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Abstract 9 

Communication through visual symbols is a key aspect of human culture. However, to what 10 

extent can people distinguish between human-origin and artificial symbols, and the neuronal 11 

mechanisms underlying this process are not clear. Using fMRI we contrasted brain activity 12 

during presentation of human-created abstract shapes and random-algorithm created shapes,    13 

both sharing similar low level features. 14 

We found that participants correctly identified most shapes as human or random. The lateral 15 

occipital complex (LOC) was the main brain region showing preference to human-made shapes, 16 

independently of task. Furthermore, LOC activity was parametrically correlated to beauty and 17 

familiarity scores of the shapes (rated following the scan). Finally, a model classifier based only 18 

on LOC activity showed human level accuracy at discriminating between human-made and 19 

randomly-made shapes. 20 

Our results highlight the sensitivity of the human brain to social and cultural cues, and point to 21 

high-order object areas as central nodes underlying this capacity. 22 
 23 
Introduction: 24 

Humans are social and tuned to social cues. They therefore need to distinguish true social cues 25 

from other stimuli. Previous studies have shown that human observers can distinguish biological 26 

motion from random motion, even in impoverished stimuli such as point-light displays 27 

(Johansson, 1973). This is suggested to be an intrinsic ability of the visual system, which has 28 

evolved to preferentially attend to other humans, as shown in newborn babies (Simion et al., 29 

2008). These findings suggest that essential information such as social recognition can be 30 

derived from minimalistic dynamic displays. In addition to direct communication (through verbal 31 

and body language) human culture has ways of indirect communication through visual symbols - 32 
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a conventional representation of concepts through scripts and art; starting from cave paintings 33 

(Chauvet et al., 1996), and continuing nowadays with symbols such as emoticons.  34 

Similarly to the way humans can distinguish human walk from random motion generated by spot 35 

light displays, we hypothesize that humans can successfully recognize abstract shapes that have 36 

been generated by other humans compared to similar shapes created randomly. We further 37 

hypothesize that the neuronal mechanisms that underlie this capacity are likely to be ingrained in 38 

core systems and hence independent of the task performed.  39 

What could be the aspects of the shapes that underlie the ability of participants to categorize 40 

them into human vs. random? The symbolic meaning of a shape and its familiarity can serve to 41 

assess the shape’s origin. Another relevant feature is the shape's aesthetic value, if indeed people 42 

tend to create more beautiful shapes. Thus, in the present study we focused on beauty and 43 

familiarity- i.e. iconicity - the sense that a shape represents a familiar icon. We also examined the 44 

inverse of familiarity- i.e. "weirdness"- a subjective sense that a figure is strange and unfamiliar.  45 

Both beauty and weirdness are intuitive and powerful yet subjective impressions which are 46 

difficult to define. Substantial work has suggested beauty and weirdness carry evolutionary 47 

advantages. For example, neuro-imaging study showed overlap in brain regions which function 48 

both during processing of aesthetic artworks and during appraisal of evolutionary important 49 

objects (e.g. attractive potential mates, or desirable food) (Brown et al., 2011). Visual artistic 50 

representations of beauty (Kawabata and Zeki, 2004, Di Dio et al., 2007, Ishizu and Zeki, 2011, 51 

Cattaneo et al., 2015, Vartanian and Goel, 2004, Lacey et al., 2011) or naturalistic stimuli 52 

beyond the arts domain (Brown et al., 2011, Chatterjee et al., 2009, Kirk, 2008, Lacey et al., 53 

2011) were showed to be linked to experience of reward, pleasure, and attitudes to external 54 

information (approach/withdrawal). Similarly, the concept of weirdness was attributed to signals 55 

of danger and risk (Rotshtein et al., 2001). Sensing beauty and weirdness thus seem important for 56 

human behavior and survival, but we have little understanding of their neuronal correlates. 57 

Another line of work considered the contrast between artificial and familiar images in a number 58 

of studies of the human visual cortex (e.g. Fourier descriptors, and scrambled images; Lerner et 59 

al., 2002, Tsao et al., 2003, Aalto et al., 2002, Murray et al., 2002, Malach et al., 1995). Visual 60 

objects such as face images were rendered bizarre by inverting internal face features (Rotshtein 61 

et al., 2001). These studies showed an increased activity of high order object areas (lateral 62 

occipital complex - LOC) to coherent objects whether they are familiar or unfamiliar (Malach et 63 
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al., 1995, Kanwisher et al., 1997, Kanwisher et al., 1996, Grill-Spector et al., 2001, Rotshtein et 64 

al., 2001).  65 

However, in previous work a control over low-level features was lacking. In fact, we are not 66 

aware of systematic study that directly compared brain activation to human-generated vs. 67 

randomly generated shapes constructed of similar low-level components. Furthermore the 68 

contribution of beauty and familiarity to the ability to evaluate human origin of shapes has not 69 

been explored directly in previous research. 70 

To address these issues, we examined, using fMRI, human perception of simple shapes made by 71 

other humans, compared to similar shapes generated by an artificial algorithm. We specifically 72 

examined to what extent brain regions respond differentially to these two categories - and to 73 

what extent the beauty, iconicity and weirdness dimensions contribute to this differentiation.  74 

To this end we employed a novel design in which a large group of 101 people were asked to 75 

create simple shapes and to rank them according to how appealing they were (interesting and 76 

beautiful) (Noy et al., 2012). Additional shapes were generated by an artificial, random walk 77 

algorithm sampling from the space of all possible shapes and excluding shapes that were 78 

generated by human observers. The generated shape ensemble included a wide spectrum of 79 

beauty and familiarity levels.                  80 

We found that participants which were unfamiliar with the shapes were able to successfully 81 

distinguish between human and random origin shapes. Our brain imaging results show that LOC 82 

activity was significantly higher for the human-made shapes compared to the random ones. 83 

Furthermore, this differential activity was a combined result of a positive correlation to beauty 84 

and iconicity (familiarity) and a negative correlation to weirdness (unfamiliarity) of the abstract 85 

shapes regardless of task. Our results point to the high-order object related complex (LOC - 86 

Malach et al., 1995) as a pivotal node in endowing human observers with the ability to recognize 87 

shared symbolic meaning and distinguish human from artificially created shapes. 88 

Results: 89 

Here we aimed to study the behavioral and neuronal mechanisms of distinguishing whether an 90 

abstract shape was created by a human from a given space of shapes or by an algorithm that 91 

makes a random choice from the same space of shapes. We used a rich yet fully determined 92 

space of shapes, made of ten contiguous squares. Shapes were built by either 101 human players 93 

in a computer-shape-generation game (see methods and Noy et al., 2012) or a random choice 94 
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algorithm from the same space of shapes. Thus, we contrasted algorithm-created with human-95 

created abstract shapes having similar low-level features. The human-created shapes were further 96 

subdivided into three groups of different appeal ratings (by their human creators, see Methods). 97 

Subjects unfamiliar with the shapes underwent fMRI scanning while watching the shapes in a 98 

block design. The shapes were presented in two different experiments. In the first, subjects 99 

performed a color discrimination task (experiment and task 1), and in the second, a human vs. 100 

random algorithm origin discrimination task (experiment and task 2). Following the scan, 101 

subjects gave their subjective evaluations of beauty, weirdness and iconicity of the shapes (see 102 

Methods for details).  103 
 104 
Behavioral results: Subjects successfully distinguished between most human and random 105 

creation shapes (Fig. 2a). Most categories were successfully classified by the subjects (85-90% 106 

accuracy), except not chosen category which was correctly classified (as human) in only 30% of 107 

the cases (chance level = 50%). This difference in success rate between not chosen category and 108 

the other categories was significantly lower (Mann-Whitney U = 0, n1 = n2 = 7 p < 0.005, two-109 

tailed). The difference between all other categories was not significant. A bias-free signal 110 

detection analysis indicated that subjects were able to reliably distinguish between human and 111 

random made shapes (N = 13, mean d' = 2.03, SE = ±0.34). No difference in reaction times was 112 

found between the four categories in both experiments.  113 

Three subjective aspects of the shapes were examined; beauty, weirdness and iconicity. 114 

Weirdness and iconicity scores complemented each other – while weirdness focused mainly on 115 

the level of unfamiliarity of a shape, iconicity reflected the level of familiarity and distinct 116 

meaning. The classification to human origin was best modeled by the interaction of the beauty 117 

and weirdness scores rather than the two scores separated 118 

(𝑃(ℎ𝑢𝑚𝑎𝑛) = (1 + 13.7 𝑒−6.6 𝑊𝐵)−1) (see Methods and SI). Beauty scores were lowest for 119 

random and not chosen shapes, and were significantly higher for chosen and even higher for top 120 

rate (Mann-Whitney between random and not chosen: U = 20, n1 = n2 = 7, p = 0.521, two-tailed; 121 

between all other categories: U = 0, n1 = n2 = 7, p < 0.005, two-tailed. see Fig. 2b). Thus 122 

indicating cross population consistency between the creators of the shapes and the scanned 123 

participants.  124 
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Weirdness scores on the other hand distinguished between human and random categories; the 125 

random category received the highest score, not chosen received a significantly lower score, 126 

chosen and top rated received the lowest scores, significantly different from the first two (Mann-127 

Whitney between chosen and top rated: U = 0.531, n1 = n2 = 7, p = 0.08, two-tailed; between all 128 

other categories: U = 1, n1 = n2 = 7, p < 0.005, two-tailed. see Fig. 2c). Thus, subjective beauty 129 

was positively correlated, and weirdness was negatively correlated to classification as human. 130 

Furthermore each parameter separated between different shape categories.  131 

 132 

Brain imaging results: In order to examine a possible implicit differentiation between human-133 

made shapes and randomly made shapes, a direct contrast of BOLD activity (task 1) between 134 

human blocks and random blocks was conducted. The contrast map (Fig. 3) revealed highly 135 

localized preferential activations to human vs. random in the lateral occipital complex (LOC, 136 

Malach et al., 1995). Preferential activation to random shapes was spread over a wider range of 137 

the cortex, particularly in parietal and frontal regions. Its most significant activation was located 138 

in the inferior parietal gyrus (IFG).  139 

Cross-task ROI analysis demonstrated a consistently stronger response to human blocks relative 140 

to random blocks in bilateral LOC in both tasks (paired t test; (experiment 1) left LOC, N = 17, t 141 

= 2.74, p < 0.05; right LOC, N = 17, t =  3.92, p < 0.005; (experiment 2) left LOC, N = 15, t = 142 

33.93, p < 0.005; right LOC, N = 15, t = 3.29, p < 0.05). ROI analysis inspecting the averaged 143 

LOC activity (beta weight) per category revealed a gradual positive response in bilateral LOC 144 

along the "appeal" axis (Fig 3c). Random shapes showed the lowest response in LOC, top rated 145 

showed the highest response (followed by not chosen and chosen respectively) (One way 146 

repeated measures ANOVA; (experiment 1) left LOC, N = 17, F = 2.751 not significant, Linear 147 

trend: F = 5.174, p < 0.05; right LOC, N = 17, F = 4.35, p < 0.05, Linear trend: F = 7.974, p < 148 

0.05; (experiment 2) left LOC, N = 15, F = 6.145, p < 0.05, Linear trend: F = 28.721, p < 0.0005; 149 

right LOC, N = 15, F = 8.052, p < 0.0005, Linear trend: F = 26.281, p < 0.0005). 150 

Since beauty, weirdness and iconicity scores were predictive for blocks classification 151 

(human/random) we wanted to study their neuronal correlates. A whole brain parametric GLM 152 

analysis was therefore conducted (Fig. 4). The results revealed a consistent parametric 153 

relationship between LOC activity to beauty, weirdness and iconicity measures regardless of task 154 

(color/ shape origin discrimination). Parametric brain maps for beauty scores show focused 155 
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activation in the LOC. However in frontal areas, weirdness and iconicity showed a task-related 156 

selectivity: in task 1 frontal region such as dorsal premotor cortex and inferior frontal gyrus 157 

(IFG) were parametrically correlated to weirdness (positive) and iconicity (negative). In task 2 158 

lateral frontal cortex and superior parietal lobe showed parametric correlation to both weirdness 159 

(negative) and iconicity (positive) measures (Fig. 4). Finding a common neuronal network to 160 

both weirdness and iconicity with inverse correlation, supports the idea that these parameters 161 

reflect two opposite aspects of shapes familiarity and symbolic meaning. 162 

In order to disentangle the coupling between the subjective parameter of beauty and the objective 163 

parameter of symmetry (Spearman correlation, r = 0.92, p < 5*10-11), we calculated a subjective  164 

beauty score – blocks were ranked by their beauty score per subject, and then beauty scores of 165 

blocks with same ranking were averaged across subjects. The result is a perceptual beauty score 166 

which is independent of physical attributes such as symmetry. ROI analysis demonstrated a 167 

significant positive correlation between both symmetry/beauty and LOC activity (averaged 168 

normalized beta weights). However, the subjective beauty scores showed a significantly higher 169 

correlation compared to the symmetry scores (Spearman correlation; (experiment 1) left LOC, 170 

Symmetry: r = 0.4, ns; Beauty: r = 0.5, p < 0.005 ; right LOC, Symmetry: r = 0.47, p < 0.05; 171 

Beauty: r = 0.72, p < 5*10-5; (experiment 2) left LOC, Symmetry: r = 0.57, p < 0.005; Beauty: r 172 

= 0.69, p < 5*10-5 ; right LOC, Symmetry: r = 0.5, p < 0.05; Beauty: r = 0.81, p < 5*10-7, see Fig. 173 

5). The correlation scores were further compared using bootstrapping method, where data points 174 

were randomly chosen (with replacements) from each dataset and the correlation was calculated. 175 

Each process was repeated 1000 times. (Spearman correlation; (experiment 1) left LOC, 176 

Symmetry: r = 0.28 ±0.17, Beauty: r = 0.54 ±0.13, d'=1.2 ; right LOC, Symmetry: r = 0.18 ±0.17, 177 

Beauty: r = 0.72 ±0.18, d'=2.9; (experiment 2) left LOC, Symmetry: r = 0.35 ±0.15, Beauty: r = 178 

0.69 ±0.06, d'=2.1; right LOC, Symmetry: r = 0.28 ±0.16, Beauty: r = 0.81 ±0.05, d'=3.1. All 179 

values are Mean ±STD, N(symmetry) = 16, N(beauty) = 13). According to these results perceptual 180 

beauty showed a graded response across the entire dynamic range enhancing correlation and 181 

significance while symmetry correlation highly depended on the points chosen as evident from 182 

its large correlation variation (Fig. 5).  183 

Iconicity group scores were also correlated to LOC activity; Spearman correlation; (experiment 184 

1) left LOC, r = 0.51, p < 0.01; right LOC, r = 0.65, p < 0.0005. (experiment 2) left LOC, r = 185 

0.65, p < 0.0005; right LOC, r = 0.57, p < 0.005. 186 
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Lastly, we tested whether one could infer a shape’s origin by the beta activity of LOC. We 187 

compared the average LOC activity for each block with its probability to be classified as human. 188 

We fitted a non-linear hyperbolic tangent classifier with a random partial sample of data points 189 

(23/28) and iterated the process 1000 times. We found that the averaged fitted function predicted 190 

78% of the shapes accurately by using the average beta activity of the block (compared to 50% 191 

for chance performance). Interestingly, the classifier’s ability resembled the subject’s behavioral 192 

results with 86% correct in random, chosen and top-rated categories, and only 57% in the not-193 

chosen category. Thus, LOC activity might serve as a predictor to the shape’s origin.  194 

 195 

Discussion:   196 

The human brain is skilled in distinguishing between the familiar and the strange, between the 197 

natural and the artificial, and here we examined its ability to distinguish between human and 198 

random creations. We showed here a tight connection between behavior and brain function 199 

related to the process of identifying the origin of human-generated versus random abstract 200 

shapes. Our findings revealed that human subjects could correctly identify shapes as human 201 

made or randomly made. Subjects showed a general agreement that random shapes appeared 202 

weirder. Moreover their aesthetic evaluation of the shapes (Fig. 2b) was very similar to the 203 

evaluation made by the shapes' creators (the three categories of human made shapes - see 204 

methods). These findings suggest a general agreement among individuals about what is 205 

considered human, meaningful and beautiful.  206 

While previous studies used complex naturalistic images or objects, in the current study we used 207 

relatively simple and well-controlled shapes. Although similar in low level features, some of 208 

them (random shapes) were out of the common human scheme as manifested by the players 209 

playing the game. Indeed they were never created by human players (although probabilistically 210 

they should have been created), and they were perceived differently by the human brain.  211 

Brain activity - specifically, the LOC, showed preferential activation to human relative to 212 

random blocks even in task 1 (color discrimination) in which attention was targeted to color 213 

rather than shapes. This supports our hypothesis that the human brain is capable of recognizing 214 

human creation even when not explicitly instructed to do so. 215 

The LOC, well established as a hub of visual object recognition (Malach et al., 1995, Grill-216 

Spector et al., 2001) - was the central region showing a preferred activation to human-made 217 
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shapes compared to random shapes (task independent). The complementary, preferred activation 218 

to random shapes was found in parietal regions, motor cortex and most significantly in the 219 

inferior frontal gyrus (IFG, see figure 3). These findings are compatible with previous studies 220 

which reported that IFG is responsive to unexpected stimuli (Huettel and McCarthy, 2004), and 221 

to incongruent stimuli specifically within a social context (Shibata et al., 2011).  222 

We examined 3 subjective shape characteristics with predictive value to classify as 223 

human/random; beauty, weirdness and iconicity. Using a whole brain analysis exploratory 224 

approach - we searched brain networks which were parametrically connected to each external 225 

measure. These analyses (Fig. 4) showed that LOC was a central node - parametrically correlated 226 

to shapes' beauty, weirdness (inversely correlated) and iconicity. Moreover, using LOC activity 227 

might allow predicting shape’s origin with human level accuracy (Fig. 6). Thus, our findings 228 

point to the LOC as a central node for human vs. random origin, with shape’s beauty and 229 

symbolic meaning playing a role in that evaluation. 230 

 231 

Brain and beauty: 232 

Previous studies of beauty, focusing on response to visual arts or objects perception, found 233 

activations in reward related areas, such as the orbito-frontal cortex (Kawabata and Zeki, 2004, 234 

Brown et al., 2011, Ishizu and Zeki, 2011, Kirk, 2008, Lacey et al., 2011, Cela-Conde et al., 235 

2004), in emotion related areas like the amygdala (Brown et al., 2011, Di Dio et al., 2007, Ishizu 236 

and Zeki, 2011) and insula (Brown et al., 2011, Di Dio et al., 2007) and also in motor areas 237 

(Kawabata and Zeki, 2004, Ishizu and Zeki, 2011), pointing to a link between the experience of 238 

beauty to reward or information gathering and response upon it.   239 

Recent studies also point to high order visual areas, and specifically the LOC, as an aesthetic 240 

center in the brain (Cattaneo et al., 2015, Chatterjee et al., 2009, Kirk, 2008, Lacey et al., 2011, 241 

Vartanian and Goel, 2004). Some reported that high order visual areas show preferential activity 242 

for aesthetic value only for representational art and not for abstract art (Cattaneo et al., 2015, 243 

Vartanian and Goel, 2004).  244 

In the current study we explored which brain regions were sensitive to the beauty of abstract 245 

shapes. Our results revealed a consistent (experiments 1 and 2) positive parametric correlation 246 

between subjective beauty scores and bilateral LOC (Fig. 4a). The consistency and specificity of 247 
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LOC in beauty analyses, suggests that beauty evaluation of abstract shapes is an automatic - 248 

bottom up process which is less dependent on the attention to the shape. 249 

Previous studies pointed to the LOC as a central player in symmetry evaluation (Hodgson, 2009, 250 

Chatterjee et al., 2009, Beck et al., 2005, Sasaki et al., 2005). In the present study symmetry 251 

indeed showed a significant correlation to beauty ratings. Importantly, the correlation between 252 

LOC activity and symmetry was significantly weaker and less reliable compared to the beauty 253 

score correlations (Fig. 5). Thus, our paradigm of abstract shapes allowed the decoupling of the 254 

symmetry measure from that of the beauty scores. Our results show that subjective beauty 255 

evaluation is better correlated to LOC activity compared to shapes’ symmetry. 256 

 257 

Brain and familiarity: 258 

According to our results - both weirdness and iconicity, measures of familiarity and symbolic 259 

meaning, were correlated with LOC activation. Previous works showed increased activation in 260 

LOC which was similar for familiar and unfamiliar objects as long as the object is a coherent one 261 

(Malach et al., 1995, Kanwisher et al., 1997, Kanwisher et al., 1996, Grill-Spector et al., 2001), 262 

tracing a difference in activation between coherent objects response to non-coherent ones (using 263 

Fourier descriptors, and scrambled images; Lerner et al., 2002, Tsao et al., 2003, Aalto et al., 264 

2002, Murray et al., 2002, Malach et al., 1995). This is compatible with the earlier finding of an 265 

enhanced activity in mid-fusiform gyrus in a response to abstract shapes, associated with long-266 

term familiarization (Gauthier et al., 1999). Similarly, right LOC showed enhanced activity to 267 

abstract object structures following a short-term learning (familiarization) (de Beeck et al., 268 

2006). Furthermore, LOC preferential activity to familiar (iconic) objects was shown in a visual 269 

imagery with haptic perception task (Deshpande et al., 2010, Lacey et al., 2010).  270 

Our abstract shapes paradigm introduced a broad range of familiarity levels, which allowed to 271 

explore the effect of familiarity on LOC activity on a graded scale instead of a binary approach 272 

(familiar/unfamiliar) and without distortion of object’s features (Lerner et al., 2002, Tsao et al., 273 

2003, Aalto et al., 2002, Murray et al., 2002, Malach et al., 1995, Rotshtein et al., 2001). Shapes 274 

with different familiarity levels manifested a difference in LOC activation although composed of 275 

similar low level features. 276 

Interestingly, weirdness and iconicity showed inversed correlation patterns within very similar 277 

neuronal networks, supporting the idea that they reflect the two ends of shapes familiarity and 278 
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meaning (not only theoretically but also neuronaly). While the beauty parametric analysis 279 

showed a consistent and local activity of LOC, both weirdness and iconicity parametric mapping 280 

showed a task dependent activation, and a broader network involvement, including frontal and 281 

parietal regions in addition to LOC (Fig. 4b,c).  282 

It could have been argued that the identification of human origin shapes was mainly due to 283 

highly recognizable symbols (e.g. letters and digits). However- such iconic shapes were only a 284 

small portion (~10%) of the entire ensemble (sup Fig. 1). In fact, the shape ensemble introduced 285 

a gradient of iconicity as was shown by both ratings and brain responses. Furthermore, it has 286 

been well established that letters and digit representations are left- lateralized (Hasson et al., 287 

2002, Fiez and Petersen, 1998, McCandliss et al., 2003) while we consistently found a slight 288 

right-hemisphere bias of the human vs. random contrast (sup Fig. 2).  289 

De Beeck et al have showed an overall increased response to trained abstract objects compared 290 

to untrained abstract objects. Right LOC in particular showed the strongest increased response as 291 

a result to the training (de Beeck et al., 2006). In our study there was no formal training and all 292 

the shapes were novel, however we suggest that the human schema is an expression of an 293 

inherent training for social representations in the human mind. This schema led human players to 294 

explore certain shapes, and avoid other shapes (unlike the random walk algorithm), similarly this 295 

schema guided participants to successfully distinguish between human made and randomly made 296 

shapes. It is an open question whether this schema was developed as a result or is the source of 297 

human graphic communication. An interesting future avenue related to this question will be to 298 

investigate whether these findings are reproducible across cultures, within cultures, and in young 299 

infants. It will also be of interest to study whether humans on the autistic spectrum experience 300 

and neuronaly process these shapes similarly to typical individuals.     301 

 302 

Conclusion: 303 

Our study examined the behavioral and neuronal components of evaluating human origin of 304 

abstract shapes. Our results point to high order object areas (LOC) as a central node in beauty 305 

representation, and in symbolic meaning attribution of abstract shapes. Both aspects had a 306 

significant contribution to the classification of shape origin as human or random, and may have a 307 

key role in visual human communication (such as visual art). 308 

 309 
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Materials and methods: 310 

participants:  311 

Seventeen healthy right handed subjects (ages 28 ± 3.8, 10 females) participated in the fMRI 312 

experiments. Fifteen of them participated in both experiments 1 and 2. Fourteen filled a beauty, 313 

iconicity and weirdness evaluation questionnaire post the fMRI scan.  314 

 315 

Task and stimuli: 316 

Shape stimuli. Shapes of ten contiguous identical green squares were created in a shape-search 317 

computer game, by either 101 human players or a random walk algorithm (Noy et al., 2012). In 318 

each shape, squares were connected by an edge. Players moved one square at a time to create 319 

new shapes. They were instructed to place beautiful and interesting shapes into a gallery by 320 

pressing a button. There was no limit to the gallery. Players played for 15 min and created about 321 

310 shapes, of which they chose 46 shapes on average to the gallery. At the end of the game, 322 

players chose the 5 most creative shapes from their own gallery. The shape space includes 323 

36,446 possible shapes. 324 

Shapes were classified into four categories based on their origin (human/algorithm), and their 325 

appeal ratings (by their human creators). Not chosen shapes were created by human players but 326 

never chosen as beautiful shapes (by the players). Chosen shapes were created by human players, 327 

chosen as beautiful and interesting to the gallery but never rated as most creative shapes. Top 328 

rated shapes were created by human players, chosen as beautiful and interesting shapes and were 329 

rated by players as most creative shapes. Random (Never human-created shapes) were created 330 

only by a random walk algorithm (and never by human players) on the space of shapes, where 331 

the next shape is chosen randomly from neighboring shapes that are one move of a square away 332 

from the current shape. Length of walks was sampled from the distribution of walk lengths of the 333 

human players. For each category, the 20 most frequent shapes, i.e. the shapes that were the most 334 

common to many players (or random walks in the random category), were chosen for the fMRI 335 

experiment (see the shapes in sup. Fig. 1). 336 

 337 

Experimental design 338 

During the fMRI scan the created shapes were presented in homogeneous-category blocks lasting 339 

9 sec, followed by a 9 sec fixation screen. Each block consisted of 9 images (one second each); 340 
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eight images in light green and one image in dark green. Each category was presented in seven 341 

different blocks. To reduce scan novelty effect, an extra block (which was not analyzed) was 342 

added to the beginning of each experiment, 29 blocks were presented in total. 343 

Each subject watched the same sequence of blocks twice (once for each task). In the first 344 

experiment (task 1) subjects were required to classify the stimuli according to color; light green 345 

(press 1) or dark green (press 2). In the second experiment (task 2) following each block, 346 

subjects were required to classify the shapes of the preceding block as human creation (press 1) 347 

or random algorithm creation (press 2).  348 

 349 

Subjective and objective shape evaluations 350 

Following the scan, subjects evaluated each shape's beauty level on a 1-4 scale (4 being most 351 

beautiful), chose the 20 weirdest shapes, and also chose the most iconic shapes in blocks of 20 352 

shapes.  353 

Block's beauty score was calculated as the summation of beauty scores of all the shapes in the 354 

block. Weirdness and iconicity scores were calculated independently, in the same manner; A 355 

shape’s weirdness/iconicity score was equal to the number of subjects which rate the shape as 356 

weird/iconic. A block’s weirdness/iconicity score was calculated as the summation of 357 

weirdness/iconicity scores of all shapes in the block.  358 

In addition- the shapes were analyzed according to symmetry as an objective parameter. Block's 359 

symmetry was calculated as the summation of all rotation and reflection symmetry groups of all 360 

the shapes in the block. 361 

 362 

MRI Data Acquisition and Preprocessing 363 

The data were acquired on a 3 Tesla Trio Magnetom Siemens scanner at the Weizmann Institute 364 

of Science. Functional images of blood oxygenation level dependent (BOLD) contrast 365 

comprising of 46 axial slices were obtained with a T2*-weighted gradient echo planar imaging 366 

(EPI) sequence (3 × 3 × 3 mm voxel , TR = 3000 ms, TE = 30, flip angle = 75°, FOV 240 mm) 367 

covering the whole brain. Anatomical images for each subject were acquired in order to 368 

incorporate the functional data into the 3D Talairach space (Talairach and Tournoux, 1988) using 369 

3-D T1- weighted images with high resolution (1 × 1 × 1 mm voxel, MPRAGE sequence, TR= 370 

2300 ms, TE= 2.98 ms). 371 
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The first 7 images of each functional scan (including the extra initial block and rest) were 372 

discarded. Functional scan preprocessing included 3D motion correction and filtering out of low 373 

frequency noise (slow drift), and spatial smoothing using an isotropic Gaussian kernel of 6 mm 374 

full-width-half-maximum (FWHM). The functional images were superimposed on 2D anatomic 375 

images and incorporated into the 3D data sets through trilinear interpolation. Statistical analysis 376 

was based on a general linear model in which all stimuli conditions were defined as predictors, 377 

and convolved with the hemodynamic response function (HRF). 378 

 379 

Data analysis: 380 

In order to learn about the connection between shapes' characteristics, perception and brain 381 

activity several measurements were examined; Reaction times (both tasks), response accuracy 382 

(human/random, task2), subjective evaluations post-scan (beauty, weirdness and iconicity), and 383 

symmetry score.  384 

To investigate a possible difference in reaction times between shape categories (random, not 385 

chosen, chosen, top rated), Mann-Whitney tests were calculated for experiment 1 and 2 within 386 

subject and between subjects. Aesthetic (beauty) ratings for each shape were collected by each 387 

subject post the scan (on a 1-4 scale). To control for difference in rating patterns each subject's 388 

ratings were Z normalized. Five GLM analyses were conducted; the first included four 389 

predictors: random, not chosen, chosen, top rated. A second GLM analysis with two predictors 390 

based on the category's creator: human or random. In addition, in order to relate subjective 391 

blocks' characteristics to brain activity, three parametric GLM analyses were conducted for 392 

beauty, weirdness and iconicity. In these multi-subject, random effect analyses each block of 393 

shapes received a weight according to its score (beauty/weirdness/iconicity) which was 394 

represented in the model as differential amplitude of the BOLD signal. Beauty, being an 395 

individual score calculated per subject separately, was z normalized between subjects. 396 

 397 

Model selection of beauty and weirdness as well as beauty and iconicity fit to the probability to 398 

be classified as human was done based on the spearman correlation between model predictions 399 

and the Akaike information criterion (AIC). Models were generated as all possible combinations 400 

of the three parameters, either alone or coupled together. In order to have the monotonicity of the 401 
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two scores increase in the same direction, weirdness score was represented as 𝑒−𝑊𝑒𝑖𝑟𝑑𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 402 

(see SI for more details). 403 

     404 

In all GLM analyses beta coefficients were calculated for the regressors, and a Student's t-test 405 

was performed. Multi-subject analysis was based on a random-effect GLM. Multi-subject 406 

contrast maps (human vs. random, or category vs. category) were projected on an unfolded, 407 

inflated Talairach-normalized brain. Significance levels were calculated, taking into account the 408 

minimum cluster size and the probability threshold of a false detection of any given cluster. This 409 

was accomplished by a Monte Carlo simulation (cluster-level statistical threshold estimator in 410 

“Brain Voyager” software).  411 

In the first experiment (task1) for human vs. random contrast (Fig. 3) a minimum cluster size of 412 

103 voxels was significant. A minimum cluster size of 71 voxels was significant for top rated vs. 413 

chosen, 78 voxels for both top rated vs. not chosen, and chosen vs. not chosen (sup Fig. 2a). The 414 

minimum significant cluster size for each human category vs. random (sup Fig. 2b) was 103 415 

voxels (top rated), 91 voxels (chosen) and 85 voxels (not chosen). For the parametric maps (Fig. 416 

4) a minimum cluster size of 84 voxels was significant for beauty in task 1, and 90 voxels in task 417 

2. For weirdness a minimum cluster size of 98 voxels was significant in task 1, and 105 voxels in 418 

task 2. For iconicity a minimum cluster size of 90 voxels was significant in task 1, and 104 419 

voxels in task 2. 420 

ROI definition and analysis 421 

Analysis of LOC-relevant voxels was conducted by defining a group bilateral ROI within the 422 

LOC using the contrast human > random in one task, and sampled in the other task. Note that the 423 

inverted contrast i.e. random> human failed to reveal any voxels in the LOC region (see Fig. 3). 424 

The ROI's averaged beta weight (across voxels) was calculated per subject, for each predictor. 425 

Two-tailed paired t-tests (within subjects) were conducted between human and random beta 426 

weights for unaware (task 1) and aware (task 2) stimuli. A beta weight was extracted for each 427 

block and was plotted as a function of subjective beauty and symmetry (Fig. 5). Spearman 428 

correlation was calculated between participant's average beta for each block (averaged over each 429 

ROI) and their aforementioned features. 430 

 431 
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 568 

 569 
Figure 1. Experimental design .(a) Experimental protocol: shape images from four categories were presented in a 570 
block design with 9 second blocks, followed by 9 second fixation screen. Shape categorization was based on its 571 
creation process during a computer game in a previous work (Noy et al., 2012, see methods); Top rated shapes were 572 
created by human players and rated as most creative shapes. Chosen shapes were created by human players, chosen 573 
as beautiful shapes but never rated as most creative shapes. Not chosen shapes were created by human players but 574 
never chosen as beautiful shapes or rated (by the players). Never created shapes were created by a random 575 
algorithm, and never by human players. (b) Example for a block of each category. Each block included 9 images 576 
(one second each) of the same category; 8 images in light green and one in dark green.  577 
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 578 
Figure 2. Behavioral measurements (a) Group's average percent success rate (human/random) in each category; 579 
Human- top rated, Human- chosen, Human- not chosen, Algorithm-random. Two-tailed, within subjects Mann-580 
Whitney between categories, n1 = n2 = 7, p < 0.005**, error bars indicate the groups' standard error. (b) Group's 581 
average beauty scores per category (z-score normalized). (c) Group's average weirdness scores per category. 582 
 583 
 584 
 585 
 586 
 587 
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 603 
 604 
Figure 3. Comparison of Human and Random cortical activations. All human generated shapes (Human) vs. 605 
computer generated shapes (Random) multi subjects activity map (experiment 1, N = 17, corrected p < 0.05) is 606 
presented on an inflated cortex, in a lateral view (a) and unfolded cortex (b). Color scale indicates t values. Yellow- 607 
orange scale represents regions which were more activated while watching human generated blocks compared to 608 
random shapes (blue-green scale). Most significant activated regions are marked on the inflated map; Lateral 609 
Occipital cortex (LOC), Inferior frontal gyrus (IFG). 610 
(c) LOC ROI analysis: repeated measures ANOVA between averaged beta values of each category; Human- top 611 
rated, Human- chosen, Human- not chosen, Algorithm-random. Left side - experiment 1 (N = 17, p < 0.05*), right 612 
side - experiment 2 (N = 15, p < 0.005**). 613 
 614 
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 615 
 616 
Figure 4. Parametric mapping. Cortical activity maps of multi subjects, random effect, parametric GLM analysis 617 
of beauty (a), weirdness (b), and iconicity (c) presented on an unfolded cortex, right side experiment 1 (N = 13, 13, 618 
14), bottom panel experiment 2 (N = 12, 12, 13), both maps are corrected for multiple comparisons, p < 0.05. Color 619 
scale indicates t values. Yellow- orange scale represents regions which showed positive parametric relation with 620 
beauty/weirdness/iconicity scores. Blue-green scale represents regions which showed negative parametric relation 621 
with beauty/weirdness/ iconicity scores.  622 
 623 
 624 
 625 
 626 
 627 
 628 
 629 
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 630 
Figure 5. Correlations of LOC activity and symmetry/beauty. (a) Scatter plots present the relation between 631 
averaged blocks' symmetry (x axis) and group's averaged brain activity (normalized beta weight, y axis) in bilateral 632 
LOC. Each dot represents one block, and color indicates the blocks' category (Top rated in red, chosen in orange, 633 
not chosen in green, random in blue) N = 13. Spearman correlation; (experiment 1) left LOC, r = 0.4, ns ; right 634 
LOC, r = 0.5, p < 0.05. (experiment 2) left LOC, r = 0.6, p < 0.005; right LOC, r = 0.5, p < 0.05. (b) The relation 635 
between group's averaged beauty ratings (x axis), and the group's averaged brain activity (normalized beta weight, y 636 
axis) in LOC. Each dot represents mixed blocks with similar beauty ranking, color indicates the blocks' category. N= 637 
16. Spearman correlation; (experiment 1) left LOC, r = 0.52, p < 0.005 ; right LOC, r = 0.69, p < 0.0005. 638 
(experiment 2) left LOC, r = 0.69, p < 0.0005; right LOC, r = 0.83, p < 0.0005. 639 
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 640 
Figure 6. Classification of blocks’ origin based on their average LOC activity results in human-level 641 
accuracy. (a) We fitted a hyperbolic tangent classifier, 𝑃(ℎ𝑢𝑚𝑎𝑛) = 𝑎 + 𝑑 𝑇𝑎𝑛ℎ[𝑏 𝑥 + 𝑑] (where x is taken to be 642 
the averaged LOC activity of the block) to the data points by a bootstrapping method. Each iteration, 23/28 points 643 
were chosen randomly and the best fit parameters were extracted. We repeated this process 1000 times and averaged 644 
the parameters of all the runs. Shown is the averaged model. Model parameters are (mean±ste): a=0.48±0.03, 645 
b=45±9, c=5±1, d=0.33±0.04. (b) Classification accuracy of the classifier on the different categories (top rated, 646 
chosen, not-chosen, random). Error bars are STE and are calculated by 100 random sampling with replacements of 647 
the real data points per each category.   648 
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 649 
Supplementary Figure 1. The entire stimuli ensemble. (a) Top rated shapes, (b) Chosen shapes, (c) Random - 650 
Never created shapes, (d) Not chosen shapes. 651 
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 652 
Supplementary Figure 2. Comparison cortical activations between categories (experiment 1). Multi subjects 653 
activity maps (N = 17, corrected p < 0.05) are presented on an unfolded cortex. Color scale indicates t values. (a) 654 
Contrast maps between all the human generated shapes categories (Human). Yellow- orange scale represents regions 655 
which were more activated while watching blocks from the category in the left side of the contrast. Blue-green scale 656 
represents regions which were more activated while watching blocks from the category in the right side of the 657 
contrast. (b) Contrast maps between the Human categories and Random category (computer generated shapes). 658 
Color scale indicates t values. Yellow- orange scale represents regions which were more activated while watching 659 
shapes of human categories, compared to random shapes (blue-green scale). 660 
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Supplementary Information 682 

Modelling shapes’ probability to be classified as human created using the behavioral scores of 683 

subjects 684 

Here we describe the model selection process of finding the best model for the probabilities to be 685 

classified as human-created vs. random created shapes. The probability function was fit using a 686 

Logit function, 𝑃(𝑥, 𝑦) = 1
1+𝑒𝑓(𝑥,𝑦). The variables of the model were the three subjective scores in 687 

our experiment – beauty (denoted as b), weirdness (denoted as w) and iconicity (denoted as i). 688 

Since weirdness and iconicity carry inverse correlations to the behavioral data (iconicity 689 

increases the probability to be classified as human, while weirdness decreases that same 690 

probability), we chose to map the weirdness score in the following way - 𝑤′ → 𝑒−𝑤.  691 

We tested all possible linear combinations of the individual scores, their pair and triplet 692 

interactions, yielding: 693 

(S1) 𝑓(𝑏, 𝑤′, 𝑖) = 𝑚0 + 𝑚1 𝑏 + 𝑚2 𝑤′ + 𝑚3 𝑖 + 𝑚12𝑏 ∗ 𝑤′ + 𝑚13𝑏 ∗ 𝑖 + 𝑚23 𝑤′ ∗ 𝑖 +694 

𝑚123 𝑏 ∗ 𝑤′ ∗ 𝑖  695 

We assessed each model’s correlation with the data as well as its Akaike Information Criterion 696 

(AIC) score to attain the most accurate and simplest best fit model. The most accurate model 697 

with least number of parameters is one containing the interaction term between beauty and 698 

weirdness as a sole parameter, suggesting that it is the combination of beauty and familiarity that 699 

is the dominant component of classifying a shape as having human origin. In Table S1 we list the 700 

highest correlation and AIC scores of the different models for both beauty and weirdness and 701 

beauty and iconicity. 702 

Table S1: Pearson correlation, p-values and AIC scores of Logit models with beauty, 703 
weirdness and iconicity scores.  704 
 Model Model parameters Spearman 

correlation 

P-value AIC scores 

1 𝑓(𝑏, 𝑤′, 𝑖) = 𝑏 ∗ 𝑤′ 1
1 + 𝑒2.6 − 6.6 𝑏 𝑤′ 

0.96 4*10-21 5.84 

2 𝑓(𝑏, 𝑤′, 𝑖) = 𝑖 1
1 + 𝑒1.5 − 7 𝑖 

0.94 5*10-19 6.32 

3 𝑓(𝑏, 𝑤′, 𝑖) = 𝑖 ∗ 𝑤′ 1
1 + 𝑒1.4 − 7 𝑖 𝑤′ 

0.94 1*10-18 6.4 

4 𝑓(𝑏, 𝑤′, 𝑖) = 𝑏 1
1 + 𝑒3.8 − 8 𝑏 0.93 5*10-17 6.54 
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5 𝑓(𝑏, 𝑤′, 𝑖) = 𝑏 ∗ 𝑖 1
1 + 𝑒1.3 − 9.2 𝑏 𝑖 

0.92 5*10-16 7.04 

6 𝑓(𝑏, 𝑤′, 𝑖) = 𝑏 ∗ 𝑤′ ∗ 𝑖 1
1 + 𝑒1.2 − 9.3 𝑏 𝑖 𝑤′ 

0.92 1*10-15 7.13 

7 𝑓(𝑏, 𝑤′, 𝑖) = 𝑤′ 1
1 + 𝑒7.1 − 9 𝑤′ 

0.89 2*10-12 5.36 

             705 

   706 
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