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Abstract

Motivation: The past decade has seen an exponential increase in biological sequencing capacity, and
there has been a simultaneous effort to help organize and archive some of the vast quantities of sequencing
data that are being generated. While these developments are tremendous from the perspective of
maximizing the scientific utility of available data, they come with heavy costs. The storage and transmission
of such vast amounts of sequencing data is expensive.

Results: We present Quark, a semi-reference-based compression tool designed for RNA-seq data.
Quark makes use of a reference sequence when encoding reads, but produces a representation that
can be decoded independently, without the need for a reference. This allows Quark to achieve markedly
better compression rates than existing reference-free schemes, while still relieving the burden of assuming
a specific, shared reference sequence between the encoder and decoder. We demonstrate that Quark
achieves state-of-the-art compression rates, and that, typically, only a small fraction of the reference
sequence must be encoded along with the reads to allow reference-free decompression.

Availability: Quark is implemented in c++11, and is available under a GPLv3 license at
www.github.com/COMBINE-lab/quark.

Contact: rob.patro@cs.stonybrook.edu

1 Introduction for traditional alignment (Srivastava et al., 2016), enables selective

Compression of high-throughput sequencing reads becomes crucial with compression of read sequences with respect to the reference sequence.

the lowering cost of sequencing technology. The rapid technological
development enables the generation of petabytes of data on servers

We present Quark, acompression method specifically designed for
high throughput RNA-seq reads. On a conceptual level it introduces the

. . . . . idea of semi-reference-based compression, where reference sequence
worldwide. Apart from size, often succinct representation (Pritt P qa

and Langmead, 2016) can yield very similar results with a much
smaller memory footprint. Before using state-of-the-art, off-the-shelf

is used at the encoding end, but is not required for decompression.
This allows Quark to obtain markedly better compression rates than

. . o TP completely reference-free tools while also eliminating the need for
compression tools, there is always a scope of substantial improvement

as we have shown in this paper regarding rearrangement and encoding
of raw read sequences. In one hand, such encoding can exploit the

the encoder and decoder to share the same exact reference sequence,
which also mitigates the potentially brittle dependence of a reference-

redundancy of highly repeated sequences from the read. On the other based encoder on a specific reference sequence. Specifically, using

hand, we demonstrate that quasi-mapping, a recently-introduced proxy quasi-mapping (Srivastava et al, 2016), Quark locates regions of

interest in the reference that are specific to the particular RNA-seq
experiment being compressed, and stores only these regions for use
during decoding. Quark is focused on sequence compression, and
hence, does not currently provide a mechanism for storing the header
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and quality information associated with each read. Although there
are very efficient approaches to these problems (Zhou et al., 2014),
(Malysa et al., 2015), (Janin et al., 2013) that could easily be coupled
with Quark. Apart from reducing the total size of fastq files, the
other motivation is that many tools (e.g., state-of-the-art quantification
tools such as Sailfish (Patro et al., 2014), Salmon (Patro et al.,
2016) and kallisto (Bray et al., 2016)) do not make use of this
information from the fastgq files. In fact, the link between Quark
and transcript quantification methods goes even deeper, as Quark’s
notion of islands Section 3.1 naturally extends and refines the notion of
fragment equivalence classes first introduced in mmseq (Turro et al.,
2011), and subsequently adopted by recent lightweight quantification
approaches such as Sailfish, Salmon, and kallisto.

Quark is the first reference-asymmetric compression methodology
of which we are aware (i.e., in terms of only requiring the reference
for encoding). Further, it develops certain key connections between
the redundant representation of sequence information, in terms of
read compression, and the use of related ideas in the efficient
likelihood factorization that has been integral to the development of
fast quantification methodologies. Our analysis also provides some
insights into the typical coverage / usage of unique sequence in specific
RNA-seq experiments ( Section 3.1). The idea of semi-reference-based
compression appears very effective at improving sequence compression
rates, but not limited only to RNA-seq data. Rather, we believe that the
ideas we present here can be extended to genomic data and, possibly,
even to long read compression.

2 Related Work

Given the volume of high-throughput sequencing data, there has been a
substantial research focus on methods for its compression. Nucleotide
sequence compression can largely be divided into two paradigms —
reference-based and reference-free. In reference-based compression, a
reference sequence (genome, transcriptome, etc.) must be shared by
both the encoder and the decoder (Canovas et al., 2014), (Fritz et al.,
2011), (Li et al., 2014). Alternatively, in reference-free compression
(e.g. (Adjeroh et al., 2002),(Bonfield, 2014), (Hach et al., 2012), (Patro
and Kingsford, 2015)), read sequences are compressed independent
of reference sequence. This eliminates the burden of requiring the
encoder and decoder to share a reference, but typically results in lower
compression rates than reference-based compression.

Reference-based compressors typically start with BAM files
produced by aligners such as Bowtie 2 (Langmead and Salzberg,
2012), bwa (Li, 2013), and STAR (Dobin ef al., 2013). One potential
bottleneck of reference-based compression is to that many approaches
store a substantial amount of meta-information from the BAM file which
can be regenerated by re-aligning the reads to the provided reference
sequence. This problem can be easily solved storing the edits after
aligning the sequences to reference. Fritz et al. (2011) introduced one
such widely used tool mz i p which can store alignments permitting users
to avoid compressing quality score and unaligned sequences. fastqgz
(Bonfield and Mahoney, 2013) bypassed the problem of storing meta
data by implementing a new alignment technique.

The recently-published CORA (Yorukoglu er al., 2016) is a
compressive read mapper. The working principle of CORA is interesting
and worth mentioning as the concept of equivalence classes (discussed
in Section 3) is also used there, but carries a different meaning. CORA
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converts the fastq reads to non-redundant k-mer sets. Furthermore,
CORA attempts to capture redundancy within the reference genome by
performing self-mapping. The positions where a k-mer maps form an
equivalence class. Two equivalence classes are regarded as concordant if
all positions of one equivalence class are in one nucleotide shift distance
from another equivalence class.

While most existing tools fit the categorizations of reference-based
or reference-free well, some methods, conceptually, lie in the middle.
Quip (Jones et al., 2012) performs a lightweight assembly from a small
subset of the input data, and then encodes the reads with respect to this
assembly, capitalizing on ideas that have been used in both reference-
free and reference-based compression. kpath (Kingsford and Patro,
2015) is a tool that assumes a k-mer distribution given by a reference
transcriptome, and compresses the reads by grouping them together by
their starting k-mers and encoding them as arithmetically coded paths in
a de Bruijn graph. Though this is technically a reference-based method,
itis designed to encode raw sequencing reads rather than alignments, and
the authors demonstrate that the performance degrades gracefully even
when a substantially different reference transcriptome is used to encode
a sample. The reference-free compression tool, LEON (Benoit et al.,
2015), constructs a probabilistic de Bruijn graph from the k-mer count
table built on the reads. Reads are then mapped to the newly constructed
de Bruijn graph, and are stored in the form of an anchor address, the read
size, and bifurcation list. This method shares some conceptual similarity
with Quip, but the fact that it builds a (probabilistic) de Bruijn graph
from all of the input data allows it to typically achieve much greater
compression ratios.

In this paper we present a compression tool, Quark, which we
categorize as a semi-reference-based compressor. Quark takes as input
raw reads and a reference transcriptome, and produces an encoding
that can be decompressed without knowledge of the original reference
sequence. Thus, the reference sequence is required at the encoder, but
not at the decoder. The asymmetry of Quark is designed to match the
typical asymmetry in terms of data availability and processing power
between the encoder and decoder, with encoding requiring more data
and computation than decoding. This semi-reference-based scheme
has a number of benefits. First, making use of the reference at the
encoding end allows Quark to obtain substantially better compression
ratios than existing reference-free tools. This results in smaller files
that consume less space on disk, and which are faster to transfer from
e.g., a large centralized repository to a remote machine for analysis.
Second, the reference-free nature of Quark’s decompression relieves
the assumption of shared knowledge between the encoder and decoder.
In data that is compressed for potentially long-term storage, it is likely
that the reference used for encoding will no longer be current or in
wide circulation and that the decoder will have to re-fetch this reference
sequence. However, since Quark allows the decoder to recover the
original data without sharing the specific reference used for encoding, it
is immune to the fact that reference sequences are commonly augmented
or updated.

Quark uses the recently-introduced concept of quasi-mapping
(Srivastava et al., 2016) to quickly map sequencing reads to a target
transcriptome. The mapping information is then utilized to represent the
reads. The motivation for such a scheme comes from the observation of
the fact that a small fraction of the transcriptome is often sufficient
to represent the vast majority of mapping reads in an experiment,
and therefore, storing the entire transcriptome is often unnecessary. A
decoder on the other end takes the small subset of the transcriptome
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Fig. 1: Quark uses the core component of RapMap which is quasi-mapping. It is used to produce a set of tuples for a paired-end read r;, where
each tuple can be represented as (pli7 Fll ,pj > F"). The table contaning the tuples for each read can be summarized to a set of equivalence classes as
discussed in Section 3. The encoding function ) is explained above with two paired end reads r1 and r2. For left end of r1, there are 12 matches
followed by unmatched characters. For the right end of r1, first 4 characters differ from the reference, followed by 11 exact matches, the left and
right end together can be encoded as Q(r1) = {12GC,ATTG11}. The relevant intervals are subsequently stored as islands.

sequence, that we refer to as islands, and the compressed reads to
produce the uncompressed data. An overview of Quark is given
in Figure 1. The method section is divided into three parts, in the
heart of Quark quasi-mapping maps the raw reads to the indexed
transcriptome and reports the position of the read (anchored by a
series of right-maximal exact matches). In the next step, we collect the
position and the target transcripts, and subsequently merge the reference
sequences overlapping the mappings to yield a set of islands. Finally, the
encoded read and reference sequence islands are post-processed with
an off-the-shelf compression tool (here, we use plzip).

3 Method

Quark implements a semi-reference-based compression algorithm,
where the reference is required for compression but not for
decompression. To remove this dependency at the decoder, Quark
encodes and stores only parts of underlying reference which are required
for decompression. Thus, the output of Quark is self-contained in the
sense that the raw reads can be recovered from the Quark output without

the aid of any additional file. To be precise, given the reference sequence
and the reads, Quark generates three files, read.quark, offsets.quark
and islands.quark. Before describing the core algorithm of Quark in
detail, we briefly describe the quasi-mapping concept, and the algorithm
to efficiently compute quasi-mappings introduced in Srivastava et al.
(2016), which is an integral part of the Quark algorithm.

Given some reference (e.g., a transcriptome), quasi-mappings
identify each read with some set (possibly empty) of target sequences
(e.g., transcripts), positions and orientations with which the read shares
a consistent collection of right-maximal exact matches. The quasi-
mapping algorithm described in Srivastava et al. (2016) constructs a
suffix array-based index over the reference sequence. The mapping
process starts with a matched k-mer that is shared between a set of
transcripts and the read. If such a match exists, the algorithm tries to
extend the match further by searching the interval of the suffix array for
a maximum mappable prefix. The match is used to determine the next
informative position in the reference sequences, and the same mapping
process continues from that point within the query. These exact matched
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sequences play an important role in achieving superior compression rate
of Quark.

On the basis of the result provided by the quasi-mapping algorithm
described above, we can divide the input reads (assumed, for simplicity,
to be paired-end reads) into three categories,

e Mapped reads: If both reads of the pair are mapped, this is an ideal
situation where we can encode both ends of the read efficiently since
each of the reads shares some sequence with the reference.

e Orphan reads: For reads in this category, we can not map both ends
of the pair to the same target. In Quark, we encode the unmapped
end of the read by writing its (encoded) sequence directly.

o Unmapped reads: There is no mapping at all for the read, as
determined by the algorithm described above, and so the read is
instead encoded using a reference-free approach. In Quark, un-
mappable reads are encoded using the reference-free compression
tool. Mince (Patro and Kingsford, 2015).

Quark follows a hierarchical approach for compression, where the
mapped reads are distributed into equivalence classes according to the
transcripts to which they map, and then sorted, within each class, by
their starting position. Reads within the same equivalence class are very
likely to share overlapping reference sequence, and hence, to be similar
to each other. The encoding scheme itself is straight forward. Given
the position and reference sequence, Quark does a linear search on
the reference sequence to find the matching sequence between the read
and the reference at the specified position. Though it is guaranteed to
yield a match of at least k nucleotides if given the k-mer criterion of the
mapping algorithm, typically the collection of matches covers a large
fraction of the read.

Quark’s read encoding. The encoding phase of Quark starts with
the output produced by quasi-mapping. Given a read r; mapped
to the reference transcriptome, Quark produces a tuple Tik =
(tk, pli, Fll , 05, F') (See Figure 1), where t}, is the transcript sequence
where the read maps, pﬁ is the position where the left end maps and Fll is
aflag which s false if the the read has to be reverse complemented to map
and true otherwise. Likewise, p; and F" represents the corresponding
position and flag for the right end of the read. When a read maps to
multiple transcripts, a tuple is returned for each transcript to which
the read maps. It should be noted that there are other flags that are
maintained internally by quasi-mapping to keep track of orphan reads
and other mapping information not currently used by Quark. Once the
. for a read are obtained, they are used to place each
read into an equivalence class based on the transcripts to which they

tuples 71, T2, . .

map, and all reads mapping to precisely the same set of transcripts will
be placed into the same equivalence class. This notion of equivalence
classes has been used in the transcript quantification literature for some
time (Turro et al., 2011), and is described in more detail in Srivastava
et al. (2016). As shown in Figure 1, given the mapping information
for reads r1,r2 and r3, we can extract the corresponding transcripts
as follows, r{ — (tl,tg,tg), ro — (tl,t27t3) and r3 — (tg,tg,).
Intuitively, we expect that 1 and r2 are more likely to share overlapping
reference sequence with each other than with r3. In addition to the
transcript labels, Quark also associates a collection of nucleotide
sequences (i.e. reference sequence to which the read maps) with each
equivalence class.
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Fig. 2: ¢1 and to are two transcripts that share a sequence. Reads labeled
indark grey are mapped into the shared region where as the reads labelled
with light grey are only mapped exclusively to transcript ¢2, leading to
formation of two equivalence classes.

The core encoding process operates on each equivalence classes
individually. Given ¢, a reference sequence for transcript j, the quasi-
mapping information 7; = (t;,p}, F},pl, FY') for a read, and an
encoding function ), Quark proceeds as follows. For the left end
Quark starts a simultaneous linear scan for matches from ¢; [p!] and
r;[0], i.e., the start of the read sequence. As discussed previously, it is
guaranteed that if quasi-mapping yields a mapping for this read, then
the search will also find a at least a match of length k. In Quark,
both ends of a paired end read are compressed simultaneously, and
an analogous encoding procedure is used for the right end of the
read. We can formalize Q as Q : ¥ — X U {0 — 9}, where
¥ = {A,T,G,C, N}. Integers values are required to represent the
number of matched characters. To make the Quark encoding more
efficient, we use a four bit encoding scheme to represent each encoded
read. Four bits are the minimal number of bits sufficient to represent the
symbol alphabet we use for encoding because our alphabet set on the
range of function @ is 15. The encoding scheme itself is very direct, if
we have a mismatch at the start, then we put a O in front of the number
to signify what follows is not the number of matched characters, rather
it is the position where the next match characters begin.

There are two reasons why this fast and simple encoding scheme
tends to yield excellent compression results. First, in NGS sequencing
the raw sequences tend to contain substitution rather than indel errors.
Therefore, a simple linear matching might reveal as much shared
sequence as an optimal alignment. Second, even if indels or larger-
scale variation are present (e.g. due to genomic divergence between
the reference and sample being mapped), the repetitive reads share a
common subsequence with reference, and share common edits with
respect to each other, which the downstream compression algorithm
can exploit.

After generating the encoded reads, Quark sorts each read pair by
the leftread’s starting position on the reference. In this way, reads that are
sampled from nearby loci in the reference are placed into close proximity
in the file. This step helps the downstream, off-the-shelf compressor to
further efficiently compress the encoded strings. To retain the paired end
read order, the right read follows the same ordering as its left mate. The
read encoding process is accompanied by an island generation process,
which stores the part of reference relevant for the decoding process.
Quark also generates a separate of f set file that contains the position
of the reads.

3.1 Island Construction

For the purposes of compression, Quark makes use of islands of
reference sequence that overlap the mapped reads. We define an island
as a contiguous substring of some reference sequence that is completely
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covered by at least one read (i.e., some read overlaps each nucleotide
in this substring). For each read r; and its corresponding tuple 7; =
(tr, pé, le , 05, F'), we construct an additional list Z; of intervals
containing {(p!, p + len(r;)), (p},p; — len(r;))}, where len(r;)
represents the length of the read. Some care must be taken to properly
handle boundary conditions, which can result in situations where a read
overhangs the beginning or end of a reference sequence. Repeating this
step for each read within an equivalence class Quark constructs a set

I:UL.
i

Given that intervals on the reference sequence might share some
nucleotides (i.e., overlap), Quark merges the intervals by taking the
union of the nucleotides they contain, to form maximal disjoint islands.
Construction of islands from intervals is straightforward. Quark sorts
the intervals with respect to their start positions, and a linear scan through
intervals suffices to find the overlaps and merge the islands into disjoint
subsets.

The use of islands aids the compression abilities of Quark,
and additionally makes the resulting compression file self-contained,
eliminating the need to assume the decoder has access to the same
reference. Quark can identify shared regions between transcripts by
the use of quasi-mapping. This further enables it to exploit redundancy
and store only one island for each cluster of reads that share some
nucleotide (see Figure 2).

The island generation process removes the redundancy of
nucleotides from transcripts that share some region. Figure 2 illustrates
such a situation, where a large portion of nucleotides from transcript
to will be omitted (i.e. not included in any island). Here the reads in
equivalence class {t1,¢2} are completely accounted for by the island
formed by the sequence from t1, so that an island corresponding to
the prefix of t2 is redundant and need not be generated. However the
reads in equivalence class {¢2} mapped to a disjoint transcriptomic
region that is not present in ¢1. The final set of islands (island 1 and
island 2 in Figure 2) will thus contain only one representative for the
redundant sequence shared by ¢1 and ¢2, so that the majority of ¢2 won’t
be used in island creation. We further note here that this process of
discovering and removing redundancy in the stored sequence from the
underlying transcriptome is completely free of reference annotations,
so that Quark works equally well when compressing the reads with
respect to a de novo transcriptome assembly.

To study the effectiveness of constructing islands, we considred
dataset SRR635193. After mapping to the Gencode reference
transcriptome for human (version 19), we observe that out of 95, 309
transcripts, only 49, 589 transcripts are used by Quark. Moreover, as
shown in Figure 3, there are many transcripts in which only a small
fraction of nucleotides participate in islands. It is to be noted that the
absence of a transcript’s sequence in islands does not necessarily imply
low abundance of that transcript.

3.2 Post-processing

In addition to yielding a reduced representation of the reads, the work
done by Quark organizes the encoded reads in a format and order
that is amenable to further compression by traditional mechanisms (e.g.
using programs such as gzip, bzip2, 1z1ip). Given the encoding size
benefits of 1zip described by Patro and Kingsford (2015), we further
process the Quark encodings, using 1z ip to compress the read.quark,
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Fig. 3: Islands consist of only a fraction of nucleotides of expressed
transcripts

offsets.quark and islands.quark. files, which contain the encoded reads,
their offsets and the sequences of the islands, respectively. As the size of
the unmapped reads can not be improved by taking advantage of quasi-
mapping, we use the pre-existing de novo compression tool Mince
(Patro and Kingsford, 2015) to compress these reads.

4 Results

Since Quark encodes raw sequencing reads rather than alignments, and
since, from the perspective of decoding, Quark is reference-free, we
have compared it against other de novo or reference-free compression
tools. Quark does not preserve the header or quality scores from the
FASTQ files. Therefore, we construct our baseline by extracting the
read nucleotide sequences from the FASTQ files. As discussed in 2 we
compared Quark with three other state-of-the-art compression tools;
LEON, SCALCE and Mince. To achieve a fair comparison, we have only
used the size of compressed sequences ignoring the meta information.

We used LEON version 1.0. LEON is invoked with the —seg-only
flag to ignore the header and quality information. For SCALCE, version
2.8 was used. Paired-end reads are encoded with the —r option
in SCALCE. Additionally we have used -p 100 option to allow
maximally-lossy quality compression. Unfortunately, in SCALCE it is
not possible to completely discard the quality scores (i.e. the . scalceq
files), since special quality values are used to encode the locations of N
nucleotides within the reads. For the sake of completeness, column
SCALCE*, in Table 1, records the SCALCE compressed file sizes,
discarding the quality file altogether. This makes the file no longer de-
compressible, but provides a generous lower bound on how small the
sequence file could get (e.g., if a different encoding scheme were used
to encode the positions of “N” nucleotides in the reads). Finally we used
Mince version 0.6. LEON does not provide any special way to handle
paired-end reads. To allow LEON to obtain a maximal compression rate
on paired-end data (i.e., by exploiting redundancy between both mate
files), it was run on the concatenation of the left and right read pairs.
As it does not alter the internal ordering of contents in the file, it is still
possible to recover the original sequences, and restore the pairing, from
the decoded file. We observe that this approach of running LEON led to
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Table 1. Size of the read files after compression along with raw sequence size (bytes) PE: Paired End, SE: Single End

Organism Library Type Raw-Sequence

Quark

LEON SCALCE SCALCE* Mince

SRR689233 Mouse PE 2,986,245,990 99,028,458 247,687,471 561,022,336 233,134,542 176,947,631
SRR445718 Human SE 3,327,310,165 146,495,063 328,857,885 581,694,785 252,450,288 162,969,503
SRR490961 Human SE 4,961,894,468 159,074,135 466,517,518 745,095,275 299,983,580 174,583,153
SRR635193 Human PE 2,999,246,910 149,197,655 361,795,379 446,853,627 293,842,354 240,274,889
SRR037452 Human SE 421,663,860 54,691,651 90,774,360 111,469,817 66,630,751 54,302,557
SRR1294122  Human SE 3,384,221,798 180,413,521 437,077,070 662,252,794 298,757,892 204,850,132
SRR1265495  Human PE 3,432,947,700 158,635,313 305,101,315 709,315,147 320,744,415 242,176,319
SRR1265496  Human PE 2,985,375,780 152,612,910 280,749,535 636,872,285 299,286,153 224,755,144

slightly improved compression rates over running the tool on both read
files independently (data not shown).

The comparison has been carried out on eight different real datasets,
as described in Table 1. There are seven fastq files from human and one
from mouse (Mus musculus). To have a broad comparison, we have used
a mixed collection of four paired end and four single end data sets.

Before discussing the enhancement in compression ratio achieved by
Quark, we note that the compression ratios achieved by Quark depend
on the mappability of the reads, since Quark uses the reference (on the
encoding end) to organize the reads and place similar reads together.
As shown in Figure 4, the fraction of the compressed files required
to store the mappable reads is always less (usually substantially less)
than the fraction of the input files consisting of mappable reads. Put
differently, this demonstrates that the semi-reference-based mapping,
and the encoding scheme adopted by Quark, is generally much more
efficient than even the best of the reference-free tools. Further, it
suggests that the compression achieved by Quark could be even further
improved by assembling and mapping reads to transcripts that might not
appear in the initial annotation (e.g., novel spliceforms, or tissue-specific
transcripts that may not be part of the originally considered annotation).
Currently, we are using the existing tool, Mince, to compress the
unmapped reads. Although the idea of islands can be extended to the
assembly of novel transcripts.

From Table 1, we observe that Quark achieves superior
compression in almost all of the datasets. Additionally, for paired-end
reads, the compression rate of Quark with comparison to the other
re-ordering based methods (SCALCE and Mince) is much better. One
reason for this is that, intuitively, the ordering induced by Quark seems
to be a better joint ordering than can be obtained by the strategy of
SCALCE (which imposes the reference free ordering derived for one
of the reads on all of the mates) or Mince (which concatenates the
read pairs and determines an ordering for the merged reads). Though
Quark orders the reads according to the island to which the reads map
(and the offset within that island), the fact that both reads are accounted
for, simultaneously, when generating the mapping, seems to result in a
superior joint ordering.

For SRR037452, the mapping rate is relatively low, which leads to
worse compression rates for Quark, although Mince is the only tool
that generates better compression than Quark (and only by a negligible
margin). As unmapped reads are sent to Mince for compression,
this comparable compression rate for datasets with low mapability is
understandable.

B mapped
73 unmapped

140

Percentage of mapped vs unmapped

Fig. 4: There are two bar plots corresponding to each experiment. The
bar represents a normalized view of the sizes, here the grey region
represents the mapped reads, whereas the striped region represents the
unmapped reads. The original size of the uncompressed and compressed
files are written at the top of the bar. In all cases the rate of compression
for mapped reads are better than that of unmapped reads.

5 Conclusion and Future Work

We have introduced Quark, a semi-reference-based method for the
compression of RNA-seq reads. Quark uses a lightweight replacement
for alignment, called quasi-mapping, which enables it to quickly find
shared sequence among the input reads by determining the manner
in which they were generated from the underlying reference. This
structure is encoded in terms of the fragment equivalence classes
and, eventually, the transcript islands that Quark uses for encoding.
By taking advantage of this information, Quark is able to obtain
compression rates better than existing tools aimed at the compression of
raw sequencing reads. At the same time, Quark remains reference-free
from the perspective of the decoder. This means that the decoding end is
agnostic to the reference used to encode the reads, avoiding the fragility
associated with encoding the reads with respect to a specific reference
version, and allowing recovery of the sequencing reads from the Quark
files alone.

While Quark already exhibits state-of-the-art compression
performance, we believe that the opportunity exists for further
improvements. For example, when reads are encoded with respect to
the reference sequence, true divergence between the reference and the
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sample being encoded will be recorded multiple times (once for each
read overlapping the variant). However, the same process that is used to
encode the reads can be used to note and potentially detect the variant,
as well as to distinguish between differences that result from random
sequencing errors and those that result from true genomic variation.
Thus, one could imagine that Quark could be used, simultaneously, to
compress reads, detect novel variants, and to correct read errors. Though
technically “lossy”, correction of the errors would be done in a fashion
that would not change the mapping locations of the reads, and it would
likely result in even better compression rates, as the random sequencing
artifacts, which increase the entropy of the encoded stream, could be
largely removed. Moreover, by applying the discovered variants to the
transcript islands used for read encoding, the differences between the
encoded reads and the reference sequence could be reduced even further,
leading to more gains in sequence compression. This difference could be
especially large when encoding is done with respect to atypical samples
(e.g. cancer) or when encoding with respect to a de novo assembly.

Finally, the islands concept introduced in Quark opens up avenues
for a data-driven approach to discovering novel splice junctions for
non model organisms. The islands capture information about exons or
co-spliced groups of exons. The segmentation of already assembled
transcripts within equivalence classes can be characterized as a fine
grained notion of previously unknown exonic regions.
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