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Abstract

Local field potentials (LFP) reflect the integrated electrophysiological activity of a large group of neurons. To min-

imize influence of external activity on the analysis, conventionally bipolar recordings are used to eliminate volume-

conducted signals. Here we introduce a novel method, called phase-coherence classification (PCC), to separate LFP

in time-frequency domain into a volume-conducted, a local incoherent and local coherent signal. The PCC allows

to compute the power spectral densities of each signal and to associate each class with possible locations of electro-

physiological activity. In order to test the resolution properties and accuracy of the method we generate composite

and non-stationary synthetic time series with similar statistical characteristics as measured LFP. The PCC identifies

volume-conducted signals with a phase threshold that is determined from probability density functions of non-phase-

shifted synthetic time series. We estimate optimal PCC parameters for the analysis of beta band oscillations in LFP

and apply the PCC to a test data set obtained from within the subthalamic nucleus of eight patients with Parkinson’s

disease (PD). We show that PCC can identify activity of multiple local clusters during a tremor episode and quan-

tify the relative power of local and volume-conducted signals. We further analyze the electrophysiological response

to an apomorphine injection during rest and show that incoherent activity in the low beta band shows a significant

medication-induced decrease. We further find significant movement-induced changes on medication of the local co-

herent signal, which increased during an isometric hold task and decreased during phasic wrist movement. This

indicates a different role of incoherent and coherent signals possibly related to physiologically different networks.

This new PCC method can potentially also be applied to EEG and MEG data in order to minimize the influence of

spatial leakage on power spectra and coherence estimates.
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1. Introduction

Data obtained from intracranial local field potentials

(LFP) using macroelectrodes of∼1 mm diameter as well

as EEG or MEG data generally reflect the integrated

electrophysiological activity of populations of neurons

at local and remote locations and mostly stem from

post-synaptic potentials (Buzsáki et al., 2012). In order

to concentrate on local electrophysiological activity one

often uses first or second order derivatives of the mea-

sured signal, e.g. bipolar recordings or current source-

density for LFP (Mitzdorf, 1985; Lempka and McIn-

tyre, 2013) and average-reference or surface Laplacian
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for EEG (Hjorth, 1975; Nunez et al., 1997), which re-

duce the electrodes’ spatial detection range as a large

part of the remotely generated and volume-conducted

signal is subtracted. Recently, Hipp et al. (2012) in-

troduced a orthogonalization procedure in order to esti-

mate a more localized signal (see also Colclough et al.

(2015)). The disadvantage of these techniques is that

not only activity generated at distant locations but also

highly correlated and non-phase-shifted locally gener-

ated activity may be subtracted. Also, the volume-

conducted signal is lost for further analyses and inco-

herent local activity may leak to neighboring electrodes.

The ability to distinguish between local incoherent

and coherent signals may help to characterize func-

tionally specialized assembly structures (Schnitzler and

Gross, 2005; Denker et al., 2011). Such assembly struc-
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tures or spatial clusters of focal electrophysiological ac-

tivity may be encountered in the target structures of clin-

ical applications, e.g. deep brain stimulation of the sub-

thalamic nucleus (STN) in case of Parkinson’s disease

(PD). Here focal pathological activity in the beta band

(13-30 Hz) (Brown, 2003; Kühn et al., 2004; Hammond

et al., 2007; Little et al., 2012) and different topogra-

phies of tremor clusters for postural and rest tremor

(Reck et al., 2010) were observed in the STN region

indicating a functional and patho-anatomical segrega-

tion of subloops and symptoms. Further, activity within

the beta band (13-30 Hz) may also be subject to physio-

logical modulations, e.g. induced by movement (Engel

and Fries, 2010), which need to be differentiated from

pathophysiological signals in the same frequency band.

In an attempt to allow for such a differential in-

terpretation of subsignals, namely to identify local

(in)coherent and volume-conducted signals in LFP, we

developed a novel method called phase-coherence clas-

sification (PCC). The PCC separates the signals in time-

frequency domain according to their pairwise statistical

characteristics into three signal classes associated with

electrophysiological activity at local and remote loca-

tions. The local signal is further separated into coher-

ent and incoherent activity. With this approach we ob-

tain subsignals, which allow to analyze and estimate the

signal components in detail with respect to functionally

segregated electrophysiological activity. Conceptually

similar wavelet-based separation techniques have been

shown to be of great value in the analysis of turbulent

flows (Farge et al., 2001; Horbury et al., 2008).

The basic assumption for the application of the PCC

is the quasi-static approximation of the electromagnetic

field (Plonsey and Heppner, 1967; Stinstra and Peters,

1998). Changes in the extracellular potential propa-

gate across the tissue of the human brain by means

of volume-conduction. Therefore, the phase lag of

a volume-conducted signal measured at two different

locations is negligible. As the sources of LFP and

EEG can be approximated as dipoles (Buzsáki et al.,

2012; Einevoll et al., 2013), volume-conducted signals

generated at remote locations, i.e. postsynaptic termi-

nals, can only generate phase differences of either 0◦

or 180◦ between different electrodes. The potential of

a dipole source decreases quadratically with distance

so that populations close to the electrode have con-

siderably stronger effect on the measurement (Lindén

et al., 2011). However, large populations with corre-

lated synaptic input may generate a volume-conducted

signal strong enough to be observed at several millime-

ters distance (Kajikawa and Schroeder, 2011; Lempka

and McIntyre, 2013). Note that in our study the inter-

electrode spacing is 2 mm and, therefore, it is generally

unclear how much of the LFP stems from local activ-

ity that is only observed at a single electrode and how

much of remote activity observed by several electrodes.

For the derivation of our method we make use of the

quasi-static approximation and assume that signals with

phase differences of 0◦ or 180◦ between two electrodes

are volume-conducted and reflect activity at remote lo-

cations (i.e. distances larger than inter-electrode spac-

ings). In contrast signals observed at only one electrode

and signals with a phase-shift other than 0◦ and 180◦

between electrodes reflect local activity.

In this paper we introduce the wavelet-based PCC

and show how to calculate power spectral densities for

the separate signals. We focus on the technical aspects

of the method, namely its resolution properties and ac-

curacy to determine the correct distribution of power

between the subsignals. The resolution of the PCC is

tested with synthetic time series and we derive reason-

able parameters for an analysis of beta band oscillations

in LFP. As a proof of concept and in order to test the

accuracy of the method we applied the PCC to non-

stationary signals with time varying coherent frequen-

cies. We further analyzed a test data set of LFP mea-

sured within the STN of patients with PD. Here, we first

show a case study of a tremor episode and then charac-

terize the LFP observed in a cohort of eight PD patients

using signals obtained from PCC.

2. Materials & Methods

2.1. Wavelet Transform

The PCC employs the wavelet transform (Torrence

and Compo, 1998) of a discrete time series x(t j) with t j

being a discrete point in time defined as

Wx( fi, t j) =

N
∑

n=1

x(tn)Ψ

(

tn − t j

si

)

, (1)

where N is the number of data points, Ψ the mother

wavelet (here: Morlet) and s the temporal scale under

consideration. The scale is related to the Fourier fre-

quency f according to

f =
ω0+

√

2+ω2
0

4π

1

s
, (2)

where the wavelet parameter ω0 defines the number of

oscillations in a wavelet and controls the frequency res-

olution ∆ f / f (Meyers et al., 1993). The frequency res-

olution can be estimated from the standard deviation
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of the power spectral density of a monochromatic sine

wave.

Using the wavelet cross-spectrum

Wxy( f , t) = Wx( f , t) ·W∗y ( f , t) , (3)

where W∗ denotes the complex conjugate, the transform

allows to compute the instantaneous phase between two

signals x(t) and y(t) at a given time and frequency ac-

cording to

Φxy( f , t) =

∣

∣

∣

∣

∣

∣

tan−1

(

Im(Wxy( f , t))

Re(Wxy( f , t))

)
∣

∣

∣

∣

∣

∣

. (4)

Here Im(W) and Re(W) are the imaginary and real part

of the wavelet coefficient W, respectively, and we use

the absolute value of the phase because we are only in-

terested in the deviation from 0◦.

2.2. Wavelet-Based Coherence

The linear correlation between the two signals with

respect to magnitude and phase in the time-frequency

domain can be quantified by the magnitude squared co-

herence

Cxy( f , t) =

∣

∣

∣

∣

〈

Wxy( f , t)
〉

∣

∣

∣

∣

2

〈

|Wxx( f , t)|2
〉〈

|Wyy( f , t)|2
〉 , (5)

which is the normalized to 0 ≤ C ≤ 1. In this study

the averaging 〈∗〉 was done temporally over a Gaussian

with standard deviation

σ = nσ

ω0+

√

2+ω2
0

4π f
, (6)

where the averaging width nσ determines the width of

the Gaussian (Grinsted et al., 2004). A value of nσ = 1

corresponds to the amplitude envelope of the Morlet

wavelet. The full width at half maximum of the Gaus-

sian is thus 2.4 · nσs.

The significance of the coherence was estimated us-

ing a null distribution generated by time series pairs

of white noise with unit standard deviation (Lachaux

et al., 2002). For comparison we also used pink noise

because measured LFP are often observed to have a

power law with f −1. The time series were 26 s long

and sampled with ∆t = 1/2456 s, which is characteris-

tic of many LFP recordings (Florin et al., 2013). The

statistics of the estimated coherence C( f , t) only de-

pend on the number of non-overlapping segments used

for averaging, here determined by the averaging width

nσ, and is independent of the length of the time series

(Lachaux et al., 2002). We calculated the coherences

C( f , t) between 1000 pairs of noise at 10 Hz and 20 Hz

(because we were interested beta band oscillations), for

wavelet parameters ω0 = 6−18 and averaging widths

nσ = 1−10. Subsequently we constructed the probabil-

ity density functions (p.d.f.) of the null distribution of

C( f , t) from which we determined the 1% significance

threshold C1% for the coherence.

2.3. Wavelet-Based Phase-Coherence Classification

Our novel wavelet-based method, the PCC, is based

on the quasi-static approximation (Plonsey and Hepp-

ner, 1967; Stinstra and Peters, 1998) and allows to statis-

tically separate a signal x(t) with respect to a reference

signal y(t) into three different classes. Each wavelet co-

efficient Wxy( f , t) is classified as either local incoher-

ent, local coherent or volume-conducted according to

the signals’ phase differenceΦxy and coherence Cxy. For

that matter we make the following assumptions:

1) Incoherent activity (red circles in Figure 1): An in-

coherent signal (Cxy ≤ C1%) between two electrodes is

caused by uncorrelated local activity. It is therefore a

marker for the activity in direct proximity of the elec-

trode.

2) Coherent activity (blue circles): Coherent signals

(Cxy > C1%) with a non-zero phase difference 0◦ <

Φxy < 180◦ between two electrodes are caused by cor-

related local activity. This signal indicates the local ac-

tivity at multiple, possibly synaptically connected, loca-

tions.

3) Volume-conduction (green circle): Signals that

are coherent and have a nearly zero phase difference

(Cxy > C1%, Φxy ≈ 0◦ or Φxy ≈ 180◦) are caused by

remote activity and are therefore classified as volume-

conducted. Note that these signals might also be caused

at single local site or two coherent local sites with activ-

ity of nearly zero phase difference (type II error).

These classes correspond to certain possible locations

of electrophysiological activity as shown schematically

in Figure 1. Here, the locations of electrophysiological

activity are shown as colored circles and the location of

a volume-conducted signal is denoted by a large green

circle. The gray shaded area denotes a nucleus that is

characterized by mostly coherent activity (as may be the

case for the STN in patients with PD). The electrodes’

detection radius is depicted as black dashed circles.

2.4. Power Spectral Densities of Signal Classes

The wavelet transform characterizes the spectra of the

LFP at a specific time and frequency. Together with

PCC we use this localization in time-frequency space
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Figure 1: Schematic of three LFP electrodes (black circles) close to

a nucleus (gray shaded area) with mostly coherent electrophysiologi-

cal activity (blue circles). Red circles show locations of incoherent

activity and the large green circle denotes the location of volume-

conducted activity. Black dashed circles indicate a characteristic elec-

trode detection radius with observed signals denoted by gray dashed

arrows. Using PCC we are able to separate the signal power of inco-

herent, coherent and volume-conducted activity.

in order to separately compute the power spectral den-

sities (PSD) for the local incoherent (Pinc), local coher-

ent (Pcoh) and volume-conducted (Pvc) signal. Thus, the

LFP can be analyzed in more detail than from mono- or

bipolar recordings alone and the changes in the PSD of

incoherent, coherent and volume-conducted signals can

be further associated with possible locations of electro-

physiological activity.

The PSD of the incoherent, coherent and volume-

conducted part of a signal x(t) with respect to a refer-

ence signal y(t) are defined as

Pinc( f ) =
2∆t

N

N
∑

n=1

|Winc( f , tn)|2 (7)

Pcoh( f ) =
2∆t

N

N
∑

n=1

|Wcoh( f , tn)|2 (8)

Pvc( f ) =
2∆t

N

N
∑

n=1

|Wvc( f , tn)|2 , (9)

respectively, where the wavelet coefficients Winc, Wcoh,

and Wvc are determined according to the following cri-

teria

Winc =















Wx if Cxy ≤ C1%

0 else
(10)

Wcoh =



























Wx if Cxy > C1%

and Φc<Φxy<180◦−Φc

0 else

(11)

Wvc =







































Wx if Cxy > C1%

and
(

Φxy≤Φc or

Φxy≥180◦−Φc

)

0 else

. (12)

Here Φc is the phase threshold used to define volume-

conducted signals (see Section 3.3). Note that in or-

der to relate coherences Cxy( f , t) and phase differences

Φxy( f , t) we applied the same temporal averaging to the

phases as for the coherence estimate.

In order to estimate the average power at a certain

electrode independent of the reference electrode one

may average the PSD according to

P
j

i
=

1

N − 1

∑

k, j

P
j→k

i
, (13)

where N is the number of neighboring electrodes and

P
j→k

i
denotes the power of signal class i at electrode j

with respect to reference electrode k. From expressions

(7)-(9) it follows that the total PSD of signal x(t)

P
j
tot( f ) = P

j

coh
( f ) + P

j

inc
( f ) + P

j
vc( f ) (14)

could be obtained from the sum of the separate PSDs of

the respective signal classes.

2.5. Phase Threshold of PCC

The resolution of the phase differenceΦxy and coher-

ence C is controlled by the parameters ω0 and nσ. The

larger ω0 and nσ the more accurate is the estimation.

This, however, comes at the expense of time-resolution

(cf. Eq. (6)) so that our aim was to find a reasonable

trade-off for these parameters. In order to quantify the

phase resolution properties of the wavelet transform we

computed the phase differencesΦ12 between 1000 pairs

(i = 1, 2) of non-phase-shifted synthetic time series

xi(t) = sin (2π f t) + νηi . (15)

For the determination of the phase threshold in Sec-

tion 3.3 we used a sinusoidal signal of f = 20 Hz,

white/pink noise background ηi with unit standard de-

viation (SD) and a noise level of ν. The length of the

4
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synthetic time series was T = 26 s and the sampling rate

∆t = 1/2500 s. We used pink noise because the PSD of

the observed LFP and many other electrophysiological

measurements show an approximate 1/ f scaling (He,

2014).

After wavelet transformation of the signals xi(t) we

calculated the pairwise phase difference Φxy at fre-

quency f in order to estimate the phase resolution of

our method. In order to relate the phases to the esti-

mated coherence we used the same temporal average

controlled by nσ. We computed the p.d.f. of these phase

differences Φxy as a function of the parameters ω0 and

nσ. Due to the added noise these were generally non-

zero. We then defined the phase threshold

Φc =
1

2
(Φ(F=0.1) + Φ(F=0.9)) (16)

as the mean phase, where the cumulative distribution

function

F(x) =

x
∫

−∞

p(x′)dx′ (17)

reached F = 0.1 and F = 0.9. Thus, the thresh-

old correctly classified 80% of the non-phase-shifted

signals as volume conducted. Note that the phase

threshold is a trade-off between correctly classified

volume-conducted signals and coherent signals with

small phase-shift. Therefore, phase thresholds defined

at higher p-values, e.g. F = 0.025/0.975 corresponding

to a two-tailed 5% threshold, are not generally a better

choice.

2.6. Composite Synthetic Time Series

In order to test the accuracy and performance of the

PCC we used pairs of synthetic time series with pre-

scribed phase and coherence relations. For that matter

we simulated a composition of sinusoidal signals added

to a background of pink noise according to

x(t) = A

N
∑

j=1

sin
(

φ( f j, t)
)

+ Aνη1 (18)

y(t) = A

N
∑

j=1

sin
(

φ( f j, t) + Φ j(t)
)

+ Aνη2 , (19)

where N is the number of sinusoidal signals and Φ j(t)

the (time dependent) phase difference between the sig-

nal pairs. The phase associated with time dependent fre-

quency f j is determined according to

φ( f j, t) = 2π

t
∫

0

f j(t
′)dt′ . (20)

Note that for constant frequency f j this reduces to 2π f jt.

For the accuracy test of the PCC presented in Section

3.5 we used three signals: one centered at f1 = 10 Hz

and only active during 4 s ≤ t ≤ 16 s, a second with

drifting frequency f2(t) = 20 Hz+t/T · 10 Hz, and a

third centered at f3 = 50 Hz. The corresponding phase

differences were Φ1(t) = 30◦ during 4 s ≤ t ≤ 16 s,

Φ2(t) = 0◦ for t ≤ 10 s and Φ2(t) = 30◦ for t > 10 s, and

Φ3(t) = 30◦ for t ≤ 10 s and Φ3(t) = 0◦ for t > 10 s. The

choice for these parameters reflected the expectation

that electrophysiological recordings are non-stationary

and therefore some signals may emerge only part of

the time while other signals may change their frequency

and/or phase over time (Wacker and Witte, 2013).

2.7. Patients and Intra-Operative Measurements

For this study we use a test data set that consists

of intra-operative measurements of eight patients with

PD as shown in Table 1. At the time of operation the

patients were withdrawn from their anti-parkinsonian

medication for at least 12 h. Measurements were con-

ducted during implantation of deep brain stimulation

electrodes and LFP of up to five combined micro-

and macroelectrodes were recorded with the INOMED

ISIS MER-system (INOMED Corp., Teningen, Ger-

many). The electrodes were arranged in Ben’s Gun-

configuration (A: anterior, C: central, P: posterior, L:

lateral, M: medial) with distances of 2 mm to the cen-

tral electrode. The LFP analyzed in this paper were

recorded with macroelectrodes of 1 kΩ impedance and

sampled at 2456 Hz (Florin et al., 2013). Using micro-

electrode recordings we identified the locations, where

single cell activity characteristic of the STN was ob-

served (Benazzouz et al., 2002; Yang et al., 2014).

The patients were measured before and after injec-

tion of apomorphine in order to assess the pathologi-

cal activity in the LFP (see also Levy et al. (2001) for

the effects of apomorphine). The patients were asked to

perform simple motor tasks with the contralateral arm:

a rest task, in which the patients relaxed their arm; an

isometric hold task, in which the arm was held in a 45◦

angle; and a phasic wrist movement task, in which the

patients were asked to form a relaxed fist and extend

and flex their wrist at a pace of approximately 1 Hz.

Each task was performed for 60 s. The complete set

of rest/hold/wrist tasks was performed once before apo-

morphine injection (OFF) and was repeated after the

medication effect had set in according to an experienced

movement disorders specialist (ON). Every 2 min dur-

ing the transition from OFF to ON the patients repeat-

edly performed the rest task. The ON state was identi-

fied from the improvement of the patients’ rigidity of the
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Table 1: List of patients

Patient

(Sex)

Age Disease

duration

Electrodes1 Hemi-

sphere

Tasks2 Rigidity

improvement3
Time to

ON4 [min]

1 (f) 69 18 C*P* L rfh 20 12

2 (m) 48 9 CA*M* R rfh 100 8

3 (m) 63 13 C*APL* L rfh 100 8

4 (m) 56 9 C*A*M* L r-h 80 12

5 (m) 61 6 CM*P* L rfh 50 12

6 (m) 66 18 C*AP* L rfh 30 12

7 (m) 47 4 C*MP* L rfh 100 10

8 (f) 69 13 CAM*P* L r-- 50 12

∅ 60±9 11±5 66±33 11±2

1LFP macro-electrodes: C central, A anterior, M medial, P posterior, L lateral; * denote locations with characteristic

STN single cell activity. 2Tasks: r rest, f wrist movement, h hold. 3Intra-operative percentage rigidity improve-

ment after apomorphine injection rated by experienced movement disorders specialist. 4Time until observed rigidity

improvement.

contralateral arm with respect to the baseline after elec-

trode insertion (rated in 2 min intervals). Therefore, the

improvement did not include the so-called “stun-effect”,

which can lead to an amelioration of symptoms possibly

caused by microlesions from electrode insertion (Mann

et al., 2009). Pre-operative the doses of apomorphine

were individually adjusted according to clinical testing.

All patients gave written informed consent to the im-

plantation of electrodes and the micro- and macroelec-

trode recordings. The study was approved by the local

ethics committee (study no. 08-158) and conducted in

accordance with the Declaration of Helsinki.

2.8. Relative and Absolute Changes of PSD

The relative power of each signal class i (incoherent,

coherent and volume-conducted) was estimated accord-

ing to
〈

P
j

i
( f )/P

j
tot( f )

〉

averaged in a specific frequency

band of interest. The relative change of PSD from OFF

to ON was defined as

∆ (Pi/Ptot) =

〈

Pi( f )

Ptot( f )
(ON)

〉

−

〈

Pi( f )

Ptot( f )
(OFF)

〉

. (21)

Note that for clarity we dropped the superscript j that

denotes the electrode. We used this measure to compare

signals before and after apomorphine injection because

it accounts for changes of the baseline power. Such

changes may arise because it takes several minutes to

reach the ON state. However, the measure is prone to

epiphenomenal changes as the sum of the relative dif-

ferences over all signals i for a given electrode always

amounts to zero.

In order to estimate movement-induced changes, we

computed absolute differences according to

∆Ptask
i =

〈

Ptask
i

( f ) − Prest
i

( f )

Prest
tot ( f )

〉

, (22)

where Ptask
i

is the power of signal i during the speci-

fied task (hold, wrist) and Prest
tot denotes the total power

at rest. The task (hold, wrist) followed immediately af-

ter the rest measurement and, therefore, we did not ex-

pect strong changes of baseline power and hypothesized

any changes of the signal to be caused by the movement

task. We normalized these absolute differences to the

total power at rest, so that ∆Ptask
i

denotes the percentage

change of signal class i induced by movement w.r.t. the

total power at rest.

In our analyses of the electrophysiological response

to apomorphine injection and movement we focused on

the low and high beta bands (13−20 Hz and 20−30 Hz,

respectively). We calculated the change of power for

each electrode and estimated the significance of the re-

sults using a Wilcoxon signed rank test (due to non-

normal distribution) with a Bonferroni correction for

multiple comparisons.

3. Results

We constructed synthetic time series with similar

statistics as measured LFP and determined optimal pa-

rameters for the PCC, namely a suitable choice of ω0,

nσ. We show that these parameters control the coher-

ence and phase thresholds C1% andΦc, respectively. We
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then used the PCC to analyze beta band oscillations in

LFP and estimate the LFP activity of local and remote

electrophysiological activity within the STN area of pa-

tients with PD.

3.1. Comparison of Synthetic Time Series With Mea-

sured LFP

In a first step we compared our synthetic time series

with measured LFP from within the STN of patients

with PD during rest. The aim was to generate time series

with known ground truth and similar first and second or-

der statistics to measured LFP. An important parameter

for that matter was the noise level controlled by ν, which

had to be set in relation to the power of the narrow band

signals centered at f j. In real electrophysiological mea-

surements this parameter is not known. Therefore, we

compared the PSD of synthetic time series for different

noise levels ν with the PSD of real electrophysiological

measurements in order to estimate a reasonable value

for the noise level.

Figure 2 shows five seconds of a LFP measurement

from a patient with PD within the STN (a) and a syn-

thetic time series (b) according to Equation (19) with

ν = 3, i.e. the SD of the noise was three times larger

than the amplitude of the sinusoidal signal. This cor-

responds to a signal-to-noise ration of −10 dB. It can be

seen that the synthetic time series captured some charac-

teristic dynamics of the LFP such as small steps (around

3.5 s) and intermittent spiking. In Figure 2c we com-

pared the synthetic PSD with that of three PD patients.

For a noise level of ν = 3, we observed similar relative

powers of narrow band oscillations with respect to the

broad band background for both measured LFP and syn-

thetic time series. Our synthetic time series with a noise

level of ν = 3 could thus reasonably well represent the

first and second order statistics of measured LFP.

3.2. Determination of Coherence Threshold

In order to determine a reasonable threshold for the

time and frequency dependent coherence C( f , t) we

constructed p.d.f. from pairs of white and pink noise.

We tested the influence of averaging width nσ, wavelet

parameterω0 and frequency f on the estimation. In Fig-

ure 3a we show the p.d.f. of coherences C( f , t) obtained

from 1000 pairs of pink noise at f = 10 Hz. It can be

seen that the p.d.f. strongly depends on the averaging

width. From visual inspection we found that the p.d.f.

decreased sufficiently well for nσ ≥ 4 in order to al-

low for a practical and reasonable determination of the

significance threshold C1%. In Figure 3b we show the

threshold C1% as a function of nσ for several wavelet

parameters ω0. As expected, it decreased for increasing

averaging widths and was independent of ω0 (Lachaux

et al., 2002). The threshold was further independent of

frequency and the type of noise (white or pink).

3.3. Determination of Phase Threshold

We estimated the phase resolution of the wavelet

transform with non-phase-shifted synthetic time series

generated by Equation (15). However, the observed

phase differences between these two time series were

expected to be distributed around the true phase differ-

ence ofΦ = 0◦ due to the presence of noise and the finite

resolution of the wavelet method. In Figure 4a we show

the p.d.f. of the obtained phase differences Φxy( f , t) at

f = 20 Hz for several wavelet parameters ω0. Here we

used a noise level of ν = 3 and an averaging width of

nσ = 6. It can be seen that the p.d.f. are broader (phases

less well resolved) for smaller wavelet parameters. Ac-

cordingly, the derived phase thresholds Φc were larger

for smaller wavelet parameters.

The averaging width nσ had a similar effect on the

phase threshold as the wavelet parameter. Namely, an

increase of the averaging width resulted in a better phase

resolution. This is shown in Figure 4b, where the phase

threshold (color coded) is presented as a function of

both wavelet parameter and averaging width nσ. For

averaging widths of nσ = 6 it resulted in Φc = 23.5◦

and Φc = 15.5◦ for ω0 = 6 and ω0 = 12, respectively.

Note thatΦc also depended on nσ because we used time-

averaged phases. The p.d.f. and thus the derived critical

phase thresholds Φc were independent of frequency.

3.4. Choice of Optimal Parameters for PCC

The choice of optimal parameters crucially depends

on the aim of the analysis. Here we focused on the

analysis of LFP of patients with PD, where the beta

band (13−30 Hz) plays an important role (Hammond

et al., 2007). The beta band activity is highly dynamic

and varies on scales of hundreds of milliseconds (Lit-

tle et al., 2012). This poses a challenge on our method

as the time resolution of the PCC, estimated by σ in

Eq. (6), was generally larger than 200 ms. The time res-

olution as a function of ω0 and nσ is shown in Figure 5

for the low beta band ( f = 13 Hz).

In order to determine optimal parameters we looked

for a balanced choice between time and phase resolu-

tion (Figures 4b and 5, respectively). We found that

ω0 = 12 and nσ = 6 was a reasonable choice for the

further analyses in the beta band as it allowed a high

phase resolution (Φc = 15.5◦) with a temporal resolu-

tion of σ = 0.37−0.88 s. Also, the wavelet parameter
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Figure 2: Time series of measured LFP of patient 5 within the STN (a) and synthetic time series (b) with a noise level of ν = 3 for comparison.

Amplitude and visible dynamics could be well replicated. b: PSD of LFP of three PD patients compared to the PSD of synthetic data showed

similar relative power of narrow band peaks with respect to the broad band background.
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Figure 3: a: P.d.f. of coherences C( f , t) between 1000 pairs of pink noise at f = 10 Hz as a function of averaging width nσ. A sufficient decrease

of the p.d.f. was observed for widths of nσ ≥ 4. b: coherence threshold at a 1% level determined from the p.d.f., the threshold was independent of

wavelet parameter ω0.

was large enough to guarantee a high frequency res-

olution (∆ f / f (ω0=12) < 1.14), which was important

to discriminate between the low (13−20 Hz) and high

(20−30 Hz) beta band. The coherence estimate for this

choice of parameters resulted from a temporal averaging

of more than 2.4 · nσs f ≈ 27 periods of the frequency

under consideration with a threshold of C1% = 0.41.

3.5. Accuracy of the PCC

In order to test how much power the PCC assigned

to each signal class (incoherent, coherent and volume-

conducted) we used 500 pairs of synthetic time series

according to Equation (15) with a signal centered at

20 Hz and applied variable phase shifts 0◦ ≤ Φ12 ≤ 40◦

between the two time series. The result is shown in Fig-

ure 6, where we plot the relative power of the coherent

(Pcoh/Ptot) and volume-conducted signal (Pvc/Ptot). For

no phase shift our method assigned 77 ± 14% of the to-

tal power to the volume-conducted signal. For a phase

shift of Φ = 25◦ we found that 74 ± 17% of the signal

was assigned correctly to the coherent signal increasing

to 94 ± 7% for a phase shift of 40◦. For large phase

shifts the local coherent signal could thus be identified

more accurately than the volume-conducted signal. On

average only 2% of the power was incorrectly assigned

to the incoherent class.

As a proof of concept we applied the PCC to non-

stationary time series with temporal variations of am-

plitude, frequency and phase. For that matter we

used composite synthetic time series as defined in Sec-

tion 2.6. Figure 7a shows the classification of the

wavelet coefficients in time-frequency space for a sin-
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Figure 5: Time resolution σ as a function of ω0 and nσ for low beta

band frequency f = 13 Hz. Blueish colors denote resolution of less

than 1 s.

gle run. The signal classes are color coded and the

black line denotes the cone of influence. It can be

seen that PCC correctly identified coherent signals at

10 Hz, 20−30 Hz and 50 Hz before an incoherent back-

ground. The phases of the coherent signals could be

well resolved so that the PCC correctly distinguished

between local coherent and volume-conducted signals.

Only very few coefficients were falsely classified.

The corresponding PSD averaged over 1000 trials

are shown in Figure 7b. The solid lines denote the

means and the colored areas denote the SD of the en-

semble. The black dashed lines denote the power of

the signals without additional noise and therefore reflect

the best estimate. The PCC reproduced the best esti-

mate generally within error bars except for the coherent

power at 50 Hz, which was slightly overestimated. The

Resolution of PCC for Φc = 15.5◦ and f = 20Hz

0 5 10 15 20 25 30 35 40
Φ12
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Figure 6: Resolution analysis of PCC for varying phase shifts ∆Φwith

a fixed phase threshold of ∆Φc = 15.5◦. The larger the phase shift the

more power was assigned to the local coherent signal. At zero phase

shift there was still about 20% power in the local coherent signal due

to noise. Colored areas indicate SD from 500 trials.

SD were small compared to the mean with on average

SD/mean = 20% for the data visible in the right panel

of Figure 7 (the ratio naturally increases when lower

powers are also considered because the mean of PCC

signals approaches zero for some frequencies).

3.6. Case Study: Detection of Local Tremor Clusters

Here we apply the PCC to the LFP of patient 3 dur-

ing a tremor episode at rest and off medication. The in-

coherent, coherent and volume-conducted power of the

LFP were averaged according to Equation (13). In Fig-

ure 8a we show results of a case study for channel A

(w.r.t. reference electrode P). In order to show the tem-

poral dynamics of the tremor we present the LFP time

series in gray and the power at 5 Hz in black. It can be
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Figure 7: PCC for synthetic time series with signals of varying amplitude, frequency and phase. a: result of a single trial in time-frequency domain,

b: ensemble averaged PSD (mean±SD). PCC could well classify the signals at 10 Hz, 25−30 Hz for t > 10 s and 50 Hz for t ≤ 10 s as local coherent,

and the signals at 20−25 Hz for t ≤ 10 s and 50 Hz for t > 10 s as volume-conducted. The dashed black line in the right panel denotes the true

signal power, which PCC generally reproduced within error bars.

seen that the tremor power increased around t = 10 s af-

ter measurement onset. From this time on - as shown in

Figure 8b - the PCC classified the tremor throughout as

local coherent. The power of the local coherent signal

is visible in the PSD in Figure 8c. It was the dominant

signal in the tremor peak at 5 Hz, which confirmed the

presence of multiple local tremor clusters. Interestingly

the power at double tremor frequency was mostly inco-

herent. This may indicate differing wave forms at the

two measurement sites as the waveform is determined

by higher harmonics in frequency space.

3.7. Group Analysis: Relative Power of Signal Classes

We analyzed the power spectral densities of LFP with

characteristic STN activity for the patients presented in

Table 1. On average the intervals suitable for analysis

after artifact removal were of length 42± 19 s, 49± 11 s

and 49± 16 s, for rest, hold and wrist, respectively. Due

to incorrect performance of the active task, we had to

exclude some trials from the analysis, which resulted in

data sets of 8 patients for rest, 7 patients for hold and

6 patients for the wrist movement task. For each OFF

and ON measurement this led to a total number of 17,

15 and 12 monopolar recordings for rest, hold and wrist

movement, respectively.

In a first step to analyze the signal classes obtained

from PCC we calculated their relative contribution to

the total power. In Figure 9 we show the mean rela-

tive power during rest and off medication with corre-

sponding standard error of the mean (SEM) denoted by

shaded areas. The other tasks (hold, wrist) resulted in

similar distributions of power. The relative contribu-
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Figure 9: Relative PSD of local incoherent, coherent and volume-

conducted signals during rest off medication for eight PD patients

(mean ± SEM). The incoherent signal increases with higher frequency

( f > 60 Hz) reflecting more local activity. The volume-conducted sig-

nal is largest up to about 40 Hz. The peak at 50 Hz is caused by line

noise.

tion of the incoherent signal increased strongly from

frequencies f < 40 Hz, where it contributed 10−30%

of the total power, to frequencies f > 70 Hz, where it

contributed up to 90%. The local coherent power was

largest at frequencies below 15 Hz, where it contributed

about 30% of the power, and remained at approximately

20% in the beta and low gamma band ( f ≤ 40 Hz). At

frequencies f > 60 Hz it contributed less than 10% to

the total signal. The volume-conducted signal was gen-

erally the largest fraction for frequencies below 60 Hz

and peaked in the beta band (13−30 Hz), where it con-

tributed about 70% to the total signal. For frequencies
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Figure 8: Case study of patient 3 during tremor episode at rest and off medication. a: LFP A (gray) and PSD at tremor frequency ( f = 5 Hz, black).

b: PCC in time-frequency domain with color coded signal classes. c: Time-averaged PSD of incoherent, coherent and volume-conducted power.

The tremor started at around t = 10 s at 5 Hz and consisted of coherent power, which indicates multiple sites of local activity.

f > 60 Hz its contribution dropped to less than 10%. At

even higher frequencies f > 100 Hz the percentage con-

tributions stayed approximately the same as those ob-

served at 80 Hz with 90% incoherent and 5% coherent

and volume-conducted power each. Note that the rela-

tive power at 50 Hz was distorted by power line noise

reflected in an increased volume-conducted signal and

decreased incoherent power.

3.8. Electrophysiological Response to Apomorphine

Injection

The relative change of spectral power during rest in-

duced by apomorphine injection was analyzed for all

locations with characteristic STN single cell activity. In

the left and right panel of Figure 10 we show the rel-

ative changes according to Equation (21) for the low

and high beta band, respectively. Asterisks denote 5%

significance before (*) and after (**) Bonferroni cor-

rection for six comparisons. We estimated the signifi-

cance with a nonparametric Wilcoxon signed rank test.

PCC signals showed that the share of incoherent power

to the total signal significantly decreased from OFF to

ON (p = 0.0034, test statistic W = 4, number of

samples N = 17) in the low beta band (although not

very strongly for many electrodes) while the volume-

conducted part significantly (p = 0.031, W = 31,

N = 17) increased. Opposing trends were observed in

the high beta band although not significant.
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Figure 10: Relative change of spectral power ∆ (Pi/Ptot) (dots and

crosses) from OFF to ON for all electrodes with STN activity averaged

in low beta (β1 = 13−20 Hz, left) and high beta (β2 = 20−30 Hz,

right). Asterisks (*) and (**) denote 5% significance before and after

Bonferroni-correction for six comparisons, respectively.

3.9. Changes Induced by Motor Tasks

The absolute changes in high beta band induced by

a holding task and wrist movement are shown in the

top and bottom panel of Figure 11, respectively. The
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Figure 11: Absolute changes induced by movement (top panel: hold,

bottom panel: wrist movement) in the high beta band (20−30 Hz) with

respect to rest off and on medication (dots and crosses) normalized by

total power at rest. Asterisks (*) and (**) denote 5% significance be-

fore and after Bonferroni-correction for twelve comparisons, respec-

tively.

local coherent signal changed significantly in power

on medication. It was responsible for an average in-

crease of 3.1% of total power induced by the hold task

(p = 0.022, W = 20, N = 15) and an average de-

crease of 5.3% of total power induced by wrist move-

ment (p = 0.0034, W = 4, N = 12), where the lat-

ter remained significant after Bonferroni correction for

twelve comparisons (three classes OFF and ON in low

and high beta band). The same analysis of changes in

the low beta band yielded no significant results. Using

relative changes of power instead of absolute changes

led to similar results: the coherent signal increased

about 1.7% during the hold task although not signifi-

cantly (p = 0.14, W = 33, N = 15) and decreased

significantly (before Bonferroni correction) about 3.9%

during wrist movement (p = 0.027, W = 11, N = 12).

4. Discussion

We presented the phase-coherence classification, a

novel wavelet-based method to separate LFP into local

incoherent, local coherent and volume-conducted sig-

nals based on the pairwise phase and coherence char-

acteristics. We applied this new technique to synthetic

time series and LFP from patients with PD. We showed

that the PCC could well capture non-stationary fea-

tures and that the signal classes for PD patients were

differently modulated by medication and movement:

incoherent/volume-conducted signals significantly de-

creased/increased in the low beta band after apomor-

phine injection, while coherent signals showed signif-

icant movement-induced changes on medication. These

results suggest that the signal classes reflect physiolog-

ically and functionally different neuronal network ac-

tivity. The classification of (in)coherent and volume-

conducted signals may thus provide useful informa-

tion to distinguish between movement-induced and

medication-induced (OFF/ON) LFP changes.

4.1. Methodological Considerations

The synthetic time series used in this study were con-

structed to reflect the statistical characteristics of LFP

measurements. This has been done phenomenologically

by visual comparison of time series and power spectra.

Higher order statistics of measured LFP such as skew-

ness and kurtosis were found to be highly variable be-

tween measurements. However, on average these statis-

tics were similar to those of synthetic time series. In

order to imitate observed narrow band peaks in the PSD

of measured LFP we used sinusoidal signals with time-

varying amplitude, frequency and phase.

We carefully tested the phase-resolution of the

wavelet transform in order to determine a suitable phase

threshold Φc for the PCC. Note that the PCC is not

able to discriminate between remote electrophysiolog-

ical activity (volume-conducted) and local activity with

a phase difference smaller than this threshold. This type

II error is inherent to the PCC and was considered in the

interpretation of our results (see Section 4.2). However,

compared to the imaginary part of the coherency (Nolte

et al., 2004), the PCC explicitly considers phase infor-

mation and can thus resolve even minimally significant

coherent signals. The threshold was defined so that 80%

of the observed phases from a non-phase-shifted signal

are correctly classified. The threshold was shown to de-

pend on the wavelet parameter ω0 and averaging width

nσ, which need to be chosen according to the individual

scientific question at hand. The choice also depends on

the signal-to-noise ratio of the data. In the presence of

strong noise nσ needs to be larger in order to estimate

the coherence reasonably well (Lachaux et al., 2002).

We tested how well the PCC performed for non-

stationary data using composite signals of varying am-

plitude, frequency and phase. We quantified how much

power was assigned to each class and showed that PCC
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could well reproduce the true signals even in the pres-

ence of noise. This is of great importance in the analysis

of electrophysiological data and makes the PCC suitable

to detect non-stationary phenomena (see Gross et al.,

2000; Bokil et al., 2007; Bigot et al., 2011; Wacker and

Witte, 2013, for other methods that take non-stationarity

into account).

The PCC assigns exactly one class to every coeffi-

cient in time-frequency space. This means that the PCC

only classifies the signal that is strongest at that time and

frequency while weaker signals may remain undetected

in the background. An example of such behavior was

presented in the right panel of Figure 7. Here the in-

coherent signal, which was present at all times and fre-

quencies, decreased to zero at 50 Hz because the coher-

ent and volume-conducted signals were stronger. This

winner-takes-it-all characteristic is an important limita-

tion of the PCC. However, the influence of this charac-

teristic on non-stationary signals can be decreased by a

high time resolution.

The main advantage of the PCC over conventional

monopolar or bipolar recordings is the separate anal-

ysis of local incoherent, local coherent and volume-

conducted signals, which may represent functionally

separated network activity. The different signal classes

can further be associated with possible locations of elec-

trophysiological activity. The possibility to analyze the

volume-conducted signal separately may give rise to

further insights about remote activity or local activity

with nearly no phase difference. The PCC thus al-

lows for a better spatial and functional interpretation of

monopolar signals.

Finally, we note that the PCC scheme should hold for

any signal generated from the integrated activity of a

large population of neurons, i.e. not only LFP but also

EEG and MEG, as long as the quasi-static approxima-

tion holds. In EEG and MEG analyses the PCC may

be used in order to minimize spatial leakage caused by

a limited spatial resolution. Compared to other mea-

sures (Nolte et al., 2004; Hipp et al., 2012; Colclough

et al., 2015) the PCC preserves the volume-conducted

signal and explicitly takes the phase information into

account. Further it can be adjusted to the problem at

hand through the parameters ω0 and nσ. A leakage free

functional connectivity measure, e.g., can be estimated

by averaging coherences associated with phasesΦ > Φc

to eliminate volume-conduction effects.

4.2. Clinical and Neurophysiological Discussion

In a case study of a patient at rest during a tremor

episode we showed that the tremor signal at 5 Hz con-

sisted of local coherent power. This confirmed the ex-

istence of local tremor clusters in the STN area as has

been estimated from coherence analysis by Reck et al.

(2010). Interestingly, the activity at double tremor fre-

quency was mostly incoherent. The fact that we ob-

served incoherent power at double frequency for many

other electrode combinations and their respective re-

verse combinations (X→Y and Y→X) may be ex-

plained by different waveforms at single tremor fre-

quency at both electrodes. This would lead to differ-

ent harmonics and thus to non-significant coherence at

double tremor frequency.

We chose the parameters in our study of the test data

set in order to allow for a detailed analysis of the low

and high beta band activity. In the frequency range

of 13−30 Hz this led to a temporal resolution of σ =

0.38−0.88 s. This was somewhat larger than the typical

duration of beta bursts, which are on the order of hun-

dreds of milliseconds (Courtemanche et al., 2003; An-

droulidakis et al., 2006; Little and Brown, 2012). Thus,

our coherence estimates included the variability of in-

stantaneous beta band activity caused by these bursts.

Using PCC we were able to estimate the average

relative power of the signal classes in the patient co-

hort. The beta band activity within the STN consisted

mostly (∼90%) of coherent signals generated by local

and possible remote activity. Signals at high frequen-

cies ( f>40 Hz) mainly showed local incoherent activ-

ity. It is well known that the spatial reach of LFP is

frequency-dependent (Stinstra and Peters, 1998; Lindén

et al., 2010; Buzsáki et al., 2012; Leski et al., 2013),

however, this is to our knowledge the first time that the

amount of local and remote activity within the STN was

quantified as a function of frequency.

The decrease of low beta band power from OFF

to ON was partly caused by local incoherent activity

that showed a significant decrease during rest. At the

same time the volume-conducted signal increased sig-

nificantly, however, only before Bonferroni correction.

This might indicate that the local activity within the

STN decreased thus rendering the nucleus less opaque

to remote activity. However, in the high beta band this

was not the case and volume-conducted signals tended

to decrease rather than increase. Unfortunately, it re-

mained unclear where exactly the activity of these non-

phase-shifted (volume-conducted) signals stems from.

According to our discussion of the type II error in Sec-

tion 4.1, there are two possible interpretations of the

volume-conducted signal: 1) it reflects remote activ-

ity external to the STN or 2) it reflects local in-phase

activity with phase differences of less than 15.5◦ be-

tween electrodes. In case of pathological synchroniza-

tion within the STN (Brown, 2007; Hammond et al.,
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2007; Kühn et al., 2009) latter interpretation may be

correct, i.e. large parts of the STN encompassing sev-

eral electrodes oscillated in-phase.

For the local coherent signal movement-induced

changes in the high beta band for both hold and wrist

movement were in agreement with previous observa-

tions made from bipolar measurements, namely a de-

crease during phasic movement (Cassidy et al., 2002;

Levy et al., 2002; Kühn et al., 2004; Alegre et al.,

2005) and an increase during isometric contraction

(Baker et al., 1997; Jenkinson and Brown, 2011). The

movement-induced changes of the local coherent signal

were only observed on medication and may thus reflect

healthy beta band modulation in response to motor func-

tion. This indicates that coherent signals might be gen-

erated by a functionally separated network that could

only be (de)synchronized in the physiological state.

In tests with bipolar recordings that we conducted for

comparison (not shown) the movement-induced change

of power in the high beta band induced by wrist move-

ment was slightly larger offmedication than on medica-

tion although not significant. This is generally in agree-

ment with observations by Cassidy et al. (2002) and Pri-

ori et al. (2002) who found stronger beta band desyn-

chronization off medication. However, in trial based

analyses Doyle et al. (2005) observed larger event-

related desynchronization (ERD) of beta band activ-

ity on medication, while Alegre et al. (2005) observed

the same ERD off and on medication. These contra-

dicting observations might be explained by the differ-

ent modulation of incoherent and coherent power: dur-

ing wrist movement the incoherent signal decreased

more strongly off medication (∆P = −2.7% OFF vs.

∆P = 0.5% ON) while the local coherent signal de-

creased more strongly on medication (∆P = 1.0% OFF

vs. ∆P = −5.3% ON). As the bipolar recording is not

able to discriminate between those two signals, this may

lead to varying results depending on the baseline power

of each signal class.

Our results further supported previous observa-

tions that the low beta band is more susceptible to

medication-induced changes while the high beta band

better reflects movement-induced changes (Priori et al.,

2004; Foffani et al., 2005). The PCC added useful in-

formation to this phenomenon by attributing the respec-

tive changes to different signal classes, namely the inco-

herent power to medication-induced and local coherent

power to movement-induced changes.
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Kühn, A.A., Williams, D., Kupsch, A., Limousin, P., Hariz,

M., Schneider, G.H., Yarrow, K., Brown, P., 2004. Event-

related beta desynchronization in human subthalamic nucleus

correlates with motor performance. Brain 127, 735–746.

doi:10.1093/brain/awh106.

Lachaux, J.P., Lutz, A., Rudrauf, D., Cosmelli, D., Le Van Quyen,

M., Martinerie, J., Varela, F., 2002. Estimating the time-course

of coherence between single-trial brain signals: an introduc-

tion to wavelet coherence. Clin. Neurophysiol. 32, 157–174.

doi:10.1016/S0987-7053(02)00301-5.

Lempka, S.F., McIntyre, C.C., 2013. Theoretical analysis of the local

field potential in deep brain stimulation applications. PLoS One 8,

e59839. doi:10.1371/journal.pone.0059839.

Leski, S., Lindén, H., Tetzlaff, T., Pettersen, K.H., Einevoll, G.T.,

2013. Frequency Dependence of Signal Power and Spatial Reach

of the Local Field Potential. PLoS Comput. Biol. 9, e1003137.

doi:10.1371/journal.pcbi.1003137.

Levy, R., Ashby, P., Hutchison, W.D., Lang, A.E., Lozano, A.M.,

Dostrovsky, J.O., 2002. Dependence of subthalamic nucleus oscil-

lations on movement and dopamine in Parkinson’s disease. Brain

125, 1196–1209. doi:10.1093/brain/awf128.

Levy, R., Dostrovsky, J.O., Lang, A.E., Sime, E., Hutchison, W.D.,

Lozano, A.M., 2001. Effects of apomorphine on subthalamic nu-

cleus and globus pallidus internus neurons in patients with Parkin-

son’s disease. J. Neurophysiol. 86, 249–260.

Lindén, H., Pettersen, K.H., Einevoll, G.T., 2010. Intrinsic dendritic

filtering gives low-pass power spectra of local field potentials. J.

Comput. Neurosci. 29, 423–444. doi:10.1007/s10827-010-0245-4.

Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Dies-

mann, M., Einevoll, G.T., 2011. Modeling the spatial reach of the

LFP. Neuron 72, 859–872. doi:10.1016/j.neuron.2011.11.006.

Little, S., Brown, P., 2012. What brain signals are suitable for

feedback control of deep brain stimulation in Parkinson’s dis-

ease? Ann. N. Y. Acad. Sci. 1265, 9–24. doi:10.1111/j.1749-

6632.2012.06650.x.

Little, S., Pogosyan, A., Kuhn, A.A., Brown, P., 2012.

Beta band stability over time correlates with Parkinso-

nian rigidity and bradykinesia. Exp. Neurol. 236, 383–8.

doi:10.1016/j.expneurol.2012.04.024.

Mann, J.M., Foote, K.D., Garvan, C.W., Fernandez, H.H., Ja-

cobson, C.E., Rodriguez, R.L., Haq, I.U., Siddiqui, M.S.,

Malaty, I.A., Morishita, T., Hass, C.J., Okun, M.S., 2009.

Brain penetration effects of microelectrodes and DBS leads in

STN or GPi. J. Neurol. Neurosurg. Psychiatry 80, 794–798.

doi:10.1136/jnnp.2008.159558.

Meyers, S.D., Kelly, B.G., O’Brien, J.J., 1993. An intro-

duction to wavelet analysis in oceanography and meteorol-

ogy: With application to the dispersion of Yanai waves.

Mon. Weather Rev. 121, 2858–2866. doi:10.1175/1520-

0493(1993)121<2858:AITWAI>2.0.CO;2.

Mitzdorf, U., 1985. Current source-density method and application

in cat cerebral cortex: Investigation of evoked potentials and EEG

phenomena. Physiol. Rev. 65, 37–100.

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M.,

2004. Identifying true brain interaction from EEG data using the

imaginary part of coherency. Clin. Neurophysiol. 115, 2292–307.

doi:10.1016/j.clinph.2004.04.029.

Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker,

D.M., Silberstein, R.B., Cadusch, P.J., 1997. EEG coherency

I: Statistics, reference electrode, volume conduction, Laplacians,

cortical imaging, and interpretation at multiple scales. Electroen-

cephalogr. Clin. Neurophysiol. 103, 499–515. doi:10.1016/S0013-

4694(97)00066-7.

Plonsey, R., Heppner, D.B., 1967. Considerations of quasi-stationarity

in electrophysiological systems. Bull. Math. Biophys. 29, 657–

664. doi:10.1007/BF02476917.

Priori, A., Foffani, G., Pesenti, A., Bianchi, A., Chiesa, V., Baselli,

G., Caputo, E., Tamma, F., Rampini, P., Egidi, M., Locatelli, M.,

Barbieri, S., Scarlato, G., 2002. Movement-related modulation

of neural activity in human basal ganglia and its L-DOPA de-

pendency: Recordings from deep brain stimulation electrodes in

patients with Parkinson’s disease. Neurol. Sci. 23, S101–S102.

doi:10.1007/s100720200089.

Priori, A., Foffani, G., Pesenti, A., Tamma, F., Bianchi, A.M.,

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2016. ; https://doi.org/10.1101/085605doi: bioRxiv preprint 

https://doi.org/10.1101/085605
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pellegrini, M., Locatelli, M., Moxon, K.A., Villani, R.M.,

2004. Rhythm-specific pharmacological modulation of subthala-

mic activity in Parkinson’s disease. Exp. Neurol. 189, 369–79.

doi:10.1016/j.expneurol.2004.06.001.

Reck, C., Himmel, M., Florin, E., Maarouf, M., Sturm, V., Wojtecki,

L., Schnitzler, A., Fink, G.R., Timmermann, L., 2010. Coherence

analysis of local field potentials in the subthalamic nucleus: differ-

ences in parkinsonian rest and postural tremor. Eur. J. Neurosci.

32, 1202–14. doi:10.1111/j.1460-9568.2010.07362.x.

Schnitzler, A., Gross, J., 2005. Normal and pathological oscilla-

tory communication in the brain. Nat. Rev. Neurosci. 6, 285–296.

doi:10.1038/nrn1650.

Stinstra, J.G., Peters, M.J., 1998. The volume conductor may act

as a temporal filter on the ECG and EEG. Med. & Biol. Eng. &

Comput. 36, 711–716. doi:10.1007/BF02518873.

Torrence, C., Compo, G.P., 1998. A practical guide to wavelet anal-

ysis. Bull. Am. Meteorol. Soc. 79, 61–78. doi:10.1175/1520-

0477(1998)079<0061:APGTWA>2.0.CO;2.

Wacker, M., Witte, H., 2013. Time-frequency techniques in biomedi-

cal signal analysis: A tutorial review of similarities and differences.

Methods Inf. Med. 52, 279–296. doi:10.3414/ME12-01-0083.

Yang, A.I., Vanegas, X.N., Lungu, X.C., Zaghloul, K.A., 2014. Beta-

coupled high-frequency activity and beta-locked neuronal spiking

in the subthalamic nucleus of Parkinson’s disease. J. Neurosci. 34,

12816–12827. doi:10.1523/JNEUROSCI.1895-14.2014.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 4, 2016. ; https://doi.org/10.1101/085605doi: bioRxiv preprint 

https://doi.org/10.1101/085605
http://creativecommons.org/licenses/by-nc-nd/4.0/

