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Abstract

Recently developed, high-throughput assays for measuring the three-dimensional configuration of
DNA in the nucleus have provided unprecedented insights into the relationship between DNA 3D con-
figuration and function. However, accurate interpretation of data from assays such as ChIA-PET and
Hi-C is challenging because the data is large and cannot be easily rendered using a standard genome
browser. In particular, an effective Hi-C visualization tool must provide a variety of visualization modes
and be capable of viewing the data in conjunction with existing, complementary data. We review a
number of such software tools that have been described recently in the literature, focusing on tools that
do not require programming expertise on the part of the user. In particular, we describe HiBrowse,
Juicebox, my5C, the 3D Genome Browser, and the Epigenome Browser, outlining their complementary
functionalities and highlighting which types of visualization tasks each tool is best designed to handle.

Introduction

The three-dimensional conformation of the genome in the nucleus influences multiple key biological pro-
cesses, including transcriptional regulation and DNA replication timing. Over the past decade, a series of
chromosome conformation capture assays have been developed for characterizing 3D contacts associated with
a single locus (3C, 4C) [1-3], a set of loci (5C, ChIA-PET) [4, 5] or the whole genome (Hi-C) [6]. Using
these assays, researchers have profiled the conformation of chromatin in a variety of organisms and systems,
revealing a hierarchical, domain-like organization of chromatin.

Here we focus on the Hi-C assay and variants thereof, which provide a genome-wide view of chromosome
conformation. The assay consists of five steps: (1) crosslinking of DNA with formaldehyde, (2) cleaving
cross-linked DNA with an endonuclease, (3) ligating the ends of cross-linked fragments to form a circular
molecule marked with biotin, (4) shearing circular DNA and pulling down fragments marked with biotin,
and (5) paired-end sequencing of the pulled-down fragments. A pair of sequence reads from a single ligated
molecule map to two distinct regions of genome, and the abundance of such fragments provides a measure of
how frequently, within a population of cells, the two loci are in contact. Thus, in contrast to assays such as
DNase-seq and ChIP-seq [7, 8], which yield a one-dimensional count vector across the genome, the output
of Hi-C is a two-dimensional matrix of counts, with one entry for each pair of genomic loci. In practice,
production of this matrix involves a series of filtering and normalization steps (reviewed in [9] and [10]).

A critical parameter in any Hi-C analysis pipeline is the effective resolution at which the data is analyzed
[10, 11]. In this context, “resolution” simply refers to the size of the loci for which Hi-C counts are aggregated.
Using current technology, sequencing deeply enough to achieve very high resolution data for large genomes
is prohibitively expensive. In principle, a basepair resolution analysis of the human genome would require
aggregating counts across a matrix of size approximately (3 x 10%)? = 9 x 10'8. In practice, reads that fall
within a contiguous genomic window are binned together, reducing the size and sparsity of the matrix at
the cost of resolution. Following this process, Hi-C data can be represented as a “contact matrix” M, where
entry M;; is the number of Hi-C read pairs, or contacts, between genomic locations designated by bin ¢ and
bin j.

For researchers studying chromatin conformation, Hi-C data presents a number of significant analytical
challenges. Filtering and normalization strategies can be employed to correct experimental artifacts and
biases [9-11]. Statistical confidence measures can be estimated to identify sets of high confidence contacts [12].
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The observed Hi-C data can be compared with and correlated against complementary data sets measuring
protein-DNA interactions, gene expression, and replication timing [13-15]. And the 3D conformation of the
DNA itself can be estimated from the Hi-C data, potentially taking into account data derived from other
assays or from multiple experimental conditions [16-19]

Complementary to these analyses is the ability to efficiently and accurately visualize Hi-C data. Such
visualizations are quite challenging, both because Hi-C data is large and because many existing tools for
visualizing large-scale genomic data, such as genome browsers, do not directly generalize to visualizing data
defined over pairs of loci [20, 21]. Furthermore, many biological hypotheses involve multiple biological
processes and hence require jointly visualizing Hi-C data with other chromatin features. Thus, visualizing
Hi-C data alone is not enough—a truly useful tool must integrate a variety of different types of genomic data
and annotations.

To address these challenges, a variety of software tools have been described recently that provide robust
and informative methods for making sense out of Hi-C data. Here we investigate five tools that can be
operated using a web browser or a graphical user interface: Hi-Browse [22], my5C [23], Juicebox [24], the
Epigenome Browser [25] and the 3D Genome Browser (http://www.3dgenome.org) (Table 1). These tools
require no programming skills and are thus useful to a wide audience of researchers. We assess these tools
using multiple criteria, such as the types of visualizations provided by the tool, the ability to integrate
multiple visualization modes, and the number and variety of available datasets in a given tool. In particular,
we note the suitability of each tool to different types of inquiry regarding the 3D structure of the genome and
its interplay with other biological processes. We present examples that range from large scale visualizations
of Hi-C data from whole genomes and chromosomes to fine scale local visualizations of putative promoter
enhancer interactions and DNA loops, highlighting additional tools-specific capabilities that complement
each visualization type.

Large scale visualization

The three-dimensional conformation of a complete chromosome or genome is most commonly visualized by
one of two different methods. The contact matrix can be represented as a square heat map, where the color
corresponds to the contact count, or the genome can be represented as a circle, with contacts indicated by
edges connecting distal pairs of loci. In principle, other types of large-scale visualizations are feasible, using
for example a graph with nodes as loci and edges as contacts, but these have not proved as useful as heat
maps and circular plots.

Between these two visualization schemes, perhaps the most straightforward for a Hi-C contact matrix is
a heat map. Contact matrices are by definition symmetric around the diagonal, and the number of rows and
columns is equal to the length of the genome divided by the bin size. The color scale associated with the heat
map may correspond to raw contact counts or counts that have been appropriately normalized. The dominant
visual feature in every Hi-C heat map is the strong diagonal, which represents the 3D proximity of pairs of loci
that are adjacent in genomic coordinates. Heat maps can be constructed for the full genome (Figure 1A) or
for individual chromosomes (Figure 1B). Low resolution (1-10 MB resolution) contact matrices are typically
sufficient for full genome visualizations and can be produced, for the human genome, using Hi-C datasets
containing tens of millions of read pairs. Whole genome visualizations can reveal potential rearragements
of the genome (Figure 1A), whereas single chromosome visualizations are useful in identifying large-scale
properties of chromatin conformation, such as chromosome compartments or the bipartite structure of the
mouse inactive X chromosome (Figure 1B). Three of the five tools that we investigated—HiBrowse, Juicebox,
and mybC—provide heat map visualizations.

A heat map can also be used to visualize the conformation of a locus of interest. This setting zooms
into a region of the full contact matrix, visualized at higher resolution. The resulting map can be useful
to visually identify loops, i.e., distal regions of DNA that exhibit unusually high contact counts relative to
neighboring pairs of loci. Loop annotations detected by loop-finding algorithms can be displayed directly
on a Hi-C contact map by Juicebox. Loop formation has been shown to depend on DNA binding of the
CTCF protein [28]; therefore, it is desirable to jointly visualize CTCF binding data from a ChIP-seq assay
alongside Hi-C data, to assist in the interpretation of possible loops. Juicebox can plot data from other
assays or genomic features, either as binary features or continuous signal plots, placing them on the sides of
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Hi-C visualization
Intrachromosomal heat map v v v
Interchromosomal heat map v v oV
Circular plot v v
Rotated local heat map v v
Local arc track v
Locus-specific circular plot v
Virtual 4C plot v v v
Multi-dataset visualizations v v v
Hi-C signal transformations v v Y
Supplemental data visualization
Supplemental data visualization v v v
2-D heat map features v
Continuous-valued tracks v v v
Genome browser interface v v
Format for uploaded Hi-C data

Sparse tab-delimited v
Dense tab-delimited v v
Sparse binary v v v

Pre-loaded Hi-C data sets
Rao et al. 2014 N v
Dixon et al. 2012 v v v
Lieberman-Aiden et al. 2009 v v v
Normalized versions v v v

Supplemental data sets
Annotations v v v
ENCODE tracks v v v
Roadmap Epigenome tracks v
Implementation

Free v v v v v
Open source v v v
Local installation option v v
Wiki v
Browser interface v v v Y
Java interface v

Table 1: Comparison of toolkit functionality.
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Figure 1: Heat map and circular plot visualization of Hi-C data. (A) Hi-C interactions among all chromosomes from G401
human kidney cells, as plotted by my5C. The green arrow points to aberrant interchromosomal signal in the Hi-C matrix, possibly
caused by a rearragement event. (B) Heat map visualization illustrating the bipartite structure of the mouse X chromosome, as plotted
by Hi-Browse, using in-situ DNase Hi-C data [26]. (C) Heat map visualization of a 3 Mbp locus (chr4:18000000-21000000) reveals
the presence of loops that coincide with CTCF binding sites, validated by CTCF peaks shown on the top and left of the heat map.
Computationally annotated loops are displayed as blue squares in the heat map. This heat map was produced by Juicebox, using in-situ
Hi-C data from the GM12878 cell line [27]. (D) Circular plot of the bipartite mouse X chromosome, showing a striking depletion of
arcs between the two mega-domains, the locus separating the mega-domains is shown by a green arrow. The plot was generated by the
Epigenome Browser.
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heat map (Figure 1C).

Circular plots, originally designed to visualize genomic data, offer an alternative way to visualize Hi-C
data at chromosome scale. In this type of plot, the circle typically represents the full length of a chromosome,
and Hi-C contacts are represented by arcs (Figure 1D). It is straightforward to convert a contact matrix into
a circular plot: loci ¢ and j are connected by an arc if entry M;; in the contact matrix exceeds a user-specified
cutoff value. Hi-Browse and the Epigenome Browser can both generate circular plots.

Local visualization

Although Hi-C data spans the full genome, many hypotheses require closely inspecting a particular region or
regions of interest. A common way to visualize multiple genomic data sets at a particular locus is via a genome
browser, in which the DNA is arrayed horizontally and various types of data appear in parallel with the
DNA sequence. Two of the tools that we investigated, the 3D Genome Browser and the Epigenome Browser,
extend the browser framework to incorporate Hi-C data, thereby offering rich and complex representations
of DNA sequence, chromatin, gene structure, regulatory elements and 3D conformation.

Four different visualization modes are available in the context of a genome browser. Both the 3D Genome
Browser and the Epigenome Browser provide a heat map visualization, in which the upper triangle of the
contact matrix is rotated by 45 degrees and then aligned so that the bins of the matrix correspond to
chromosomal coordinates (Figure 2A). This heat map visualization is limited to capturing intra-chromosomal
contacts, and the genomic distance between contacts is limited by the vertical screen space available to the
heat map track. This makes displaying distal contacts at high resolution impractical.

A second type of Hi-C visualization is a local arc track, also available in both the 3D Genome and
Epigenome Browsers (Figure 2A). Similar to a circular plot, a local arc track connects two genomic loci with
an arc if the corresponding Hi-C signal is above a user specified threshold. Compared to heat map tracks,
arc tracks offer a simpler interpretation of Hi-C contacts, at the expense of leaving out some of the data. The
Epigenome Browser can display both Hi-C and ChIA-PET interactions in arc view, while the 3D Genome
Browser uses arc tracks exclusively for ChIA-PET interactions.

The Epigenome Browser offers a third visualization mode that is intermediate between a local and global
view. This is a global circular plot that includes contacts between a selected locus, pointed by a red arrow
in (Figure 2B) and the rest of the genome or a single chromosome. This plots offers a simplified way of
visualizing relevant long distance genome-wide contacts involving a specific locus.

Finally, the 3D Genome Browser offers a fourth visualization mode, called a virtual 4C plot, which is a
slight modification of the local arc track (Figure 2C). Unlike a local arc track, which shows all contacts whose
start and end loci are contained within the current browser view, a virtual 4C plot restricts the set of arcs
to those involving a single user-specified locus. Thus, a virtual 4C plot for the locus corresponding to bin
i is equivalent to plotting the entries from the i** row of the contact matrix. By focusing on a single locus
a virtual 4C plot is useful for testing specific hypotheses regarding the bin of interest. We also note that
Juicebox and my5C offer a limited version of a 4C plot in the form a track alongside a heatmap visualization.

All of these local visualization modes are particularly useful within the context of a full genome browser
where, for example, potential regulatory contacts can be easily inspected alongside gene annotations, histone
ChIP-seq experiments that mark enhancers and promoters, etc. For example, the Epigenome Browser can
provide a view of a potential CTCF-tethered loop alongside multiple tracks: gene annotations, Hi-C and
ChIA-PET contacts and CTCF ChIP-seq signal (Figure 2A). The resulting visualization is a concise and
rich representation of multiple types of data, increasing our confidence in the existence of this DNA loop.

Data availability

Getting data into a Hi-C visualization tool can be accomplished in two ways: either the data is pre-loaded
by the tool developers or the user is responsible for uploading their own data. Both modes of data entry can
be provided in a single tool. Here we describe available data sets and upload capabilities for the five tools
we investigated, including both Hi-C data sets and auxiliary genomic data sets.
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Figure 2: Local visualization modes. (A) A cartoon representation of the 3D conformation of a putative DNA loop tethered by two
CTCF proteins. CTCF binding sites are colored in blue and pink on the black DNA strand. Below the cartoon, a 1D representation
of the DNA fragment that forms the loop is placed above an Epigenome Browser visualization of a ~1MB locus, displaying the genes,
CTCF binding, and interactions detected by ChIP-seq [29] and ChIA-PET assays (unpublished data, GEO ID:GSM970216), as well
as 3D interactions as measured by Hi-C [27]. Two bins containing putative binding sites (pink and blue bars) show an enrichment of
Hi-C contacts in the heatmap visualization [27] (indicated by the red arrow). CTCF tethered interactions measured by ChIA-PET in
an arcs view also indicate an interaction between these two putative binding sites. (B) A circular plot displaying the chromosome-wide
long range contacts of the CTCF loop in panel A; the locus of interest is highlighted by a red arrow. The contacts are displayed as
arcs, and only contacts above a certain threshold are visualized. (C) A putative promoter-enhancer interaction around the NANOG
gene is displayed as a cartoon, including the Polll complex (yellow oval). Red and green bars in these cartoons represent the promoter
and enhancer elements, respectively. Below the cartoon representations, a virtual 4C plot from the 3D genome browser is shown,
visualizing the Hi-C signal around NANOG promoter with a 1D representation of this region aligned above the plot. The bin in focus
(the “anchoring point”) corresponds to the promoter of the NANOG gene. The height of the blue line indicates, for each locus, the
read count for contacts between the current locus and the anchor point. In particular, the series shows an upstream enrichment of
signal from a capture Hi-C experiment specifically targeting the NANOG promoter [30], suggesting a promoter-enhancer interaction.
This observation is further supported by enrichment of DNasel linkage data [31] (shown in grey below the primary plot) around the
promoter and upstream regions. The NANOG gene is shown in the UCSC Genome Browser track under the virtual 4C plot.
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Hi-C datasets

The visualization tools we review all come with some publicly available datasets, with the exception of my5C.
Available datasets include three influential studies that performed Hi-C experiments on multiple cell types,
which we refer to via the last name of the first author on the respective publications: Lieberman-Aiden
[6], Dixon [13], and Rao [27]. These three studies cover nine human cell types from different lineages and
tissues—IMR90, H1, GM06990, HMEC, NHEK, K562, HUVEC, HeLa, and KBM7—making them useful
for many types of analyses. In Table 1, we summarize the datasets available for each tool. In addition,
Juicebox offers datasets from 27 additional studies, including data from a variety of organisms (Supplement
Table 1). While most of these datasets are from Hi-C experiments performed on human cells, each tool
supports genomes of other organisms. The Epigenome Browser supports a total of 19 genomes, and the 3D
Genome browser supports human and mouse genomes. The other tools can be used with any genome.

Hi-C datasets are accumulating rapidly, and many users will need the capability to upload new datasets
into these tools. All tools offer the ability to upload user data or data downloaded from repositories such
as 3DGD [32] or 4DGenome [33]. Most tools accept files representing contact matrices; however, the file
format requirements differ by tool (Table 1). The Epigenome Browser represents Hi-C matrices using tab-
delimited text files, similar to the BED files commonly used in genomics. Hi-Browse and my5C also uses
tab delimited text files, but unlike the Epigenome Browser format, the my5C and Hi-Browse formats require
that every entry be explicitly represented in the input file, including pairs of loci with zero contacts. The
3D Genome Browser uses its own sparse matrix representation in binary format, which can be created using
the BUTLRTools software package (https://github.com/yuelab/BUTLRTools). Juicebox depends on its
accompanying tool Juicer [34] to build .hic files that store binary contact matrices at multiple resolutions.
This .hic files are built from sequenced read pair files from a Hi-C experiment. The Epigenome Browser also
supports the .hic format.

As Hi-C datasets continue to accumulate, the scientific community will likely come to a consensus on
standardized file formats to represent Hi-C datasets. Most of the currently available file formats are very
similar to one another, and conversion between most formats is straightforward using command line tools.
An important tradeoff between different formats is the size of the file; sparse representations and especially
the binary BUTLR and .hic formats require less disk space relative to uncompressed versions of other file
formats.

Data handling

Any given Hi-C data set can be binned at different resolutions. Generally, the user chooses a resolution
value (i.e., bin size) based on the sequencing depth of the dataset, striking a balance between detail and
the sparsity that results from high resolution analysis. All tools in this review support visualization of Hi-C
matrices at various resolutions. Available datasets for each tool are stored at different resolution values,
typically ranging from 1 Mb to as low as 5 kb. For user-uploaded datasets, it is up to the user to generate
contact matrices at different resolutions, except for the .hic format which stores multiple resolutions in a
single file.

After the resolution is set by the user, Hi-C data may be transformed in various ways to focus on different
features of the data. The three most common transformations are matrix balancing to remove bin-specific
biases [35-38], calculation of a correlation matrix for visualization of A and B compartments [6, 39], and
calculating the ratio of observed over expected Hi-C counts to account for the so-called “genomic distance
effect” (the density of interactions close to the diagonal in the Hi-C matrix) [6]. Hi-Browse offers the ability to
transform raw Hi-C contact matrix into a (log) correlation matrix, whereas my5C can generate the expected
Hi-C signal and the ratio of observed to expected Hi-C signal. Juicebox indirectly offers the ability to perform
all these transformations through the Juicer software. Other tools require the user to externally apply the
transformations to the raw Hi-C data prior to upload.

Several software tools are available to carry out these external transformations. Juicer is the complemen-
tary software package to Juicebox that can process sequencing reads from a Hi-C experiment into .hic files
that contain contact matrices at multiple resolutions and in various transformations. HiC-Pro [40] offers
similar capabilities to Juicer but uses a tab delimited sparse matrix to store the output, in both raw and
matrix balanced forms. The HOMER suite of tools can generate dense Hi-C contact matrices and supports
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a rich set of downstream operations for transforming and analyzing Hi-C data [41]. Ay and Noble [9] provide
a full review of Hi-C processing tools.

Lastly, we note that certain tools can visualize or compare multiple datasets simultaneously, a useful
capability for investigating changes in 3D conformation of chromatin across different cell types or conditions.
Juicebox and my5C can load two datasets, allowing the user to flip between heatmap visualizations and
visualizing the ratio of Hi-C signals in the two data sets. The Epigenome Browser is able to visualize
multiple Hi-C datasets, each as an individual track. The 3D Genome Browser and Hi-Browse currently
support visualization of a single Hi-C dataset; however, we note that Hi-Browse offers a method to identify
statistically significant differential regions based on edgeR [42].

Complementary datasets

As we noted before, it is essential to plot genomic features together with Hi-C data when investigating,
for example, the interplay between chromatin conformation and gene regulation. Because the Epigenome
Browser and the 3D Genome Browser specialize in this task, these tools provide many publicly available
datasets, primarily generated by the ENCODE and Roadmap Epigenomics consortia. Furthermore, many
relevant annotation tracks of various genomic features (genes, GC islands, repeat regions) are available,
offering a rich collection of features that can assist in interpretation of Hi-C data. Although Juicebox does
not provide browser-like capabilities, the tool does offer a collection of genomic features, allowing a degree
of joint visualization by placing tracks on the edges of the heat map visualization (Figure 1C). my5C tool
generates links to the UCSC Genome Browser for loci of interest, allowing the user to seperately visualize
other genomic features.

All the tools that offer visualization of genomic features—Juicebox, the Epigenome Browser, and the
3D Genome Browser—also support the capability to upload user genomic data, such as gene annotations
or ChIP-seq peaks. Well defined standards for file formats for such data types are already in place. These
formats include the BED file format that defines genomic features relative to genomic intervals, and wig and
bedgraph formats that are used to store continuous signal along the length of the genome.

In addition to classic browser tracks, the 3D Genome Browser offers the ability to visualize two additional
features that characterize 3D interactions: ChIA-PET and DNase-seq linkage annotations. ChIA-PET
linkages are experimentally determined three dimensional contacts that are tethered by a specific protein
[5], whereas DNase-seq linkages are predicted functional interactions between DNase hypersensitive sites
[31]. These linkages are visualized as arcs and can aid in interpreting contacts revealed by a virtual 4C
plot. For example, a virtual 4C plot focusing on the promoter of the NANOG gene displays a potential
promoter-enhancer interaction upstream of the gene (Figure 2B).

Implementation

In addition to differing in their functionality, the five tools that we examined differ fairly substantially in
how they are implemented. In particular, although all of the tools are freely available, only HiBrowse, the
Epigenome Browser, and Juicebox are open source. Furthermore, the Epigenome Browser and Juicebox can
be installed to run on the user’s local computer, circumventing the need to access online servers through
the internet. This can be desirable for analyses that require confidentiality or significant computational
resources. Local installation for Juicebox only requires a 64-bit Java distribution, whereas installing the
Epigenome Browser depends on multiple software packages and server services, described in detailed, step-
by-step instructions in the corresponding manual.

All of the tools provide a graphical user interface that is available through a web browser interface or via
Java Web Start, thus requiring no or minimal installation. Unless a local installation is performed, all tools
also require an internet connection. Access to tools that use a web browser interface is available through
any operating system. For local installations, the Epigenome browser supports Linux and MacOS operating
systems.

All the tools come with documentation, although we note that the documentation of the 3D Genome
Browser is curently being updated. The Epigenome Browser has its own wiki page that offers a set of how-
to’s for creating and managing files for storing track information. Additionally, we note that Juicebox and
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Tool Loading User Data  Visualization of IMb Loci  Visualization of 10Mb Loci
Juicebox seconds 10 seconds 13 seconds

Hi-Browse NA 10 seconds 86 seconds

my5C NA 1 seconds 3 seconds

3D Genome Browser  seconds 7 seconds 43 seconds

Epigenome Browser seconds 33 seconds 73 seconds

Table 2: Speed benchmarks for loading and visualizing Hi-C data.

the Epigenome browser have active online discussion groups that are maintained by the developers of these
tools.

For each visualization tool, we profiled the speed of two important operations: loading user data and
visualizing loci of sizes that are appropriate for both browser-based and heatmap-based tools (Table 2).
Multiple factors, such as internet connection speed and server load, make it challenging to set up an exact
benchmarking protocol; thus, we only report the approximate speed of loading operations, on the order of
seconds, minutes or hours, and we report an average duration for visualization tasks. For benchmarking, we
set the resolution parameter to either 40 kbp or 50 kbp, commonly used resolutions that strike a balance
between sparsity and detail. We found that Juicebox, the Epigenome Browser and the 3D Genome Browser
process user data in binary formats in a few seconds. HiBrowse and my5C do not support loading of a
complete dataset at these resolutions, instead requiring the user to upload the HiC contact matrix corre-
sponding to the region of interest. The average times required to visualize 1 Mb and 10 Mb heatmaps showed
that tools that do not use a browser framework are faster, with Juicebox and my5C being the fastest tools.
Browser-based tools are generally slower, especially for 10 Mb loci, consistent with the browser-based tools’
intended focus on local visualizations. We stress that user experience may differ from our benchmark due to
differences in data sets, internet bandwidth and other parameters; thus, we offer this benchmark as a general
guideline rather than an absolute measure of speed.

Discussion

Although all of the tools we have discussed aim to represent the same Hi-C data, some tools are better
suited to understanding the conformation of chromatin at large or small scales. Hi-Browse and my5C
are well equipped to visualize large scale conformations, like that of a complete genome or an individual
chromosome. The Epigenome and 3D Genome browsers can better represent conformations at smaller
scales, such as contacts involving a single gene, further enriching such visualization with other genomic
features. Juicebox strikes a balance between these two approaches, offering browser-like functionality to
visualize supplemental data next to a matrix-based Hi-C visualization. Thus, the tool of choice for a Hi-C
analysis task depends on the nature of the inquiry regarding chromatin conformation. In this study, we offer
two example uses cases to illustrate our point: browsers are very capable of probing effects of chromatin
conformation on the regulation of a single gene (Figure 2), whereas heat maps are better suited to probing
the overall organization of a single chromosome (Figure 1).

All the tools we review offer a graphical user interface and do not require programming skills to operate,
making them broadly accessible. On the other hand, although it is easy to use these tools to create sophis-
ticated visualizations of Hi-C data, processing and converting Hi-C data into the required contact matrix
format requires at least a basic understanding of programming. None of the visualization tools we reviewed
offer the ability to process raw Hi-C reads into a contact matrix, but other toolkits are available to automate
such tasks (reviewed in [9]). In addition to the tools we reviewed here, software packages such as HiCplotter
[43] and HiTC [44] offer visualization capabilities but require programming capabilities.

We have discussed visualization of raw or normalized Hi-C data, but other transformations of the data
can be visualized using the same set of tools. For example, statistical confidence measures, such as p-values
produced by methods like Fit-Hi-C [12] or diffHiC [45], can be converted to a contact matrix format and
then visualized using the tools reviewed here. Hi-C data can also be used to infer the 3D structure of
the chromatin (methods reviewed in [46]). The software tools reviewed here could be used to visualize the
Euclidean distance matrix induced by such a 3D model. Direct visualization of the 3D models, especially
in conjunction with other genomic features, is potentially very powerful. Several visualization tools for
3D genome structures are available, including GMol [47], Shrec3D [18], TADBIt [48] and TADKit (http:
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//sgt.cnag.cat/3dg/tadkit/demo/index.html#/project/browser).
Acknowledgments: This work was funded by National Institutes of Health awards U54 DK107979 and

U41 HG007000.
Competing interests: Both authors declare that they have no competing interests.

References

[1] J. Dekker, K. Rippe, M. Dekker, and N. Kleckner. Capturing chromosome conformation. Science,
295(5558):1306-1311, 2002.

[2] Z. Zhao, G. Tavoosidana, M. Sjolinder, A. Gondor, P. Mariano, S. Wang, C. Kanduri, M. Lezcano, K. S.
Sandhu, U. Singh, V. Pant, V. Tiwari, S. Kurukuti, and R. Ohlsson. Circular chromosome conforma-
tion capture (4c) uncovers extensive networks of epigenetically regulated intra- and interchromosomal
interactions. Nat Genet, 38(11):1341-1347, 2006.

[3] M. Simonis, P. Klous, E. Splinter, Y. Moshkin, R. Willemsen, E. de Wit, B. van Steensel, and W. de Laat.
Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation
capture-on-chip (4C). Nature Genetics, 38:1348-1354, 2006.

[4] J. Dostie, T. A. Richmond, R. A. Arnaout, R. R. Selzer, W. L. Lee, T. A. Honan, E. D. Rubio,
A. Krumm, J. Lamb, C. Nusbaum, R. D. Green, and J. Dekker. Chromosome Conformation Capture
Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements.
Genome Research, 16(10):1299-1309, 2006.

[5] M. J. Fullwood, M. H. Liu, Y. F. Pan, J., H. Xu, Y. B. Mohamed, Y. L. Orlov, S. Velkov, A. Ho,
P. H. Mei, E. G. Chew, P. Y. Huang, W. J. Welboren, Y. Han, H.S. Ooi, P. N. Ariyaratne, V. B. Vega,
Y. Luo, P. Y. Tan, P. Y. Choy, K. D. Wansa, B. Zhao, K. S. Lim, S. C. Leow, J. S. Yow, R. Joseph,
H. Li, K.V. Desai, J. S. Thomsen, Y. K. Lee, R. K. Karuturi, T. Herve, G. Bourque, H.G. Stunnenberg,
X. Ruan, V. Cacheux-Rataboul, W. K. Sung, E. T. Liu, C. L. Wei, E. Cheung, and Y. Ruan. An
oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269):58-64, 2009.

[6] E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, T. Ragoczy, A. Telling, I. Amit,
B. R. Lajoie, P. J. Sabo, M. O. Dorschner, R. Sandstrom, B. Bernstein, M. A. Bender, M. Groudine,
A. Gnirke, J. Stamatoyannopoulos, L. A. Mirny, E. S. Lander, and J. Dekker. Comprehensive mapping
of long-range interactions reveals folding principles of the human genome. Science, 326(5950):289-293,
2009.

[7] G. E. Crawford, I. E. Holt, J. Whittle, B. D. Webb, D. Tai, S. Davis, E. H. Margulies, Y. Chen,
J. A. Bernat, D. Ginsburg, D. Zhou, S. Luo, T. J. Vasicek, M. J. Daly, T. G. Wolfsberg, and F. S.
Collins. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature se-
quencing (MPSS). Genome Research, 16(1):123-131, 2006.

[8] A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones, Z. Wang, G. Wei, I. Chepelev, and K. Zhao.
High-resolution profiling of histone methylations in the human genome. Cell, 129:823-837, 2007.

[9] F. Ay and W. S. Noble. Analysis methods for studying the 3D architecture of the genome. Genome
Biology, 16(1):1-15, 2015.

[10] A. D. Schmitt, M. Hu, and B. Ren. Genome-wide mapping and analysis of chromosome architecture.
Nature Reviews, advance online publication, 2016.

[11] B.R. Lajoie, J. Dekker, and N. Kaplan. The Hitchhiker’s guide to Hi-C analysis: practical guidelines.
Methods, 72:65-75, 2015.

[12] F. Ay, T. L. Bailey, and W. S. Noble. Statistical confidence estimation for Hi-C data reveals regulatory
chromatin contacts. Genome Research, 24:999-1011, 2014.

10


https://doi.org/10.1101/086017

bioRxiv preprint doi: https://doi.org/10.1101/086017; this version posted November 7, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[13] J. R. Dixon, S. Selvaraj, F. Yue, A. Kim, Y. Li, Y. Shen, M. Hu, J. S. Liu, and B. Ren. Topological
domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485(7398):376—
380, 2012.

[14] E. Crane, Q. Bian, R. P. McCord, B. R. Lajoie, B. S. Wheeler, E. J. Ralston, S. Uzawa, J. Dekker,
and B. J. Meyer. Condensin-driven remodelling of x chromosome topology during dosage compensation.
Nature.

[15] B. D. Pope, T. Ryba, V. Dileep, F. Yue, W. Wu, O. Denas, D. L. Vera, Y. Wang, R. S. Hansen, T. K.
Canfield, R. E. Thurman, Y. Cheng G. Gulsoy, J. H. Dennis, M. P. Snyder, J. A. Stamatoyannopoulos,
J. Taylor, R. C. Hardison, T. Kahveci, B. Ren, and D. M. Gilbert. Topologically associating domains
are stable units of replication-timing regulation. Nature, 515(7527):402-405, 2014.

[16] N. Varoquaux, F. Ay, W. S. Noble, and J.-P. Vert. A statistical approach for inferring the 3D structure
of the genome. Bioinformatics, 30(12):i126-i33, 2014.

[17] M. Hu, K. Deng, Z. Qin, J. Dixon, S. Selvaraj, J. Fang, B. Ren, and J. S. Liu. Bayesian inference of
spatial organizations of chromosomes. PLoS Comput Biol, 9(1):e1002893, 2013.

[18] A. Lesne, J. Riposo, P. Roger, A. Cournac, and J. Mozziconacci. 3D genome reconstruction from
chromosomal contacts. Nature Methods, 11(11):1141-1143, 2014.

[19] D. Bau, A. Sanyal, B. R. Lajoie, E. Capriotti, M. Byron, J. B. Lawrence, J. Dekker, and M. A. Marti-
Renom. The three-dimensional folding of the a-globin gene domain reveals formation of chromatin
globules. Nat Struct Mol Biol, 18(1):107-114, 2011.

[20] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and D. Haussler.
The Human Genome Browser at UCSC. Genome Research, 12:996-1006, 2002.

[21] J. T. Robinson, H. Thorvaldsdéttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P.
Mesirov. Integrative genomics viewer. Nature biotechnology, 29(1):24-26, 2011.

[22] J. Paulsen, G. K. Sandve, S. Gundersen, T. G. Lien, K. Trengereid, and E. Hovig. HiBrowse: multi-
purpose statistical analysis of genome-wide chromatin 3D organization. Bioinformatics, 30(11):1620—
1622, 2014.

[23] B. R. Lajoie, N. L. van Berkum, A. Sanyal, and J. Dekker. My5C: web tools for chromosome confor-
mation capture studies. Nature Methods, 6(10):690-691, 2009.

[24] N. C. Durand, J. T. Robinson, I. Machol M. S. Shanim, J. P. Mesirov, E. S. Lander, and E. L. Aiden.
Juicebox provides a visualization system for hi-c contact maps with unlimited zoom. Cell Systems,
3(1):99-101, 2016.

[25] X. Zhou, R. F. Lowdon, D. Li, H. A. Lawson, P. A. F. Madden, J. T. Costello, and T. Wang. Exploring
long-range genome interactions using the WashU EpiGenome Browser. Nature Methods, 10:375-376,
2013.

[26] X. Deng, W. Ma, V. Ramani, A. Hill, F. Yang, F. Ay, J. B. Berletch, C. A. Blau, J. Shendure, Z. Duan,
W. S. Noble, and C. M. Disteche. Bipartite structure of the inactive mouse X chromosome. Genome
Biology, 16:152, 2015.

[27] S. S. P. Rao, M. H. Huntley, N. Durand, C. Neva, E. K. Stamenova, I. D. Bochkov, J. T. Robinson,
A. L. Sanborn, I. Machol, A. D. Omer, E. S. Lander, and E. L. Aiden. A 3D map of the human genome
at kilobase resolution reveals principles of chromatin v looping. Cell, 59(7):1665-1680, 2014.

[28] A. L. Sanborn, S. S. P. Rao, S. Huanga, N. C. Duranda, M. H. Huntley, A. Jewetta, I. D. Bochkova,
D. Chinnappana, A. Cutkoskya, J. Lia, K. P. Geetinga, A. Gnirke, A. Melnikov, D. McKenna, E. K.
Stamenova, E. S. Lander, and E. L. Aiden. Physical simulations of loop formation by extrusion predict
results of 3d genome re-engineering experiments. Proceedings of the National Academy of Sciences of
the United States of America, 2015.

11


https://doi.org/10.1101/086017

bioRxiv preprint doi: https://doi.org/10.1101/086017; this version posted November 7, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[29] Bum-Kyu Lee, Akshay A. Bhinge, Anna Battenhouse, Ryan M. McDanielll, Zheng Liu, Lingyun Song,
Yunyun Ni, Ewan Birney3, Jason D. Lieb, Terrence S. Furey, Gregory E. Crawford, and Vishwanath R.
Iyer. Cell-type specific and combinatorial usage of diverse transcription factors revealed by genome-wide
binding studies in multiple human cells. Genome Research, 22(22):9-24, 2012.

[30] W. Ma, F. Ay, C. Lee, G. Gulsoy, X. Deng, S. Cook, J. Hesson, C. Cavanaugh, C. B. Ware, A. Krumm,
J. Shendure, C. A. Blau, C. M. Disteche, W. S. Noble, and Z. Duan. Fine-scale chromatin interaction
maps reveal the cis-regulatory landscape of lincrna genes in human cells. Nature Methods, 12(1):71-78,
2015.

[31] RE Thurman, E Rynes, R Humbert, J Vierstra, MT Maurano, E Haugen, NC Sheffield, AB Stergachis,
H Wang, B Vernot, K Garg, S John, R Sandstrom, D Bates, . Boatman, TK Canfield, M Diegel,
D Dunn, AK Ebersol, T Frum, E Giste, AK Johnson, EM Johnson, T Kutyavin, B Lajoie, BK Lee,
K Lee, D London, D Lotakis, S Neph, F Neri, ED Nguyen, H Qu, AP Reynolds, V Roach, A Safi,
ME Sanchez, A Sanyal, A Shafer, JM Simon, L. Song, S Vong, M Weaver, Y Yan, 7Z Zhang, Z Zhang,
B Lenhard, M Tewari, MO Dorschner, RS Hansen, PA Navas, G Stamatoyannopoulos, VR Iyer, JD Lieb,
SR Sunyaev, JM Akey, PJ Sabo, R Kaul, TS Furey, J Dekker, GE Crawford, and JA Stamatoyannopou-
los. The accessible chromatin landscape of the human genome. Nature, 489(7414):75-82, 2012.

[32] C. Li, X. Dong, H. Fan, C. Wang, G. Ding, and Y. Li. The 3DGD: a database of genome 3D structure.
Bioinformatics, 30(11):1640-1642, 2014.

[33] L. Teng, B. He, J. Wang, and K. Tan. 4DGenome: a comprehensive database of chromatin interactions.
Bioinformatics, 2015. Epub ahead of print.

[34] N. C. Durand, M. S. Shamim, I. Machol, S. S. Rao, M. H. Huntley, E. S. Lander, and E. L. Aiden. Juicer
provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Systems, 3(1):95-98,
2016.

[35] E. Yaffe and A. Tanay. Probabilistic modeling of Hi-C contact maps eliminates systematic biases to
characterize global chromosomal architecture. Nat Genet, 43:1059-1065, 2011.

[36] M. Imakaev, G. Fudenberg, R. P. McCord, N. Naumova, A. Goloborodko, B. R. Lajoie, J. Dekker,
and L. A. Mirny. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat
Methods, 9:999-1003, 2012.

[37] P. Knight and D. Ruiz. A fast algorithm for matrix balancing. IMA J. Numer. Anal., 33(3):1029-1047,
2013.

[38] M. Hu, K. Deng, S. Selvaraj, Z. Qin, B. Ren, and J. S. Liu. HiCNorm: removing biases in Hi-C data
via Poisson regression. Bioinformatics, 28(23):3131-3133, 2012.

[39] J. Fortin and K. D. Hansen. Reconstructing a/b compartments as revealed by hi-c using long-range
correlations in epigenetic data.

[40] N. Servant, N. Varoquaux, B. R. Lajoie, E. Viara, C. J. Chen, J.-P. Vert, E. Heard, J. Dekker, and
E. Barillot. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biology,
16:259, 2015.

[41] S. Heinz, C. Benner, N. Spann, E. Bertolino, Y. C. Lin, P. Laslo, J. X. Cheng, C. Murre, H. Singh,
and C. K. Glass. Simple combinations of lineage-determining transcription factors prime cis-regulatory
elements required for macrophage and b cell identities. Molecular Cell, 38(4):576-589, 2010. HOMER.

[42] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edger: a bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26(1):139-140, 2010.

[43] K. C. Akdemir and L. Chin. HiCPlotter integrates genomic data with interaction matrices. Genome
Biology, 16:198, 2015.

12


https://doi.org/10.1101/086017

bioRxiv preprint doi: https://doi.org/10.1101/086017; this version posted November 7, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

[44] N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C. J. Chen, E. Heard, J. Dekker, and E. Barillot.
HiTC: exploration of high-throughput ’C’ experiments. Bioinformatics, 28(21):2843-2844, 2012.

[45] A. T. L. Lun and G. K. Smyth. diffHic: a Bioconductor package to detect differential genomic interac-
tions in Hi-C data. BMC Bioinformatics, 16:258, 2015.

[46] A. Rosa and C. Zimmer. Computational models of large-scale genome architecture. Int. Rev. Cell Mol.
Biol., 307:275-349, 2014.

[47] J. Nowotny, A. Wells, L. Xu, R. Cao, T. Trieu, C. He, and J. Cheng. GMOL an interactive tool for 3D
genome structure visualization. arXiv preprint 1507.06383, 2015.

[48] Frangois Serra, Guillaume Filion Davide Bat, and Marc A. Marti-Renom. Structural features of the fly
chromatin colors revealed by automatic three-dimensional modeling. bioRviz, 2016.

13


https://doi.org/10.1101/086017

