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Abstract

Deleterious alleles have long been proposed to play an important role in patterning
phenotypic variation and are central to commonly held ideas explaining the hybrid vigor
observed in the offspring by crossing two inbred parents. We test these ideas using
evolutionary measures of sequence conservation to ask whether incorporating
information about putatively deleterious alleles can inform genomic selection (GS)
models and improve phenotypic prediction. We measured a number of agronomic traits
in both the inbred parents and hybrids of an elite maize partial diallel population and
re-sequenced the parents of the population. Inbred elite maize lines vary for more than
350,000 putatively deleterious sites, but show a lower burden of such sites than a
comparable set of traditional landraces. Our modeling reveals widespread evidence for
incomplete dominance at these loci, and supports theoretical models that more
damaging variants are usually more recessive. We identify haplotype blocks using an
identity-by-decent (IBD) analysis and perform genomic prediction analyses in which we
weigh blocks on the basis of segregating putatively deleterious variants. Cross-validation
results show that incorporating sequence conservation in genomic selection improves
prediction accuracy for grain yield and other fitness-related traits as well as heterosis for
those traits. Our results provide empirical support for an important role for incomplete
dominance of deleterious alleles in explaining heterosis and demonstrate the utility of
incorporating functional annotation in phenotypic prediction and plant breeding.
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Author Summary

A key long-term goal of biology is understanding the genetic basis of phenotypic
variation. Although most new mutations are likely disadvantageous, their prevalence
and importance in explaining patterns of phenotypic variation is controversial and not
well understood. In this study we combine whole genome-sequencing and field
evaluation of a maize mapping population to investigate the contribution of deleterious
mutations to phenotype. We show that a priori prediction of deleterious alleles
correlates well with effect sizes for grain yield and that variants predicted to be more
damaging are on average more recessive. We develop a simple model allowing for
variation in the heterozygous effects of deleterious mutations and demonstrate its
improved ability to predict both phenotypes and hybrid vigor. Our results help
reconcile alternative explanations for hybrid vigor and highlight the use of leveraging
evolutionary history to facilitate breeding for crop improvement.

Introduction

Understanding the genetic basis of phenotypic variation is critical to many biological
endeavors from human health to conservation and agriculture. Although most new
mutations are likely deleterious [I9], their importance in patterning phenotypic
variation is controversial and not well understood [48]. Empirical work suggests that,
although the long-term burden of deleterious variants is relatively insensitive to
demography [61], population bottlenecks and expansion may lead to an increased
abundance of deleterious alleles over shorter time scales such as those associated with
domestication [I], postglacial colonization [36] or recent human migration [53]. Even
when the impacts on total load are minimal, demographic change may have important
consequences for the contribution of deleterious variants to phenotypic variation

[41] 58|, [61], [62]. Together, these considerations point to a potentially important role for
deleterious variants in determining patterns of phenotypic variation, especially for traits
closely related to fitness.

Maize (Zea mays) is an ideal system in which to study the impacts of deleterious
variants. In addition to its global agricultural importance, maize has long been an
important genetic model system [49] and central to debates about the basis of hybrid
vigor and the role of deleterious alleles [2] [TT]. The maize domestication bottleneck has
lead to an increased burden of deleterious alleles in maize compared to its wild ancestor
teosinte [67], and rapid expansion following domestication likely lead to an increase in
new mutations and stronger purifying selection [I]. More recently, modern maize
breeding has lead to dramatic reductions in effective population size [63], but inbreeding
during the development of modern inbred lines may have decreased load by purging
recessive deleterious alleles [§]. Nonetheless, substantial evidence suggests an abundance
of deleterious alleles present in modern germplasm, from changes in heterozygosity
during the process of inbreeding [25] [45] and selection [23] to genome-wide association
results that reveal an excess of associations with genes segregating for damaging
protein-coding variants [46).

Modern maize agriculture takes advantage of hybrid maize plants that result from
the cross between two parental inbred lines [I1]. These crosses result in a phenomenon
known as hybrid vigor or heterosis, in which the hybrid plant shows improved agronomic
qualities compared to its parents. Heterosis cannot be easily predicted from parental
phenotype alone, and the genetic underpinnings of heterosis remain largely unknown.
The most straightforward explanation for heterosis has been simple complementation of
recessive deleterious alleles homozygous in one of the inbred parents [7, [12]. While this
model is supported by considerable empirical evidence [22, [69], it fails in its simplest
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form to explain a number of observations, especially relating to heterosis and inbreeding
depression in polyploid plants [2, [ [70]. Other explanations, such as single-gene
heterozygote advantage, clearly may play an important role in some cases [e.g. [B1] [35],
but mapping studies suggest such models are not easily generalizable [37].

In this study, we set out to investigate the contribution of deleterious alleles to
phenotypic variation and hybrid vigor in maize. We created a partial diallel population
from 12 maize inbred lines which together represent much of the ancestry of present-day
commercial U.S. corn hybrids [43, 47]. We measured a number of agronomically relevant
phenotypes in both parents and hybrids, including flowering time (days to 50% pollen
shed, DTP; days to 50% silking, DTS; anthesis-silking interval, ASI), plant size (plant
height, PHT; height of primary ear, EHT), grain quality (test weight which is a measure
of grain density, TW), and grain yield (GY). We conducted whole genome sequencing of
the parental lines and characterized genome-wide deleterious variants using genomic
evolutionary rate profiling (GERP) [10]. We then test models of additivity and
dominance for each phenotype using putatively deleterious variants and investigate the
relationship between dominance and phenotypic effect size and the long-term fitness
consequences of a mutation as measured by GERP. Finally, we take advantage of a
Bayesian genomic selection framework [28] approach to explicitly test the utility of
including GERP scores in phenotypic prediction for hybrid traits and heterosis.

Materials and Methods

Plant materials and phenotypic data.

We formed a partial diallel population from the F1 progeny of 12 inbred maize lines
(Table Figure . Field performance of the 66 F1 hybrids and 12 inbred parents
were evaluated along with two current commercial check hybrids in Urbana, IL over
three years (2009-2011) in a resolvable incomplete block design with three replicates. To
avoid competition effects, inbreds and hybrids were grown in different blocks within the
field. Plots consisted of four rows (5.3 m long with row spacing of 0.76 m at plant
density of 74,000 plants ha~1), with all observations taken from the inside two rows to
minimize effects of shading and maturity differences from adjacent plots. We measured
plant height (PHT, in cm), height of primary ear (EHT, in cm), days to 50% pollen
shed (DTP), days to 50% silking (DTS), anthesis-silking interval (ASI, in days), grain
yield adjusted to 15.5% moisture (GY, in bu/A), and test weight (TW, weight of 1
bushel of grain in pounds).

We estimated Best Linear Unbiased Estimates (BLUES) of the genetic effects in
ASReml-R (VSN International) with the following linear mixed model:

Yiju =pn+G+0ij+ Brij +ar+s-a+e

where Yj;i; is the phenotypic value of the Ith genotype evaluated in the k*" block of

the j*" replicate within the i*" year; j, the overall mean; ;, the fixed effect of the i*"
year; d;5, the random effect of the 4t replicate nested within the " year; Brij, the
random effect of the k" block nested within the i*" year and j** replicate; oy, the fixed
genetic effect of the I*" individual; ; - o, the random interaction effect of the I*"
individual with the i*" year; and ¢, the model residuals. We calculated the broad sense
heritability (H?) of traits based on the analysis of all individuals (inbred parents,
hybrid progeny, and checks) following the equation:

H? =Vg/(Va + Vaxr/i+ Ve/(i x 7))

where i = 3 (number of years) and j = 3 (number of replicates per year).
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The BLUE values for each cross can be found in Table values across all hybrids
were relatively normally distributed for all traits (Shapiro-Wilk normality tests P values
> 0.05, Figure , though some traits were highly correlated (e.g. Spearman
correlation r = 0.98 for DTS and DTP, Figure .

We estimated mid-parent heterosis (MPH) as:

MPH,; = Cfij — mean(G;, é])

where Gh, G; and Gj are the BLUE values of the hybrid and its two parents 4 and j.

Note that for ASI, lower trait values are considered superior. General combining ability
(GCA) was estimated following Falconer and Mackay [20], and the estimated values can
be found in Table

Sequencing and Genotyping.

We extracted DNA from the 12 inbred lines following [I6] and sheared the DNA on a
Covaris (Woburn, Massachusetts) for library preparation. Libraries were prepared using
an Illumina paired-end protocol with 180 bp fragments and sequenced using 100 bp
paired-end reads on a HiSeq 2000. Raw sequencing data are available at NCBI SRA
(PRINA381642).

We trimmed raw sequence reads for adapter contamination with Scythe
(https://github.com/vsbuffalo/scythe) and for quality and sequence length (> 20
nucleotides) with Sickle (https://github.com/najoshi/sickle). We mapped filtered
reads to the maize B73 reference genome (AGPv2) with bwa-mem [38], keeping reads
with mapping quality higher than 10 and with a best alignment score higher than the
second best one for further analyses.

We called single nucleotide polymorphisms (SNPs) using the mpileup function from
samtools [39]. To deal with known issues with paralogy in maize [8], SNPs were filtered
to be heterozygous in fewer than 3 inbred lines, have a mean minor allele depth of at
least 4, have a mean depth across all individuals less than 30 and have missing alleles in
fewer than 6 inbred lines. Data on total number of SNPs called and the rate of missing
data per line are shown in Table We estimated the allelic error rate using three
independent data sets: for all individuals using 41,292 overlapping SNPs from the maize
SNP50k bead chip [63]; for all individuals using 180,313 overlapping SNPs identified
through genotyping-by-sequencing (GBS) [57]; and for B73 and Mol17 using 10,426,715
SNP from the HapMap2 project [§]. Alignments and genotypes for each of the 12
inbreds are available at CyVerse (https://de.cyverse.org/de/7type=data&folder=
/iplant/home/yangjl/pvp_diallel_data). Because these parents are highly inbred,
knowing their homozygous genotype also allows us to know the genotype of the F1
derived from any two of the parents.

To test whether alignment to the B73 reference introduces a bias in relatedness
estimation, we computed kinship matrices using both our SNP data as well as
genotyping-by-sequencing data (version AllZeaGBSv2.7 downloaded from
(www.panzea.org)) obtained from alignments to a set of sequencing reads ascertained
from a broad germplasm base [24]. The two matrices were nearly identical (Pearson’s
correlation coefficient » = 0.995), suggesting the degree of relatedness among lines is not
sensitive to using B73 as the reference genome.

Identifying putatively deleterious alleles.

We used genomic evolutionary rate profiling (GERP) [14] estimated from a
multi-species whole-genome alignment of 13 plant genomes [55] including Zea mays,
Coelorachis tuberculosa, Vossia cuspidata, Sorghum bicolor, Oryza sativa, Setaria italica,
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Brachypodium distachyon, Hordeum vulgare, Musa acuminata, Populus trichocarpa, 119
Vitis vinifera, Arabidopsis thaliana, and Panicum virgatum; the alignment and 120
estimated GERP scores are available at CyVerse (https://de.cyverse.org/de/ 121
7type=data&folder=/iplant/home/yangjl/pvp_diallel_data). We define 122
“GERP-SNPs” as the subset of SNPs with GERP score > 0, and at each SNP we assign 123
the minor allele in the multi-species alignment as the likely deleterious allele. Finally, 124

we predicted the functional consequences of GERP-SNPs based on genome annotation 12
information obtained from SnpEff [9]. The multi-species alignment made use of the B73 12
AGPv3 assembly, and to ensure consistent coordinates, we ported our SNP coordinates 1

from AGPv2 to AGPv3 using the Gramene assembly converter 128
(http://ensembl.gramene.org/Zea_mays/Tools/AssemblyConverter?db=core). 129

To compare GERP scores (for all SNPs with GERP > 0) to recombination rate and 13
allele frequencies, we obtained the NAM genetic map [51] from the Panzea website 131
(http://www.panzea.org/) and allele frequencies from the > 1,200 maize lines 132
sequenced as part of HapMap3.2 [6]. To compare the burden of deleterious alleles in 133
modern inbred lines to landraces, we extracted genotypic data of 23 specially-inbred 134
traditional landrace cultivars (see [§] for more details) from HapMap3.2. For each line, 13
we calculated burden as the count of minor alleles present across all GERP-SNPs 136
divided by the total number of non-missing sites. We separated sites into fixed (present 1
in all individuals of a group) and segregating sites for landrace and modern maize 138
samples separately. 139
Estimating effect sizes and dominance of GERP-SNPs. 140
We estimated the additive and dominant effects of individual GERP-SNPs using a 141
GBLUP model [13] implemented in GVCBLUP [65]: 102

}/i:H+ZXijaj+ZWijdj +e

Jj=1 Jj=1
where Y; is the BLUE value of the ith hybrid, a; and d; are the additive and 143
dominant effects of the jth GERP-SNP, X,; = {2p,2p — 1,2p — 2}, and 144
Wi; = {2p?,2p(1 — p), —2(1 — p)?} are the genotype encodings for genotypes 145
A1 A1,A1 Ay, and Ay As of the jth SNP in the ¢th hybrid, respectively, and ¢ is the 146

model residuals. The additive and dominance SNP encoding ensures that the effects are 17
independent for a given GERP-SNP. We first estimated the total variance explained 148
under models of complete additivity (d; = 0) or complete dominance (a; = 0). Then, to s
assess correlations between SNP effects and GERP scores, we calculated the degree of 150
dominance (k = d/a) [42] for SNPs that each explained greater than the genome-wide 15

mean per-SNP variance (total variance explained divided by total number of 152
GERP-SNPs). Because this approach can lead to very large absolute values of k, we 153
truncated GERP-SNPs with |k = d/a| > 2 for all further analyses. 154

To compare the variance explained by our model to that explained by random SNPs, 1ss
we used a 2-dimensional sampling approach to create 10 equal-sized datasets of 156

randomly sampled SNPs (including SNPs with GERP score <= 0) matched for allele s
frequency (in bins of 10%) and recombination rate (in quartiles of cM/Mb). For each 15
dataset we fit the above model separately and estimated SNP effects and phenotypic 159
variance explained by each SNP. 160

To test the relationship between GERP score and dominance under a simple model 16
of mutation-selection equilibrium, we estimated the selection coefficient s by assuming 1
that yield is a measure of fitness. We assigned the yield-increasing allele at each 163
GERP-SNP a random dominance value in the range of 0 > k > 1 and calculated its 164
equilibrium allele frequency p under mutation-selection balance using p = \/g for values 16
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of K> 0.98 and p = ,f—fl for k£ < 0.98. We then simulated datasets using binomial 166
sampling to choose SNPs in a sample of size n = 12 inbreds. 167
Haplotype Analysis. 168

We imputed missing data and identified regions of identity by descent (IBD) between 169
the 12 inbred lines using the fastIBD method implemented in BEAGLE [4]. We then 170
defined haplotype blocks as contiguous regions within which there were no IBD break  n
points across all pairwise comparisons of the parental lines (Figure . Haplotype 172

blocks at least 1 Kb in size were kept for further analyses. 173

Because there is no recombination in an inbred parent, this allows us to project the 1
diploid genotype of each F1 based on the haplotypes of the two parents. In the 175
projected diploid genotype of each F1, haplotype blocks were weighted by the summed 176
GERP scores of all GERP-SNPs (python script ‘gerpIBD.py’ available at 177

https://github.com/yangjl/zmSNPtools)); blocks with no SNPs with positive GERP s
scores were excluded from further analysis. For a particular SNP with a GERP score g, 1o
the homozygote for the conserved (major) allele was assigned a value of 0, the 180
homozygote for the putatively deleterious allele a value of 2g, and the heterozygote a 181
value of (14 k) x g, where k is the dominance estimated from the GBLUP model above. 1s

Genomic Selection. 193

We used the BayesC option from GenSel4 [28] for genomic selection model training with — 1ss
41,000 iterations and removing the first 1,000 as burn-in. We used the model 185

n
Y; :H‘FZT]‘IM +e
j=1
where Y; is the BLUE value of the ith hybrid, r; is the regression coefficient for the s
jth haplotype block, and I;; is the sum of GERP scores under an additive, dominance s
or incompletely dominance model for the ith hybrid in the jth haplotype block. 188
To conduct prediction, we used a 5-fold cross-validation method, dividing the diallel s
population randomly into training (80%) and validation sets (20%) 100 times. After 190
model training, we obtained prediction accuracies by comparing the predicted breeding 1a

values with the observed phenotypes in the corresponding validation sets. For 102
comparison, we permuted GERP scores using 50k SNP (a 100Mb or larger) windows 193
which were circularly shuffled 10 times to estimate a null conservation score for each 194

IBD block. We conducted permutations on all GERP-SNPs as well as on a restricted 195
set of GERP-SNPs only in genic regions to control for GERP differences between genic 1

(N =221,960) and intergenic regions (N = 123,216). We conducted permutation 197
cross-validation experiments using the same training and validation sets. 108

We estimated the posterior phenotypic variance explained using all of the data to 199
derive correlations between breeding values estimated from the prediction model and 200
observed BLUE values. Note that the correlation used here is different from the 201
prediction accuracy (r) used for the cross-validation experiments, where the latter is 202
defined as the correlation between real and estimated values; the two statistics will 203
converge to the same value when there is no error in SNP /haplotype effect estimation 2
[68]. 205

Finally, to compare our genomic prediction model to a classical model of general 206
combining ability, we used the following equations: 207

Yy = i+ GCA; + GCA, + ¢
}/;j:M+GCAi+GCAj+Gij+€
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where Yj; is the BLUE value of the hybrid of the it" and j*" inbreds, p is the overall
mean, GCA; and GCA; are the general combining abilities of the it" and j** inbreds,
G;j is the breeding value of the hybrid of the i*" and j'" inbreds as estimated by our
genomic prediction model, and e, the model residuals.

Data and code accessibility

Sequencing data have been deposited in NCBI SRA (SRP103329) database, and code
for all analyses are available in the public GitHub repository
(https://github.com/yangjl/GERP-diallel)).

Results

Heterosis in a partial diallel population

We created a partial diallel population from 12 maize inbred lines which together
represent much of the ancestry of present-day commercial U.S. corn hybrids (Table [S1))
[43, [47]. We measured a number of agronomically relevant phenotypes in both parents
and hybrids, including flowering time (days to 50% pollen shed, DTP; days to 50%
silking, DTS; anthesis-silking interval, ASI), plant size (plant height, PHT; height of
primary ear, EHT), test weight (TW; a measure of quality based on grain density), and
grain yield (GY). In an agronomic setting GY — a measure of seed production per unit
area — is the primary trait selected by breeders and thus analogous to fitness. Plant
height and ear height, both common measures of plant health or viability, were
significantly correlated to GY (Figure .

For each genotype we derived best linear unbiased estimators (BLUEs) of its
phenotype from mixed linear models (Table [S1) to control for spatial and
environmental variation (see Methods). We estimated mid-parent heterosis (MPH,
Figure ) for each trait as the percent difference between the hybrid compared to the
mean value of its two parents (see Methods, Table . Consistent with previous
work [37], we find that grain yield (GY) showed the highest level of heterosis (MPH of
182% =+ 60%). While flowering time (DTS and DTP) is an important adaptive
phenotype globally [50], it showed relatively little heterosis in this study, likely due to
the relatively narrow geographic range represented by the parental lines.

Annotation of deleterious alleles

We resequenced the 12 inbred parents to an average depth of ~ 10x, resulting in a
filtered set of 13.8M SNPs. Compared to corresponding SNPs identified by previous
studies (see Methods), we observed a mean genotypic concordance rate of 99.1%. In
order to quantify the deleterious consequences of variants a priori, we made use of
Genomic Evolutionary Rate Profiling (GERP) [I4] scores of the maize genome [50].
GERP scores provide a quantitative measure of the evolutionary conservation of a site
across a phylogeny that allows characterization of the long-term fitness consequences of
both coding and noncoding positions in the genome [34]. Sites with more positive
GERP scores are inferred to be under stronger purifying selection, and SNPs observed
at such sites are thus inferred to be more deleterious. At each site with GERP scores
> 0 (hereafter called GERP-SNPs), we designated the minor allele from the
multispecies alignment as putatively deleterious. Of the 350k total segregating
GERP-SNPs in our parental lines, 14% are detected in coding regions, equally split

between synonymous (N = 64,439) and non-synonymous (N = 65,376) sites (Table [S4).

Each line carries, on average, 139k potential deleterious SNPs (Table . The
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Fig 1. Heterosis and deleterious variants. (a) Boxplots (median and interquartile
range) of percent mid-parent heterosis (MPH). (b) Proportion of deleterious alleles in
landraces (LR, green) and elite maize (MZ, blue) lines. (c) The allele frequency of the
minor alleles in the multi-species alignment in bins of 0.01 GERP score (including
GERP <= 0 sites). (d) The mean GERP score for putatively deleterious sites (GERP
> 0). Each point represents a 1 Mb window. In (c) and (d) the solid blue and dashed
black lines define the best-fit regression line and its 95% confidence interval.

reference genome B73 contains only =~ 1/3 of the deleterious SNPs of the other parents,
likely due to reference bias in identifying deleterious variants. The F1 hybrids of the
diallel each contain an average of ~ 56,000 homozygous deleterious SNPs, ranging from
47,219 (PH207 x PHG35) to 77,210 (PHG84 x PHZ51) (Table .

To compare the burden of deleterious variants between our elite maize lines and
traditionally cultivated landraces, we used genotypes from the maize HapMap3.2 [6] for
our diallel parents and 23 specially-inbred landrace lines [8] (Table . Compared to
landraces, the parents of our diallel exhibited a greater burden of fixed (allele frequency
of 1) deleterious variants but a much smaller burden of segregating SNPs, resulting in a
slightly lower overall proportion of deleterious sites (mean of 1.3M deleterious alleles out
of 6.5M total sites vs. 0.6/3.3M; Figure [1p).

Population genetic theory predicts that deleterious variants should be at low overall
frequencies, and that such variants should be enriched in regions of the genome with
extremely low recombination [29]. Using data from more than 1,200 lines in maize
HapMap3.2 [6], we find that allele frequency of the minor alleles in the multi-species
alignment shows a strong negative correlation with GERP score (Figure ) This
negative correlation holds using allele frequency derived from our 12 parental lines
(Figure , though as expected is less significant given the smaller sample size. SNPs
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found in regions of the genome with low recombination also show higher overall GERP
scores (Figure )7 a trend particularly noticeable around centromeres (Figure [S5)).
These results match previous empirical findings in maize that deleterious alleles are rare
[46] and most abundant in the lowest recombination regions [25] [44] 55], and support
the use of GERP scores as a quantitative measure of the long-term fitness effects of an
observed variant.
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Fig 2. Variance explained and degree of dominance (k) of GERP-SNPs for
traits per se. (a) Total per-SNP variance explained for grain yield trait per se by
GERP-SNPs (red lines) and randomly sampled SNPs (grey beanplots). (b) Density
plots of the degree of dominance (k). Extreme values of k were truncated at 2 and -2.
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dominance (€) of seven traits per se against SNP GERP scores. Solid and dashed lines
represent significant and nonsignificant linear regressions, with grey bands representing
95% confidence intervals. Data are only shown for SNPs that explain more than the
mean genome-wide per-SNP variance (see Methods for details).

Phenotypic effects of deleterious SNPs

We first investigate the impacts of deleterious variants on phenotype using simple linear
regressions. Across all hybrids, the number of homozygote GERP-SNPs was negatively
correlated with grain yield, plant height, and ear-height per se (see Table for
complementation data and Table for correlations with all traits).

We next applied a genomic best linear unbiased prediction (GBLUP) [I3] modeling
approach to estimate the effect sizes and variance explained by GERP-SNPs for each of
the phenotypes per se across our diallel (see Methods). GERP-SNPs had larger
average effects and explained more phenotypic variance than the same number of
randomly sampled SNPs (including SNPs with GERP score <= 0) matched for allele
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frequency and recombination (Figure ) We found the cumulative proportion of 287
dominance variance explained by GERP-SNPs was higher for traits showing high 288
heterosis (Spearman correlation P value < 0.01, » = 0.9), from = 0 for flowering time s
traits to as much as 24% for grain yield (Figure . Distributions of per-SNP 290
dominance k = % (see Methods) across traits were consistent with the cumulative 201

partitioning of variance components (Figure ) and matched well with expectations 20
from previous studies showing a predominantly additive basis for flowering time [5] and 20

plant height [52] but meaningful contributions of dominance to test weight and grain 204
yield [37, 43]. Although our diallel population is relatively small, our estimated values 2
explain as much (for traits with low dominance variance like flowering time) or more 296
variance (for traits with substantial dominance variance like grain yield) than sets of 207
data with randomly shuffled values of dominance (n=10 randomizations of k per trait; s
Figure . 299

We then evaluated the relationship between GERP score and SNP effect size, 300
dominance, and contribution to phenotypic variance. We found weak or negligible 301
correlations between effect size and GERP score for flowering time and grain quality, 302
but a strong positive correlation for fitness-related traits (Figure -d). The variance s
explained by individual SNPs, however, was largely independent of GERP score 304
(Figure , likely due to the observed negative correlation between allele frequency 305
and GERP score (Figure ) Finally, we observed a positive relationship between 306

GERP score and the degree of dominance (k) for grain yield (Figure ), such that the so
putatively deleterious allele at SNPs with higher GERP scores are also estimated to be s
more recessive for their phenotypic effects on grain yield (larger k for the major allele). 30

We investigated a number of possible caveats to the results presented in Figure 310
First, to control for the potential inflation of SNP effect sizes in regions of high linkage su
disequilibrium, we removed SNPs from regions of the genome in the lowest quartile of s

recombination. While some individual correlations changed significance, our overall 313
results appear robust to the removal of low recombination regions (Figure . Second, s
we tested the impact of reference bias caused by inclusion of the B73 genome in the 315
multi-species alignment used to estimate GERP scores. To do so, we removed the 11 316
hybrids which include as one parent the reference genome line B73 and repeated the 317
above analyses. Doing so dramatically reduces the size of our dataset, but we 318
nonetheless find significant correlations between complementation and phenotype 310

(Table , that GERP-SNPs explain a greater proportion of overall variation than 320
randomly sampled SNPs (Figure [S10p), and that the relative pattern of dominance =
among traits remains the same (Figure [S10b). While most of the correlations between

effect size and GERP score lose significance (Figure -d), likely due to the 23
decreased sample size, the positive correlation between dominance and GERP score 324

remains significant even in the absence of B73-derived hybrids (Figure [S10g). Finally, ss
because natural selection will maintain dominant deleterious alleles at lower frequencies s

than their recessive counterparts, we investigated whether the ascertainment bias 327
against rare alleles present in our small sample would lead to the observed correlation s
between GERP and dominance. Simulations of SNPs with random dominance at 329
mutation-selection balance (see Methods), however, failed to find any relationship 330
between dominance and GERP score (Figure , though we caution that the 331
dramatic demographic shifts involved in the recent history of maize [I] make such a 332
simulation approximate at best. 333
Genomic prediction by incoporating GERP information 334
To explicitly test the informativeness of alleles identified a priori as putatively 335
deleterious, we implemented a haplotype-based genomic prediction model that 336

incorporates GERP scores as weights (see Methods). We explored the explanatory 337
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Fig 3. Genomic prediction models incorporating GERP. (a-b) Total
phenotypic variance explained for traits per se (a) and heterosis (MPH) (b) under
models of additivity (red), dominance (green), and incomplete dominance (blue). (c-d)
Beanplots represent prediction accuracy estimated from cross-validation experiments for
traits per se (c¢) and heterosis (MPH) (d) under a model of incomplete dominance.
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dominance model is shown on the left (red) and permutated values on the right (grey).
Horizontal bars indicate mean accuracy for each trait and the grey dashed lines indicate
the overall mean accuracy. Stars above the beans indicate prediction accuracies
significantly (FDR < 0.05) higher than permutations. Results for pure additive and
dominance models are shown in Figure

power with several different models and found that a model which incorporates both
GERP scores and dominance (k) estimated from our GBLUP model explained a greater
amount of the posterior phenotypic variance for most traits per se (Figure ) and
heterosis (MPH) (Figure [3b). A simple additive model showed superior explanatory
power for flowering time, however, consistent with previous association mapping results
that flowering time traits are predominantly controlled by a large number of additive
effect loci [5].

To explicitly test the utility of incorporating GERP information in prediction models,
we compared cross-validation prediction accuracies of the observed GERP scores to
those from datasets in which GERP scores were circularly shuffled along the genome
(see Methods). Models incorporating our observed GERP scores out-performed

permutations (Figure [3c-d), even when considering only SNPs in genes (Figure [S12).

Our model improved prediction accuracy of grain yield by more than 4.3%, and
improvements were also seen for plant height (0.8%) and testing weight (3.3%). While
our model showed no improvement in predicting heterosis for traits showing low levels
of heterosis (Figure |1p), including GERP scores significantly improved prediction
accuracy for heterosis of grain yield (by 1%). Finally, our approach also significantly
improved model fit for phenotypes of all traits per se as well as heterosis for GY and
PHT compared to traditional models of genomic selection that use general combining
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ability (see Methods, Table calculated directly from the pedigree of the hybrid 357
population [26] (ANOVA FDR < 0.01 and difference in AIC < 0, Table [S8). 358

Discussion 350

We combine a priori prediction of deleterious alleles from whole genome sequence data e
with multi-year field evaluation of important agronomic phenotypes to test the role of 3
incomplete dominance in determining hybrid phenotypes and heterosis in maize. 362

We first show that GERP scores are meaningful quantitative estimates of the fitness e
consequences of individual alleles, as SNPs with higher GERP scores are found at lower
allele frequencies (Figure [Ikc), enriched in regions of low recombination (Figure [Id), s
and associated with larger effect sizes on grain yield (Figure ,d). Although a 366
number of other methods exist to identify deleterious alleles from sequence data, GERP s
scores include both coding and noncoding sequence, do not require additional functional 368
annotation, and show higher sensitivity and specificity than other related approaches 369

[34]. While the GERP scores used here reflect conservation of across relatively deep 370
phylogenetic time, future efforts may be able to increase power by incorporating an
information from within-species polymorphism data [32] as well as other types of a2
annotations that have been shown to contribute substantially to phenotypic variation s
(e.g. Wallace et al., [64] and Rodgers-Melnick et al., [50]). a4

Using GERP scores as a proxy for deleterious alleles, we then ask whether our elite s
maize inbreds show an increased burden of deleterious alleles compared to a set of 376
traditional landrace varieties. We find that modern inbreds are characterized by an 377
increase in the proportion of deleterious variants fixed within the population a78
(Figure ), consistent with the strong impact of drift associated with rapid decreases s
in effective population size during modern breeding [63]. In contrast, modern maize 380
inbreds exhibit a much smaller proportion of segregating deleterious variants than 381
landraces. This latter result is likely due to increased inbreeding in smaller populations, s
an effect exacerbated by the transition from traditional open-pollinated maize to the 383
intentional formation of inbred lines. Inbreeding facilitates the removal of deleterious 384
variants by selection, as evidenced by the striking inbreeding depression exhibited by 385

open-pollinated maize [I7]. Supporting our interpretation of these results, our observed  ss
differences in the burden of deleterious variants closely mimic results from simulations  se

of partially recessive deleterious alleles in populations that have recently undergone 388
demographic bottlenecks [61]. 389

We next use the set of SNPs with GERP > 0 scores (or GERP-SNPs) to investigate 30
the phenotypic effects of deleterious variants. Across phenotypes, our results largely 301

mirror previous work, finding that dominance contributes substantially to grain yield 302
[37], while traits such as flowering time appear to be largely additive [5]. At the level of 30
individual SNPs we find correlations between GERP score and phenotypic effect size for s
yield and ear height, suggesting that long-term evolutionary constraint as measured by s
GERP is a useful predictor of the phenotypic effects of variants on traits related to 306
fitness. Both traits are well explained by a model allowing for incomplete dominance 307
(Figure [3p), as is plant height, which shows a positive but not significant correlation 10
between effect size and GERP score. For grain yield, we also find that more deleterious s
alleles (those with higher GERP score) are more likely to be recessive. We are unaware 40
of previous demonstrations of the genome-wide relationship between dominance and 401
fitness in other multicellular organisms, but this result follows predictions based on 102
models of metabolic pathways [33] and supports previous empirical evidence from gene 40
knockouts in yeast [54]. Though our population size is small, our partial diallel crossing 4o
design and genomic selection model circumvent some of the problems with standard 405
genome-wide association analyses, including genome-wide multiple testing thresholds 406
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and difficulties in assessing the effects of rare alleles due to limited replication. And a07
while there is likely substantial error in individual SNP estimates, permutation analyses o
show our overall results nonetheless produce meaningful results (Figure , 409
Figure . 410

After showing that GERP-SNPs explain a substantial portion of the observed an
phenotypic variation when combined with our estimates of dominance and effect size, a2
we more rigorously test the direct utility of GERP scores using cross-validation a13
prediction methods. We show that for both plant height and grain yield, our a4
GERP-enabled prediction model has significantly improved accuracy compared to a15

randomized data, even when only considering SNPs within genes (which have higher on
average GERP scores; Figure [S12]). As genotyping costs continue to decline, genomic a7

prediction models are increasing in popularity [I5]. Most previous work on genomic 418
prediction, however, focuses exclusively on statistical properties of the models, ignoring a1
potentially useful biological information (but see Edwards et al., [I8] for a recent 420

example). Our results suggest that incorporating additional annotations — in particular
information on evolutionary constraint — can provide additional, inexpensive benefits 2

to existing genomic prediction frameworks. 23

Finally, our results also have implications for understanding the genetic basis of o
heterosis. Heterosis has been observed across many species, from yeast [59] to plants 425
[60] and vertebrates [21], and a number of hypotheses have been put forth to explain 26
the phenomenon [2] [7]. Of all these explanations, complementation of recessive 27

deleterious alleles [7, 1] remains the simplest genetic explanation and is supported by s
considerable empirical evidence [22] [66] 69]. It remains controversial, however, because
complementation of completely recessive mutations cannot fully explain a number of 430
empirical observations including unexpected differences in heterosis and inbreeding 431
depression among polyploids [2, [40]. For example, a model of simple complementation of
purely recessive alleles is unable to explain differing levels of heterosis between triploid a3
hybrids with different numbers of parental genomes (e.g. AAB vs ABB) [70] or why the 4
cross of two tetraploid F1 hybrids shows greater heterosis than the original F1 [3]. Our s

results, however, indicate that most deleterious SNPs show incomplete dominance 436
(Figure ) for traits with high levels of heterosis, and our genomic prediction models 43
find improvement in predictions of heterosis when incorporating GERP scores under 438
such a model (Figure ) These results are in line with other empirical evidence 439

suggesting that new mutations tend to be partially recessive [30] and that GWAS hits o
exhibit incomplete dominance for phenotypes per se among hybrids [3I]. We argue that
allowing for incomplete dominance effectively unifies models of simple complementation 4
with those of gene dosage [70]. Combined with observations that deleterious SNPs are 43
enriched in low-recombination pericentromeric regions [55] (Figure [1|d), such a model .
can satisfactorily explain changes in heterozygosity during breeding [23| [44], enrichment s
of yield QTL and apparent overdominance in centromeric regions [37], and even 446
observed patterns of heterosis in polyploids (Figure . It is unlikely of course that
any single explanation is sufficient for a phenomenon as complex as heterosis, and other s

processes such as overdominance likely make important contributions (e.g. Guo et 449
al., [27] and Huang et al., [31]), but we argue here that a simple model of incompletely s
dominant deleterious alleles may provide substantial explanatory power not only for 451
fitness-related phenotypic traits but for hybrid vigor as well. 452
Conclusion -

In this study, we use genomic and phenotypic data from a partial diallel population of  sss
maize to show that an incomplete dominance model of deleterious mutation both fits 455
predictions of population genetic theory and explains phenotypic variation for 456
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fitness-related phenotypes and hybrid vigor. We find genome-wide support for 457
hypotheses predicting that more damaging variants are more recessive. Finally, we show  sss
that leveraging evolutionary annotation information in silico enables us to predict grain s
yield and other traits, including heterosis, with greater accuracy. Together, these results o

help reconcile alternative explanations for hybrid vigor and point to the utility of 461
leveraging evolutionary history to facilitate breeding for crop improvement. a6
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S2 Fig. Pairwise correlation plots of seven phenotypic traits. a5
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S4 Fig. The minor allele frequency estimated from 12 parental lines in a67
bins of 0.01 GERP score. a8
S5 Fig. Segregating genetic load across ten maize chromosomes. 469
S6 Fig. Cumulative variance explained by GERP-SNPs. 470
S7 Fig. Phenotypic variance explained for observed data and for an
randomly shuffled data using the genomic selection model. an2
S8 Fig. Linear regressions of GERP-SNPs’ additive variance, dominance 473
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S10 Fig. Phenotypic variance explained for grain yield and degree of ats
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1 Supporting Tables

Table S1. BLUE values and levels of heterosis of the seven phenotypic traits for the 66
hybrids. (https://github.com/yangjl/GERP-diallel/blob/master/table/Table_
trait_heterosis.csv)

Table S2. General combining ability and specific combining ability of the seven
phenotypic traits.
(https://github.com/yangjl/GERP-diallel/blob/master/table/Table_CA.csv)

Table S3. SNP missing rate in our diallel parental lines. (https://github.com/
yangjl/GERP-diallel/blob/master/table/Table_SNP_missing_rate.csv)

Table S4. Summary statistics of SNP annotation results. (https://github.com/
yangjl/GERP-diallel/blob/master/table/Table_S_snpeff_results.xlsx)

Table S5. Number of deleterious SNPs carried per line. (https://github.com/
yangjl/GERP-diallel/blob/master/table/Table_S_del_per_line.csv)

Table S6. Number of complementation and homozygote deleterious load for
GERP-SNPs in hybrids. (https://github.com/yangjl/GERP-diallel/blob/master/
table/Table_S_del_complemenation.csv)

Table S7. The correlation between the number of homozygote GERP-SNPs and the
hybrid phenotypes. (https://github.com/yangjl/GERP-diallel/blob/master/
table/Table_hyb_load_pheno.csv)

Table S8. Model comparisons P values and AICs. (https:
//github.com/yangjl/GERP-diallel/blob/master/table/Table_model_comp.csv)
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Fig S1. A half-diallel population and distributions of phenotypes. (a) Twelve
maize inbred lines were selected and crossed in a half-diallel fashion. Each inbred lines
was used as both male and female and the resulting F1 seed was bulked. (b) Density
plots of normalized BLUE values for the seven phenotypic traits. We used “scale”
function in R to normalize the BLUE values by first centering on zero and then dividing
the numbers by their standard deviation. The seven phenotypic traits are plant height
(PHT), height of primary ear (EHT), days to 50% pollen shed (DTP), days to 50%
silking (DTS), anthesis-silking interval (ASI), grain yield adjusted to 15.5% moisture
(GY), and test weight (TW).
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Fig S2. Pairwise correlation plots of seven phenotypic traits. The upper right
panels show the scatter plots of all possible pairwise comparisons of two traits. Red line
is a fitted smooth curve using “loess” method. In the lower left panels, the numbers are
the Spearman correlation coefficients (r) and the asterisks (*) indicate the correlation
coefficients are statistically significant (Spearman correlation test P value < 0.05).
Units for various traits are plant height (PHT, in c¢m), height of primary ear (EHT, in
cm), days to 50% pollen shed (DTP), days to 50% silking (DTS), anthesis-silking
interval (ASI, in days), grain yield adjusted to 15.5% moisture (GY, in bu/A), and test
weight (TW, weight of 1 bushel of grain in pounds).
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HB1 HB2 HB3 HB4 HB5 HB6 HB7 HB8 HB9 HB10 HB11l HB12 HB13 HB14
Hybl O 0 0 1 1 1 1 1 0 0 1 1 1 0
Hyb2 1 1 0 0 0 1 1 1 1 1 1 0 0 0
Hyb3 O 1 1 1 0 1 1 1 1 1 1 0 0 0
Hybd 0 0 1 1 1 1 0 1 1 0 0 0 1 1

Fig S3. Haplotype block identification using an IBD approach. In the upper
panel, regions in red are IBD blocks identified by pairwise comparison of the two
parental lines of a hybrid. The vertical dashed lines define haplotype blocks. In the
lower panel, hybrid genotype in each block are coded as heterozygotes (0) or
homozygotes (1).
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Fig S4. The minor allele frequency estimated from 12 parental lines in bins
of 0.01 GERP score. Red solid and grey dashed lines define the best-fit regression
line and its 95% confidence interval.

26


https://doi.org/10.1101/086132
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086132; this version posted June 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

CRIL st mnsaln e St SO0’ pomtotnt M’le—n\uwm'w—w.wdﬁi.\“mww“

Chr2 DR, S

"l O XN = .
ChI3 et tnanmictomeminr oo N o N e N S o et

Chra te s
Chrs ﬂMW":d'\'LmyM'mwﬁ_

&

Chré

Chr7 -l_ S . S,
chrg it

Chro T
Chr10 .sw'ff“l' N Nt St —
[ T T T 1
0 100 200 300 400

Genetic Distance (cM)

Fig S5. Segregating genetic load across ten maize chromosomes. Dots
indicate mean GERP scores of putatively deleterious SNPs (GERP scores > 0) carried
by our 12 elite maize lines (bin size = 1 ¢M). Vertical red lines indicate centromeres.
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Fig S6. Cumulative variance explained by GERP-SNPs. Additive and
dominance effects are indicated by red and blue colors respectively.
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Fig S7. Phenotypic variance explained for observed data and for randomly
shuffled data using the genomic selection model. Histograms show the results
for the randomly shuffled (10 times) degrees of dominance (k) in each trait. Red lines
are phenotypic variance explained using the observed k.
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Fig S8. Linear regressions of GERP-SNPs’ additive variance, dominance
variance and total variance of seven traits per se against their GERP
scores. Solid and dashed lines represent significant and non-significant linear
regressions, with grey bands representing 95% confidence intervals. Data are only shown
for SNPs with > 1x of the mean genome-wide phenotypic variance explained.
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Fig S9. Linear regressions after filtering out GERP-SNPs located in
regions in the lowest quartiles of recombination. Solid and dashed lines
represent significant and non-significant linear regressions, with grey bands representing
95% confidence intervals. Data are only shown for GERP-SNPs with > 1x of the mean
genome-wide variance explained and with > 1st quantile of the recombination rate
(cM/Mb).
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Fig S10. Phenotypic variance explained for grain yield and degree of
dominance (k) of GERP-SNPs after removing 11 hybrids that B73 as one
parent. (a) Total per-SNP variance explained for grain yield trait per se by deleterious
(red lines) and randomly sampled SNPs (grey beanplots). (b) Density plots of the
degree of dominance (k). Extreme values of k were truncated at 2 and -2 for
visualization. (c-e) Linear regressions of additive effects (c), dominance effects (d),
and degree of dominance (e) of seven traits per se against SNP GERP scores. Colors in
(c-e) are the same as the legend for (b). Solid and dashed lines represent significant
and nonsignificant linear regressions, with grey bands representing 95% confidence
intervals. Data are only shown for deleterious alleles with the above mean genome-wide
variance explained.
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Fig S11. Regression of degree of dominance (k) on GERP scores for
simulated data. Solid blue line indicates the regression line fitted to data simulated
under mutation-selection balance (see Methods for details).
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Fig S12. Cross-validation accuracy using GERP-SNPs in genic regions.
Beanplots represent prediction accuracy estimated from cross-validation experiments for
traits per se (a, b, c) and heterosis (d, e, f) under additive (a, d), dominance (b, e),
and incomplete dominance (¢, f) models. Prediction accuracy using real data is shown
on the left (green) and permutation results on the right (grey). Horizontal bars indicate
mean accuracy and the grey dashed lines indicate the overall mean accuracy. Stars
indicate significantly (permutation FDR < 0.05) higher than cross-validation accuracy.

34


https://doi.org/10.1101/086132
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/086132; this version posted June 9, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

a Trait per se with additive model

T e 2

e,

Trait per se with dominance model
*

: {—f +

o

1.0

L
08
I

Cross-validation Accuracy

T T T T T T T T T T T T T T
DTS DTP  TW ASI  PHT  EHT  GY DTS DTP  TW Asl PHT  EHT  GY

c Heterosis (MPH) with additive model d Heterosis (MPH) with dominance model

| <+ g,
T ‘::

T T T T T T T T T T T T T T
DTS DTP  TW ASI  PHT  EHT  GY pTs  pTP  TW Asl PHT  EHT  GY

Cross-validation Accuracy

Fig S13. Cross-validation prediction accuracy for trait per se and heterosis.
Beanplots represent prediction accuracy estimated from cross-validation experiments for
traits per se (a, b) and heterosis (¢, d) under additive (a, c¢) and dominance (b, d)
models. Prediction accuracy using real data is shown on the left (red) and permutation
results on the right (grey). Horizontal bars indicate mean accuracy of each trait and the
grey dashed lines indicate the mean accuracy of all traits. Stars indicate real data
having significantly (t-test P value < 0.05) higher cross-validation accuracy than
permuted data.
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Fig S14. Breeding values of grain yield for diploid and simulated triploid
hybrids. Each line represents the posterior breeding values of a diploid hybrid (red
circle), its best parent (black diamond), and predicted breeding values of AAB triploid
(blue square) and ABB triploid (green triangle) based on estimated effect sizes and

dominance values for each SNP.
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