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Abstract

A number of open questions in human evolutionary genetics would become tractable if we
were able to directly measure evolutionary fitness. As a step towards this goal, we developed a
method to examine whether individual genetic variants, or sets of genetic variants, currently
influence viability. The approach consists in testing whether the frequency of an allele varies
across ages, accounting for variation in ancestry. We applied it to the Genetic Epidemiology
Research on Aging (GERA) cohort and to the parents of participants in the UK Biobank. Across
the genome, we find only a few common variants with large effects on age-specific mortality:
tagging the APOE €4 allele and near CHRNA3. These results suggest that when large, even late
onset effects are kept at low frequency by purifying selection. Testing viability effects of sets of
genetic variants that jointly influence one of 42 traits, we detect a number of strong signals. In
participants of the UK Biobank study of British ancestry, we find that variants that delay puberty
timing are enriched in longer-lived parents (P~6x107° for fathers and P~2x1073 for
mothers), consistent with epidemiological studies. Similarly, in mothers, variants associated
with later age at first birth are associated with a longer lifespan (P~1x1073). Signals are also
observed for variants influencing cholesterol levels, risk of coronary artery disease, body mass
index, as well as risk of asthma. These signals exhibit consistent effects in the GERA cohort and
among participants of the UK Biobank of non-British ancestry. Moreover, we see marked
differences between males and females, most notably at the CHRNA3 locus, and variants
associated with risk of coronary artery disease and cholesterol levels. Beyond our findings, the
analysis serves as a proof of principle for how upcoming biomedical datasets can be used to
learn about selection effects in contemporary humans.
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Introduction

A number of central questions in evolutionary genetics remain open, in particular for humans.
Which types of variants affect fitness? Which components of fitness do they affect? What is the
relative importance of directional and balancing selection in shaping genetic variation? Part of
the difficulty is that our understanding of selection pressures acting on the human genome is
based either on experiments in fairly distantly related species or cell lines or on indirect
statistical inferences from patterns of genetic variation [1-3].

The statistical inferences rely on patterns of genetic variation in present day samples (or very
recently, in ancient samples [4]) to identify regions of the genome that appear to carry the
footprint of positive selection [2]. For example, a commonly used class of methods asks
whether rates of non-synonymous substitutions between humans and other species are higher
than expected from putatively neutral sites, in order to detect recurrent changes to the same
protein [5]. Another class instead relies on polymorphism data and looks for various footprints
of adaptation involving single changes of large effect [6]. These approaches detect adaptation
over different timescales and, likely as a result, suggest quite distinct pictures of human
adaptation [1]. For example, approaches that are sensitive to selective pressures acting over
millions of years have identified individual chemosensory and immune-related genes (e.g., [7]).
In contrast, approaches that are most sensitive to selective pressures active over thousands or
tens of thousands of years have revealed strong selective pressures on individual genes that
influence human pigmentation (e.g., [8-10]), diet [11-13], as well as sets of variants that shape
height [14-16]. Even more recent still, studies of contemporary populations have suggested that
natural selection has influenced life history traits like age at first childbirth as well as
educational attainment over the course of the last century [17-23].

Because these approaches are designed (either explicitly or implicitly) to be sensitive to a
particular mode of adaptation, they provide a partial and potentially biased picture of what
variants in the genome are under selection. In particular, most have much higher power to
adaptations that involve strongly beneficial alleles that were rare in the population when first
favored and will tend to miss selection on standing variation or adaptation involving many loci
with small beneficial effects (e.g., [24-27]). Moreover, even where these methods identify a
beneficial allele, they are not informative about the components of fitness that are affected or
about possible fitness trade-offs between sexes or across ages.

In line with Lewontin’s proposal to track age-specific mortality and fertility of hundreds of
thousands of individuals for the study of natural selection [28], we introduce a more direct and,
in principle, comprehensive way to study adaptation in humans, focusing on current viability
selection. Similar to the approach that Allison took in comparing frequencies of the sickle cell
allele in newborn and adults living in malarial environments [29], we aim to directly observe the
effects of genotypes on survival, by taking advantage of the recent availability of genotypes
from a large cohort of individuals of different ages. Specifically, we test for differences in the
frequency of an allele across individuals of different ages, controlling for changes in ancestry
and possible batch effects. This approach resembles a genome-wide association study for
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longevity, yet does not focus on an endpoint (e.g. survival to an old age) but on any shift in
allele frequencies with age. Thus, it allows the identification of possible non-monotonic effects
at different ages or sex differences. Any genetic variant that affects survival by definition has a
fitness cost, even if the cost is too small to be effectively selected against (depending on the
effective population size, the age structure of the population and the age at which the variant
exerts its effects [30]). Of course, a genetic variant can influence fitness without influencing
survival, through effects on reproduction or inclusive fitness. Our approach is therefore
considering only one of the components of fitness that are likely important for human
adaptation.

As a proof of principle, we applied our approach to two recent datasets: to 57,696 individuals of
European ancestry from the Resource for Genetic Epidemiology Research on Aging (GERA)
Cohort [31, 32] and, by proxy [33-35], to the parents of 117,649 individuals of British ancestry
surveyed as part of the UK Biobank [36]. We did so for individual genetic variants, then jointly
for sets of variants previously found to influence one of 42 polygenic traits [37-40].

Results

A method for testing for differences in allele frequencies across age bins

If a genetic variant does not influence viability, its frequency should be the same in individuals
of all ages. We therefore test for changes in allele frequency across individuals of different ages,
while accounting for systematic differences in the ancestry of individuals of different ages (for
example, due to migration patterns over decades) and genotyping batch effects. We use a
logistic regression model in which we regress each individual’s genotype on their age bin, their
ancestry as determined by principal component analysis (PCA) (Figure S1), and the batch in
which they were genotyped (see Materials and Methods for details). In this model, we treat age
bin as a categorical variable; this allows us to test for a relationship between age and the
frequency of an allele regardless of the functional form of this relationship. We also test a
model with an interaction between age and sex, to assess whether a variant affects survival
differently in the two sexes.

We first evaluated the power of this method using simulations. We considered three possible
trends in allele frequency with age: (i) a constant frequency up to a given age followed by a
steady decrease, i.e., a variant that affects survival after a given age (e.g., variants contributing
to late-onset disorders), (ii) a steady decrease across all ages for a variant with detrimental
effect throughout life, and (iii) a U-shape pattern in which the allele frequency decreases to a
given age but then increases, reflecting trade-offs in the effects at young and old ages, as
hypothesized by the antagonistic pleiotropy theory of aging [41] or as may be seen if there are
protective alleles that buffer the effect of risk alleles late in life [42] (Figure 1). In all simulations,
we used sample sizes and age distributions that matched the GERA cohort (Figure S2). For
simplicity, we also assumed no population structure or batch effects across age bins (Materials
and Methods). For all trends, we set a maximum of 20% change in the allele frequency from the
value in the first age bin (Figure 1).
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Because of the age distribution of individuals in the GERA cohort (Figure S2), our power to
detect the trend is greater when most of the change in allele frequency occurs at middle age
(Figure 1). For example, for an allele with an initial allele frequency of 15% that begins to
decrease in frequency among individuals at age 20, age 50, or age 70 years, there is around
20%, 90% and 60% power, respectively, to detect the trend at P < 51078, the commonly-
used criterion for genome-wide significance [43]. We also experimented with a version of the
model where the age bin is treated as an ordinal variable; as expected, this model is more
powerful if there is a linear relationship between age and allele frequency (Materials and
Methods). Since in most cases, we do not know the functional form of the relationship between
age and allele frequency a priori, we used the categorical model for all analyses, unless
otherwise noted.

In the UK Biobank, all individuals were 45-69 years old at enrollment, so the age range of the
participants is restricted and our method has low power. However, the UK Biobank participants
reported the survival status of their parents: age of the parents if alive, or age at which their
parents died; following recent studies [33-35], we therefore used these values (when reported)
instead in our model. In this situation, we are testing for correlations between an allele
frequency and father’s or mother’s age (if alive) or age at death (if deceased). This approach
obviously comes with the caveat that children inherit only 50% of their genome from each
parent and so power is reduced (e.g., [44]). Furthermore, the patterns expected when
considering individuals who have died differ subtly from those generated among surviving
individuals. Notably, when an allele begins to decline in frequency starting at a given age
(Figure 1A), there should be an increase in the allele frequency among individuals who died at
that age, followed by a decline in frequency, rather than the steady decrease expected among
surviving individuals (Figure S3, see Materials and Methods for details). In a first analysis, we
therefore focused on the majority of participants that reported father’s or mother’s age at
death, 88,595 and 71,783 individuals, respectively. We compared the results of this approach
with the results of a Cox proportional hazard model [45], which allows us to include individuals
who reported their parents to be alive, but has the disadvantage of assuming fixed effects
across all ages.

We further adapted this model to allow us to test for changes in frequency at sets of genetic
variants jointly. Many phenotypes of interest, from complex disease risk to anthropomorphic
and life history traits such as age at menarche, are polygenic [46, 47]. If a polygenic trait has an
effect on fitness, either directly or indirectly (i.e., through pleiotropic effects), the individual loci
that influence the trait may be too subtle in their survival effects to be detectable with current
sample sizes. We therefore investigate whether there is a shift across ages in sets of genetic
variants that were identified as influencing a trait in genome-wide association studies (GWAS)
(Table S1). Specifically, for a given trait, we calculate a polygenic score for each individual based
on trait effect sizes of single variants previously estimated in GWAS and then test whether the
scores vary significantly across 5-year age bins (see Materials and Methods for details). These
scores are calculated under an additive model, which appears to provide a good fit to GWAS
data [48].
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If a polygenic trait is under stabilizing selection (e.g., human birth weight [49]), i.e., an
intermediate polygenic score is optimal, no change in the mean value of polygenic score across
different ages is expected. However, if extreme values of a trait are associated with lower
chance of survival, the spread of the polygenic scores should decrease with age. To consider
this possibility, we tested whether the squared difference of the polygenic scores from the
population mean is significantly associated with survival (see Materials and Methods for
details).

Testing for changes in allele frequency at individual genetic variants

We first applied the method to the GERA cohort, using 9,010,280 filtered genotyped and
imputed autosomal biallelic single-nucleotide polymorphisms (SNPs) and indels. We focused on
a subset of filtered 57,696 individuals who we confirmed to be of European ancestry by PCA
(see Materials and Methods, Figures S4 and S5). The ages of these individuals were reported in
bins of 5 year intervals (distribution shown in Figure S2). We tested for significant changes in
allele frequencies across these bins. For each variant, we obtained a P value comparing a model
in which the allele frequency changes with age to a null model. No inflation was observed in the
quantile-quantile plot (Figure S6A), indicating that, for common variants at least, our control for
population structure (and other potential confounders) is sufficient. To illustrate this point, we
looked at the lactose intolerance linked SNP rs4988235 within the LCT locus, which is among
the most differentiated variants across European populations [11]; the trend in the expected
allele frequency based on the null model (i.e., accounting for confounding batch effects and
changes in ancestry) tracks the observed trend quite well (Figure S7).

By our approach, all variants that reached genome-wide significance (P < 5x1078) reside on
chromosome 19 near the APOE gene (Figure 2A and Figure S8). This locus has previously been
associated with longevity in multiple studies [50, 51]. The €4 allele of the APOE gene is known
to increase the risk of late-onset Alzheimer’s disease (AD) as well as of cardiovascular diseases
[52, 53]. We observe a monotonic decrease in the frequency of the T allele of the €4 tag SNP
rs6857 (C, protective allele; T, risk allele) beyond the age of 70 years old (Figure 2B). This trend
is observed for both the heterozygous and homozygous risk variants (Figure S9), and for both
males and females (Figure S10). No variant reached genome-wide significance testing for age by
sex interactions (quantile-quantile plot shown in Figure S6B).

We further investigated the trends in frequency with age for the other two major APOE alleles
defined by rs7412 and rs429358 SNPs: €2 (rs7412-T, rs429358-T) and €3 (rs7412-C, rs429358-T),
while €4 is (rs7412-C, rs429358-C) [54]. Unlike the €4 allele, €2 carriers are suggested to be at
lower risk of Alzheimer’s disease, cardiovascular disease, and mortality relative to the €3
carriers [50, 54]. We focused on a subset of 38,703 individuals with unambiguous counts of
each APOE allele. There is a significant change in the frequency of the €4 allele with age in this
subset (P~6x10712), similar to the trend observed for the tag SNP rs6857 (Figure S11). The €3
allele shows the reverse trend, with a significant, monotonic increase in frequency beyond age
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of 70 years old (P~2%x1078) (Figure S11). The enrichment of the €3 allele in elderly individuals
can be explained by the corresponding depletion of the €4 allele, however, so does not
necessarily imply an independent, protective effect of €3. The frequency of the €2 allele does
not change significantly with age (P~0.2), possibly reflecting low power, given its allele
frequency of ~0.06 (Figure S11).

We considered the possibility that some unobserved confounding variable was driving the
strength of this signal at APOE. Since there are two genotyped SNPs with signals similar to
rs6857 within the locus, genotyping error seems unlikely to be driving the pattern (Figure S8).
Another concern might be a form of ascertainment bias, in which individuals with Alzheimer’s
disease are underrepresented in the Kaiser Permanente Medical Care Plan. However, there is
no correlation in these data between the amount of time that an individual has been enrolled
in this insurance plan and the individual’s APOE genotype (Figure S12). These observations,
along with previously reported associations at this locus, argue that the allele frequency trends
in Figure 2B are driven by effects of APOE genotype on mortality (or severe disability).
Moreover, the effects that we identified are concordant with epidemiological data on the peak
age of onset of Alzheimer’s disease given 0 to 2 copies of APOE €4 [52]. This case not only
serves as a positive control for our approach, it illustrates the resolution that it provides about
age effects of genetic variants.

We estimated that we have ~93% power to detect the trend in allele frequency with age as
observed for rs6857 (at a genome-wide significance level; see Materials and Methods). Using
both versions of the model treating age bin as a categorical or an ordinal variable, we have
similar power to detect other potential trends considered in Figure 1, for variants as common
as rs6857 and with similar magnitude of effect on survival. Yet across the genome, only APOE
variants show a significant change in allele frequency with age for both versions of the model
(Figure 2 and Figure S13). Thus, our finding only APOE ¢4 indicates that there are few or no
other common variants in the genome with an effect on survival as strong as seen in APOE
region.

We then turned to the UK Biobank data. We applied our method to individuals of British
ancestry whose data passed our filters; of these, 88,595 had death information available for
their father and 71,783 for their mother. We analyzed 590,437 genotyped autosomal variants,
applying similar quality control measures as with the GERA dataset (see Materials and
Methods). We tested for significant changes in allele frequencies with father’s age at death and
mother’s age at death stratified in eight 5-year interval bins. As in the GERA dataset, no
inflation was observed in the quantile-quantile plots (Figure S14).

Consistent with recent studies [33, 34], the variants showing a genome-wide significant change
in allele frequency with father’s age at death (P < 5x1078) reside within a locus containing the
nicotine receptor gene CHRNA3 (Figure 3A). The A allele of the CHRNA3 SNP rs1051730 (G,
major allele; A, minor allele) has been shown to be associated with increased smoking quantity
among individuals who smoke [55]. We observed a linear decrease in the frequency of the A
allele of rs1051730 throughout almost all age ranges (Figure 3B). Although it does not reach
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genome-wide significance, this allele shows a similar trend with age in GERA (P~0.0086, Figure
S15). We note that 30,819 of the UK Biobank individuals included in the above analysis were
genotyped on the UK BiLEVE Axiom array (see Materials and Methods), selected based on lung
function and smoking behavior (while the remaining 57,776 samples were genotyped on the UK
Biobank Axiom array) [56]. Expectedly, the frequency of the A allele is significantly higher
among UK BIiLEVE subjects (P~2.3x1071°), but the age effects are similar across both arrays
(P~0.72).

For mother’s age at death, a SNP in a locus containing the MEOX2 gene reached genome-wide
significance (Figure 3C). The C allele of rs4721453 (T, major allele; C, minor allele) increases in
frequency in the age bin centered at 76 years old (Figure S16), i.e., there is an enrichment
among individuals that died at 74 to 78 years of age, which corresponds to a deleterious effect
of the C allele in this period. The trend is similar and nominally significant for other genotyped
common SNPs in moderate linkage disequilibrium with rs4721453 (Figure S16). Also, the signal
for rs4721453 remains nominally significant when using subsets of individuals genotyped on the
same genotyping array: 44,552 individuals on the UK Biobank Axiom array (P~7%107°) and
25,231 individuals on the UK BIiLEVE Axiom array (P~107%). These observations suggest that
the result is not due to genotyping errors, but it is not reproduced in GERA (P~0.023, Figure
S17) and so it remains to be replicated. APOE variants were among the top nominally significant
variants (P~10~7) (Figure 3C). At the APOE SNP rs769449 (G, major allele; A, minor allele),
there is an increase in the frequency of A allele at around 70 years old before subsequent
decrease (Figure 3D). This pattern is consistent with our finding in GERA (of a monotonic
decrease beyond 70 years of age), considering the difference in patterns expected between
allele frequency trends with age among survivors versus individuals who died (Figure S3).

We note that by considering parental age at death of the UK Biobank participants—as done also
in [33-35]—we introduce a bias towards older participants, who are more likely to have
deceased parents (Figure S18). We confirmed that our top signals are not significantly affected
after adjusting for age of the participants (among other potential confounders including
participants’ sex, birth year and socioeconomic status, as measured by the Townsend
deprivation index): results remain similar for the MEOX2 SNP rs4721453 (P~2.1x107°), APOE
SNP rs769449 (P~1.5x107°), and CHRNA3 SNP rs1051730 (P~1.8x107% and P~4.3x107°
treating paternal age at death as a categorical and an ordinal variable, respectively).

We further tested for trends in allele frequency with parental age at death that differ between
fathers and mothers, focusing on 62,719 individuals with age at death information for both
parents. No variant reached genome-wide significance level (Figure S19A). The rs4721453 near
the MEOX2 gene and APOE variant rs769449 show nominally significant sex effects (P~7x1078
and P~2x1073, respectively), with stronger effects in females (Figure S19B). Variants near the
CHRNA3 locus are nominally significant when using the model with parental age at deaths
treated as ordinal variables (rs11858836, P~6x10~%), with stronger effects in males (Figure
18B).
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Testing for changes in allele frequency at trait-associated variants

We next turned to sets of genetic variants that have been associated with polygenic traits,
rather than individual genetic variants. We focused on 42 polygenic traits, including disease risk
and traits of evolutionary importance such as puberty timing, for which a large number of
common variants have been mapped in GWAS (see Table S1 for the list of traits and number of
loci) [37-40]. For each individual and each trait, we calculated a polygenic score based on the
genetic variants that reached genome-wide significance level for association, and then tested
whether this polygenic score, or its squared difference from the mean in the case of stabilizing
selection, is associated with survival (after controlling covariates; see Materials and Methods).

We first applied the Cox proportional hazards model in the UK Biobank for parental lifespan,
focusing on the participants whose genetic ancestry is British and who reported their father’s or
mother’s age or ages at death (114,122 and 116,323 individuals, respectively). We then
compared the results with our approach of testing for changes in the polygenic score across
parental ages at death. We further analyzed two data sets for replication purposes: participants
of the UK Biobank of non-British ancestry (29,511 and 30,3722 individuals reporting father’s or
mother’s age information, respectively) and the GERA cohort.

Using the Cox model, the score for several traits showed significant association with father’s
survival after accounting for multiple testing (Figure 4A, Table 1): total cholesterol (TC,
P~4.3%x10711), low-density lipoproteins (LDL, P~8.1x107%), body mass index (BMlI,
P~1.8x1078), and coronary artery disease (CAD, P~9%x107°), consistent with two recent
studies [34, 35]. In addition, we uncovered significant association between the polygenic score
for puberty timing (P~6.2x107°); in this analysis, we use age at menarche associated variants
in females, motivated by the high genetic correlation between the timing of puberty in males
and females [57]). A higher score for puberty timing was associated with longer paternal
survival (per year hazard ratio of 0.96) (Table 1), indicating that variants delaying puberty timing
are associated with a higher chance of survival, consistent with epidemiological studies
suggesting early puberty timing to be associated with adverse health outcomes [58]. For all
other traits, a higher score was negatively associated with paternal survival: one standard
deviation (SD) hazard ratio of 1.09 for TC, 1.08 for LDL and 1.22 for BMI (Table 1). With the
exception of lipid traits, the effects on survival were not significantly changed after accounting
for the effect of the polygenic score of another trait (Figure S20). This is especially relevant to
BMI and puberty timing, where there is substantial genetic overlap [38]; the per year hazard
ratio was 0.97 for the puberty timing score (P~4.8x10~*), after adjusting for the BMI score.

Using our approach instead, that is considering the father’s age at death, led to very similar
results. Specifically, all traits significantly associated with paternal survival showed a significant
change in polygenic score with father’s age at death, using the model with parental age at
deaths treated as ordinal variables (Figure S21): TC (P~8.7x107°), CAD (P~3.3x1078),
puberty timing (P~1.6x1077), LDL (P~8.6x1077) and BMI (P~3.4x107°). In addition, we
uncovered significant changes in polygenic score with father’s age at death for asthma (ATH,
P~9.4x107°) and triglycerides (TG, P~4.4x107%, the effect of which does not seem to be
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distinct from other lipid traits, Figure S20). The score for puberty timing increased
monotonically with the father’s age at death (Figure 4B), indicative of a protective effect of
later predicted puberty timing, whereas all other traits with significant signal showed a
monotonic decline in score with age (Figure 4C-F).

For mothers, as in fathers, in a Cox survival model, scores for TC, CAD and LDL were significantly
associated with survival, with similar hazard ratios (Figure 5A and Table 1): one SD hazard ratio
of 1.09 for LDL (P~5.2x1078), 1.09 for CAD (P~5.2x107°) and 1.07 for TC (P~7.8x107°). In
addition, the HDL score was associated with maternal survival (one SD hazard ratio of 0.94,
P~8.9x107°). Also, suggestive evidence was detected for protective effects of increased
predicted age at first birth (AFB) (per year hazard ratio of 0.94, P~1.4x1073), as well as
predicted puberty timing (per year hazard ratio of 0.97, P~1.9x1073) (Figure 5A and Table 1).
Other than the LDL and TC, all signals seem to be distinct (Figure S20), including for puberty
timing and AFB, despite the genetic correlation between the two phenotypes [39].

Applying our approach to maternal age of death instead, puberty timing and AFB were the top
signals (P~2.2x107* and P~3.1x1073, respectively, Figure S21). Higher polygenic scores for
puberty timing were enriched among longer-lived mothers (Figure 5B), as seen for fathers.
Similarly, the score for AFB increased with mother’s age at death (Figure 5C), indicating an
association between variants that delay AFB and longer lifespan. Scores for CAD, LDL and HDL
did not show significant monotonic change across mother’s age at death bins (P~7.7X
1073, P~0.058 and P~0.35, respectively); however, the trends were suggestive of subtle age
dependent effects, with an effect of CAD score in middle-age and late-onset effects of LDL and
HDL scores (Figure 5D-F). Testing for age by sex interactions, the TC and CAD score trends with
parental age at death were significantly different between fathers and mothers (P~4.0x107*
and P~7.4x107*, respectively, Figure 522).

To further investigate the age dependency of the effects, we plotted polygenic scores among
parents who had survived up to a given age, as compared to the trends with parental ages at
death (Figures S23 and S24). All traits associated with paternal survival seemingly show more
pronounced effects in middle-ages (Figure S23). Similar patterns were observed for maternal
survival associated traits, expect for LDL and HDL with more pronounced late-age effects
(Figure S24). We also compared the hazard ratios for ages at death of < 75 and > 75 years
(Materials and Methods), similar to a recent study [33]. Consistent with trends in scores with
parental age, among the traits associated with paternal survival, almost all traits had stronger
effects among younger fathers, particularly for CAD (Table S3): one SD hazard ratio of 1.14 for
younger fathers (P~2.6x107°), and 0.99 for older fathers (P~0.70). Unlike in fathers, in
mothers, TC, LDL, and HDL scores had more pronounced late-age effects (Table S3): for TC, one
SD hazard ratio of 1.03 for younger mothers (P~0.15) and 1.1 for older mothers (P~1.4X
107°), and for LDL one SD hazard ratio of 1.05 for younger mothers (P~0.03) and 1.12 for older
mothers (P~3.3x1078).

Next, we sought to replicate the top associations observed among the UK Biobank participants
of British ancestry (discovery cohort) in two other data sets: participants of the UK Biobank of
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non-British ancestry, and the GERA cohort. Applying the Cox model using parental survival for
UK Biobank participants of non-British ancestry, the direction of hazard ratios for all traits (as
well as the estimated values for most traits) were consistent with the discovery cohort, for both
fathers and mothers (Table S4). The congruence of results in two cohorts with different
ancestries suggests that our top signals are not false-positives caused by poor control for
population structure. In the GERA cohort, we tested whether polygenic scores change with the
age of the participant, similar to our approach for individual genetic variants in this cohort. All
top signals except AFB had directionally consistent effects with the discovery cohort (Table S5).
Of particular interest, the strongest signal was an increase in the polygenic score for puberty
timing with age of the participants (P~0.0067, Figure S25).

In the discovery cohort, we further investigated if there are significant changes in the squared
difference of polygenic scores with parental ages at death, as might be expected if the mean
value of the trait leads to the highest change of survival. No trait showed evidence of such
stabilizing selection (Figure S26).

Discussion

We introduced a new approach to identify genetic variants that affect survival to a given age
and thus to directly observe viability selection ongoing in humans. Attractive features of the
approach include that we do not need to make a decision a priori about which loci or traits
matter to viability and focus not on an endpoint (e.g., survival to an old age) but on any shift in
allele frequencies with age, thereby learning about the ages at which effects are manifest and
possible differences between sexes.

To illustrate the potential of our approach, we performed a scan for genetic variants that
impact age-specific mortality in the GERA and the UK Biobank cohorts. We only found a few
individual genetic variants, the majority of which were identified in previous studies. This result
is in some ways expected: available data only provide high power to detect effects of common
variants (>15-20%) on survival (Figure 1), yet if these variants were under viability selection, we
would not expect them to be common, short of strong balancing selection due to trade-offs
between sexes, ages or environments. As sample sizes increase, however, the approach
introduced here should provide a comprehensive picture of viability selection in humans. To
illustrate this point, we repeated our power simulation with 500,000 samples, and found that
we should have high power to detect the trends for alleles at a couple percent frequency
(Figure S27).

Already, however, this application raises a number of interesting questions about the nature of
viability selection in humans. Notably, we discovered only a few individual variants influencing
viability in the two cohorts, most of which exert their effect late in life. On first thought, this
finding may suggest such variants to be neutrally-evolving. We would argue that if anything, our
findings of only a few common variants with large effects on survival late in life suggest the
opposite: that even variants with late onset effects have been weeded out by purifying
selection. Indeed, unless the number of loci in the genome that could give rise to such variants
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(i.e., the mutational target size) is tiny, other variants such as APOE €4 must often arise. That
they are not observed when we have very high power to detect them suggests they are kept at
lower frequency by purifying selection. Why might they be selected despite affecting survival
only at old ages? Possible explanations include that they decrease the direct fitness of males
sufficiently to be effectively selected (notably given the large, recent effective population size
of humans [59]) or that they impact the inclusive fitness of males or females. If this explanation
is correct, it raises the question of why APOE €4 has not been weeded out. We speculate that
the environment today has changed in such a way that has made this allele more deleterious
recently. For example, it has been proposed that the evolution of this allele has been influenced
by changes in physical activity [60] and parasite burden [61].

Considering 42 traits that have been investigated by GWAS, we found a number of cases in
which the mean polygenic score changes with age. Of course, detecting an effect of age on the
traits does not imply that these are the phenotypes under viability selection, as the variants
that contribute likely have pleiotropic effects on other traits [37]. Nonetheless, it is perhaps not
surprising that we found detrimental effects of higher genetically predicted TC, LDL, BMI and
the risk of CAD on survival, as these phenotypes are studied in GWAS precisely because of their
adverse health effects. Intriguingly, however, we also found associations for fertility traits,
notably protective effects of later predicted puberty timing and AFB. If these findings reflect
life-history trade-offs (e.g., longer lifespan at the cost of delayed reproduction), they may help
to explain the persistence of extensive variation in such fitness-correlated traits [62, 63].
Intriguingly, we do see a negative correlation between genetically predicted AFB and number of
siblings of the UK Biobank participants, a proxy for the fertility of their parents (P~4.2x1078,
Figure S28), consistent with previous reports of a genetic correlation between AFB and the
number of children ever born [21, 39]. These findings underscore that consideration of survival
or fertility effects alone does not allow one to infer whether the net effect of a variant or set of
variants is beneficial. Instead, to convert effects on viability, such as those detected here, or
effects on fertility reported elsewhere [22, 23] into an understanding of how natural selection
acts on an allele requires a characterization of its effects on all components of fitness (including
potentially inclusive fitness).

In this regard, it is also worth noting that while our method is designed to detect changes in
allele frequencies (and in polygenic scores) caused by genetic effects on age-specific survival,
such changes could in principle also arise from effects on other components of fitness. For
example, if the frequency of a genetic variant in a population decreases over decades due to an
effect on fertility, its frequency would increase with the age of surviving individuals sampled at
a given time (as in the GERA cohort). This confounding is less of an issue when considering
effects on the age at death (what we measured in the UK Biobank). Nonetheless, even in the UK
Biobank, fertility effects may manifest as effects on age of death; for example, because when
sampling a cohort of children, parents with later ages at death are possibly born earlier (Figure
S29). To this end, in the UK Biobank, we account for changes in allele frequencies with year of
birth of the participants themselves (ideally we would want to condition on parents born at
similar times, which we cannot do; instead, we used birth year of the participants as an
estimator for birth year of the parents). Thus, we believe our results in the UK Biobank not to
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be confounded by fertility effects. Moreover, a number of our findings in this study are
consistent with prior knowledge of effects on survival, such as those for disease risk variants
like APOE €4. Nonetheless, some caution is required in interpreting trends with age as strictly
reflecting viability effects.

Also of interest are the marked differences between males and females in our analysis of
mothers and fathers of individuals in the UK Biobank. The differences between sexes are most
notable at the CHRNA3 locus, which shows a strong effect only in fathers, and sets of genetic
variants associated with risk of coronary artery disease and cholesterol levels, which exhibit
different age-dependent effects between fathers and mothers. Results for the CHRNA3 locus, in
which variants are associated with the amount of smoking among smokers, may reflect a gene-
by-environment interaction rather than a sex effect. Consistent with a more pronounced effect
on male than female age at death, smoking prevalence in men has been consistently higher
than women over the past few decades in the UK: from 1970 to 2000, smoking prevalence
decreased from around 70% to 36% in middle-aged men, compared to from around 50% to 28%
in middle-aged women [64].

Many of these questions can soon be addressed, by applying approaches such as ours to the
millions of samples in the pipeline (such as the UK Biobank [65], the Precision Medicine
Initiative Cohort Program [66], and the Vanderbilt University biobank (BioVU)[67]), in which the
viability effects of rare as well as common alleles can be examined. These analyses will provide
a comprehensive answer to the question of which loci affect survival, helping to address long-
standing open questions such as the relative importance of viability selection in shaping genetic
variation and the extent to which genetic variation is maintained by fitness trade-offs between
Sexes or across ages.

Materials and Methods
1. Datasets

1.1. GERA cohort

We performed our analyses on the data for 62,318 participants of the Kaiser Permanente
Northern California multi-ethnic Genetic Epidemiology Research on Adult Health and Aging
(GERA) cohort, self-reported to be “White-European American”, “South Asian”, “Middle-
Eastern” or “Ashkenazi” but no other ethnicities, among a list of 23 choices on the GERA survey,
and genotyped on a custom array at 670,176 SNPs designed for Non-Hispanic White individuals
[31, 32]. We determined the age of the participants and the number of years they were
enrolled in the Kaiser Permanente Medical Insurance Plan at the time of the survey (year 2007).

1.2, UK Biobank
We performed our analyses on the data for 152,729 participants of the UK Biobank study,
focusing on 120,286 individuals identified to be “British” by genetic analysis, and all other
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individuals for replication. They were genotyped on the UK Biobank Axiom or the UK BiLEVE
Axiom SNP arrays at a total of 847,441 SNPs in the interim release [56, 65].

2. Quality control (QC)

2.1. GERA cohort

We used PLINK v1.9 [68] to remove individuals with missing sex information or with a mismatch
between genotype data and sex information, individuals with <96% call rate, and related
individuals. We validated self-reported European ancestries using principal component analysis
(PCA), see below, and removed individuals identified as non-European (Figures S4 and S5). In
the end, 57,696 individuals remained.

Using PLINK, we removed SNPs with <1% minor allele frequency, SNPs with <95% call rate, and
SNPs failing a Hardy-Weinberg equilibrium test with P < 1072 (filtering based on HWE test
could potentially exclude true signals of viability selection, if selection coefficients were very
large [69], but this possibility is much less likely than genotyping error). We additionally tested
for a correlation between age (or sex) and missingness, which can induce artificial change in the
allele frequencies as a function of age (or sex). We thus removed SNPs showing a significant
age-missingness or sex-missingness correlation, defined as a chi-squared test with P < 1077,
After these steps, 599,659 SNPs remained.

We imputed the genotypes of the filtered GERA individuals using post-QC SNPs, and using the
1000 Genomes phase 3 haplotypes as a reference panel [70]. We phased observed genotypes
using EAGLE v1.0 software [71]. The inferred haplotypes were then passed to IMPUTE2 v2.3.2
software for imputation in chunks of 1Mb, using the default parameters of the software [72].
To gain computational speed, variants with <0.5% minor allele frequency in the 1000 Genomes
European populations were removed from the reference panel. This step should not affect our
analysis because our statistical model is not well powered for rare variants, given the GERA data
sample size. We called imputed genotypes with posterior probability >0.9, and then filtered the
imputed genotypes, removing variants with IMPUTE2 info score <0.5 and with minor allele
frequency <1%. We also used imputation with leave-one-out approach [73] to impose a second
stage of QC on genotyped SNPs, removing SNPs that were imputed back with high reported
certainty (info score >0.5) and with <90% concordance between the imputed and the original
genotypes. These yielded a total of 9,010,280 imputed and genotyped biallelic SNPs and indels.

For our analysis of the APOE alleles (€2, €3 and €4) which are defined by rs7412 and rs429358
SNPs [54], given the lack of tag SNPs for all three alleles, we kept a subset of 38,703 individuals
with no poorly-imputed genotypes for these two SNPs, for whom the count of each APOE allele
could be determined unambiguously.

2.2, UK Biobank

In the UK Biobank, we obtained sets of genotype calls and the output of imputation as
performed by the UK Biobank researchers [56, 74]. We first applied QC metrics to the
autosomal genotyped SNPs, focusing on the individuals of British genetic ancestry. We used
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PLINK to remove SNPs with <1% minor allele frequency, SNPs with <95% call rate, and SNPs
failing a Hardy-Weinberg equilibrium test with P < 1078, These filters were applied separately
to SNPs genotyped on the UK Biobank Axiom and the UK BiLEVE Axiom arrays. Then, we divided
the genotyped SNPs into three sets (SNPs specific to either array and shared SNPs) and then
performed additional QC on each set separately: we removed SNPs with significant allele
frequency difference between genotyped and imputed calls (chi-squared test P < 107°) and
SNPs showing a significant correlation between missingness and age or sex of the participants,
as well as with participants’ father’s or mother’s age at death (chi-squared test P < 10~7). We
then extracted this list of SNPs from the imputed genotype files available from the UK Biobank
(we did not use the full set of imputed genotypes). From this set, we removed SNPs with <1%
minor allele frequency, SNPs with <95% call rate, and SNPs failing a Hardy-Weinberg
equilibrium test with P < 1078, yielding 590,437 SNPs. For variants influencing quantitative
traits, we first extracted them from imputed genotypes, and then imposed the same QC
measures as above. For individuals of non-British ancestry, we first extracted the trait
influencing variants from imputed genotypes, and then removed SNPs with <1% minor allele
frequency and SNPs with <90% call rate.

Each participant was asked to provide the survival status and age of their father and their
mother on each assessment visit. For each participant that reported an age at death of father
and/or mother, we averaged over the ages reported at recruitment and any subsequent repeat
assessment visits, and used PLINK to exclude individuals with >5 year variation in their answers
across visits (around 800 individuals). For those reporting their parents to be alive, the latest
assessment visit was considered. We also removed adopted individuals, individuals with a
mismatch between genotype data and sex information, and individuals with missing values for
the covariates, resulting in 88,595 individuals of British ancestry with age at death information
for their father, 71,783 individuals for their mother, and 62,719 individuals for both parents. For
the survival analyses, we further removed individuals with evidently invalid survival status,
particularly parental ages at death values smaller than their age when still alive, resulting in
114,122 and 116,323 individuals of British ancestry with paternal and maternal survival
information, respectively. With similar quality control measures, 29,511 and 30,372 individuals
with non-British ancestry with paternal and maternal survival information, respectively, were
analyzed.

3. Principal Component Analysis

We performed PCA, using the EIGENSOFT v6.0.1 package with the fastpca algorithm [75, 76],
for two purposes: (i) as a quality control on individuals to validate self-reported European
ancestries (only in GERA dataset), and (ii) to correct for population structure in our statistical
model (for individuals in the UK Biobank of non-British ancestry, we used the PCs provided with
the data).

3.1. European ancestry validation
We used more stringent QC criteria specifically for the PCA, compared to the QC steps
described above. We filtered a subset of 157,277 SNPs in GERA, retaining SNPs shared between
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the datasets and the 1000 Genomes phase 3 data, removing non-autosomal SNPs, SNPs with
<1% minor allele frequency, SNPs with <99% call rate, and SNPs failing a Hardy-Weinberg
equilibrium test with P < 107%. We then performed LD-pruning using PLINK with pairwise 2
<0.2 in windows of 50 SNPs shifting every 10 SNP. We used these SNPs to infer principal
components for the 1000 Genomes phase 3 data [70]. We then projected individuals onto these
PCs. We observed that the majority of individuals have European ancestry, and marked
individuals with PCs deviating from the population mean, for any of the first six PCs, as non-
European (Figures S4 and S5).

3.2 Control for population structure

After the main QC stage, additional QC steps (as in section 3.1) were implemented for PCA. In
the UK Biobank, we also removed inversion variants on chromosome 8 which otherwise
dominate the PC2 (not shown). A subset of 156,721 SNPs in GERA and 207,657 SNPs in the UK
Biobank was then used to infer PCs for individuals passing QC (Figure S1). The first 10 PCs were
used as covariates in our statistical model.

4. Quantitative Traits

We downloaded the list of variants contributing to 39 traits (all traits but age at menarche, age
at first birth and age at natural menopause) and their effect sizes recently described in Pickrell
et al. [37], from: https://github.com/PickrellLab/gwas-pw-paper/tree/master/all_single. For age
at menarche, we used the variants and effect sizes recently identified by Day et. al [38]. We
used variants associated with age at first birth from Barban et al., identified in either sex-
specific analyses or analyses of both sexes and used the effect sizes estimated in the combined
analysis [39]. We used age at natural menopause associated variants and their effect sizes from
Day et al. [40]. For all traits, we used variants that were genotyped/imputed with high quality in
our data (see Table S1).

5. Statistical Model

5.1. An individual variant

Using a logistic regression we predict the genotype of individual j (the counts of an arbitrarily
selected reference allele, G;; = 0,1 or 2) at variant i, using the individual’s ancestry, the batch
at which the individual was genotyped, and individual’s age (as well as sex, see below) as
explanatory variables. Specifically, the distribution of G;; is Bin(2,p;;), where p;j;, the
probability of observing the reference allele for individual j at variant i, is related to
explanatory variables as:

bij 10
log (1 _ Pij) =a+ lzlﬁlpclj + ZmymljeBATCHm + Zn’cn]jEBan
where f3; is the effect of principal component [ (to account for population structure), y,, is the
effect of being in batch m (to account for potential systematic differences between genotyping
packages), k,, is the effect of being in age bin n, obtained by regression across individuals with
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non-missing genotypes at variant i, and I and J are indicator variables for the genotyping batch
and age bin, respectively. In the version of the model in which we treat age as an ordinal
variable, we replace J age bin variables with one age variable. In the GERA dataset, age binning
is over the age of the participants in 14 categories, from age 19 onwards, in 5-year intervals. For
replication purposes, we further binned the ages in 7 categories, in 10-year intervals, to boost
our power by increasing the sample size per bin, particularly for younger age bins. In the UK
Biobank, we binned the age at death of father or mother over 8 categories, from age 63
onwards, in 5-year intervals. In the UK Biobank, we included all ages at death below 63 in one
age bin to minimize the potential noise caused by accidental deaths at young ages.

We tested for an effect of age categories by a likelihood ratio test with a null model using only
the covariates (PCs and batch terms) (Hy: k,, = 0, for all n) and an alternative also including age
terms as predictors (H;: k,, # 0, for at least one n):

p..
Hy: log<1 _” ) =a+ ~ BIPCU +z Ymljeparchy,

Dij 10
H;: log <L> =a+t BiPCyj +Z Ymljeparcu, z KnljeBIn,
m n

=1

To test for age by sex effects in GERA we included two sets of additional predictors. The first
consists in two indicator variables for sex, Ky ae and Kfemale, Which are included to capture
possible sex effects induced by potential genotyping errors or missmapping of sex chromosome
linked alleles (we note that because of Hardy-Weinberg equilibrium, mean allele frequency
difference between males and females are not expected). The second set of predictors consists
in age by sex terms, /XK. We then compare a model with age and sex terms as predictors to a
model also including age by sex terms. To test for sex effects in the UK Biobank, we compared a
model with both father and mother age terms separately as predictors to a model with one set
of age categories for average age at death of both parents, only for individuals reporting the
age at death for both parents. In all models PCs and batch terms were incorporated as
covariates. For the top SNPs in the UK Biobank, we additionally tested models also including as
covariates the participants’ age, sex, birth year, and the Townsend index (a measure of
socioeconomic status). For rs1051730, we also tested whether allele frequencies or trends in
allele frequencies with the father’s age at death vary significantly across the UK Biobank
genotyping arrays after adjusting for population structures, using similar models as described
above.

5.2. Set of variants

As for the model described above for an individual variant, we investigated age and age by sex
effects on quantitative traits for which large number of large common genetic variants have
been identified in genome-wide association studies (GWAS). For a given trait, we used a linear
regression with the same covariates and predictors as for the model for an individual variant, to
predict the polygenic score for individual j, §;, by summing the previously estimated effect of
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single variants assuming additivity and that the effect sizes are similar in the GWAS panels and
the cohorts considered here:

10

Si=a+ l 1ﬁlPCU- + Z Ymljeparch,, + Z Knljesin, T &
= m n

S; is calculated as Y a;G;j + X 2a;q; (standardized to mean 0), where the first sum is across
variants with non-missing genotypes, a; is the effect size for the arbitrary selected reference
allele at variant i, and the second sum is across the variants with missing genotypes estimating
their contribution assuming Hardy-Weinberg equilibrium where gq; is the frequency of the
alternate allele. Likelihood ratio tests, as described above, were used to test for age and age by
sex effects. In the UK Biobank, we additionally adjusted for participants’ age, sex, birth year,
and the Townsend index.

To evaluate the possibility of stabilizing selection on a trait, we applied the same model, but
instead of the polygenic score, regressed the squared difference of the score from the mean in
each bin, (§; — SjEB,Nn)Z, on the predictors, where Sjeg,y,, is the mean score in the age bin to
which individual j belongs.

Survival analysis. We also used the Cox proportional hazards model [45] to evaluate the
association between polygenic scores and parental survival in the UK Biobank. Compared to the
model described above, this approach presents the advantage of allowing data from
participants with alive parents to be incorporated, but has the disadvantage of assuming fixed
effects across all ages. Under this model, at a given time t (age in our application):

10
log (6) =108 A0() + ) BiPCyy+ )" Ymbenarcn, + K5
= m

where A is the hazard rate (probability of death within t + dt conditional on survival to time t)
given the covariates, and A, is the baseline hazard rate that describes the risk for individuals
with the value of O for all predictors. Not shown in the equation above are covariates to adjust
for participants’ age, sex, birth year, and the Townsend index. Using the R package ‘Survival’
[77], for a given trait, we tested for a significant effect of polygenic score (k # 0). In addition, to
assess the interdependence of detected effects (Figure S20), for each pair of traits [a, b], we
tested for the effect of the polygenic score for trait a, but also incorporated the polygenic score
for trait b as a covariate in the null model (in addition to the covariates mentioned above).

We further investigated the age-dependency of the effects in the framework of the survival
analysis by comparing hazard ratios in two age categories: ages at death of < 75 and > 75
years. For the category of ages at death < 75 years, all parental ages were included in the
analysis, and parents with ages at death beyond 75 years were marked as alive. For the
category of ages at death > 75 vyears, only parents who survived beyond 75 years were
considered.


https://doi.org/10.1101/085969
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/085969; this version posted June 19, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

All Manhattan and quantile-quantile plots were generated using qgman [78] and GWASTools
[79] packages.

6. Power simulations

We ran simulations to determine the power of our statistical model to detect deviation of allele
frequency trends with age across 14 age categories mimicking the GERA individuals (57,696
individuals with age distribution as in Figure S2) from a null model, which for simplicity was no
change in frequency with age, i.e.,, no changes as a result of age-dependent variation in
population structure and batch effects. For a given trend in frequency of an allele with age, we
generated 1000 simulated trends where the distribution of the number of the alleles in age bin
i is Bin(2N;, f;), where N; and f; are the sample size and the sample allele frequency in bin i.
We then estimated the power to detect the trend as the fraction of cases in which P < 5X
1078, by a chi-squared test.

7. Survival simulations

We ran simulations to investigate the relationship between allele frequency with age of the
survived individuals and the age of the individuals who died in a cohort. We simulated 2x10°
individuals going forward in time in 1 year increments. For each time step forward, we tuned
the chance of survival of the individuals based on their count of a risk allele for a given variant
such that the number of individuals dying in the increment complies with: (i) a normal
distribution of ages at death with mean of 70 years and standard deviation of 13 years, roughly
as is observed for parental age at deaths in the UK Biobank, and (ii) a given frequency of the risk
allele among those who survive. Specifically, we modeled the survival rate of the population, S,
as the weighted mean for 2 alleles carriers, S,, 1 allele carriers, S;, and non-carriers, Sy:

S =) fisi®)

where f denotes the frequency of genotypes in the population and x denotes the age. S; and S
are related: S;(x) = S(x) fi(x)/f;, where f;(x) is the genotype frequency among individuals
survived up to age x. Given a trend in allele frequency with age, we calculated genotype
frequencies with age assuming Hardy-Weinberg equilibrium, and then estimated genotype
dependent chance of survival, S;(x), taking S(x) as the survival function for N(70, 132).
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Figure 1. Power of the model to detect changes in allele frequency with age. (A) Trends in
allele frequency with age considered in simulations. The y-axis indicates allele frequency
normalized to the frequency in the first age bin. (B) Power to detect the trends in (A) at P <
5x1078, given the sample size per age bin in the GERA cohort (Figure S2 and total sample size
of 57,696). Shown are results using models with age treated as a categorical (black) or an
ordinal (red) variable, assuming no change in population structure and batch effects across age
bins. The curves show simulation results sweeping allele frequency values with an increment
value of 0.001 (1000 simulations for each allele frequency) smoothed using a Savitzky-Golay
filter using the SciPy package [80].
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Figure 2. Testing for the influence of single genetic variants on age-specific mortality in the
GERA cohort. (A) Manhattan plot of P values for the change in allele frequency with age. Red
line marks the P = 51078 threshold. (B) Allele frequency trajectory of rs6857, a tag SNP for
APOE ¢4 allele, with age. Data points are mean frequencies of the risk allele within 5-year
interval age bins (and 95% confidence interval), with the center of the bin indicated on the x-
axis. Bins with ages below 36 years are merged into one bin because of the relatively small
sample sizes per bin. The dashed line shows the expected frequency based on the null model
accounting for confounding batch effects and changes in ancestry (see Materials and Methods).
In orange are the mean ages of onset of Alzheimer’s disease for carriers of 0, 1 or 2 copies of
the APOE ¢4 allele [52].
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Figure 3. Testing for the influence of single genetic variants on age-specific mortality in the UK
Biobank. (A) Manhattan plot of P values, obtained from testing for a change in allele frequency
with age at death of fathers. (B) Allele frequency trajectory of rs1051730, within CHRNA3 locus,
with father’s age at death. (C) Manhattan plot of P values, obtained from testing for a change in
allele frequency with age at death of mothers. (D) Allele frequency trajectory of rs769449,
within the APOE locus, with mother’s age at death. Red lines in (A) and (C) mark the P =
5x10~8 threshold. Data points in (B) and (D) are mean frequencies of the risk allele within 5-
year interval age bins (and 95% confidence interval), with the center of the bin indicated on
the x-axis. The dashed line shows the expected frequency based on the null model, accounting
for confounding batch effects and changes in ancestry (see Materials and Methods).


https://doi.org/10.1101/085969
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/085969; this version posted June 19, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

o | TC (), 005 Puberty timing
- LDL (-) . —  expected
% o - BMI (-) . 0.04 é—9¢ observed
o} ¢ o _
bt o T 0.03
O © Puberty timing (+) 2
© 0.02
S CAD(-) * ° 25
S < @ . 001
(o)) Do
L ‘ 3& o0
L - oot ] £= =
/—-;////// -0.01
° T T T T _002
0.0 0.5 1.0 1.5 2.0 <63 66 71 76 81 86 91 >94
-log,,(expected P) Father age at death
C D 001 CAD
0.01 '
— —~ 0.005
S 1 oo S 0
O __ O
(20N N x 00| ——N<<F>d-——————-—
oz 0.0
= -001 = /
o 0 & -0.005
g.c 2_87 :
© .2 -0.02 o=
o< o= .
~ —  expected 0.01= expected
-0.03 || ¢—¢ observed ¢—¢ observed
-0.015
<63 66 71 76 81 86 91 >94 <63 66 71 76 81 86 91 >94
Father age at death Father age at death
E BMI F ATH
0.005
0.01
o T O —~
— —
81l o s 1 oo
n = %] %
cS = 0.01
a) CD — =VU.
o X} o2
>c -0.005 >
g2 £ E 002
~ —  expected —  expected
¢—¢ observed é—9 observed
-0.01 -0.03
<63 66 71 76 81 86 91 >94 <63 66 71 76 81 86 91 >94
Father age at death Father age at death

Figure 4. Testing for the influence of set of trait-associated variants on survival of the fathers
of UK Biobank participants. (A) Quantile-quantile plot for association between the polygenic
score of 42 traits (see Table S1) with father’s survival, using the Cox model. The red line
indicates the distribution of the P values under the null model. Signs ‘+’ and ‘-’ signs indicate
protective and detrimental effects associated with higher values of polygenic scores,
respectively. See Table S2 for P values and hazard ratios for all traits. (B)-(F) Trajectory of
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polygenic score with age at death of fathers for top traits associated with paternal survival (only
independent signals are shown, see Figure S20): puberty timing (using age at menarche
associated variants) in males (B), total cholesterol (C), coronary artery disease (D), body mass
index (E), and asthma (F). Data points in (B)-(F) are mean polygenic scores within 5-year interval
age bins (and 95% confidence interval), with the center of the bin indicated on the x-axis. The
dashed line shows the expected score based on the null model, accounting for confounding
batch effects, changes in ancestry, and participant’s age, sex, birth year, and the Townsend
index (a measure of socioeconomic status).
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Figure 5. Testing for the influence of set of trait-associated variants on survival of the mothers
of UK Biobank participants. (A) Quantile-quantile plot for association between the polygenic
score of 42 traits (see Table S1) with mother’s survival, using the Cox model. The red line
indicates the distribution of the P values under the null. Signs ‘+’ and ‘-’ signs indicate
protective and detrimental effects associated with higher values of polygenic scores,
respectively. See Table S2 for P values and hazard ratios for all traits. (B)-(F) Trajectory of
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Puberty timing

AFB
ATH
BMI
CAD
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polygenic score with age at death of mothers for top traits associated with maternal survival
(only independent signals are shown, see Figure S20): puberty timing (B), age at first birth (C),
coronary artery disease (D), low-density lipoproteins (E), and high-density lipoproteins (F). Data

points in (B)-(F) are mean polygenic scores within 5-year interval age bins (and 95% confidence

interval), with the center of the bin indicated on the x-axis. The dashed line shows the expected
score based on the null model, accounting for confounding batch effects, changes in ancestry,
and participant’s age, sex, birth year, and the Townsend index (a measure of socioeconomic

status).

Table 1. Association with paternal and maternal survival among the UK Biobank participants

of British ancestry under the Cox model.

Scaling of
effect

1 year

1 year

1 unit log-odds
18D

1 unit log-odds
18D

1SD

18D

*Hazard ratio.

Father

Effect size (s.e.)

-0.0363 (0.0080)
-0.0398 (0.0180)
0.0279 (0.0109)
0.1996 (0.0355)
0.0784 (0.0177)
-0.0340 (0.0139)
0.0806 (0.0140)
0.0901 (0.0137)

HR*
0.96
0.96
1.03
1.22
1.08
0.97
1.08
1.09

P value

6.2 x 10°
0.027
0.010

1.8 x 108

9.0 x 10°
0.014

8.1 x 107

43 x10™

Mother

Effect size (s.e.)

-0.0278 (0.0090)
-0.0639 (0.0200)
0.0149 (0.0121)
0.0823 (0.0395)
0.0892 (0.0196)
-0.0605 (0.0154)
0.0844 (0.0155)
0.0679 (0.0152)

HR*
0.97
0.94
1.02
1.08
1.09
0.94
1.09
1.07

P value

0.0020
0.0014
0.22
0.036
5.2 x 10
8.9 x 107
5.2 %1078
7.8 x 10
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