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ABSTRACT 

The ability to generate variable movements is essential for learning and adjusting complex 

behaviors. This variability has been linked to the temporal irregularity of neuronal activity in the 

central nervous system. However, how neuronal irregularity actually translates into behavioral 

variability is unclear. Here we combine modeling, electrophysiological and behavioral studies to 

address this issue. We demonstrate that a model circuit comprising topographically organized 

and strongly recurrent neural networks can autonomously generate irregular motor behaviors. 

Simultaneous recordings of neurons in singing finches reveal that neural correlations increase 

across the circuit driving song variability, in agreement with the model predictions. Analyzing 

behavioral data, we find remarkable similarities in the babbling statistics of 5-6 month-old 

human infants and juveniles from three songbird species, and show that our model naturally 

accounts for these „universal‟ statistics. 
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INTRODUCTION 

 

Behavioral variability is a pivotal component of motor learning and adaptation
1-2

. While young 

individuals can usually produce non-stereotyped disorganized behaviors, motor exploration is 

more often expressed as movement variability around a stereotyped motor pattern. Highly 

irregular patterns of activity, which are ubiquitous in the brain
3
, are thought to underlie variable 

motor behaviors
4-5

. Specifically in songbirds, a neural circuit necessary for song learning in 

juveniles
6-7

 has been recently shown to be responsible for vocal variability both in adults
8
 and 

throughout development
7,9-10

.  This circuit includes two cortical-like areas: a premotor nucleus, 

the lateral magnocellular nucleus of the anterior nidopallium (LMAN), and its efferent motor 

nucleus, the robust nucleus of the arcopalium (RA). While RA is essential in driving the 

effectors (muscles or muscle synergies) producing the song
11

, LMAN is not necessary for song 

production in adults
6-7

, but has a key role throughout development and in adults in driving 

variability in the song
9-10

and in the activity of RA neurons
12

.  

 

The idea that temporal irregular activity of neurons in the central nervous system (CNS) is 

capable of generating behavioral variability may seem obvious. A careful examination, however, 

reveals that the link between irregularity in neural activity and behavioral variability is far from 

being straightforward. This is because to impact the behavior, patterns of activity generated in 

the central nervous system must also be spatially correlated (i.e., correlated across neurons). For 

example, consider the minimal model of a cortical network driving motor behavior depicted in 

Fig.1a. It consists of many neurons randomly connected recurrently, divided into D functional 

groups; each group is composed of M neurons (larger than D by over an order of magnitude) that 
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project to one effector of the motor behavior. The collective dynamics of the network give rise to 

highly irregular firing patterns as a consequence of the interplay between excitation and 

inhibition
13

(Fig.1b, Supplementary Fig.1a-b). Despite this large variability in their activity, 

unless the number of neurons in a group is very small, fluctuations in the effectors are negligible 

(the coefficient of variation of the input to the effector,  CVeff , see Materials and Methods, is very 

small; Fig.1a, Supplementary Fig.1e). This stems from the fact that the network activity is only 

weakly correlated across neurons (on the order of 1/N, where N is the number of neurons in the 

network, Fig.1b right, Supplementary Fig.1d) and thus, by virtue of the law of large numbers, the 

fluctuations they induce in the net input to an effector “average out”. This example emphasizes 

the fact that for the fluctuations to be transferred robustly from the CNS to the effectors, 

neuronal firing in the motor network must be sufficiently correlated within a neural population 

projecting to the same effector. 

 

While the mechanism underlying asynchronous irregular spiking activity in  recurrent networks 

of excitatory and inhibitory neurons is well understood
13-16

, how the CNS autonomously 

generates patterns of activity, which are both temporally irregular and correlated across neurons, 

remains an open fundamental question
16-19

. A key result of our theoretical work is that the 

activity of neurons in the motor network driving the effectors will be highly irregular and also 

spatially correlated if this network receives topographically organized excitatory projections 

from another upstream strongly recurrent network, hereafter premotor network. In the context of 

the circuit driving song variability in songbirds, our theory predicts that correlations emerge 

along the LMAN-RA circuit, namely that correlations across neurons are very weak in LMAN 

but substantial in RA. We validate this prediction with simultaneous extracellular recordings of 
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neurons in singing finches. Our theory also suggests that vocal variability in different species of 

juvenile vocal learners should exhibit very similar statistics as a consequence of universal 

statistical properties of the circuit dynamics. We verify this prediction by comparing the statistics 

of the song produced during the babbling phase of three species of songbirds as well as of human 

infants. This work appeared in an abstract form
49

.  

 

RESULTS 

 

Motor variability emerges from the interplay between recurrent connections 

and topographic feedforward organization 

 

We first show that temporally irregular and spatially correlated patterns of spiking activity can 

robustly emerge in a circuit of topographically organized and strongly recurrent networks. To 

this end, we consider the circuit depicted in Fig.2a. Neurons in the motor network which project 

to the same effector share a fraction, f, of their premotor inputs, and this shared component is 

different from one group to the other (see Materials and Methods for a detailed description of the 

architecture). With this architecture the spiking activities of the neurons in the premotor, as well 

as in the motor network, are highly irregular, as a result of their recurrent dynamics. There is, 

however, an important difference between the networks in the spatial structure of their activities. 

In the premotor network correlations across neurons are typically extremely weak (Fig.2b-c, 

 Fig.4a). In contrast, in the motor network pairs of neurons projecting to the same effector are 

substantially and positively correlated, whereas correlations are weak (and possibly negative) for 

neurons projecting to different effectors (Fig.2d-g, Fig.4b and Supplementary Fig.3-5). These 
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functional correlations are highly robust and only weakly influenced by the model parameters 

(Supplementary Fig.3d-e, Supplementary Fig.5d-f and Supplementary Information). As a result, 

fluctuations are amplified along the circuit (Fig.2e) and the variability is robustly transferred to 

the effectors.  

 

Importantly, the correlations in the motor network are substantial only if the footprint of the 

recurrent interactions in that network is sufficiently wider than the footprint of the premotor-to-

motor projections (Fig.2h; see also Supplementary Information). Indeed, when the recurrent 

interactions are too local, correlations in the motor network are weak (Fig.2h-i). Thus, 

temporally irregular and spatially correlated patterns of activity naturally emerge from the 

interplay between topographic feedforward projections from the premotor to the motor network 

and recurrent interactions within the motor network (Supplementary Fig.10). 

 

The emergence of spatial correlations in the motor network can be  intuitively understood as 

follows. The feedforward (FF) input to a neuron in the motor network consists of one structured 

component, shared by all neurons belonging to the same functional group, and another one which 

is unstructured. Since the neurons in the premotor network are firing asynchronously, both 

components are the sum of a large number of uncorrelated contributions (on average 𝑓𝐾 and 

(1 − 𝑓)𝐾, respectively; 𝐾 being the average number of synapses per neuron; see Supplementary 

Fig.3i) and thus their temporal fluctuations are smaller than their temporal average by a factor on 

the order of 1/ 𝐾 (Supplementary Fig.3f: blue curve). Neural activity in the motor network will 

be spatially correlated if the amplitude of the fluctuations in the structured component to the 

network is on the order of the neuronal threshold. However, this implies that the temporally 
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averaged FF input is large. As a consequence, neurons in the motor network will fire regularly at 

a very high rate, unless the inhibitory recurrent inputs in the motor network compensate for most 

of its averaged FF input. This compensation will occur naturally for a strongly connected motor 

network operating in a regime where inhibition balances excitation (see Supplementary 

Information). 

 

The fluctuations in the component common to all neurons in the same functional group give rise 

to the correlations in the activity in the motor network on a spatial scale on the order of the size 

of a group. Moreover, the groups also compete with each other provided that the recurrent 

interactions extend over a distance larger than the size of a group. As a result, the network 

dynamics self-organize such that the average instantaneous rates of the excitatory and inhibitory 

populations are essentially constant in time (Fig.2d). This guarantees that the network operates in 

the balanced excitation-inhibition regime in a robust manner (see Supplementary Information).  

 

Emergence of spatiotemporal correlations in the circuit driving vocal 

variability in songbirds 

 

Songbirds, with their well-identified and segregated circuit devoted to song learning, including a 

minimal circuit driving song variability (see Introduction), offer an ideal opportunity to test 

predictions of our theory. In songbirds, LMAN controls the trial-to-trial fluctuations across 

repetitions of the temporally structured song
8-9

. These fluctuations are important for adapting the 

song upon perturbations
20-22

. Moreover, anatomical studies in the circuit driving the song 

indicate that the projections from LMAN to RA are topographically organized, as our model 
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posits for the projections in the premotor-to-motor pathway
23-24

. We therefore hypothesized that 

song variability stems from essentially uncorrelated fluctuations produced in LMAN, which by 

virtue of the topographic projections from LMAN to RA induce  spatially correlated fluctuations 

in RA activity. To further test this hypothesis, we extended the two-area circuit considered above 

to take also into account the temporally structured inputs from nucleus HVC (used as a proper 

name) into RA neurons
12,25

. To this end, we included an additional feedforward excitation to the 

motor network in our model, representing the latter input (Fig.3b, see Materials and Methods). 

The responses of the neurons in the motor network are then locked to this input in a way which is 

reminiscent to the locking of RA neurons to the song
26-27

(compare Fig.3a and Fig.3c). However, 

these responses still exhibit trial-to-trial variability. By analyzing the spatiotemporal patterns of 

these trial-to-trial fluctuations, we found substantial noise correlations (see Materials and 

Methods) for neurons in the motor network belonging to the same group, but almost none in the 

upstream premotor network (Fig.4). In the motor network, noise correlations were positive for 

pairs in the same group. They were typically weaker and negative for pairs in different groups. 

The averaged correlation over all pairs of excitatory neurons was very small due to the 

compensation between positive and negative correlations. (Fig.4b and also Supplementary Figure 

4). Our model thus predicts a build-up of noise correlations along the circuit generating 

behavioral variability in singing birds. 

 

To test this prediction, we recorded pairs of LMAN or RA neurons during singing in zebra 

finches. In LMAN, we found that spike-triggered-average (STA) of the local field potential 

(LFP), as well as STA of the multi-unit activity are weak (Fig.5b, Supplementary Fig.6, see 

Materials and Methods). We also found that noise crosscorrelograms are flat (Fig.5c-d) and that 
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correlation coefficients are tightly distributed around zero (Fig.5e) in LMAN. By contrast, in RA 

neurons display substantial noise correlations during singing, as revealed by the shape of their 

crosscorrelograms (Fig.5h-i; one-tailed two-sample t-test; p<0.01 for single-units pairs, n=4 pairs 

in LMAN and n=5 pairs in RA; p<0.001 for single- Vs. multi-units pairs, n=6 pairs in LMAN 

and n=25 pairs in RA; and p<0.001 for multi-units pairs, n=21 pairs in LMAN and n=21 pairs in 

RA; see Materials and Methods) and large values of noise correlation coefficients (compare 

Fig.5j with Fig.5e. The fact that correlations in RA were stronger than in LMAN is consistent 

with the model prediction, since the recorded units were likely to be located in the same 

functional group given the small distance between electrodes compared to RA diameter (see also 

Supplementary Fig.6b). Multi-unit-STA and LFP-STA also consistently display high noise-

related activity around the recorded spikes in RA, in contrast to LMAN (compare Fig.5g and 5b 

and Supplementary Fig.6a). Finally, we found that noise cross-correlations between LFPs 

recorded from evenly spaced electrodes decreased with the distance between the electrodes and 

became negative when they were far apart (Supplementary Fig.6b). Therefore, as predicted by 

our model, noise correlations during singing are strong in RA, while they are extremely weak in 

LMAN. 

 

Our electrophysiological recordings also reveal that the decays of the autocorrelations and of the 

crosscorrelations of the spiking activity last for hundred of milliseconds in RA neurons (Fig.6b-

c;Fig.5h-i), and that these decays are substantially faster in LMAN (Fig.6a,c; two-sample t-test, 

p<0.01 for n=10 single-units in LMAN and n=14 single units in RA). What is the source of the 

relatively slow decorrelations in the activity of RA neurons? In our theory, synchronous temporal 

fluctuations in RA activity will be slow if the shared feedforward drive of the neurons in the 
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motor network slowly fluctuates (see also Supplementary Information and Supplementary Fig.7). 

If the synaptic dynamics in the premotor-to-motor pathway are slow, they give rise to auto and 

cross-correlograms in the motor network which can be as broad as in the data (compare Fig.6a-c 

with Fig.6d-f and Fig.5h-i with Fig.4b). This result suggests that the observed slowness of the 

fluctuations in RA activity stems from a low pass filtering of the fast fluctuations of LMAN 

outputs due to the large proportion of NMDA receptors in the LMAN-to-RA projections
28-30

. 

 

The statistics of vocal variability in juvenile learners are similar across species 

as predicted by the model   

 

Juvenile songbirds produce babbling-like vocalizations which are not stereotyped and highly 

variable
31,10

. At this early developmental stage, the inputs from HVC to RA are not yet 

functional
32

 and the song is mostly driven by LMAN-RA circuit
10,12

. We therefore asked whether 

the neuronal circuit depicted in Fig.2a can drive behavioral variability with statistics similar to 

those observed during the babbling stage of juvenile birds. To this end, we combined the circuit 

with a mechanical model of the vocal production organ
33

. To characterize the statistics of the 

output signal of the model we computed the distribution of gesture durations (vocal elements) 

 and the autocovariance of the envelope signal (ACE; see Materials and Methods), which 

quantifies high-order correlations between consecutive gestures and inter-gesture-intervals. The 

gestures durations had an exponential distribution in the model (Fig.7a, bottom left; see 

Materials and Methods). As for the ACE (Fig.7a ,bottom right), it monotonically decays over a 

duration of several tens to hundreds of milliseconds. Quantitatively, the decay time constant of 
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the ACE and the scale parameter of gesture duration distributions depend on the synaptic time 

constant of the premotor-to-motor projections (compare the blue and red line in Fig.7a).  

 

To what extent do these statistics depend on the details of the model architecture and 

connectivity, the neuronal dynamics, and the nonlinearities in the input-output transduction by 

the effectors?  Fluctuations in the feedforward input to the neurons in the motor network in our 

circuit consist of many uncorrelated fluctuating contributions and their statistics are thus close to 

Gaussian (Supplementary Fig.8a). This is the case also for the net (feedforward+recurrent) input 

to these neurons (Supplementary Fig.8b). Hence, the fluctuating activity of the neurons in the 

motor network can be approximately described as a wideband Gaussian process that is rectified 

(Supplementary Fig8.b-d), resulting in the tendency of the neurons to fire bursts of spikes with 

an approximately exponential distribution of durations (Supplementary Fig.8f). Moreover, 

because neurons in the motor network are correlated, the temporal statistics of the input to an 

effector and of the neurons activity are similar. While the babbling behavior generated by the 

circuit is a complex transformation
34

 of the inputs to the effectors, the ACE or the distribution of 

gesture durations (but not finer structures of the gestures) are expected to be qualitatively 

independent on the details of this transformation. For example, for rectified power-law 

transformations the distribution of gesture durations is close to exponential (Supplementary 

Fig.8g) and the ACE barely depends on the non-linearity (Supplementary Fig.8e). This is also 

true when combining the circuit with a mechanical model of the vocal production organ
33

. 

Therefore, these features reflect universal statistical properties of the circuit dynamics and are, to 

a large extent, insensitive to the circuit parameters and to the details of the transformation from 

the input to the effectors to the vocal behavior. 
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Given the universality of the statistics of the features analyzed above in our model, we then 

compared the “babbling behavior” generated by the model with babbling behavior in different 

vocal learners. To this end, we analyzed babbling vocalizations of juveniles from three different 

songbird species with completely different adult repertoires (zebra finches: single song of 3-8 

syllables per individual; swamp sparrow: 2-5 stereotyped songs per individual gathering 5-10 

syllable types; canaries: complex song sequences based on a repertoire of 20-40 syllables per 

individual), as well as vocalizations of 5-6 months old human infants (adult repertoire: complex 

sentences based on 10-100 phonemes grouped in >10 000 words).  

 

Remarkably, we found that the statistics of the vocalizations produced during the early period of 

babbling (but not later in development, Supplementary Fig.9a-c,f) had a large degree of 

similarity in the four species we analyzed. In all four species, as in the model, the distribution of 

vocal gesture durations could be well fitted with a single exponential (Fig7b-e, left and insets; 

see Materials and Methods, see also (10,35)). In addition, the ACE lacks a clear temporal 

structure in all babbling vocalizations. The scale parameter of the gesture duration distributions, 

as well as the decorrelation times of ACE (i.e., the typical time constant of the ACE) varied 

across individuals and species from several tens to a few hundreds of milliseconds (Fig.7b-e). 

However, as the distributions were close to exponential and variability within species was small 

(Fig.7f,h), interspecies and intraspecies differences in gesture duration distributions became 

comparable after normalizing each individual distribution by its species-averaged scale 

parameter (Fig.7g-i; two-sample t-test, P=0.92: only 9% of the total variance among distributions 

was attributed to species differences compared to 87% before rescaling; 1-way ANOVA). A 
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similar uniformity was observed in the inter-gesture-interval distributions after normalization by 

the species average (Supplementary Fig.9d.; P=0.23, only 10% of total variance among 

distributions was attributed to species differences compared to 66% before normalization; 1-way 

ANOVA). Interspecies variations in ACE were mostly due to differences in the species-averaged 

decorrelation time (P=0.16; only 17% of the total variance among ACEs was attributed to 

species differences, compared to 81% before normalization; 1-way ANOVA). Finally, 

correlations between consecutive gestures and inter-gestures were small and comparable among 

species (Supplementary Fig.9e). Together, these results show that in the four species we studied 

the statistics of the babbling-like vocalizations are very similar and can be naturally accounted by 

our minimal circuit. 

 

DISCUSSION 

 

Our paper addresses the extent to which the intrinsic temporal irregularity of neuronal activity in 

the central nervous system (CNS) can drive motor variability. This is a fundamental non-trivial 

question since, as to impact the behavior, patterns of activity generated in the CNS must also be 

spatially correlated (i.e., correlated across neurons). Although the emergence of asynchronous 

irregular activity in recurrent networks is well understood
13-16

, much less is known regarding the 

possible mechanisms giving rise to irregular spiking in which fluctuations of the activity are both 

temporally irregular and correlated across neurons. As a matter of fact, in virtually all network 

models of irregular spiking previously investigated, the activity is either asynchronous
16

 or the 

synchronous component of the temporal fluctuations in neuronal spiking is strongly rhythmic
36

.   
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In particular, previous theoretical studies
16,37

, concluded that correlations should be very weak in 

strongly recurrent cortical circuits (on the order of 1/N, where N is the network size).  However, 

these studies assumed a completely random connectivity, without structure (with an Erdös-Renyi 

graph). Here we showed that substantial correlations emerge naturally in a circuit with 

topography. With such an architecture, the dynamics self-organize in groups of neurons that are 

positively correlated within a group but negatively correlated between groups. In this spatial 

pattern of correlations, the balance between excitation and inhibition is maintained over the 

whole network. As a result, the circuit can eventually produce robust variable behavior with 

„universal‟ statistics. In fact, we showed that this mechanism does not require any fine-tuning of 

parameters. In particular, it is robust to the number of neurons, the average number of 

connections, as well as to the connectivity in the topographic pathway to the effectors (and the 

number of neurons projecting to an effector; see also Supplementary Information).  

 

In songbirds, the organization of the LMAN-to-RA pathway becomes clearly topographic during 

the early sensory period of song learning
31

. Thus, it is already present when juveniles start to 

babble (35-40 days post hatch, DPH). Neurons in RA also send topographic projections to the 

hypoglossal nucleus (nXII) as well as to the respiratory motor nuclei
24

. The projections of the 

hypoglossal nucleus to syringeal muscles are also topographic
38

. Thus the pathway from RA to 

syringeal muscles (and likely similarly to respiratory muscles) is topographic, as required by our 

mechanism. Applied to the LMAN-RA circuit, this mechanism predicts that noise correlations 

are weak in LMAN but substantial in RA. We reported experimental evidence in line with this 

prediction in the adult zebra finch. 
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In juvenile and adult zebra finches, the inputs from LMAN to RA are dominated by NMDA 

receptors with slow kinetics of time constant on the order of ~100ms
28-30

.Moreover, recurrent 

excitation in LMAN is largely dominated by NMDA receptors and the kinetics of these receptors 

is faster in adults than in young juveniles
39

,with typical time constants of ~30ms in adults and 

~120ms in juveniles
40

. Therefore, slow synapses in LMAN as well in LMAN to RA projections 

can underlie the relative slowness of the dynamics of the babbling behavior we reported in 

juvenile finches (se also Supplementary Fig.7 and Supplementary Information). In agreement 

with this view, localized mild cooling of LMAN in zebra finches results in an increase in the 

time constant of the exponential gesture distribution during babbling-like behavior and in a 

longer tail in the distribution in older juveniles
35

. 

 

Our behavioral data show substantial differences in the time scale of the babbling behavior 

between zebra finches, canaries, swamp sparrows and humans. Our model suggests that this may 

be due to differences in the kinetics of NMDA receptors in thesespecies.Revealing a direct 

correlation between these differences and NMDA receptors kinetics requires data on the latter. 

To the best of our knowledge, there is no such data available for canaries, swamp sparrows or 

human infants. However, the range spanned by the babbling time scales in our behavioral data is 

compatible with the diversity of kinetics reported in NMDA receptors of different sub-unit 

composition
41,42

.  

 

In adult subjects, motor variability is expressed as fluctuations around a stereotyped motor 

pattern, which despite their relatively small amplitude, can contribute significantly to motor 

learning
2
. At early stage of development young animals, as well as human infants, produce 
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spontaneous exploratory gestures referred to as “motor babbling” that do not rely on any 

stereotyped or goal-oriented movement, and rather appear to express pure motor variability
10,43-

44
. Such exploratory movements may allow the self-organization

45
and the adaptation of sensory-

motor networks through correlation-based (Hebbian learning) and reinforcement learning 

mechanisms
1,46-48

. These mechanisms posit that synaptic neural correlates of exploratory 

behavior must persist for tens of milliseconds in the learning circuit. Our work suggests that the 

wide presence of NMDA receptors in the LMAN-to-RA projections
29-30

 is a key component  in 

the emergence of such eligibility trace in the overall dynamics of the circuit which generates 

behavioral variability in birds. 

 

To conclude, we showed that a circuit comprising strongly recurrent neural networks, which is 

organized in a topographic manner, is capable of driving variable motor behaviors. This 

mechanism relies on only a few architectural constraints and is thus likely to be a general 

operating principle by which the brain acquires motor skills and adapt behavior in a changing 

environment. 
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Figures 

 

Figure 1. Fluctuations in the inputs to the effectors are very weak when noise is generated 

autonomously in the motor network.a. The motor network projects in a topographic manner to 

D effectors (D=10 effectors, 4 represented): each effector receives inputs from a different group 

of M=1000 neurons. In spite of the large variability of the neuronal activity, the variability of the 

effectors (right) is extremely small (coefficient of variation of the effector averaged over the 10 

effectors:  CVeff
2 =0.007). b. The neuronal activity in the motor network is highly irregularandthe 

correlations across neurons are tightly distributed around zero. Left: Voltage traces for one 

excitatory (E, red) and one inhibitory (I, blue) neuron. Middle: Distributions of coefficient of 
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variation of the Inter-Spike-Interval, CVISI . Right: Probability density function (pdf) of Pearson 

correlation coefficients in the network. 
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Figure 2. Architecture and neuronal dynamics of a generic neural circuit driving 

behavioral variability. a. When the premotor-to-motor projections are topographically 

organized, fluctuations in the inputs to the effectors are large. Left: the circuit architecture. In the 

motor network, neurons in the same group (same color, projecting to the same effector) share a 

fraction f of their premotor inputs (arrows colored identically to the corresponding group) and 

have a fraction 1-f of non-shared inputs (grey arrows). Right: the inputs to the effectors are 

highly variable (CVeff
2 = 0.6). b-c. In the premotor network single neuron activity is highly 

irregular and very weakly correlated. b.Top: Raster plots of E (red) and I (blue) premotor 

neurons. Bottom: instantaneous mean activity of the E and I neurons (scale bar: 100ms and 
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10Hz). c. Voltage traces of two excitatory premotor neurons (top) and their spike 

crosscorrelations (bottom). d-e. In the motor network, single neuron activity is highly irregular 

and neurons are correlated. d. Top: Raster plots of E and I populations. Bottom: instantaneous 

mean activity of the E and I neurons (scale bar: 100ms and 10Hz).e. Voltage traces of two 

neurons in the motor network projecting to different (top) and same (bottom) effectors. Bottom: 

Pairs of neurons projecting to the same effector are substantially correlated (right); Pairs 

projecting to different effectors are very weakly correlated (left; see also Fig.4). f. The variability 

of the inputs to the effectors increases with the fraction of shared inputs and is substantial even if 

the number of inputs per effector, M, is large. This is because in the motor network the activities 

of the neurons belonging to the same group are correlated. g. The circuit amplifies fluctuations. 

The amplification factor, 
CV eff

2

CV inp
2 , (see Materials and Methods) measures the ratio between the 

variability of the effectors (CVeff
2 ) and of the input to the motor network  CVinp

2  . It increases 

linearly with the average number of synapses per neuron, K (mean±s.e.m; see also 

Supplementary Fig.3f). h. The connection probability of two neurons in the motor network 

depends on their distance (see Material and Methods) with a footprint 𝜎𝑟𝑒𝑐 . The diameter of the 

motor network is 𝜆 = 1000𝜇𝑚. i.CVeff
2  decreases when narrowing the footprint of the recurrent 

interactions in the motor network. Red dot in the figure corresponds to the parameters used in (a-

e). 
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Figure 3. Examples of single unit recordings in zebra finch RA nucleus and in the model 

motor network. a. Top: song motif of a zebra finch. Bottom: recordings of RA single unit over 

133 repetitions of song motif, aligned to one syllable in the motif (lower panel) and the 

corresponding average firing rate (upper panel; 5ms bin size). b. Extension of the model depicted 

in Fig.2a. Neurons in the motor network receives also temporally structured feedforward inputs, 

representing HVC inputs in the adult zebra finch (see main text and Material and Methods)c. 

Raster plot and corresponding average firing rate of a neuron in the motor network of the model 

circuit in the presence of temporally structured feedforward input. 
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Figure 4. Correlations in the trial-to-trial neuronal variability increase along the circuit 

generating motor variability in the model. a-b. Noise correlations in the model. In the 

premotor network, Noise crosscorrelations (CCs) are weak. In the motor network, neurons 

activating the same effector have significant positive correlation coefficients. a. Top left: 

Example of noise CCs across two single-units in the variability-generating premotor network 

(shaded area: 2.5 SD around the mean). Top right: Population averaged CCs. Noise CCs are 

almost flat, indicating the absence of significant correlations in the activity of the premotor 

network. Bottom: Probability density function (pdf) of Pearson correlation coefficients in the 

premotor network. b. Same as in (a), but for neurons in the motor network. Bottom: Conditional 

probabilities of the Pearson correlations ofneurons in the same functional group(dark-blue; 

average correlations: ~0.068) and neurons in different groups of (light blue; average correlations: 

average correlations: ~ -0.0066). Note that the probability of having two neurons in a group and 

between groups depends on the number of groups and by taking these priors into account the 
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average correlations across all neurons is close to zero (average correlations: ~0.0008; see text 

and Supplementary Information). 
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Figure 5. Correlations in the trial-to-trial neuronal variability increase along the circuit 

generating motor variability in singing birds. Experimental recordings in zebra finches during 

singing. Noise correlations are weak in LMAN but substantial in RA. a.Area of recordings. b. 

Spike-triggered average (STA) of the noise-LFP during singing in LMAN (mean±s.e.m.). The 

motif-average LFP was subtracted from the LFP signal and the STA of this residual LFP was 

then computed separately for each single unit recording (see Materials and Methods). c. Noise 

CCs of two single-units recorded simultaneously in LMAN during singing. The mean motif-

related activity was subtracted from the instantaneous firing rate during singing and correlation 

analysis was performed on the residual trial-to-trial fluctuating signal (noise correlations, see 

Materials and Methods). Noise CCs are flat after a random permutation of the spikes (gray trace, 
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shaded area: 2.5 SD around the mean). d. Single-unit pairs crosscorrelograms (blue) and average 

crosscorrelograms (inset) of single- vs. multi-units pairs (green) and pairs of multi-units (red) 

recorded from different electrodes in LMAN. e. Distribution of Pearson correlation coefficients 

in LMAN.f-j.Same as (a-e), but for neurons recorded in RA. In contrast to LMAN, RA neurons 

exhibit significant pairwise correlations. Crosscorrelograms are broad and their integrals are 

significantly larger in RA than in LMAN (see Materials and Methods and Results for statistical 

tests), reflecting the slow co-fluctuations in the activity of the simultaneously recorded units. 
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Figure 6.Temporal fluctuations slow down along the circuits generating motor variability 

(data+model). a.-b. Decorrelation time in the activity of neurons in LMAN  or RA during 

singing in zebra finches. a. Two examples of noise autocorrelations (ACs, see Materials and 

Methods) for  neurons recorded in LMAN (simultaneous recordings, CCs plotted in Fig.5c). 

Inset: superimposed spike shapes (red: average trace). FR: average singing-related firing rate 

during song. b. Same as (a) but for two RA neurons (simultaneous recordings, CCs plotted in 

Fig.5h). The ACs are fitted to a decaying exponential (Orange in a and purple in b; Time 

constant is indicated in the panels). c. ACs are much broader in RA than in LMAN (single units 

and mean+s.d.).d-f. The same as in (a-c) but in the model (𝜏𝑠
𝐸0 = 100𝑚𝑠, see Materials and 

Methods). d. ACs for neurons in the premotor network. e. ACs for neurons in the motor 

network.f.ACs in the premotor network decay faster than in the motor network (mean+s.d.).  
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Figure 7.  Babbling statistics are similar across different species of songbirds, human 

infants and in the model.a. Statistics of the babbling behavior generated by the model circuit 

depicted in Fig2.a-e when coupled to a minimal model of the vocal organ (see Materials and 

Methods). Top: spectrogram of the vocal output signal (𝜏𝑠
𝐸0 = 100𝑚𝑠). Bottom: probability 

density function (pdf) of vocal gesture durations (left) and averaged autocovariance of the 

envelope (ACE; right). Inset: distribution of gesture durations when the Y-axis is in log-scale. 
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The distribution of gesture durations is well approximated by an exponential with a „scale 

parameter',  𝜏𝑔𝑒𝑠𝑡𝑢𝑟𝑒
𝑚𝑜𝑑𝑒𝑙  (see Material and Methods). ACE decorrelates over a time duration of 

𝜏𝐴𝐶𝐸
𝑚𝑜𝑑𝑒𝑙 . Slow synaptic dynamics in the premotor-to-motor projections  (red:𝜏𝑠

𝐸0 = 50𝑚𝑠; blue: 

𝜏𝑠
𝐸0 = 100𝑚𝑠) results in slowly fluctuating vocal output (red: 𝜏𝑔𝑒𝑠𝑡𝑢𝑟𝑒

𝑚𝑜𝑑𝑒𝑙 = 60𝑚𝑠  and 𝜏𝐴𝐶𝐸
𝑚𝑜𝑑𝑒𝑙 =

31𝑚𝑠;  blue:𝜏𝑔𝑒𝑠𝑡𝑢𝑟𝑒
𝑚𝑜𝑑𝑒𝑙 = 120𝑚𝑠 and 𝜏𝐴𝐶𝐸

𝑚𝑜𝑑𝑒𝑙 = 64𝑚𝑠). b-i. Statistics of the babbling behavior in 

four species of vocal learners(ages of the subjects („babbling period‟)are given in Material and 

Methods).  Blue: Zebra finches (Zf); Red: Swamp sparrows (Sw); Green: Canaries (Ca); Black: 

Human infants (Bab).Different lines of the same color correspond to different subjects from the 

same species. b-e. Same as in a, but for the Zf (b: compare to the blue line in (a)), Sw (c: 

compare to the red line in (a)), Ca (d) and Bab (e). Gesture duration distributions lack any clear 

peak and are well fit with exponential decaying function with scale parameters (mean±s.e.m): 

τgesture
Zf =138±8ms; τgesture

Sw =44±4ms; τgesture
Ca =108±4ms; τgesture

Bab =337±17ms. The ACE decay 

time is specie-dependent: τACE
Zf =80±7ms; τACE

Sw =23±2ms; τACE
Ca =42±7ms; τACE

Bab =258±23ms.f-g. 

Cumulative distribution functions (cdf) of gesture duration for the four species before (f) and 

after (g) normalizing the gesture durations by 𝜏𝑔𝑒𝑠𝑡𝑢𝑟𝑒
𝑠𝑝𝑒𝑐𝑖𝑒𝑠

. H. Top: Interspecies differences in cdfs 

are much smaller than intraspecies differences (Kolmogorov-Smirnov statistic as a distance 

measure between cdfs). Bottom: Differences of cdfs in pairs of learners within (left to right: Zf-

Zf, Sw-Sw,Ca-Ca, Bab-Bab) and between species (left to right: Zf-Sw, Zf-Ca, Zf-Bab, Sw-Ca, 

Sw-Bab, Ca-Bab). i. Most of the interspecies differences in (h) are accounted for by normalizing 

the gesture durations to the scale parameter of the exponential fit of their distributions (see 

Results and Material and Methods for statistical comparisons).  
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Supplementary Figures 

Supplementary Figure 1. In the balanced excitation-inhibition regime spiking is irregular, 

asynchronous and time-averaged firing rates are heterogeneous. Network parameters are as 

in Fig.1a.Voltage trace of one excitatory neuron in the motor network. The temporal irregularity 

in the action potentials is intrinsically generated by the recurrent network dynamics since there is 

no external noise. b. Total excitatory (red), inhibitory (blue) and net (E+I, black) inputs to the 

same neuron as in(a).The excitation and the inhibition taken separately are large relative to the 

threshold, but the mean and the fluctuations of the net input (black) are comparable with the 

threshold. Suprathreshold fluctuations in the net inputs induce irregular spikes (stars in a,b). c. 

The single neuron firing rates in the excitatory (red) and inhibitory (blue) populations are highly 

heterogeneous. Their distributions are long-tailed. Note that this heterogeneity stems solely from 

the recurrent dynamics of the network since in each population all the neurons are identical in 

our model. d. Measure of synchrony, 𝜒2(𝑀), as a function of population size, M, in log-log scale 

(see Materials and Methods). Blue: N=10000,K=400. Green: N=10000, K=800; Red: N=20000, 

K=400. Blue and green lines are almost indistinguishable. In all cases 𝜒2~𝑏/𝑀, up to deviations 

for 𝑀 ≈ 𝑁. e. 𝐶𝑉𝑒𝑓𝑓
2  decreases as 𝐴 +

𝐵

𝑀
 with A≈0 (dashed line). Circles: simulations. Red dot 

corresponds to the parameters used in Fig1. 
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Supplementary Figure 2. The activity in the motor network is weakly correlated when all 

neurons in the motor network share the same premotor inputs. a. Left: a subset of neurons in 

the premotor network projects to all neurons in the motor network, thereby all neurons in the 

motor network share the same feedforward input. Right: the fluctuations in the inputs to the 

effectors are higher than in Fig.1b, but still very small (CVeff
2 = 0.03) and their magnitude 

vanishes when the number of synaptic inputs increases. b-d.  𝐶𝑉𝑒𝑓𝑓
2 is well fit to 𝐶𝑉𝑒𝑓𝑓

2  =

 𝐴(𝐾) +
𝐵

𝑀
for large 𝐾. In (b): Green: 𝑁𝐸 = 40000, 𝐾 = 400; Black (almost coincide with the 

green): 𝑁𝐸 = 10000, 𝐾 = 400; Gray: 𝑁𝐸 = 40000, 𝐾 = 3200. In (d) K=400. A and B barely 

depend on 𝑁𝐸 . From (b-d) it can be concluded that𝐴(𝐾) ~ 1/𝐾, namely the synchrony in the 

network is very weak. 
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Supplementary Figure 3. When the circuit is topographically organized the activity in the motor 

network is irregular, heterogeneous and the inputs to the effectors exhibit robust temporal 

fluctuations. Parameters are as in Fig2.a-e. a. Distribution of firing rates of E and I neurons in the motor 

network. b. Distributions of 𝐶𝑉𝐼𝑆𝐼  for the E and I neurons. Neurons fire irregularly with high 𝐶𝑉𝐼𝑆𝐼. c. 

Distributions of 𝐶𝑉2𝐼𝑆𝐼 =  
2 Δti+1−Δti  

Δti+1+Δti
 𝑖  for the E and I neurons in the motor network. Here, Δti is the i'th 

ISI and the average is over all the ISIs. CV2 measures the local variability in non-stationary spike trains. 

Neurons are firing irregularly with CV2 ~ 1. d-e.  The coefficient of variation of the inputs to the 

effectors depends only weakly on (d) the number of connections (feedforward and recurrent) and (e) the 
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number of neurons in the network. Red dot corresponds to the parameters used in Fig2.a-e. f. The CV of 

the inputs to the neurons (𝐶𝑉𝑖𝑛𝑝
2 , blue) and the inputs to the effectors (𝐶𝑉𝑒𝑓𝑓

2 , black) plotted vs K. 𝐶𝑉𝑖𝑛𝑝
2  

decreases with K while 𝐶𝑉𝑒𝑓𝑓
2  remains essentially constant. This results in an amplification of CVs (see 

Fig.2g). Red dot: K=400 as in Fig2.a-e. g. 𝐶𝑉𝑒𝑓𝑓
2  (black) and 𝐶𝑉𝑖𝑛𝑝

2  (red) vs. number of functional groups. 

The average correlations in neuronal activity within a group increases with the number of groups. This 

stems from the fact that increasing the number of groups results in effectively narrowing the spatial 

extent of the correlations in the FF inputs with respect to the footprint of the recurrent 

connectivity in the motor network (see also Fg.2h-i).h. Amplification factor (𝐶𝑉𝑒𝑓𝑓
2 /𝐶𝑉𝑖𝑛𝑝

2 ) 

increases with the number of functional groups. Black: 𝜏𝑒𝑓𝑓 = 10𝑚𝑠  as in Fig.1-2. Gray: 

𝜏𝑒𝑓𝑓 = 3𝑚𝑠.i. Cartoon of the FF projections from the premotor network to the motor network. 

The two neurons in the motor network are in the same functional group. By construction, the two 

neurons receive 𝑓𝐾 inputs from the same neurons in the premotor network (orange, shared 

inputs). The neurons also receive inputs drawn randomly and independently from excitatory 

neurons in the premotor network with probability 1 − 𝑓 𝐾/𝑁. (grey, „unshared‟). The 

probability that the two neurons also have common inputs in this set is on the order of 𝐾2/𝑁2 

which is small as 𝑁 ≫ 𝐾. The overlap between the „unshared‟ and „shared‟ sets of inputs is not 

represented. 
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Supplementary Figure 4. Crosscorrelations of the activity within and between functional 

groups in the motor network. The population average activity of each functional group was 

smoothed with an exponential sliding window of 10ms. The autocorrelations (diagonal, blue; not 

normalized) and the crosscorrelations (off-diagonal, red; not normalized) are plotted. Note that 

the crosscorrelations within a group are positive and much stronger than correlations across 

groups, which are in general weak and negative. 
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Supplementary Figure 5.Push-pull dynamics and spatial correlations for two functional 

groups.a. Architecture of the circuit. b. Top: Feedforward inputs to neurons in each functional 

group in the motor network (top). Bottom: Input to the effectors. M=1000. Note that 𝐶𝑉𝑒𝑓𝑓
2  is 

much larger than 𝐶𝑉𝑖𝑛𝑝
2 . c. Population average crosscorrelations for neurons projecting to the 

same effector are positive (blue), while average correlations between neurons projecting to 

different effectors are negative (red). Black: population average cross correlations over all E 

neurons in the motor network. d-f.𝐶𝑉𝑒𝑓𝑓
2 converges to a non-zero value, which only very weakly 

depends on the number of connections (e) or neurons (f) in the network. d. Red: 𝐶𝑉𝑒𝑓𝑓
2  for the 

two effectors; Black: average 𝐶𝑉𝑒𝑓𝑓
2  of the two effectors. e. Black: M=100 ; Gray: M=5000. f. 

M=400. Results for M=800 are similar and are not shown. 
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Supplementary Figure 6. Additional electrophysiological support for the measured 

correlations in LMAN and RA. a. Correlations of LMAN or RA single-units with the multi-

units background activity. Left: Spike triggered average (STA) with the background multi-unit 

envelope in LMAN during singing. The background envelope of multi-unit activity recorded 

simultaneously with a single-unit on the same electrode is smoothed with a 5-ms Gaussian 

window. The average motif background activity is subtracted from the singing-related 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 7, 2016. ; https://doi.org/10.1101/086074doi: bioRxiv preprint 

https://doi.org/10.1101/086074


42 

 

background. STA with this residual signal is then computed for each single-unit recording 

separately, and the average z-score±s.e.m is shown. Note that a ~10-ms artifact around the spike 

time is due to the spike subtraction. Right: same as in the left  panel, but for RA neurons. b. 

Noise correlations between LFP recordings vs. the distance in the recorded site (see Material and 

Methods). Note that correlations tend to be negative between sites that are far apart. Each circle 

denotes a pair of recording sites, and the data were recorded in two birds (red and blue). Solid 

lines: linear fit for bird 1 (red; slope -0.23; R
2
=-0.056; n.s), for bird 2 (blue; slope -0.56; 

R
2
=0.31; p=0.001) and for the two together (n=15; black; slope -0.43; R

2
=0.18; p=6 10

-14
). c. 

Raster plot of the example RA neuron also plotted in Fig.3a before (bottom) and following (top) 

time-warping. Note the improvement in the alignment of the spikes to the song motif. d. Noise 

correlations across the two RA neurons depicted in Fig.6b and 5hwithout time warping and with 

a common jitter (ranging from 2 to 500ms) applied to the syllable times across renditions of the 

motif (see Supplementary Information). Main figure: Pearson correlations vs. the amount of 

jitter. Inset: zoom-in on 0-50msjitters shows that the jitter does not dramatically change the level 

of correlation. Figures around the main figure: noise correlations as depicted in Fig.5h, but with 

an increasing time jitter (clockwise). 
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Supplementary Figure 7. Various mechanisms generating slow fluctuations in the motor 

network and in the effectors. a. Population average autocovariance (not normalized) of neurons 

in the premotor network. b. Population average autocovariance (not normalized) of neurons in 

the motor network. c. Population average crosscovariance (not normalized) for neurons in the 

motor network in the same functional group. d. The autocovariance (not normalized) of the input 

to the effectors. In all panels the color code is as follows. Green: all synapses are fast (synaptic 

time constants are 3 ms) and the strength of the mutual inhibition is J II = −4. The decorrelation 

of the fluctuations is fast in the premotor and motor networks (a-b) and in the effectors (d). Red: 

the mutual inhibition in the premotor network has two components, one fast (τs
II−fast =3ms) and 

one slow (τs
II−slow =100ms). For both components K=400 and their strength isJ II = −2. All other 

synapses are fast. The premotor network now exhibits asynchronous chaotic rate fluctuations 

which decorrelate on a timescale (a) on the order of the synaptic time constant of the slow 

inhibition
15

. Both the synchronous activity in the motor network (c) and the input to the effectors 

(d) decorrelate on the same timescale. Black: the mutual inhibition in the motor network has two 

components, one fast and one slow with the same strength, J II = −2. All other synapses are fast. 

The motor network now exhibits slow asynchronous chaotic rate fluctuations on the slow 

timescale of the inhibition (b) and fast synchronous fluctuations driven by the premotor network 
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(c). Therefore, the fluctuations in the  input to the effectors (d) are fast. Blue: the mutual 

inhibition in both networks has two components, one fast and one slow with the same strength 

isJ II = −2. In all panels J II = −4  in both networks, unless stated otherwise. Other parameters: 

J EE = 0.3, J IE = 6, J EI = −0.8, I E = 0.2, I I  = 0.1 for the premotor network; J EE = 0.5, J IE =

3, J EI = −3, J II = −4 , I E = 0.2, I I  = 0.1; and J E0 = J I0 = 4. 
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Supplementary Figure 8. Statistics of a wideband Gaussian process after a rectified power-

law transformations.  In (a), (b) and (d): Left: trace of the process. Middle: marginal 

distribution of the process. Right: Autocovariance (AC) of the process depicted on the left panel. 

Parameters in a-b are as in Fig.7a, but with D=2.  a. FF input to a typical neuron in the motor 

network. Red: the marginal distribution is well fit by a Gaussian. b. Net input to a typical neuron 

in the motor network. Red: the marginal distribution is well fit by a Gaussian (red). 𝐶𝜉(Δ): AC of 

the process shown in left. c. Rectified power-law function 𝑔𝜖𝛾  𝑥 =  𝑥 − 𝜖 +
𝛾

. Black: 𝛾 = 1. 

Orange: 𝛾 = 2. d. The process in (b) following a rectified linear transformation: 𝑔01 𝑥 . 
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𝐶𝑔 Δ : AC of the process shown in left. The pdf was estimated after excluding points smaller 

than 0.1. e. Bottom: AC of a Gaussian process {𝜉𝑡} with AC as in (b). Middle: Transformation 

between 𝐶𝜉(Δ) to𝐶𝑔(Δ) for different shapes of rectified power-law functions with different 

exponents. Left: AC of 𝑔𝜖𝛾  𝜉 . Dashed black: 𝐶𝜉(Δ). Black: 𝐶𝑔(Δ)for 𝜖 = 0, 𝛾 = 1. Orange: 

𝐶𝑔(Δ)for 𝜖 = 0, 𝛾 = 2. Red: 𝐶𝑔(Δ)for 𝜖 = 0, 𝛾 = 3. Black crosses: AC of the process in (d). f. 

Top: Distribution of burst duration for 14 randomly chosen neurons in the motor network. 

Bottom: y-axis is in log scale. g. Top: distribution of 'gesture' durations with a simplified 

thresholding of the input to the effectors (𝛾 = 1). Bottom: y axis is in log-scale. Parameters in f-

g are as in Fig.7a and with 𝜏𝑠
𝐸0 = 50𝑚𝑠. 
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Supplementary Figure 9. Statistics for gesture and inter-gesture duration in young and 

older juveniles. Color code as in Fig.7.a.Temporal structure of Sw plastic song (322-364 DPH). 

Top: Spectrogram of vocalizations. Bottom: probability density function (pdf) of vocal gesture 

durations (left) and averaged autocovariance of the envelope (ACE; right).  The peaks in the 

distribution and the ACE express the temporal stereotypy of the song.  b. Stereotypy of plastic 
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songs and diversity of songs in different species as captured by the gesture duration distributions 

and ACEs. Examples of gesture distribution (left) and ACE (right) of plastic songs. Note the 

peaks in the distributions as well as in the ACEs (Sw: 337-379 DPH; Zf: 73 DPH; Ca: 284 DPH, 

day post hatched). c. Gesture duration distribution (left) and ACE (right) of a 10 month old 

infant, at the beginning of a repetitive babbling period (also called "canonical babbling", with 

repetition of the constant-vowels, e.g. ba-ba-ba). d. In babbling juveniles, most of the variability 

between species in the CDF of the inter-gesture duration is accounted by a scaling factor of the 

time (as is the case for the gesture duration distributions, see Fig7.). e. Babbling juveniles. Left: 

Pearson correlations between the duration of an inter-gesture and the consecutive gesture 

duration (𝑟𝐺−𝐼𝐺) against the correlation between the duration of a gesture and the consecutive 

inter-gesture duration (𝑟𝐼𝐺−𝐺). Right: same for consecutive gestures (𝑟𝐺−𝐺) against consecutive 

inter-gestures (𝑟𝐼𝐺−𝐼𝐺). Full circles: significant non-zero correlations (for both statistics; 

permutation test; p<0.01). Note that in all cases correlations are close to zero with a slight 

tendency to be positive, probably due to global tempo changes. f. The Pearson correlations 

increase with age. Correlations for later plastic songs are larger than during babbling for the 

same individuals. 
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Supplementary Figure 10. Robust behavioral variability emerges from the interplay 

between topographic organization in the premotor-to-motor pathway and the recurrent 

dynamics in the motor network. The architecture of the premotor-to-motor pathway (top) and 

the footprint of the recurrent connections within the motor network (bottom) is depicted in each 

of the three panels. Neurons in the motor network can develop highly robust correlations when 

the premotor-to-motor pathway is topographically organized and the recurrent connectivity in the 

motor network is sufficiently wide. 
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ONLINE METHODS 

Sound Recordings  

Subjects Seven human infants (3 males and 4 females) were recorded in their natural 

environment. Their parents gave written informed consent for participation in this study. Nine 

zebra finches and five canaries were obtained from our breeding facilities (Paris Descartes and 

Paris Sud Universities). Seven swamp sparrows were collected as nestlings and hand-reared in 

the laboratory (see ref. (50) for details). Birds were housed under natural light/dark conditions 

and provided with food and water ad libitum. Animal care and experiments were performed in 

accordance with European directives (86/609/CEE and 2010-63-UE) and the French legislation. 

Experiments were approved by Paris Descartes University ethics committee. 

Human infants: We recorded spontaneous vocalizations in six infants in their natural 

environment starting from 5 to 7 months after birth(denoted as the: 'babbling period'). The 

parents were instructed to place a recorder (digital dictation machine with stereo microphone, 

ICD-PX333M SONY) near the baby's head for ~30 min at least 5 days a week for several weeks 

(4 to 20 weeks). The data presented include babies for which vocalizations were collected from 

at least 20 days during this recording period. Additionally, one 10 month old infant was recorded 

for repetitive babbling. 

Zebra finches: Juvenile zebra finches were raised in single cages with their parents and siblings. 

At age 26–41 DPH(day-post-hatch, 'babbling period'), 9 male zebra finches were removed and 

placed in custom-made sound isolation chambers. Vocalizations were recorded for 10-30 days 

continuously with Sound Analysis
51

, which was configured to ensure that recordings were 
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triggered on all quiet vocalizations of young birds. Five of the nine birds were continuously 

recorded until song crystallization (~3 months), with episodic access to their father. 

Swamp sparrows: Seven swamp sparrow males were recorded in individual sound isolation 

chambers (Industrial Acoustics AC-1) once per week, starting in February of their first year 

when they were about 250 DPH. The onset of song development was first detected at 262-

296DPH('babbling period'), and recording continued up to 366-386 DPH, when the males were 

singing crystallized adult song. Subsong was sampled for 30 minutes (Marantz PMD221 cassette 

tape recorder, Realistic Omni-directional microphone, Yamaha Mike to Line Amplifier). An 

automated system was introduced to detect and record song during late-plastic and crystallized 

song using a voice activated switch (modified UherAkusomat) and a Digital Delay System 

(Digitech). 

Canaries: Juvenile canaries were raised in our breeding facility at Paris Sud University, in single 

cages with their parents and siblings. At age 75–150DPH('babbling period'), as they started to 

produce their first vocalizations, five male canaries were removed and placed in custom-made 

sound isolation chambers. Vocalizations were recorded continuously for 3 months (September to 

December) during the fall following their birth with Sound Analysis Pro, which was configured 

to ensure that recordings were triggered on all quiet vocalizations of young birds. Four of the 

five birds were also recorded 3 months later (early spring)for 5-10 more days. 

Sound analysis  

Vocalizations: Songs and infant vocalizations were manually sorted. For subsongs we took the 

first recorded song vocalizations of the bird. Recordings were from one day of vocalizations, 
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except for zebra finches, where in some individuals subsongs from 1-3 recording days were 

combined to get enough gestures. 

Spectrograms: Spectrograms were estimated using the multitaper method with 2 slepian tapers.  

Envelope signal: We extracted the envelope of the signal (termed also “amplitude” in the 

literature) by band passing the sound signal in the frequency ranges of the vocalizations (from 

800Hz and up to 4000-10000Hz, depending on the species, with order-80 linear-phase finite-

duration impulse response, FIR, filter), taking the absolute value of the signal and low passing it 

at 1-200Hz with a linear filter of order-200 linear-phase filter FIR.  

Averaged Auto-Correlations of Envelope (ACE): The autocovariance of the envelope signal 

was estimated for each recording and then normalized to the zero lag. The ACE signal was then 

estimated by averaging this signal over one day of recording sessions. 

Gesture and Inter-Gesture segmentation: We used a local method for gesture and inter-

gesture detection. We calculated the peaks of the derivative of the log-envelope signal (after 

band passing the signal; see above) which was smoothed by a 5-30 ms sliding window, 

depending on the noise level of the signal and the species (using fpeaks in Matlab and a filter of 

(-1 0 1) ) and defined sound onsets and offsets as the closest points to these crossings. We 

defined the threshold for each file by the x percentile of the peaks, where x was in the range of 

85-98. The percentile threshold, x, as well as other relevant parameters for segmentation were 

fixed after manually examining a subset of the data for each recording day. When the signal was 

too noisy to use the local method (mainly for infant babbling and several swamp sparrows) we 

used a global threshold: for each recording, we calculated a sound threshold by fitting a two-
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Gaussian mixture model (corresponding to noise and sound) using an expectation-maximization 

algorithm  for the log-envelope signal. We then detected crossings of this threshold and defined 

sound onsets and offsets as the closest points to these crossings where the envelope deviated 

from the noise by 4 standard deviations. Using a global method instead of a local one on all the 

juvenile recordings yielded similar results, however we preferred to use the local method 

whenever possible. For both methods, sounds separated by a duration of <7ms of silence were 

merged into a single gesture, and segments of overly long (Zf: >800ms; Sw:>400ms; Ca: 

>900ms; Bab: >3500ms) or short durations (Zf, Sw,Ca:7ms; Bab:<30ms) were eliminated.  

Fitting exponential decay: We fit an exponential function to the gesture duration distribution 

using maximum-likelihood estimation on a finite interval
35

(based on a median of 1870 gestures 

per day for a songbird and 700 for about one month of human infant recordings; interval 

duration: Zf: 50-800ms; Sw:10-200ms; Ca: 50-600ms; Bab: 50-1500ms). Distributions that were 

well fit by the exponential function usually had a high goodness-of-fit metric
35

 (adjusted-R
2
>0.7 

and Lilliefores statistic<3.5). To extract decorrelation timescales from the ACE we fit an 

exponential decay to the ACE.  

Electrophysiology  

Microdrive implantation: For single and multi-unit recordings, a custom-built motorized 

microdrive (RP Metrix) was modified to accept 2-4 tungsten microelectrodes (8-20 MΩ, FHC), 

as well as lateral positioner. It was implanted in LMAN or RA as follows: Young adult male 

zebra finches (<180 DPH, 3 for nucleus LMAN and 2 for nucleus RA) were anesthetized with 

5% isoflurane (induction) and placed in a stereotaxic apparatus with a head angle of 30-50°(for 

LMAN implantation) or -5° (for RA). Anesthesia was maintained with 0.5-1% isoflurane for the 
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duration of the surgery. LMAN/RA was located using previously established stereotaxic 

coordinates and identified based on its characteristic neural activity patterns. The electrodes and 

exposed brain were surrounded with Kwik-Cast (WPI), and the microdrive was secured to the 

skull using dental cement (Superbond, Phymep). A silver wire implanted under the skull acted as 

a ground, and a low impedance fixed tungsten electrode served as the reference. We also 

conducted LFP recordings in nucleus RA, using 3x3 micro-electrode arrays (AlphaOmega) with 

an impedance of 1 to 2 MOhm. Electrode arrays were implanted in young male zebra finches 

under isoflurane anesthesia (as specified above), relying on the recorded signals to locate nucleus 

RA, and then fixed onto the skull using dental cement (Superbond, Phymep). A silver wire 

implanted under the skull was used as a ground, and one of the contact points of the array served 

as the reference. In both types of experiments, subjects were allowed to recover and habituate to 

the weight of the recording apparatus for a few days. They were then transferred to the recording 

cage and connected through a commercial tether and head stage (Neuralynx or AlphaOmega) 

and the implanted microdrive to a mercury commutator on the roof of the cage (Dragonfly 

systems). An elastic thread built into the tether helped to support the weight of the implant. 

Subjects remained tethered both during and between experiments. 

Chronic recordings: Neural signals and vocalizations were collected using a commercial head 

stage and acquisition system (Neuralynx or AlphaOmega). Signals were amplified, digitized and 

filtered either below 300 Hz (LFP signal)  or between 300Hz and 30kHz (spike signal).  

Data analysis: Spike signals were analyzed using Spike2 software (Cambridge Electronic 

Design) and custom-written software in Matlab (MathWorks). Single and multi-unit signals were 

isolated using Spike2, and spike times were then exported to Matlab. Motif onset times were 
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extracted from sound recordings using custom programs. We calculated the auto-correlograms 

(AC; 5s window, 5ms bin) of single spike trains and cross-correlograms (CC; 5s window, 5ms 

bin)  of all pairs of spike trains recorded simultaneously. Activity was first aligned to motif 

onsets and then average over all motifs produced during each recording session (PSTH analysis), 

using a  time window limited to the duration of a single song motif, and 5 ms bins. To eliminate 

temporal variability due to fluctuations in the duration of single syllables, spike trains were 

aligned and stretched using piecewise linear time warping with each syllable onset as a time 

reference
27

. Signal correlations measure the similarity of the activity of two neurons during 

singing. Noise correlations, on the other hand, is a measure of the similarity of the trial-to-trial 

variability (around the motif-related PSTH) of two neurons. We computed the spike counts in 5 

ms bins during song production and subtracted the mean motif-related PSTH of a song motif for 

each neuron for all motifs produced. For each pair of simultaneously recorded neurons (by 

definition, the noise correlations can only be calculated for simultaneously recorded neurons), we 

computed the noise correlations by calculating the correlation coefficient of these two vectors. 

To compare the shapes of the cross-correlograms from units recorded in two considered brain 

nuclei (LMAN and RA), we measured the mean deviation from zero in a cross-correlogram 

according to the following procedure. The absolute value of the cross-correlation function was 

first averaged over the [-50ms +50ms] window (appropriate for the behavioral output given the 

integration time-constant). The absolute value of the auto-correlation functions of the two 

corresponding units was also averaged over the same time window. The average absolute cross-

correlation was then normalized to the square root of the product of the average absolute 

autocorrelation functions to provide the numbers used in the statistical tests in the main text. This 

equation is given by: 
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shape of crosscorelograms =
 |c12 τ |

τ=50ms
τ=−50ms

  |c11 τ |
τ=50ms
τ=−50ms  |c22 τ |

τ=50ms
τ=−50ms

 

wherec12 τ  is the cross-correlogram across the two neurons at time lag τ, and c11 τ  and c22 τ  

are the autocorrelations of the two neurons. 

LFP signals were aligned to motif onsets and averaged over all motif renditions produced during 

a recording session. To calculate the “noise Spike-Triggered Average LFP”, we first subtracted 

motif-aligned average LFP to LFP signals recorded during each single motif. We then computed 

the average of the residual-LFP signals cut in 600ms window around each spike over all spikes 

produced during all motif renditions in the recording session. Additionally, we computed noise 

Spike-Triggered Average of the envelope of the background multi-unit spiking activity present 

behind single-unit recordings. To this end, we first removed spike shapes from the sorted single-

unit from raw spiking signal, rectified the leftover background signal and convolved it with a 

5ms wide Gaussian function. A similar treatment as for the LFP was applied to this background 

multi-unit envelop to get its noise Spike-Triggered Average. 

To quantify the possible effect of bad or partial time-warping on the level of correlation in our 

data set, we first compared the level correlation in our data set before and after time warping, and 

then also incorporated artificially wrong syllable timing before the time-warping was applied. To 

this end, we added variable jitter (from 2 to 500ms) to the syllable onset times, and then time-

warped the spike times of the two units according to this jittered syllable timing. This 

manipulation served to artificially introduce a strong misalignment of the spiking activity with 
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real singing behavior, with a common time jitter for both units, without modifying the average 

activity of the neurons in a given trial. 

Statistics  

Numerical values are given as mean ±SD, unless stated otherwise. Whenever using  a statistical 

test, we report the type of test applied and the associated p value (probability of observing the 

given result, or one more extreme, by chance if the null hypothesis is true).  

Histology  

After the last recording session, subjects were killed by intramuscular injection of sodium 

pentobarbital (Nembutal) and perfused transcardially with 0.9% saline followed by 4% 

paraformaldehyde as fixative. The brain was then removed, postfixed in 4% paraformaldehyde 

for 24 h, and cryoprotected in 30% sucrose. Sections (60 m thick) were then cut in the 

parasagittal plane on a freezing microtome and processed for histological examination to verify 

the location of the recording electrodes. Tissue was Nissl stained to visualize the electrode 

tracks. 

Spiking model 

Our model consists of two large recurrent networks, both comprising 𝑁𝐸   excitatory (E) and  𝑁𝐼 

inhibitory (I) neurons. For simplicity we take 𝑁𝐸 = 𝑁𝐼 = 𝑁. These two networks represent a 

premotor and a motor network. The premotor network projects in a feedforward manner to the 

motor network, and the latter activates a small number of effectors, consistent with the songbird 

anatomy
10,23-24,38

. 
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Single neuron and synaptic dynamics: All the neurons in the circuit are modeled as leaky-

integrate-and-fire (LIF) units. The sub-threshold dynamics of the membrane potential, Vi,α(t), of 

neuron i in population α (i = 1, … , Nα;  α = E, I) obey: 

τm

dVi,α(t)

dt
 = − Vi,α t − VL +  Irec ,i

α  t + IFF ,i
α  t  

where τm  is the neuron membrane time constant, Irec ,i
α (t) is the recurrent input into neuron  i, α , 

due to its interactions with other neurons in the same network (premotor or motor), IFF ,i
α ( t) is the 

total feedforward input into that neuron. VL is the reversal potential of the leak current (taken to 

be 𝑉𝐿 = −60mV).   

These subthreshold dynamics are supplemented by a reset condition: if at t = tiα the membrane 

potential of neuron (i, α) crosses the threshold, Vi,α tiα
− = 10mV, the neuron fires an action 

potential and the voltage reset to Vi,α tiα
+  = −60mV. 

We model all synaptic inputs as pure currents. The total current into neuron (i, α) due to its 

recurrent interactions yields: 

Irec ,i
α (t) =  Jij

αβ
Sj

αβ
(t) 

whereJij
αβ

 is the strength of the connection from presynaptic neuron (j, β) with neuron (i, α), and 

Sj
αβ

(t) are the synaptic variables, which follow the dynamics: 

τs
αβ dS i

αβ
(𝑡)

𝑑𝑡
= −Si

αβ
(t) +  δ(t − tjβ){tjβ} . 
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Here τs
αβ

 is the synaptic time constant (assumed to depend solely on the nature –excitatory or 

inhibitory– of the pre and postsynaptic neuron)  and the sum is over all spikes emitted at times 

tjβ < 𝑡.  

Recurrent architecture: The recurrent connectivity of the E and I populations in the premotor 

network is random (Erdös-Renyi graph). In each network, the connectivity matrix, Cαβ, between 

presynaptic population β and postsynaptic population α is therefore a random N xN  matrix 

such that Cij
αβ

= 1 with probability K /N  and zero otherwise, where K  is the average number 

of inputs a neuron receives from population β. We assume that the strength of the synapses 

depends solely on these populations yielding: Jij
αβ

= JαβCij
αβ

 where Jα𝐸> 0 (excitation) and Jα𝐼<0 

(inhibition). When comparing the dynamics of networks with different connectivity we follow 

the prescription
13,48

: 

Jαβ =  J αβ/ K  

where the parameters, J αβ, are of order unity and can be different for the premotor and motor 

networks.  

Distance-dependent recurrent architecture in the motor network: In the motor network the 

connectivity is random with probability which depends on the distance between the neurons. The 

probability of connections between two neurons is 𝑝𝛼𝛽
𝑖𝑗

=
𝐾

𝑁
𝑓(𝑥𝑖𝛼 − 𝑥𝑗𝛽 ), where 𝑥𝑖𝛼 = 𝑖

𝜆

𝑁
 is the 

location of neuron i=1, ..., N in population 𝛼, and 
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f(𝑥𝑖𝛼 − 𝑥𝑗𝛽 ) =
1

 2πσrec
2

 e
−
 𝑥𝑖𝛼 −𝑥𝑗𝛽 +m 

2

  2σrec
2

∞

m=−∞

 

where𝜎𝑟𝑒𝑐  is the footprint of the recurrent interactions. Here we have assumed for simplicity that 

the motor network is one dimensional, of size 𝜆  and periodic boundary conditions. For large 

values of 𝜎𝑟𝑒𝑐  distant neurons are as likely to be connected as close ones, while for small values 

of 𝜎𝑟𝑒𝑐  only neurons which are close have a significant probability to be connected (Fig.2h). In 

most of the results depicted in the paper we assume that the recurrent interactions in the motor 

network have a wide footprint (𝜎𝑟𝑒𝑐 → ∞), except for Fig.2h-i, where we investigate how the 

results depend on the value of 𝜎𝑟𝑒𝑐 . 

Feed-Forward architecture: The premotor network receives external feedforward (FF) inputs, 

which in the context of the songbird system represent the thalamic (the medial part of the 

dorsolateral nucleus of the anterior thalamus, DLM) inputs that may tonically activate LMAN 

during song. The total number of FF inputs to a premotor neuron is modeled as a constant 

drive
13,52

,  K I α. Similarly, the motor network receives a FF input from outside the circuit that 

we model as a constant drive. Importantly, the motor network also receives FF projections from 

the premotor area which exhibit a topographic organization. To implement this key feature of the 

architecture of our model we divide the excitatory population in the motor network into 

Dstatistically equivalent functional groups (N /D neurons in each group). For each group, we 

choose a set of𝑓𝐾 neurons (set 𝑃𝑙) in the premotor network projecting to in neurons in the 

group.  For each neuron in the group, additional inputs are chosen by drawing randomly from the 

premotor network with probability  1 − 𝑓 𝐾  /𝑁. Each neuron in a group therefore receives on 
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average 𝐾 projections from the premotor network. Changing f allowed us to easily manipulate 

the total amount of correlations in the FF inputs by changing the parameter, 𝑓, keeping the total 

average number,𝐾 , of premotor inputs per neurons fixed. For 𝑓 = 1 all the projections are 

topographic whereas if 𝑓 = 0 they are completely random. The total FF premotor input into an 

excitatory neuron i (𝑖 = 1,… , N ) in group 𝑙( = 1,… , D) in the motor network is therefore 

modeled as:  

𝐼𝐹𝐹,𝑖𝑙
𝐸 (𝑡) = 𝐽𝐸0   𝑆𝑗

𝐸0 𝑡 

𝑗 ∈𝑃𝑙

+  𝐶𝑖𝑗
𝐸0𝑆𝑗

𝐸0 𝑡 

𝑗 ∈𝑝𝑟𝑒𝑚𝑜𝑡𝑜𝑟

 +  K I 𝐸  

In this architecture, the probability that two neurons in group l share premotor inputs is 𝑓 +

𝑂(𝐾2/𝑁2). Note that if 𝐾  is too large it will be impossible to have different shared inputs for 

each group in the motor network. However, this does not happen with the model parameters in 

the simulations described in the paper since we take  𝑁 ≥ 10000, and the maximum number of 

connections is 𝐾 = 1000 for 10 clusters (Supplementary figure 3d). 

The total FF premotor input into an inhibitory neuron i (𝑖 = 1,… , N ) in the motor network is 

𝐼𝐹𝐹,𝑖
𝐼 (𝑡) = 𝐽𝐼0  𝐶𝑖𝑗

𝐼0𝑆𝑗
𝐼0 𝑡 𝑗 ∈𝑝𝑟𝑒𝑚𝑜𝑡𝑜𝑟  +  K I 𝐼. The synaptic strength, 𝐽𝛼0, is parameterized as 

the recurrent synapses:  𝐽𝛼0  = 𝐽  𝛼0/ 𝐾 ,  with 𝐽  𝛼0 of order unity and Cij
α0 is a random adjacency 

matrix: Cij
α0 = 1 with probability K /N and zero otherwise. Finally, similar to the recurrent 

interactions, the dynamics of the synaptic variables Si
α0(t) yields: τs

α0 dS i
α0(t)

dt
= −Si

α0(t) +

 δ(t − tjE ){tjE }  withtjE  as the spike times of neuron (𝑗, 𝐸)  in the premotor network. For 

simplicity we take KFF = K. 
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Temporally structured feed-forward input to the motor network: We model the temporally 

structured inputs to the motor network (HVC to RA input)  by including an additional 

contribution,Ii
struct  t , to the FF input received by the neurons in this network. The input, 

Ii
struct  t ,  to neuron i, lasts for a duration of 600ms (a typical duration of a zebra finch song 

motif) repeated 300 times. It consists of a random sequence of On and Off periods, the duration 

of which are drawn from an exponential distribution with mean 20ms for the On and 70ms for 

the Off periods. The amplitudes of the input during the On periods are drawn randomly from 

uniform distribution over an interval [0.1, 0.5]. The input sequences are generated independently 

for neurons in different functional groups.  each group is then divided into 20 (non overlapping) 

sub-groups such that all the neurons in a subgroup share the sequence. Note that the results 

depicted in Fig. 4A were obtained by simulating the network without structured input. 

Effectors: The pathway from the motor network to the effectors is topographic. Specifically, we 

assume that: 1) the number of effectors and the number of groups are equal; 2) a given effector is 

activated by 𝑀 ≫ 𝐷 neurons in the motor network randomly chosen from one group; 3) 

Different effectors are activated by different functional groups. We modeled the activation of an 

effector, El(t)(𝑙 = 1…𝐷), as a linearly filtered version of the activity of the neurons in the 

motor network, namely: 

τeff
dE l (t)

dt
= −El(t) +  δ(t − tjE ){tjE } , 

where𝜏𝑒𝑓𝑓  is the effector time constant and the sum is over all spikes emitted by the neurons in 

the motor network which activates the 𝑙 effector at times tjE < 𝑡.  
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The vocal organ: We modeled the vocal tract as in Amador et al.
33

. In particular, we did not 

include the trachea or the Helmholtz filter, as these filters are species-specific and in general will 

not affect gesture and inter-gesture durations. Two variables activate the vocal organ: tension and 

pressure. We modeled the pressure variable as𝑃𝑟 =  𝐸1 +, where  𝑥 + is a rectified linear 

function. The tension is modeled as a linear combination of nine effectors: T n =
1

D−1
 WaEa , 

where , Wl , (𝑙 = 2,… , 𝐷), are random weights, Wl ∼ 𝑁(0,1). Tension and pressure are then 

scaled to fit the dynamic range of the oscillating phase (see ref (33)): 

Tn = μ
T

+ σTzT  

and 

Pr =
 E1 −  E1  +

max( E1 −  E1  +)
Pmax − b 

wherezT  is the z-score of T n  andσT , μ
T
, Pmax  are constant parameters which define the dynamic 

range and b is a bias which ensures that when there is no pressure the system is at a fixed point. 

We take: μ
T

= 0.6;  σT = 0.2; Pmax  = 0.21;  b = 0.01. The tension and pressure were then 

smoothed by a rectangular window of 20ms and interpolated to a sampling frequency of 

44,100Hz. We then used the tension and pressure parameters to simulate the Amador et al. 

model
33

. Finally, to reduce transient effects at the boundaries of the gestures (as a result of 

crossing the bifurcation) generated by the vocal tract model, the sound signal was taken as the 

product of the output model and the Pr signal  
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Model  parameters:Unless specified otherwise, the parameters used in the simulations 

were:N = 10,000; K = 400;  D = 10; τm = 10ms; τeff  = 10ms.  In the simulations depicted in 

Fig. 1 synaptic strengths and external FF inputs were: J EE = 0.5, J IE = 3, J EI = −1.5, J II = −2 ,

I E = 0.2; I I  = 0.1 for the premotor as well as for the motor network. All synaptic time constants 

were 3ms and J E0 = J I0 = 4. In fig. 3 the parameters in the premotor network were: J EE =

0.3, J IE = 6, J EI = −1.8, J II = −2.2 , I E = 0.8, I I  = 0.2 and for the motor network: J E0 = J I0 =

2and J EE = 0.05, J IE = 0.75, J EI = −0.75, J II = −1, I E = 0.05, I I  = 0.025. τeff  = 5ms. All 

synaptic time constants were 3ms except for the premotor-to-motor pathway to the excitatory 

neurons in the motor network, which represents the slow NMDA synapses in the LMAN-RA 

pathways (see figure). The parameters used in the simulations depicted in Fig.4,6 were chosen 

such that the mean firing rates of the neurons in the premotor and motor networks were in 

agreement with previous experimental data as well as our own data in LMAN and RA. Given 

these parameters, the average firing rates of excitatory and inhibitory neurons in the premotor 

network were 14.7Hz and 46Hz, consistent with our data and with previous reports for adult and 

juvenile finches
10

. The mean firing rates in the motor network are 40Hz for the E cells and 100 

Hz for the I cells, as reported for RA neurons
27

. The synaptic time constants of AMPA and 

GABAA mediated synapses are all taken to be 3ms. NMDA mediated synapses in the premotor-

to-motor pathway are modeled in a minimal manner, neglecting their voltage dependence, with 

very fast (instantaneous) rise and slow exponential decay with time constants  of  ~100 ms, in 

line with  experiments
30

. We would like to stress here once more that the qualitative behavior of 

the model is highly robust to changes in all its parameters (see Supplementary Information). 
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Numerical simulations and analysis of the results 

Numerical integration: The dynamics of the model circuit were numerically integrated using 

the Euler method supplemented with an interpolation estimate of the spike times
53

. In all 

simulations the integration time step was 0.1𝑚𝑠. We verified the validity of the results by 

performing complementary simulations with smaller time steps.  

Auto and Cross-Covariance of spike activities: Neuronal spike trains were filtered with an 

exponential kernel (time constant = 5ms). Auto (AC) and crosscorrelations (CC) of neuronal 

activities were estimated from the resulting smoothed signals. Population averaged AC and CC 

were computed over all neurons in the corresponding population. The Pearson CC was defined 

as the crosscovariance normalized by the autocovariance at zero lag. 

Measure of synchrony and variability of the effectors: We quantified the degree of synchrony 

in the activities of the premotor or motor network using the synchrony measure, 𝜒(𝑀), defined 

by
54-55

: 

𝜒2 =  
𝑉𝑎𝑟(𝑚(𝑀, 𝑡))
1

𝑀
 𝑉𝑎𝑟(𝜈𝑖)

  

where the sum is over a population of 𝑀 neurons in the network, 𝜈𝑖(𝑡) is the instantaneous firing 

rate of neuron 𝑖 and 𝑚 𝑀, 𝑡 =
1

𝑀
 𝜈𝑖(𝑡)is the instantaneous firing rate averaged over the 

population of M neurons. Here, 𝑉𝑎𝑟(𝑥(𝑡)) denotes the variance of the temporal fluctuations of 

𝑥(𝑡) and [𝑥] denotes the average over a large number of realizations of the population 𝑆. For 
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1 ≪ 𝑀 ≪ 𝑁: 𝜒2 𝑀 ≃ 𝑎(𝑁) +
𝑏

𝑀
, where 𝑎 and 𝑏 are numbers which depend on the network 

parameters. By definition, the network is in an asynchronous state if 𝑎 vanishes for sufficiently 

large 𝑁. In that case pair-wise correlations are small, of the order of 1/N and the population 

average firing rate is constant in time. In contrast, if 𝑎 converges to a non-zero value for large 𝑁, 

the network is in a synchronous state. To quantify the variability of the inputs to the effectors 

(receiving inputs from M neurons in the motor network), 𝐸𝑙 𝑀, 𝑡  (𝑙 = 1,… , 𝐷), we computed 

the coefficient of variation, 𝐶𝑉𝑒𝑓𝑓 such that: 

𝐶𝑉𝑒𝑓𝑓
2  =  

1

𝐷
 

𝑆𝐷 𝐸𝑙(𝑀) 

𝑀𝑒𝑎𝑛 (𝐸𝑙(𝑀))

𝐷
𝑙=1  

2

= 𝐴 +
𝐵

𝑀
. 

If the motor network is in an asynchronous state, 𝐴~
1

𝑁
, since 𝐸𝑙 𝑡  is linearly related to the 

population averaged activity in a functional group 𝑙. 
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Temporal irregularity in strongly connected E-I networks 

Asynchronous strong temporal irregularity and spatial heterogeneity in spiking activity  of single 

neurons emerge naturally from the dynamics of recurrently connected neural circuits, in which 

strong excitation is balanced by strong inhibition  (Fig.1b. Supplementary Figure 1a-b; 1-3). In 

this regime, neurons exhibit irregular firing as well as large trial-to-trial variability even in the 

absence of any source of noise external to the network. The essence of this temporal irregularity 

arises from the fact that each neuron receives a large number of "strong" (1-3) excitatory and 

inhibitory presynaptic inputs that cancel each other to the leading order, but the set of inputs is 

different for each neuron. The latter heterogeneity in the network connectivity results in temporal 

irregularity of the neuronal activity.  

The temporal time scale on which fluctuations in the inputs or outputs of the neurons decorrelate 

depends on the synaptic dynamics. The theory predicts that for fast synapses this decorrelation 

happens rapidly (Supplementary Figure 7; (1-2)). By contrast, if synaptic interactions are slow 
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(compared to the neuronal integration time) the neuronal activity exhibits slow chaotic rate 

fluctuations (4-5) (Supplementary Figure 7). In both cases, the distribution of the temporal 

average firing rates of the neurons is well approximated by a log-normal distribution (6) 

(Supplementary Figure 1c). The theory- derived in a completely random networks- also predicts 

that the averaged pair-wise spatial correlations of the neuronal activity are very weak, on the 

order of 
1

𝑁
 where N is the number of neurons (3,7-8) (Supplementary Figure 1d-e). Moreover, in 

this regime single neuron activity is highly sensitive to temporal fluctuations, as well as to 

heterogeneities in the recurrent or feedforward connectivity or in small variations in external 

inputs. These features endow the network with remarkable computational capabilities; e.g., the 

emergence of selective neuronal responses to stimuli (9). These conclusions, combined with 

experimental results(3,10-15), support the idea that the balanced regime is a fundamental mode 

of operation of local cortical networks.  

Our paper addresses a fundamental question; namely to what extent the intrinsic temporal 

variability in recurrent networks can be exploited to drive motor variability. In a more general 

mechanistic perspective, we investigate how single neuron variability can result in uncertainty in 

behavior (e.g. in making a decision (16)). The fact that in the balanced regime neurons are only 

weakly correlated should apparently prevent the transfer of internally generated variability at the 

neuronal level to any downstream system which sums the activity of many fluctuating neurons. 

In this work we demonstrate that this is not the case. Specifically, we show that spatial 

correlations can emerge if the circuit generating and transferring the variability to the effectors 

has a topographic organization. As a result, the circuit can eventually produce robust exploratory 

behavior. In fact, we show that this mechanism does not require any fine-tuning of parameters. 

In particular, it is robust to the number of neurons N, the number of connections K, as well as to 
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the connectivity in the topographic pathway to the effectors (and the number of neurons 

projecting to an effector M).  

To formulate in a minimal mathematical description the concept of the balanced regime, we 

consider an unstructured network model of one excitatory (E) and one inhibitory (I) binary 

neurons receiving strong feedforward inputs from an external population of excitatory neurons 

(1-2). Following van Vreeswijk and Sompolinsky(1-2), the total synaptic inputs into the 

excitatory and inhibitory neurons can be written: 

𝐻𝐸 𝑡 = 𝐾 𝐽𝐸𝐸𝜈𝐸 𝑡 +  𝐽𝐸𝐼𝜈𝐼 𝑡 + 𝐽𝐸0𝜈0 + 𝛿𝐻𝐸 𝑡  

𝐻𝐼 𝑡 = 𝐾 𝐽𝐼𝐸𝜈𝐸 𝑡 +  𝐽𝐼𝐼𝜈𝐼 𝑡 + 𝐽𝐼0𝜈0 + 𝛿𝐻𝐼 𝑡  

where we denote by 𝛿𝐻𝛼 𝑡 , 𝛼 ∈  {𝐸, 𝐼} subleading (in large K) contributions to these inputs, 

which in particular include the temporal fluctuations. Note that the sign of the synaptic strength 

of the inhibition is negative (𝐽𝛼𝐼 < 0). The variance of these fluctuations is: 

𝜎𝐸
2 = 𝐾 𝐽𝐸𝐸

2 𝜈𝐸 𝑡 +𝐽𝐸𝐼
2 𝜈𝐼 𝑡 + 𝐽𝐸0

2 𝜈0  

𝜎𝐼
2 = 𝐾 𝐽𝐼𝐸

2 𝜈𝐸 𝑡 +𝐽𝐼𝐼
2𝜈𝐼 𝑡 + 𝐽𝐼0

2 𝜈0  

Here,  𝜈𝐸 𝑡 , 𝜈𝐼 𝑡  and 𝜈0 are the population-averaged firing rates of the E and I neurons and of 

the external population; 𝐽αβ, α, β ∈ {E, I}and  𝐽α0 are the strengths of the recurrent and 

feedforward synapses (considered for simplicity to be homogeneous for each synapse type). We 

also assume that the average number of synapses per neuron, K, is the same for the two 

populations and for both the recurrent and feedforward synapses and that it is large (the number 

of synapses is typically 100 or more). Scaling the strengths of the recurrent and feedforward 

synapses as:  
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𝐽𝛼𝛽 =
𝐽  𝛼𝛽

 𝐾
  (1) 

the temporal fluctuations remain finite when K becomes large. Requiring that the mean inputs 

also remain finite implies: 

    K J EE νE t + J EI νI t + J E0ν0 = 𝒪(1) (2)  

    K J IE νE t + J IIνI t  + J I0ν0 = 𝒪(1) 

and therefore, for large number of synapses, K,  J EE νE t + J EI νI t + J E0ν0 = 0 and J IE νE t +

J IIνI t  + J I0ν0=0 .These two linear equations express the fact that, in the two populations, the 

net inputs into the neurons are comparable to their firing threshold in spite of the fact that taken 

separately, excitation and the inhibition are much larger than the threshold. These two linear 

equations uniquely determine the population average  firing rates 𝜈𝐸  and 𝜈𝐼 of the excitatory and 

the inhibitory populations. The requirement that 𝜈𝐸 , 𝜈𝐼 are positive, yields a set of inequalities 

which determines the domain of the parameters (synaptic strengths and external inputs) in which 

the balanced state exists (1-2).  Thus, recurrent networks of E and I neurons can operate in the 

balanced regime for a wide range of parameters without any fine-tuning of these parameters. 

Importantly, because of the scaling of Eq.(1), the amplitude of the temporal fluctuations in the 

inputs are comparable to the threshold even if K is large. This is why in the balanced regime 

neurons fire very irregularly. Similar arguments hold for rate-based units (4), as well as for more 

realistic neuronal models, such as integrate-and-fire or conductance-based neurons (9).  

It is important to note that although the average rates of the E and I populations are a linear 

function of their inputs (see Eq.(2)), the system is highly non-linear and the output of each 
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neuron, as well as the dynamics of sub-populations of neurons (as we will show below), are a 

non-linear function of their inputs. 

Common feedforward input to all neurons in the motor network is not 

sufficient to drive motor variability 

Transfer of temporal variability from the premotor network downstream to the effectors requires 

that the motor network operates in the balanced regime. Is it also sufficient? To address this 

question we investigated the case, where all neurons in the motor network share common inputs 

from the same group of premotor cells (Supplementary Figure 2a). One might expect that this 

common feedforward component would tend to synchronize the activity of all the neurons in the 

motor network. This is not the case. As depicted in Supplementary Figure 2c, the strongly 

irregular activity of the neurons in the motor network only exhibits very small spatial 

correlations (𝐶𝑉𝑒𝑓𝑓
2 = 0.03). In fact, the strength of the spatial correlations vanishes in inverse 

proportion to the average number of recurrent connections in the motor network, K (𝐶𝑉𝑒𝑓𝑓
2 ~

1

𝐾
; 

Supplementary Figure 2b-d). This feature is a hallmark of unstructured and strongly connected 

recurrent networks, where the recurrent inhibition in the motor network suppresses the 

correlations due to shared inputs(3,7). This can be understood heuristically as follows. As long as 

the matrix 𝐽𝛼𝛽 , which characterizes the strength of the interactions in the motor network, is 

regular (see Eq.(2)) it fully determines the population average firing rates, 𝜈𝐸  and 𝜈𝐼, as a 

function of the population average activity of the premotor network (𝜈0). Therefore, since the 

latter is constant, 𝜈𝐸  and 𝜈𝐼 must be constant up to small fluctuations. Hence, the motor network 

cannot exhibit synchronous activity and neuronal variability cannot be transferred to the 

effectors. 
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Motor variability emerges if the premotor-to-motor projections are 

topographically organized 

If the premotor-to-motor projections are topographically organized, the order  𝐾 time averaged 

feedforward inputs to the neurons in the motor network are the same for all functional groups in 

the motor network. However, their temporal fluctuations, which are of 𝒪(1), vary from one 

group to the other. We found that in this case irregular activity with robust spatial correlations 

emerges in the motor network.  

To intuitively understand why this is the case, consider a circuit with two functional groups 

(Supplementary Figure 5). Denoting by 𝜈𝐸,𝑙(𝑡), the time-dependent population average activity 

of the E population in group l= 1,2, the balanced equations (Eq.(2)) yield two sets of equations 

for the three populations (one I and two E populations): 

   K J EE
νE ,1 t +νE ,2 t 

2
+ J EI νI t + J E0ν0 = 𝒪(1) (3)  

   K J IE
νE ,1 t +νE ,2 t 

2
+ J IIνI t + J I0ν0 = 𝒪(1) 

Here we assumed, as in the spiking model we simulated, that the recurrent connectivity is 

statistically homogeneous over the entire motor network and that the groups are defined solely 

by the topographic organization of the premotor FF inputs. 

The balanced equations imply that 
νE ,1 t +νE ,2 t 

2
and νI t , the average of the instantaneous 

population activities of the two groups and the inhibitory population, are constant in time. 

Therefore, νE,1 t  and νE,2 t  can vary in time, without breaking the balance of excitation and 

inhibition, provided that they vary in a push-pull manner and are thus negatively correlated. 
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Numerical simulations indicate that this indeed occurs (analytical proofs will be presented 

elsewhere). The network recurrent dynamics self-organize such that νE,1 t  and νE,2 t  both 

exhibit significant temporal variations which are driven by the 𝒪(1) shared fluctuations present 

in the feedforward inputs. Importantly, the temporal fluctuations in the population activities, 

νE,1 t and νE,2 t , are large and negatively correlated, in spite of the fact that the shared FF 

inputs are only weakly correlated between the two groups. This result in an average 𝐶𝑉𝑒𝑓𝑓
2  which 

is large (Supplementary Figure 5bbottom 𝐶𝑉𝑒𝑓𝑓
2 ~0.25) and which is finite (of order unity) even 

for large N, K and M (Supplementary Figure d-f).  

Self-organization of the dynamics also occurs when the number of groups, D, is larger than 2 

(Fig.2, Supplementary Figure 3-4). This gives rise to a spatiotemporal pattern of activity in 

which the firing of the neurons is positively correlated within each of the groups, while the 

instantaneous firing rate averaged over all the excitatory neurons in the network is constant in 

time (the E and I population-averaged instantaneous firing rates are constant in time, up to small 

fluctuations due to finite size effects in K and N).  

The timescales of the fluctuations in the motor network 

Our behavioral data shows that vocal babbling temporally decorrelates on a timescale of several 

tens to a few hundred milliseconds, depending on the species (Fig.7). Moreover, our 

electrophysiological recordings in singing finches demonstrate that the activity of neurons in RA 

fluctuates slowly and decorrelates on similar timescales (Fig.5g-i, Fig.6b-c). These timescales 

are significantly slower than the typical single neuron integration time, raising the question of the 

origin of such slow timescales. 
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One possibility is that the recurrent synapses in the motor network are sufficiently strong and 

their dynamics are sufficiently slow to generate slow chaotic rate fluctuations (4)  

(Supplementary Figure 7b,  black curve). However, these  fluctuations would be very weakly 

spatially synchronized (Supplementary Figure 7c,  black curve). Thus, spatiotemporal 

correlations on such slow timescales between neurons projecting to the same effector would be 

weak and therefore unable to induce highly variable motor behavior (Supplementary Figure 7d, 

black curve).  

Another possibility is that the fluctuations in the shared component of the feedforward premotor-

to-motor input are slow, resulting in spatially and temporally correlated fluctuations at the level 

of population in the motor network (Supplementary Figure 7c- red and blue curves and Fig.6). 

This occurs naturally if the premotor-to-motor pathway involves a sufficiently large fraction of 

slow synapses, e.g. synapses mediated by NMDA receptors, that would low-pass filter the 

fluctuations generated in the premotor network. This mechanism is depicted in Fig.6 and Fig.7A. 

The recurrent dynamics in the premotor network can also contribute to the slowness of the 

fluctuations in the shared FF inputs to the motor network and therefore to the slow decorrelation 

of the motor behavior. If the recurrent synapses in the premotor network (the synapses in the E-I-

E loop or of the mutual-inhibition) are strong and slow, the dynamics of the premotor neurons 

will be chaotic (Supplementary Figure 7a- red and blue curves) and their activity will decorrelate 

on a timescale on the order of the typical (and slow) synaptic time constant(4). 
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Correlations between neurons in electrophysiological recordings 

In line with our model, the data reported in Figure 5, exhibited positive as well as negative cross-

correlations (CCs). However, the majority of the CCs were positive. One should note that our 

experimental technique for recording single unit activity in singing finches is probably biased 

toward pairs of neurons located at rather short distances compared to RA diameter. 

Unfortunately, we cannot accurately report the distance between recorded neurons for two 

reasons. First, the electrodes (tungsten microwires) are slightly flexible and the distance between 

their tips (around 100 µm before being moved in the brain) can vary considerably as they are 

advanced down into RA. Second, post-hoc histological examination was carried out at the end of 

the experiment, after the electrodes had been advanced several times (with 4 electrode each 

time), making it impossible to associate a given electrode tract with a given recording. As RA is 

topographically organized (17-18), it is very likely that our bias to record from nearby neurons 

resulted in having many pairs recorded from the same functional group.  

 

Our theory can be further validated by showing that pairs of neurons which are far apart,  and 

thus belong to different functional groups, are in general more negatively correlated than more 

proximal neurons, which are presumably  in  the same group. As explained above, our single unit 

data cannot be used for such a validation.  Instead, we recorded LFPs in RA of singing zebra 

finches with fixed implanted electrode micro-arrays (similar to Utah arrays) that had 7 recording 

sites arranged (with ground and reference electrodes) in a 3x3 lattice with 100 µm minimal 

distance between electrode tips. As electrodes cannot be moved after implantation, recording 

single-unit activity from a very dense nucleus such as RA is unfortunately impossible using this 

technique. However, we were able to carry out noise correlation analysis on LFP signals as we 
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did for single or multi-unit activity.  As depicted in Supplementary Figure 6b, LFPs recorded 

from more distant electrodes were negatively correlated, whereas when the electrodes were 

closer, positive and negative correlations were observed. Therefore, neurons that were recorded 

by two electrodes 100 µm apart or less are likely to be more positively correlated, as depicted in 

Fig.5, than neurons that are far apart, in line with model predictions. 

Correlations measured in RA are not an artifact of a misalignment or 

variation in duration of the syllables and song motifs. 

Our electrophysiological data show stronger noise correlations in RA than in LMAN. As the 

length of the song motif varies slightly from rendition to rendition, misalignment of song-related 

neuronal activity could lead to spurious correlations, especially in RA which neuronal activity is 

known to be locked to song (see for example Fig.3). To avoid such spurious correlations we 

carefully time-warped our spiking data from single and multi-unit recordings based on the timing 

of single syllable events in the motif produced by the birds (see Material and Methods). An 

example of how such time-warping changed the precision of song-related firing is illustrated in 

Supplementary Fig. 6c. As is apparent, Supplementary Fig. 6c clearly shows that spikes are more 

aligned to the song motif following the time warping procedure. To assess the contribution of 

time jitter from behavioral misalignment to the noise correlations in RA, we re-calculated the 

noise correlations without any time-warping. Surprisingly, there was very little change in the 

level of correlation with and without time-warping.  

 

We also estimated how much misalignment and bad time-warping could contribute to spurious 

correlations by shifting together the spikes of the two simultaneously recorded neurons presented 
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in Fig.5h on each rendition by a time jitter in the range 0-500ms (Supplementary Figure 6d). The 

correlations did increase with time jitter, as expected, but this only occurred at very large jitters 

above 150ms. Interestingly, the amount of correlations between the two neurons hardly changed 

when the jitter was up to 50 ms, far more than the estimated elasticity of the zebra finch song 

(around 5ms at most for a given syllable, see (19)). Therefore, for typical jitters, misalignment of 

the motifs did not contribute to the noise correlations measured in RA.  

 

On alternative mechanisms  

Three key hypotheses underlie our work:  (1) The variability of the babbling is produced  by a 

circuit in the CNS comprising large networks of strongly coupled neurons firing a highly 

irregular manner (2) These fluctuations in the activity are transferred to the effectors which sum 

up inputs from a rather large number of neurons, on the order of 100 or more. (3) The 

mechanism underlying babbling should be robust, in particular with respect to variations in the 

connectivity parameters.  

 

It should be noted that if we relax Hypotheses (2); i.e, if we assume that the projections to the 

effectors only involve a small number of RA neurons (very sparse projections to the effectors) 

topographic projections from LMAN to RA are no longer necessary for the circuit to generate 

fluctuations in the inputs to the effectors. However, the amplitude of the latter depends crucially 

on the connectivity which means relaxing Hypotheses (3).  
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In fact, the last two hypotheses imply that fluctuations in the activity of the neurons should 

become correlated at some stage in the circuit before their transfer to the effectors and that this 

should be a collective phenomenon. 

 

In all four species we considered in our behavioral study the ACE of the babbling signal in 

juveniles lacked an oscillatory component, and the gesture duration distribution was well 

approximated by an exponential. This means that the process of generating gestures during 

babbling is very broad band, and has no substantial oscillatory components. The 

electrophysiological data suggest that the fluctuations in neural activity in RA were also very 

broad band without significant oscillatory components (see the autocorrelations and cross-

correlations depicted in Figures 5-6). We thus need to look for network mechanisms that can 

account for correlated neuronal activity exhibiting strong fluctuations without having specific 

frequencies in the power spectrum. This is a non-trivial constraint. In fact, in previously 

investigated mechanisms for robust correlated activity, the latter stems from the emergence of 

oscillatory collective modes in the network dynamics (for review see (20)). This is the case in the 

mechanisms for  spike-to-spike synchrony, as well as well as in those in which synchrony 

emerges from firing-rate instability (see e.g. (21)). In most of these models, the oscillation phase 

basically remains constant over many cycles, unlike what is observed experimentally. Solutions 

to this problem have been proposed. They all rely on  synchronous chaos  and lead to temporal 

irregular fluctuations in the population activity  (22-25). However, the spectrum of these 

fluctuations- although broad - is also peaked in some frequency ranges (the gamma range in the 

papers cited above). This is because synchronous chaos emerges from a destabilization of 

synchronous patterns of  activity which oscillate at a frequency in this range.  To the best of our 
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knowledge, our mechanism is the first to exhibit irregular synchronous activity which to a large 

extent is robust to changes in the number of neurons and in the average number per neuron of 

feedforward and recurrent connections. 

 

We also argue that NMDA receptors (NMDAR)  in the projections from LMAN to RA can 

account for the rather slow time constant over which babbling decorrelates. However it is also 

possible that low-pass filtering occurring in RA or downstream to it due to slow neuronal 

dynamics (such as adaptation currents) or slow muscle responses could also contribute. Such 

low-pass filtering would lead to a slower behavioral output than would be predicted from the 

NMDAR time constant alone. However, in the case of zebra finches, the NMDAR kinetics 

measures in LMAN-RA synaptic inputs in juvenile zebra finches (26) fit satisfactorily with the 

timescale of babbling vocalization we report, suggesting minimal low-pass filtering downstream. 

Moreover, muscle dynamics has been reported to be fast in the bird syrinx (<5ms, see 27-28), 

and even if young birds have slower muscles it is hard to imagine that their dynamics would 

involve timescales as long as 50-100ms. This point however needs to be confirmed 

experimentally. 

 

Note regarding Supplementary Figure 8 

To calculate the transformation 𝐶𝑔(Δ) = 𝐹𝑔(𝐶𝜉(Δ)) given in Supplementary Figure 8E we 

assumed a Gaussian Process 𝜉 𝑡 , with 𝑙𝑖𝑚𝑡→∞ 𝜉 𝑡  = 0 𝑙𝑖𝑚𝑡→∞ 𝜉 𝑡 𝜉 𝑡 + Δ  = 𝑐𝜉 Δ  and 

𝑐𝜉 0 = 1. Consider the threshold-power-law function: 𝑔𝜖𝛾  𝑥 = 𝑔 𝑥 − 𝜖 Θ(𝑥 − 𝜖)with 

𝑔(𝑥) = 𝑥𝛾 . The AC of the process {𝑔𝜖𝛾  𝜉 } is then: 

 𝑔𝜖𝛾  𝜉 𝑡  𝑔𝜖𝛾  𝜉 𝑡 + 𝜏   −  𝑔𝜖𝛾  𝜉 𝑡   
2 = 𝑐𝑔 𝜏 . The first and second moments are: 
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and the correlation function: 

GG cξ τ  =
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2
− ϵ exp  −

1
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2
2

∞
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− 2cξ τ ξ1
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2
]   

 

We then numerically calculate the AC: Cg τ = Fg  Cξ τ  =
GG−G1

2

G2−G1
2 . Note that for 𝜖 = −∞ and 

𝑔(𝑥) = 𝑥 we get 𝐶𝑔_𝜖(𝜏) = 𝐶𝜉(𝜏), which is the identity function of 𝐹𝑔 , plotted in dashed line in 

Supplementary Figure 8E. 
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