 4 min) shows

the breakup of a water jet as the animal peristaltically pumps water containing tracer beads

into its body cavity (Figure 2C, Supplementary Video S3). In a similar video of a moon

snail veliger (∼ 1 mm), Flowtrace processes a color video generated by a DSLR camera by

projecting each channel separately, generating a true color video of the formation of the

dipolar flow field created by the swimming animal (Figure 2D, Supplementary Video S4).

In addition to passive fluid tracer particles, Flowtrace can be applied to active particles

and ecological data. In a crawling army ant swarm (∼ 5 mm, filmed in the field with a

handheld iPhone), Flowtrace shows the convergence of the ants’ paths (τ = 1 s, Figure 2B,

Supplementary Video S2). Similarly, in a ∼1 m wide swarm of flying midges, applying the

optional parameter color series shows color gradients (representing time) along the midges’

pathlines, allowing the tightening of the flock to be visualized (Figure 2A, Supplementary

Video S1, raw data taken from the referenced paper).28

The simple sliding projection technique used by Flowtrace appears to be largely-unknown
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a

b

c

Figure 1 The Flowtrace algorithm. (a.) Three stills from a video of feeding currents generated
by the larva of the starfish Patiria miniata. The full video is available as Supplementary Video 11 of
our previous work.27 (b.) The gyration of Stentor sp. as it filters water containing 6 µm beads (τ = 3
s, timepoints = 0, 6.5, 18 s, scale bar 175 µm). (c.) A false-color detail from panel b illustrating the
“sliding projection” used by Flowtrace to generate pathlines (Supplementary Video 1; τ = 3 frames,
frame rate = 20 fps, scale bar 25 µm).
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in the biological sciences and fluid dynamics literature, despite the ease with which it can be

implemented. Flowtrace can reproduce the core qualitative conclusions of several studies,

including our recent study on larval starfish swimming,27, 29 in which the key observation of

distinct feeding and swimming vortex arrays generated by the animals is first determined

based on Flowtrace videos. We have found that our method works particularly well for

studies of feeding currents because there is a wide separation between the timescales of

advection and field variation, such that tracer particles have sufficient time to map out the

structure of the flow field before it undergoes further variation. Moreover, feeding phenomena

typically involve small length scales and long timescales, for which traditional dye advection

visualization techniques would fail due to rapid diffusive mixing.

We have compared Flowtrace to other techniques for identifying structures in fluid flows,

and we find that Flowtrace can qualitatively reproduce the results of more-sophisticated dy-

namical analysis using either vorticity contours or finite-time Lyapunov exponents30, 31 (see

Supplementary Analysis). Our tool is available in efficient, multithreaded implementations

for Fiji/ImageJ, Python 2 and 3, and MATLAB. We envision a broad community—from mi-

croscopists to ecologists to fluid physicists—will find Flowtrace useful, and so the full source

code and documentation is available at http://www.flowtrace.org or for pull requests on

GitHub.
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c
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Figure 2 Application of Flowtrace to diverse datasets. (a.) Three frames from a movie
of a flock of midges, with pathlines temporally color-coded from blue to orange (movie from ref. 6;
τ = 333 ms, timepoints = 0, .66, 1.3 s, scale bar 60 mm).28 (b.) A crawling swarm of army ants (τ = 1
s, timepoints = 0, 1, 4.5 s, scale bar 20 mm). (c.) A sea anemone taking in a jet of water containing
6 µm beads (τ = 4 min, timepoints = 0, 5.4, 18 min, scale bar 1 mm). (d.) A swimming moon snail
larva, with 6 µm beads mixed into the water (τ = 2 s, timepoints = 0, 6, 20 s, scale bar 350 µm).
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