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Abstract
Global warming is exposing plants to more frequent heat stress, with consequent crop yield reduction.

Organisms exposed to large temperature increases protect themselves typically with a heat shock response
(HSR). To study the HSR in photosynthetic organisms we present here a data driven mathematical model
describing the dynamics of the HSR in the model organism Chlamydomonas reinhartii. Temperature
variations are sensed by the accumulation of unfolded proteins, which activates the synthesis of heat
shock proteins (HSP) mediated by the heat shock transcription factor HSF1. Our dynamical model
employs a system of ordinary differential equations mostly based on mass-action kinetics to study the
time evolution of the involved species. The signalling network is inferred from data in the literature,
and the multiple experimental data-sets available are used to calibrate the model, which allows to
reproduce their qualitative behaviour. With this model we show the ability of the system to adapt
to temperatures higher than usual during heat shocks longer than three hours by shifting to a new
steady state. We study how the steady state concentrations depend on the temperature at which the
steady state is reached. We systematically investigate how the accumulation of HSPs depends on the
combination of temperature and duration of the heat shock. We finally investigate the system response
to a smooth variation in temperature simulating a hot day.
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1 Introduction1

As a consequence of global warming, plants are more2

and more subject to heat stress, a condition that can3

severely reduce crop yield [Lobell et al., 2011,Deryng4

et al., 2014]. Understanding how plants react to5

such a stress is of crucial importance in developing6

metabolic engineering approaches or treatments to7

improve crop plant resistance to heat. In general8

when exposed to increased temperature organisms9

react with a heat shock response (HSR), which to a10

certain degree allows adaptation to the new condi-11

tions. The proteins involved in the HSR are highly12

conserved among organisms ranging from bacteria 1

to mammals [Boorstein et al., 1994,Gupta, 1995]. 2

Moreover, because temperature affects the cell as a 3

whole, HSRs cover a wide range of cellular activities 4

localised in all intracellular compartments [Vergh- 5

esea et al., 2012,Velichko et al., 2013]. Depending 6

on organism and cell type, HSRs are activated by 7

a number of different sensing mechanisms [Richter 8

et al., 2010]. 9

The green microalgae Chlamydomonas reinhardtii 10

is a widely studied, easy to grow photosynthetic 11

model organism, for which techniques have been 12
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established to modify all three (nuclear, mitochon-1

drial and plastidial) genomes [Rochaix, 1995,Duby2

and Matagne, 1999]. It thus represents an ideal can-3

didate to study the mechanisms involved in the HSR4

of plants. In addition, C. reinhardtii is also interest-5

ing on its own for possible industrial applications,6

such as the production of biopharmaceuticals, biofu-7

els and hydrogen. Different aspects of the HSRs in8

C. reinhardtii have been experimentally investigated,9

as reviewed e.g. in [Schroda et al., 2015].10

Both in the land plant Arabidopsis11

thaliana [Kurepa et al., 2003, Sugio et al., 2009]12

and in the green alga C. reinhardtii [Schmollinger13

et al., 2013] the heat shock response is generally14

triggered by a heat-induced accumulation of mis-15

or unfolded proteins and leads, through a series of16

sensor and signalling events, to the activation of a17

heat shock transcription factor (HSF). The HSF in18

turn promotes the expression of heat shock protein19

(HSP) genes, and subsequently of the synthesis20

of proteins, some of which act as chaperones21

responsible to refold the degenerated proteins back22

to their correct three-dimensional structure [Craig23

et al., 1993]. The precise temperature at which24

the denatured proteins accumulate depends25

on the typical temperature range in which an26

organisms grows [Lindquist and Craig, 1988]. For27

C. reinhardtii it has been shown that a temperature28

of T0 = 36◦C is sufficient to detect a heat shock29

response [Kobayashi et al., 2014].30

The considerable experimental effort performed31

until now to study the HSR is in stark contrast to32

the rather limited complementary theoretical ac-33

tivities aiming at developing mathematical models34

of the HSR. However, mathematical models are35

increasingly recognised as a powerful tool to inves-36

tigate dynamic biological systems (as reviewed e.g.37

in [Pfau et al., 2011]). The construction of a mathe-38

matical model itself often provides a high degree of39

insight, because it forces the researchers to focus on40

the essential features of the system under investiga-41

tion and thus to identify the key components which42

are responsible for the generation of characteristic43

system properties. It thus allows to discriminate44

between important and less important and provides45

a powerful technique to verify whether our general46

understanding of a system is basically correct and47

whether the interacting molecular mechanisms that48

have been identified experimentally are sufficient49

to reproduce and thus explain observed responses.50

The importance of mathematical modelling in un- 1

derstanding and unveiling the functioning of plant 2

signalling processes has recently been highlighted 3

in [Chew et al., 2014]. 4

One of the earliest theoretical studies of the eu- 5

karyotic HSR took mainly the influence of mis- 6

folded proteins into account and did not include 7

a detailed transcriptional regulation [Peper et al., 8

1998]. Modelling of the transcriptional regulation 9

was firstly used to study procaryotic systems, in 10

particular E. coli, where the transcription factor 11

playing the role of HSF is called σ32. This was done 12

in [Srivastava et al., 2001] employing a stochastic 13

approach, and in [Kurata et al., 2001] with a deter- 14

ministic one. More recently, [Rieger et al., 2005] pro- 15

posed a mathematical model to describe the HSR in 16

HeLa cells with a detailed model for nuclear events. 17

While that model is highly useful to gain a principle 18

understanding of the interacting molecular mech- 19

anisms, it uses dimensionless variables, where the 20

dynamics are normalised by the maximal response, 21

which makes possible only relative predictions, and 22

not absolute ones. A model of the thermal adap- 23

tation in Candida albicans, a fungal pathogen of 24

humans, is presented in [Leach et al., 2012b]. That 25

model mainly focuses on the auto-regulatory mecha- 26

nism involving HSF1 and HSP90 (see next section), 27

but it does not include a detailed transcriptional reg- 28

ulation. The role of HSP90 and its interactions with 29

HSF1 are further described in [Leach et al., 2012a]. 30

The modelling of the multi-scale heat stress response 31

in the budding yeast Saccharomyces cerevisiae is 32

discussed in [Fonseca et al., 2012]. Recently, [Sivéry 33

et al., 2015] focused on the role of HSF1 during the 34

HSR in mammals. 35

As argued in [Matuszyńska and Ebenhöh, 2015], 36

every mathematical model is usually constructed 37

with a particular purpose and research questions 38

it should help to answer. A model serves as an in 39

silico workbench that can be used to simulate the 40

behaviour of the modelled system in very diverse 41

situations. This allows exploring a variety of sce- 42

narios potentially difficult to test, or not yet tested, 43

experimentally. Such simulations often allow the 44

proposition of new hypothesis on the functioning 45

of the biological system under investigation, and to 46

suggest which new experiments could be performed 47

to test these hypotheses. Thus, models provide a 48

theoretical framework to complement the experi- 49

mental effort. 50
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In this work we build a data driven mathemati-1

cal model for the HSR in the green algae Chlamy-2

domonas reinhartii with the main purpose to i) ver-3

ify whether our understanding of the mechanisms4

of HSR are not only qualitatively but also quantita-5

tively (in relative, not absolute, terms) consistent6

with experimental observations, and to ii) provide a7

generic theoretical framework, by which new predic-8

tions can be made (such as responses to chemical9

treatments or genetic modifications) and thus novel10

hypotheses can be generated. In Section 2 we intro-11

duce the signalling network used to implement the12

mathematical description of the HSR and we discuss13

the typical behaviour of the model. In Section 314

we compare simulation results with experimental15

data from the literature, focussing on experiments16

in which specific inhibitors were applied and on17

“double heat shock” experiments, in which a second18

heat shock was applied after a certain relaxation19

period. We discuss in particular how the results are20

used for model calibration. In Section 4 we employ21

the calibrated model to simulate interesting condi-22

tions that have not yet been tested experimentally,23

and we thus demonstrate the predictive power of24

the model and its usefulness in providing a funda-25

mental understanding of the systems dynamics and26

its emergent properties. In Section 5 we discuss how27

our model could possibly be extended to include28

the activation of the HSR by a shift from dark to29

light of the cells, and we conclude.30

2 Model development31

Heat shock proteins are molecular chaperones tran-32

siently expressed in response to heat stress to main-33

tain protein homeostasis, and most families are con-34

served among different species [Richter et al., 2010].35

There exist a number of different heat shock protein36

families, which are typically named HSPw with the37

integer number w indicating the molecular weight of38

the protein. C. reinhardtii can synthesize different39

families of heat shock proteins (see e.g. [Schroda,40

2004]), of which the families HSP70 and HSP90 are41

of the main interest in the current work. The HSP7042

family comprises cytoplasmic HSP70A [Müller et al.,43

1992], plastidic HSP70B [Drzymalla et al., 1996]44

and mitochondrial HSP70C, while the HSP90 fam-45

ily comprises cytosolic HSP90A, HSP90B in the46

Endoplasmic Reticulum and HSP90C in the chloro-47

plast [Willmund and Schroda, 2005]. 1

We develop our mathematical model with the 2

goal to provide a generic description of the heat 3

shock response. Therefore, we decide to simplify 4

the model by including only one generic heat shock 5

protein (indicated by HP), which can represent any 6

HSP present in C. reinhardtii. The simulation re- 7

sults are consequently compared with data relative 8

to various of the above mentioned HSPs. In C. rein- 9

hardtii the only HSF (among the two encoded in 10

the genome) known to be activated by heat shock is 11

HSF1, characterized in [Schulz-Raffelt et al., 2007]. 12

Therefore, HSF1 corresponds to the HSF described 13

in our model. In land plants at least 18 different 14

HSF are present [Scharf et al., 2012], which is an 15

example of the fact that in general gene families 16

in C. reinhardtii are smaller than in land plants 17

(see for instance [Schroda, 2004] for another such 18

example concerning chaperones). This simplicity 19

further supports the choice of C. reinhardtii as a 20

suitable model organism to study the heat shock 21

response in plants. 22

2.1 Modelling the signalling network 23

From the experiments performed in [Schmollinger 24

et al., 2013] we derive the signalling network 25

schematically depicted in Fig. 1. All components 26

are described in detail in Table 1. In [Schmollinger 27

et al., 2013] it has been shown that the tempera- 28

ture increase triggering the HSR is sensed by the 29

accumulation of degenerated proteins P#. Their 30

presence activates a stress kinases SK, which, in 31

the active form SK∗, phosphorylates the heat shock 32

factor HSF. The phosphorylated (HSF∗) and un- 33

phosphorilated (HSF) heat shock factor can bind 34

to the transcription factor binding sites of various 35

genes, coding for key proteins involved in the HSR, 36

including HSF itself and heat shock protein (HP). 37

In the model, all these genes are described by one 38

variable G, and the transcription of different mR- 39

NAs is represented by the individual transcription 40

rates π. Binding of the active form HSF∗ to genes 41

G induces the production of mRNA coding for heat 42

shock protein (mRHP) and for the heat shock factor 43

itself (mRF), whereas the inactive form HSF blocks 44

the transcription. The mRNAs are subsequently 45

translated into the corresponding proteins HP and 46

HSF (with rates η), respectively. The increase in 47

HSF concentration leads to a higher occupation of 48
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the gene with the inactive form. The increased con-1

centration of chaperones HP increases the repair of2

the degenerated protein state P# to their functional3

form P until a new steady state is reached.4

The model is described by twelve dynamic vari-5

ables (see Table 1), each representing the concentra-6

tion of the corresponding component of the network.7

The concentrations are expressed in the figures in8

arbitrary units (a.u.), which are used to normalize9

each panel to a reference value. These reference10

values are the same across different figures, and are11

listed in table 5. They are necessary because, since12

no data for the absolute values of the concentra-13

tion of any of the species involved are available, the14

model variable could be fit only to relative data.15

The temporal dynamics of the variables are gov-16

erned by a set of ordinary differential equations17

(ODEs), which are reported in Table 3 in the Sup-18

plementary Material. For a review covering the19

applicability of ODEs and other types of modelling20

to biological systems see e.g. [Pfau et al., 2011].21

The equations we employ depend on rate expres-22

sions (see Table 4 of the Supplementary Material)23

describing the various regulatory processes (ω), acti-24

vation and deactivation steps (ν), synthesis rates (π)25

and degradation rates (η). For the majority of these26

rate laws we assume mass action kinetics. We also27

employ some additional non-linear terms having a28

behaviour of the type of Michaelis-Menten kinetics29

or Hill kinetics, listed in Table 4 of the Supplemen-30

tary Material. The term following a Hill kinetics31

is the one describing the regulatory process ωPS32

involved in the reaction by which the denatured33

proteins induce the activation (phosphorylation) of34

the SK. It allows to have a response with the sig-35

moidal shape able to describe a threshold effect in36

the activation of this reaction. The action of the37

phosphorylated SK∗, the enzyme phosphorylating38

HSF, is described by a Michaelis-Menten behaviour,39

typical of enzymatic kinetics. The effect of the40

temperature, which denatures (unfolds or misfolds)41

proteins, is described by means of the Arrhenius42

law, with an activation energy in the wide range43

reported in the literature for the activation energies44

of protein denaturation due to thermal stress (as45

discussed in [Bischof and He, 2006,He and Bischof,46

2003]). More details on these terms can be found47

in Table 4 of the Supplementary Material.48

Most of the involved rate constants are not known.49

However, due to the relatively simple model struc-50

Variable Representing
concentration of

[P ] Protein[
P#]

Degenerated protein
[SK] Stress kinases (SK)
[SK∗] Phosphorylated SK
[HSF ] Heat shock factor (HSF)
[HSF ∗] Phosphorylated HSF
[G] Free gene
[HSF ∗G] HSF bound to gene, active
[HSFG] HSF bound to gene, inactive
[mRF ] mRNA for the HSF
[mRHP ] mRNA for the HSP
[HP ] Heat shock protein (HSP)

Table 1: Variables and names used in the model.

ture, it was rather straight forward to initially 1

choose the rate constants in a biologically reason- 2

able range, and manually fit these parameters to 3

qualitatively fit the experimental data. In a subse- 4

quent step, explained in more detail in Section 3.3, 5

this initial manual fit was refined to optimise the 6

reproduction of the data, resulting in the parame- 7

ter set presented in Table 2 of the Supplementary 8

Material. 9

2.2 Typical behaviour of the model 10

To investigate the typical behaviour of the model 11

we simulate a heat shock at time t = 20 min by sud- 12

denly increasing the temperature from 25°C to 42°C. 13

This scenario mimics a standard experimental de- 14

sign, in which the temperature is rapidly increased 15

to induce a heat shock response. It should be noted 16

that this is of course an idealised scenario, which 17

can only be approximated experimentally. The time 18

evolution of the concentrations of the molecular 19

species described by the model is depicted in Fig. 2. 20

In this figure, as in the following ones, a red back- 21

ground indicates the period of time during which a 22

heat shocking temperature is provided (42°C in this 23

case). These concentrations are expressed in arbi- 24

trary units (a.u.). They are in fact normalized to a 25

standard value for each panel, as reported in table 26

5 of the Supplementary Material. For the panels 27

A (proteins), B (stress kinases) and D (genes) the 28
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Figure 1: Scheme of the signalling network that we use to model the HSR. Temperature T acts via the
Arrhenius law ωTP on the protein level P. Higher temperature increases ν′P leading to more degenerated
proteins P#. This activates stress kinases SK by a hill kinetics ωPS which increases phosphorilization
of the heat shock factor HSF. If HSF is bound to the gene G, mRNA for the heat shock factor HSF
and for the heat shock protein HP is generated by the corresponding production rates π. The mRNA is
translated into the proteins HP and HSF and degraded by rates η.
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normalization factor corresponds to the sum of the1

amount of the species shown in that plot, which is2

a conserved quantity for each of these plots.3

Due to the temperature increase, the functional4

proteins P are mis-folded as shown in panel A. The5

concentration of the functional form [P ] of the pro-6

tein suddenly decreases while that of the mis-folded7

form
[
P#]

increases correspondingly. The latter8

form induces the transition of the stress kinases9

SK into their active form SK∗, the concentrations10

of both shown in panel B. Active stress kinases11

phosphorylate the heat shock factor HSF, shown in12

panel C. The activated HSF∗ activates gene tran-13

scription as shown in panel D. The amount of free14

gene G decreases and the active form with phos-15

phorylated HSF bound, HSF∗G, increases rapidly.16

Simultaneously, the gene bound to the inactive form17

of HSF (HSFG) increases as well, but with a slower18

dynamics. The activated gene induces mRNA pro-19

duction as shown in panel E for both the mRNAs20

corresponding to the HSF and to the HSP. These21

mRNAs are translated, leading to an increase of22

the heat shock factor itself (panel C) and of the23

heat shock protein (panel F). The increased chap-24

eron level depicted in panel F leads to re-folding25

of degenerated proteins into their functional form26

(as depicted in panel A), which eventually leads to27

a termination of the response. This analysis illus-28

trates that the model is able to realistically describe29

the HSR.30

3 Comparison between simulations31

and experimental data32

In this section we demonstrate that the model is not33

only able to qualitatively produce a plausible heat34

shock response, but can also quantitatively repro-35

duce a number of key experimental treatments. We36

first focus on simulating the feeding experiments per-37

formed in [Schmollinger et al., 2013] (Section 3.1),38

where specific inhibitors have been applied in differ-39

ent concentrations and the effect on the heat shock40

response was monitored. In Section 3.2 we simu-41

late the double heat shock experiments reported42

in [Schroda et al., 2000], where a second heat shock43

was applied after a first initial heat shock to iden-44

tify the minimum relaxation time needed to observe45

a full second response. These experiments were46

used for the fine tuning of the parameters. The47

calibration procedure is described in Section 3.3. 1

3.1 Inhibitor treatments 2

In the systematic experiments reported 3

in [Schmollinger et al., 2013], C. reinhardtii 4

cells have been fed with different concentrations 5

of specific inhibitors, and the effect on the HSR 6

has been observed by monitoring the temporal 7

evolution of mRNA concentrations of mainly the 8

HSF1 and HSP90 genes. We specifically consider 9

the two inhibitors Staurosporine, a protein kinase 10

inhibitor [Karaman et al., 2008], and Radicicol, 11

a specific inhibitor of HSP90 [Roe et al., 1999]. 12

We simulate these experiments by altering the 13

corresponding rate constants to mimic the effect 14

of the inhibitors, and apply the same heat shock 15

conditions as in the experiments, simulating a 16

sudden temperature increase from 25°C to 40°C at 17

t = 0 min. 18

3.1.1 Staurosporine 19

Staurosporine is a protein kinase inhibitor. We 20

therefore simulate the effect of applying Stau- 21

rosporine by lowering the rate constant k′F , which 22

determines the reaction rate ν′F , by which the stress 23

kinase SK activates the HSF. The simulation re- 24

sults are depicted in the left panel of Fig. 3, to- 25

gether with redrawn experimental data from Fig. 1B 26

of [Schmollinger et al., 2013] in the right panel. 27

The simulation results (left panel of Fig. 3) shows 28

the effect of decreasing the rate constant k′F on the 29

dynamics of the HSF mRNA concentration. Clearly, 30

decreasing the rate constant leads to a reduced max- 31

imal mRNA concentration and a delayed response. 32

As can be seen in the right panel of Fig. 3, the 33

same behaviour is observed in the experiments: an 34

increased inhibitor concentration leads to a reduced 35

and delayed transcription of HSF mRNA. More- 36

over, it can be observed that for a small decrease 37

of the rate constant the response is qualitatively 38

unaltered, whereas a larger decrease corresponding 39

to higher Staurosporine concentration has a qualita- 40

tive impact, leading to a long delay and considerable 41

reduction of mRNA levels. 42

Because the experimental data is not quantita- 43

tive but normalised to the maximal response, a 44

direct comparison of the simulated concentrations 45

is not possible. Moreover, the applied staurosporine 46
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Figure 2: Typical behaviour of the model illustrated inducing a HSR via an increase of the temperature
from 25°C to 42°C applied at t = 20 min (represented by a red background in the figures). A: Due to
temperature increase at t = 20 min functional proteins P are mis-folded leading to an increased P# level.
B: The degenerated proteins bring inactive stress kinases SK into their active form SK∗. C: Due to active
stress kinases, the heat shock factor (HSF) is phosphorylated (HSF∗). D: The heat shock factor HSF
binds to free gene loci G, the bound form HSF∗G activates mRNA production, and HSF un-binding
blocks transcription. E: The initiated gene transcription leads to mRNA production of the HSF and the
heat shock protein as shown. F: Due to translation of the corresponding mRNA, the HP concentration
increases until the response is switched of. The small degeneration rate of the chaperon leads to a slow
decrease after the onset of the HSR. The normalization factors used to represent the concentrations in
arbitrary units can be found in table 5 of the Supplementary Material.
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Figure 3: Simulation of the feeding with Stau-
rosporine experiment (left) and comparison with
the corresponding data from [Schmollinger et al.,
2013] (right).

concentration can not directly be translated into1

a reduced rate constant. However, the simulated2

responses for k′F at its nominal value of 1.09 s−1
3

and for values reduced to 60% and 10% of that value4

lead to a remarkable agreement between simulation5

and experiment, in which Staurosporine was applied6

in concentrations of 20 nM and 1 µM, respectively.7

Not only the qualitative behaviour is well captured,8

but also the timing of the response as well as the rel-9

ative reduction of the mRNA signal is quantitatively10

reproduced.11

3.1.2 Radicicol12

Radicicol is a specific inhibitor of HSP90 activity.13

Therefore, we simulate the effect of Radicicol by low-14

ering the rate constant kP , which determines the15

reaction rate νP , by which in our model theHSP re-16

fold the unfolded proteins P# back to their original17

form. The simulation results and the correspond-18

ing data (reproduced from Fig. 4B of [Schmollinger19

et al., 2013]) are displayed in Fig. 4.20

The simulated dynamics of the HSF mRNA con-21

centration is depicted in the left panel of Fig. 4 for22

three values of the rate constant kP , corresponding23

to the reference value of 9.938 (µMs)−1, and for a24

reduction to 60% and 30% of that value. It can be25

observed that decreasing the rate constant results26

to an increased amplitude and delayed attenuation27

of the HSR. The data from [Schmollinger et al.,28
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Figure 4: Simulation of the feeding with Radici-
col experiment (left) and comparison with the cor-
responding data from [Schmollinger et al., 2013]
(right).

2013] shown in the right panel for a control and 1

Radicicol concentrations of 10 µM and 100 µM 2

demonstrates that a similar behaviour is observed 3

in the experiments. Interestingly, the magnitude of 4

the responses are only qualitatively reproduced by 5

our model, but appear much more pronounced in 6

the experiment. 7

3.2 Double heat shock 8

In [Schroda et al., 2000], a study was presented in 9

which (for wider purposes than studying the HS 10

response) an ARS gene, encoding for the enzyme 11

arylsulfatase (ARS from now on) is placed under 12

control of the HSP70A promoter. The authors show 13

that whenever the HSP70A gene is activated also the 14

ARS enzyme is produced. Under the assumption of 15

a direct proportionality between the concentration 16

of the ARS enzyme and its activity, the authors 17

could monitor the activity of the HSP70A promoter 18

by measuring the ARS activity. This construct was 19

then used to systematically expose C. reinhardtii 20

cells to two subsequent heat shocks to find out what 21

is the minimum time one needs to wait after the 22

first heat shock to observe a full HSR also in the 23

second heat shock. It turned out that a waiting 24

time of around 5 h is required to re-establish the 25

capability to induce a full HSR. 26

To compare the experimental results to our model 27

simulations, we extended the model accordingly, 28
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also including transcription and translation of the1

ARS enzyme (for details see Section B.2 of the Sup-2

plementary Material). In Fig. 5 we display the3

simulation results (left panel) and the correspond-4

ing experimental data (right panel) redrawn from5

Fig. 7b of [Schroda et al., 2000], where two heat6

shocks of 30 minutes duration were applied with7

the intervals of 2, 3, 4, and 5 hours, respectively8

(and also the curve for a single 30 minutes-long heat9

shock is shown). It can clearly be observed that10

both in simulation and experiment the second heat11

shock response increases in intensity with increasing12

length of the interval between the treatment, reach-13

ing its full activity after around 5 h. Again, the14

model results are in good quantitative agreement15

with the experimental data.16

An interesting observation when analysing the17

model simulations is that even after 5 hours, the18

concentration of HSP did not yet relax to its initial19

value before the first heat shock. While the second20

heat shock leads, as the first, to misfolded proteins21

and triggers an almost full HSR in terms of the22

observed HSP70 promoter activity, the amount of23

misfolded proteins is dramatically lower than dur-24

ing the first heat shock (see Fig. 12 and Section B.125

of the Supplementary Material). This indicates26

that the production of HSF resulting from the first27

HSR and the accumulation and slow degradation28

of HSP have the role of preparing the organism29

for a subsequent occurrence of the same stressing30

situation (the HS) already encountered in the past.31

Thus, the slow turnover of HSP may implement a32

short-term molecular memory of experienced heat33

stress, similar to the observed short-term memory34

of previously experienced light stress as was recently35

discussed and described by a mathematical model36

in [Matuszyńska et al., 2016]. Thus, the model37

simulations allows to give a novel interpretation of38

the experimental results on the double heat shock.39

While when observing the activity of the HSP7040

genes seemingly a full heat shock response is ob-41

served, in fact the first and second response differ42

quite fundamentally. While during the first expo-43

sure HSP needs to be synthesised de novo from44

practically zero concentration and therefore the cor-45

rective response to refold the denatured proteins is46

slow, in the second heat shock after five hours the47

residual HSP level is sufficient to rapidly counteract48

the temperature-induced denaturing of proteins and49

the total level of misfolded proteins remains very50
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Figure 5: Simulating the double heat shock experi-
ment (left) and comparison with the corresponding
data from [Schroda et al., 2000] (right). We see that
a full HSR is possible only about 5 h after the first
HS.

low. However, even this low level is sufficient to 1

induce expression of the HSP genes, so that on the 2

mRNA level the second response appears as equally 3

strong as the first. 4

3.3 Model calibration 5

The design of the model is based on our under- 6

standing of the underlying signalling network and 7

is to a large part based on the findings reported 8

in [Schmollinger et al., 2013]. As every model, our 9

model is a simplified representation of reality. For 10

example, a single variable HP describes the numer- 11

ous HSP present in C. reinhardtii, and all genes 12

involved in the HSR are described to possess the 13

same promoter properties. While such a simplifi- 14

cation may be seen as a weakness, because not all 15

known factors are represented, the process of simpli- 16

fication itself is rather a very powerful tool, by which 17

the essential features of the system can be extracted 18

and it can be understood how the key properties 19

of the dynamic response are generated. As a con- 20

sequence, simplified models usually possess a more 21

generic character, because the heat shock response 22

may differ in details from organism to organism, 23

but as long as the basic principles are conserved, 24

our model serves as a generic theoretical descrip- 25

tion that can easily be adapted. Moreover, in a 26

system such as the heat shock response investigated 27

9
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here, most model parameters are not directly acces-1

sible experimentally. In particular, the twenty rate2

constants listed in Table 2 of the Supplementary3

Material are largely unknown. This again supports4

the development of a simplified model, attempting5

to reduce the number of unknown model parame-6

ters as much as possible to facilitate a reasonable7

model calibration procedure, while maintaining the8

essential structural system properties.9

To find plausible and realistic parameters, we10

initially considered biologically reasonable ranges for11

all rate constants and manually tuned these until we12

could well reproduce the qualitative behaviour of the13

experimental data. These parameters are referred14

to as the "fiducial parameter set" and are reported in15

the second column of Table 2 of the Supplementary16

Material. The fact that a very reasonable fit to17

experimental data could be achieved with a straight-18

forward manual fit relies on the simplicity of the19

model structure and the concomitant fundamental20

understanding of the effects of the single parameters21

on the model behaviour.22

We then used this fiducial parameter set as a start-23

ing point for a deeper investigation of the parameter24

space. We have divided the available experimen-25

tal data described in the previous sections in two26

groups, one used to calibrate the model and the27

other to illustrate that the model is able to repro-28

duce the qualitative behaviour observed in other29

experiments, as follows. The first group, used for30

calibration of the model, comprises the controls31

for the feeding experiments of [Schmollinger et al.,32

2013]. These correspond to six curves representing33

the time evolution of the concentration of mRNA34

coding for HSF1, and six curves for the mRNA cod-35

ing for HSP90A, under heat shock and no inhibitor36

treatment.37

We have then defined an objective function re-38

flecting the quality of the fit by a simple root mean39

square of the deviations of the model simulations40

and the experimental data. We have first performed41

a Monte Carlo scan of the parameter space to gain42

insight into its structure and then a gradient search43

to find a set of parameters which locally optimizes44

the objective function. In this way we determined45

the "final parameter set", which we use for all the46

simulations presented in this work, and which is47

reported in the third column of Table 2 of the Sup-48

plementary Material. A more detailed description49

of the calibration is provided in Section C of the50

Supplementary Material. 1

The second group contains data not used for 2

model calibration, but for verification that the 3

model is able to at least qualitatively predict the 4

behaviour of this set. It contains the data on Stau- 5

rosporine and Radicicol treatments discussed in 6

Section 3.1 and those from the double HS experi- 7

ment discussed in Section 3.2. Comparison of the 8

simulation results using the final parameter set with 9

the experimental data demonstrates that the model 10

is able to reproduce the qualitative, and often the 11

quantitative (relative, not absolute on which we 12

do not have nformation) behaviour of the data ex- 13

tremely well (see Sections 3.1 and 3.2). 14

4 Results 15

As shown above, our mathematical model, which 16

has been calibrated to control experiments only, 17

can reasonably well reproduce drug treatments as 18

well as the double heat shock experiments. The 19

agreement of simulation results and experimental 20

data therefore supports the notion that our current 21

understanding of the heat shock response is basically 22

correct. The mathematical model can therefore 23

serve as a theoretical framework in which data can 24

be interpreted in a sophisticated and quantitative 25

way. Another purpose of model building is the 26

ability to make novel predictions. We have therefore 27

employed our model to simulate scenarios which give 28

insight into our understanding of the heat shock 29

response, but which are either difficult to test or 30

have not yet been tested experimentally. 31

4.1 Prolonged heat shock 32

We first investigate which response the model pre- 33

dicts upon exposure to a prolonged HS, and how 34

the system adapts to persistently high tempera- 35

tures. Experimentally, the systems-wide response 36

to long-term HS was investigated in [Hemme et al., 37

2014], where cells adapted to 25°C were exposed to 38

42°C for a period of 24 h, followed by 8 h at 25°C 39

(recovery phase). 40

The simulation results for this scenario, where 41

the temperature increase was simulated at time 42

t = 0, are shown in Fig. 6. Two distinct phases of 43

the response can be distinguished. The first, early 44

HS phase, lasting approximately 3 h after applying 45

the heat shock, represents the initial heat shock 46

10
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Figure 6: Simulation of the HSR under long-term HS and recovery, provided by shifting the temperature
from 25°C to 42°C at t = 0 and back to 25°C after 24 h. Two distinct phases are clearly visible: an early
HS lasting for about the first 3 h, and a late HS in which the system shows adaptation (a new steady
state is reached). After reverting the conditions to normal temperatures (25°C), a recovery phase can be
observed, in which the variables relax to the original stationary state over a period of several hours.
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response, in which the internal variables respond1

highly similar to the normal heat shock simulations2

described above (see in particular Fig. 2, and also3

the controls curves in Fig. 3 and Fig. 4). During the4

late HS response, lasting from 3 to 24 h during heat5

shock, the variables approximate a new stationary6

state. This state is characterized in particular by7

increased concentrations of mRNAs (panel E), and8

consequently of HSF and HSP when compared to9

the corresponding concentrations before the onset10

of the HS. These elevated levels indicate an acclima-11

tion of C. reinhardtii to continuous HS conditions,12

which allows to efficiently avoid the accumulation of13

misfolded proteins. After reverting the conditions14

to normal temperatures (25°C), a recovery phase15

can be observed, in which the variables relax to the16

original stationary state over a period of several17

hours. These results are consistent with the obser-18

vations of [Hemme et al., 2014] focusing on HSP19

production (see in particular Fig. 8 therein).20

4.2 Stationary behaviour21

The observations that the system adopts a new sta-22

ble stationary state when continuously exposed to23

elevated temperatures raises the question how this24

long-term response depends on the rate of protein25

denaturing. The steady state concentrations depend26

on temperature only via the speed of the reaction27

P → P#, which itself depends on the temperature,28

and on other quantities, as described by the corre-29

sponding equation in Table 4 of the Supplementary30

Material based on the Arrhenius law. We now study31

how the steady state concentrations depend on the32

temperature at which the steady state is reached.33

First we have intuitively verified that the system34

reaches a steady state by naively integrating it over35

very long times. We then do it by applying the rig-36

orous procedure which consists in looking for a root37

of the system represented by the ODEs of Table 338

of the Supplementary Material, i.e. to find the con-39

centrations which correspond to a steady state. It’s40

best to have a good initial guess as a starting condi-41

tion for the search, and the integration over a very42

long time performed above provides that. Then, we43

repeat this for different values of the temperature,44

to see how the concentrations change as a function45

of temperature. The result is plotted in Fig. 7. Let46

us remark that on the horizontal axes of Fig. 7 we47

have the temperature. Each point in a panel corre-48

sponds to the concentration of the corresponding 1

species at steady state, when the steady state is 2

reached at that particular temperature. We can see 3

that the concentrations at steady state are different 4

for different temperatures, with for instance higher 5

values of the concentrations of mRNAs and HSP 6

corresponding to higher values of the rate of the 7

temperature. 8

On the one hand, for values of the temperature 9

not too high, remarkably the concentration of un- 10

folded proteins at steady state is kept very low by 11

the response at the level of all the other species, very 12

close to zero and in particular well below one per- 13

cent of the total amount of proteins. On the other 14

hand, when the temperature increases considerably 15

the HSR is no more able to efficiently counteract 16

the accumulation of degenerated proteins which 17

accumulates at concentrations high enough to kill 18

the cell. This accumulation is evident in panel A 19

of Fig. 7, a magnification of which is provided in 20

Fig. 8. Finally, we have also verified that, for each 21

of the values of the temperature that we have con- 22

sidered, the model exhibits a realistic stationary 23

behaviour, i.e. the associated steady state (which 24

is a non-equilibrium one) is stable. To do so, firstly 25

we computed numerically the Jacobian of the vector 26

field associated to the ODEs system summarized in 27

Table 3 of the Supplementary Material. Next, we 28

evaluated the Jacobian of the system at the steady 29

state under investigation. Then we computed the 30

eigenvalues of the Jacobian to determine the stabil- 31

ity of the steady state. We repeated the procedure 32

for the steady state associated to each of the values 33

of the temperature considered. We obtained that all 34

the nine eigenvalues have always negative real part, 35

showing that the steady state is always a stable one. 36

4.3 Trade-off between HS temperature and 37

HS duration in the production of HSP 38

The questions which we want to address in this 39

section are the following: "is C. reinhardtii more 40

stressed for a short HS with high temperature or 41

a long one but with a lower temperature? What 42

is the trade-off between the two?". A related ques- 43

tion is "does the production of HSP occurs only 44

under very intense HS conditions (high tempera- 45

ture, long duration) or does it occurs also for very 46

small temperature increases or very short HS?". 47

Moreover, HS may also represent a mean to make 48
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Figure 7: These simulations illustrates how different steady state concentrations are reached for different
temperatures. Each point represents the value of the corresponding concentration at the steady state
reached for that particular temperature. The concentrations of HP, as well as of the mRNAs, increase
with increasing temperature. The concentration of unfolded proteins

[
P#]

is kept very close to zero for
low values of the temperature. When the temperature increases considerably the HSR is no more able to
efficiently counteract the accumulation of degenerated proteins which accumulates at concentrations high
enough to kill the cell. This accumulation is evident in panel A, a magnification of which is provided in
Fig. 8.

  

Figure 8: Magnification of panel A of Fig. 7, to emphasize the exponential growth of
[
P#]

with increasing
temperature.
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proteins (HSPs, but not only) accumulate into plant1

cells. This might be interesting for instance in view2

of enriching plants in any protein of interest (by en-3

gineering the HSPs genes and use their HS-activable4

promoter to induce the expression of other genes of5

interest). The question that naturally arises is then:6

"which is the HS set-up (duration, temperature) that7

maximizes the accumulation of HSPs?".8

To answer these questions we performed a sys-9

tematic study of how much HSP is produced under10

different combinations of HS durations and HS tem-11

peratures. For such a study, we provided to the sys-12

tem a sharp increase in temperature starting from13

20°C. Since here the goal is mainly to study under14

which conditions C. reinhardtii is more stressed, and15

the response is closed only when HSP is produced16

and can act to refold unfolded/mis-folded proteins,17

and the main interest in eliciting an HSR may be18

to induce the accumulation of HSP (or other pro-19

teins), we perform this study at the level of HSP20

production.21

Thus we simulate the response to the different22

combinations of HS temperature and HS duration,23

and we plot the value of [HP ] computed right at24

the end of the HS period as contours in the plan25

representing HS duration versus HS temperature,26

and a colour map is used to make the figure visually27

clearer. It is worth to point out that this time point28

provides a value of [HP ] that is not necessarily the29

highest one that can be obtained with an heat shock30

of that temperature and duration, in fact [HP ]31

grows under HS, reaches a maximum, decreases a32

bit and settle to a new steady state value until HS33

is kept on. For short HS, as seen previously, even34

if the increase in temperature is sharp, and the35

activation of SK follows, there is a certain inertia36

in the response at the level of mRNA production,37

and an additional delay in the HP synthesis. As38

a consequence if the concentration of HP is read39

out at the end of a short HS, it is possible that the40

obtained value is lower than the value one would41

obtain with the same HS, but waiting some more42

time.43

Fig. 9 shows the concentration of HSP at the end44

of the HS, as a function of HS duration and HS45

temperature. Firstly, looking at how [HP ] changes46

for any fixed temperature, we can appreciate the47

same features that we already noticed in Fig. 2.48

There is no response at the level of [HP ] for du-49

ration of less then about 10 min, than HP rapidly50

goes up for longer HS, and the maximum HP con- 1

centration occurs around 80 to 100 min. For longer 2

HSs [HP ] is somewhat lower, and does not change 3

any more when increasing further the duration of 4

the HS (new steady state reached, i.e. acclimation 5

occurred). Second, considering increasing temper- 6

atures, we can see that even a small increase of 7

few degrees in temperature results in an increase 8

of [HP ]. We can conceptually divide the plot in 9

four regions (from left to right). No matter what 10

temperature, for short HS (i.e. shorter than about 11

10 min) there is not enough time to lead to a sig- 12

nificant increase in [HP ]. For durations between 13

approximately 10 min to 80 min and temperature 14

above an increasing value, the contours are almost 15

vertical. For high enough temperature, the HSR is 16

activated and, no matter how much temperature 17

is increased, the dynamics of the response is the 18

same (this comes from the behaviour described by 19

the Arrhenius law by which temperature enters the 20

model by unfolding proteins). In the region of the 21

maximum of [HP ], the contour lines are almost 22

horizontal, telling us that the maximum reached 23

by [HP ] strongly depends, and increases with, the 24

temperature of the HS. Finally, on the right side of 25

the plot we see that the contour lines are now hori- 26

zontal and [HP ] does not change with the duration 27

any more: the system is acclimated (and thus has 28

reached a new steady state). The values of [HP ] 29

are somewhat smaller than those corresponding to 30

the region of the maxima. 31

4.4 The HSR to the temperature variation 32

representing a hot day 33

To reproduce the typical experimental set-up em- 34

ployed in many studies we have considered through- 35

out this work heat shocks provided by means of a 36

step-wise increase of the temperature from a lower 37

value to an upper value. These are conditions that 38

can be easily reproduced experimentally, and allows 39

to make straightforward tests in vivo. They could 40

also be employed for possible applications of HS (as 41

for instance expressing proteins of interest. Never- 42

theless, these are situations not so likely to occur 43

often in nature. 44

Thus, which kind of HS is a C. reinhardtii cell 45

going to experience in the wild? This green algae 46

is widely distributed around the world in various 47

environments such as soil and fresh water. Thus, 48
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Figure 9: Systematic study of the HSP production as a function of different HS temperatures and HS
durations. Short (smaller than 10 min) HSs do not provide enough time for a significant response at
the level of [HP ], the maximum of [HP ] for any given temperature is obtained at around 80 to 100
min, after that a somewhat smaller [HP ] is reached and maintained, and for long enough HS a higher
temperature provides higher [HP ]. From this plot one can understand the trade-off between duration
and temperature.

a natural heat shocking condition it encounters is1

the daily variation of the temperature, which is2

low at night, grows during the day, reaches a peek3

and then drops again (with possibly some random4

fluctuations in addition). We then simulate an ideal-5

ized variation in temperature reproducing that of a6

hot day, by imposing a sinusoidal variation between7

22°C and 40°C with a period of 1 day and maximum8

at 3 p.m. (shown in Fig. 10), and we use our model9

to simulate the response of the system.10

As we can see from Fig. 11, the concentrations of11

the mRNAs (panel E) and of the HSF (panel C) have12

a steep increase, which leads to a maximum and13

then a much slower decrease. The concentrations are14

not symmetric as the stimulus given to the system15

is. In particular in panel A we can appreciate the16

peak in the concentration of degenerated proteins at17

around 6 a.m.. This is due to the activation of the18

SK, which follows a Hill kinetics behaviour, which19

means that there is a threshold in
[
P#]

above which20

SK become active and in turns activate the HSR.21

It is this HSR which lowers the concentration
[
P#]

22

after 6 a.m.. The response remains on until the23
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Figure 10: Temperature variation reproducing that
of a hot day, used as input for the simulation of
Fig. 11.

evening and during this time the growth of
[
P#]

due 1

to the increase in temperature is counterbalanced 2

by the HSR (this balance originates the second 3

peak in panel A). When the temperature becomes 4

sufficiently low in the evening, and
[
P#]

as well, 5

15
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Figure 11: Simulation of the response of the system to a temperature variation reproducing that of a
hot day (shown in Fig. 10). The concentration of unfolded proteins is kept very low, well below one
percent of the total amount of proteins [P ] +

[
P#]

(panel A, where you can notice that the vertical scale
is magnified w.r.t. the same panel of the previous figures).
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the HSR is switched off until the next day.1

Let us point out that the accumulation of un-2

folded proteins remains very close to zero (ways3

smaller than 1% of the total amount of proteins4

[P ] +
[
P#]

, panel A) and in particular more than5

one order of magnitude smaller then when an HS6

of the same temperature is provided by a stepwise7

increase (panel A of Fig. 2). Since unfolded pro-8

teins are undesired by the cell, it is meaningful that9

the HSR, which for a sudden increase of 20°C is10

not fast enough and allows for a certain transient11

accumulation of unfolded proteins, is on the other12

hand perfectly capable to prevent the accumulation13

of unfolded proteins during a HS like those that14

can more often occur in nature. A systematic study15

on how the maximal concentration of HP changes16

when changing the time that is needed to increase17

the temperature from the ambient value to a higher18

value providing HS is presented in Section D of the19

Supplementary Material.20

The Circadian clock of C. reinhardtii is well stud-21

ied [Mittag et al., 2005,Jacobshagen et al., 2001], it22

is known to regulate also some HSP as e.g. HSP70B,23

and it provides to the concentration of this protein24

a periodic behaviour with maximum at dawn. The25

HSR that we model is not a Circadian clock, but we26

see that it gets activated slowly just before dawn,27

rapidly goes up to a maximum before midday (some28

hours before the maximum of the temperature),29

drops slowly for the rest of the day, is roughly off30

when night comes, and stays off over night. It seems31

that the cell, as soon as an increase in temperature32

is sensed, starts an HSR to prepare itself to the33

higher temperature that is going to come, and then34

during all the day it "keeps the defences up" to deal35

with the increased temperature, and it turns them36

off only when the value of the temperature is suf-37

ficiently dropped. All this by keeping always the38

concentration of unfolded proteins close to zero.39

5 Conclusions and Outlook40

In this work, we have built a data driven mathemati-41

cal model for the HSR in Chlamydomonas reinhartii,42

a photosynthetic model organism. We have intro-43

duce the model in Section 2. We have described44

the signalling pathway underlying the model, we45

have presented the mathematical description of the46

mechanism that we implement, we have discussed47

the typical behaviour of the model and we have 1

verified that the system is stable. 2

We have extracted the signalling network struc- 3

ture from various experiments, and experimental 4

data are used for calibration and validation of the 5

model. The comparison with experimental results 6

extracted from the literature is described in Sec- 7

tion 3. We have first described which experimental 8

data we consider (feeding experiments and double 9

HS experiments), we have then discussed how we 10

use them for calibration of the model and we have 11

finally used them to show that the model is able 12

to reproduce experimental data. The capability of 13

this model to reproduce the main qualitative fea- 14

tures of various experimental datasets shows that 15

our conclusions about the signalling mechanism are 16

plausible. Moreover, the model allows for analysing 17

the response on different signal levels which are not 18

easily accessible in experiments. 19

In Section 4 we have used the model to simulate 20

situations not yet tested experimentally, from which 21

we derive interesting results. We have shown in 22

Section 4.1 that the system can adapt to higher 23

temperatures during heat shocks longer than three 24

hours, by shifting to a new steady state. Two dis- 25

tinct phases are clearly visible: an early HS lasting 26

for about the first 3 h, and a late HS in which the 27

system shows adaptation (a new steady state is 28

reached). The recovery phase is characterized by a 29

recovery of the conditions pre-HS that occurs over 30

several hours. 31

We have studied in Section 4.2 the variation of 32

the steady state concentrations w.r.t. changes in 33

the temperature. The concentrations of HP, as 34

well as of the mRNAs, increase with increasing 35

temperature, but for not too high temperatures the 36

concentration of unfolded proteins
[
P#]

is kept very 37

close to zero, in particular well below 1% of the total 38

amount of proteins [P ] +
[
P#]

. For temperatures 39

too high the HSR cannot prevent the accumulation 40

of degenerated proteins and the cell dies. 41

We have used the model to systematically investi- 42

gate how the accumulation of HSPs depends on the 43

combination of temperature and duration of the heat 44

shock, in Section 4.3. Short (smaller than 10 min) 45

HSs do not provide enough time for a significant 46

response at the level of [HP ], the maximum of [HP ] 47

for any given temperature is obtained at around 80 48

to 100 min, after that a somewhat smaller [HP ] is 49

reached and maintained, and for long enough HS a 50
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higher temperature provides higher [HP ].1

We have finally investigated the system response2

to a smooth variation in temperature simulating a3

hot day in Section 4.4, showing that the percentage4

of proteins which are unfolded remains well below5

one percent of the total amount of proteins.6

It is then natural to wonder what would be in-7

teresting to investigate next using this model as a8

starting point. A number of observations (listed9

below) shows that the HSR could be elicited in C.10

reinhartii also by a shift from dark to light of the11

cells, by an independent regulatory pathway. We12

thus propose that our model could be extended in13

the future to include and investigate how this occurs.14

This extension could help investigating the potential15

role of an intermediate of Chlorophyll biosynthesis,16

Mg-Protoporphyrin IX, as a mediator in the sig-17

nalling pathway between the chloroplast and the18

nucleus.19

It is known from the eighties that some of the20

genes coding for HSPs in C. reinhartii are inducible21

by a shift of the cells from dark to light (as shown22

in [von Gromoff et al., 1989] which experimentally23

proved that for genes of the three families HSP68,24

HSP70 and HSP80). The two regulatory pathways25

leading to the activation of these genes by a shift26

from dark to light on the one hand, and by HS27

on the other, have been shown to be independent28

in [Kropat et al., 1995] in the case of the HSP7029

family of genes. Therein it is also shown that the30

kinetics of the two pathways is different, and that31

an additional protein synthesis should be involved32

in the light-activation pathway.33

To understand better how this could work, we34

need to understand the structure of the HSP genes,35

for instance the HSP70A gene, and in particular of36

its promoter region, which are well described for in-37

stance in [Lodha and Schroda, 2005] and [Strenkert38

et al., 2013]. On the promoter region of this gene,39

four sites are present where HSF1 can bind and40

activate one of the two transcription sites leading41

to the transcription of the gene itself.42

In [von Gromoff et al., 2006] a detailed study is43

carried out with the conclusions that on the proxi-44

mal region of the above mentioned promoter there45

are two additional binding sites, which would allow46

for another molecule, namely Mg-Protoporphyrin47

IX (Mg-Proto), to activate one of the two transcrip-48

tion sites present on this promoter, thus activating49

the transcription of the gene. [Kropat et al., 2016]50

studied in more detail the role of the chloroplast 1

signalling in the light induction of nuclear HSP70 2

genes, which (they conclude) requires the accumula- 3

tion of chlorophyll precursors and their accessibility 4

to cytoplasm/nucleus. In [von Gromoff et al., 2008] 5

a mechanism is proposed to explain this: Mg-Proto 6

is synthesized in the chloroplast, but when cells are 7

kept in the dark it cannot exit this organelle. When 8

cells are shifted from dark to light, some channels 9

are opened which allow Mg-Proto to exit the chloro- 10

plast, become available in the cytoplasm and reach 11

the nucleus, where they can bind to the promoter 12

region of the HSP70a gene, thus activating its tran- 13

scription. [von Gromoff et al., 2008] also shows that 14

a similar role can be played by Heme, whenever 15

Mg-Proto is less available. 16

Moreover, with a certain degree of speculation, 17

the positive feedback loop involving a further protein 18

synthesis might potentially be closed in the following 19

way. It is known that one of the very first steps 20

of the biosythesis of chlorophyll (and thus of Mg- 21

Proto, an intermediate) requires the action of an 22

enzyme called Glu-Tr. This enzyme is coded for 23

by a gene called HEMA. [Vasileuskaya et al., 2005] 24

has shown that Mg-Proto and Heme control the 25

expression of this HEMA gene. This could represent 26

the positive feedback loop which would allow the 27

full activation mechanism to be speed up when light 28

would make Mg-Proto (or Heme) available outside 29

the chloroplast. Moreover, a negative feedback loop 30

is also known to be present in the biosynthesis of 31

chlorophyll, namely if too much of some products 32

of Mg-Proto accumulates into the chloroplast, the 33

very first steps of this biosynthesis are inhibited. 34

An extension of our model to include all these 35

effects would thus present an interplay between two 36

feedback mechanisms. On the one hand, the posi- 37

tive feedback on the production of Mg-Proto due 38

to Mg-Proto itself made available (by light) out- 39

side the chloroplast, which can activate the HEMA 40

gene, necessary for the very first steps of Chloro- 41

phyll biosynthesis. On the other hand, the negative 42

feedback on the production of Mg-Proto due to 43

Mg-Proto itself accumulating inside the chloroplast. 44

Developing this possible extension of our model, 45

while besides the scope of this work, would provide 46

a theoretical and quantitative framework to investi- 47

gate further the potential role of the intermediate 48

of Chlorophyll biosynthesis Mg-Protoporphyrin IX 49

as a mediator in the signalling pathway between the 50

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2016. ; https://doi.org/10.1101/085555doi: bioRxiv preprint 

https://doi.org/10.1101/085555
http://creativecommons.org/licenses/by/4.0/


chloroplast and the nucleus.1

Moreover, the HSP genes are involved in help-2

ing the cell to face other types of stress. For in-3

stance their role in helping the recovery from photo-4

inhibition is investigated in [Schroda et al., 1999],5

and evidence for protection by heat-shock proteins6

against photo-inhibition during heat-shock is dis-7

cussed in [Schuster et al., 2016]. These represent8

further interesting directions in which our model9

could possibly be extended.10

Download of our code11

The code by which we have implemented the12

model and the simulations hereby described can be13

freely downloaded from the following git repository:14

https://github.com/QTB-HHU/ModelHeatShock.15
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A Supplementary Material: mathe-1

matical description of the model2

Rate Fiducial Final Unit of
constant value value measure

kP 10 11.49 (µM s)−1

k′P 100 111.9 s−1

kS 100 100.7 s−1

k′S 500 533.1 s−1

k′F 1 0.9557 s−1

kF 1 0.9640 (µM s)−1

k′FG 0.10 0.08371 s−1

kFG 0.0050 0.005574 (µM s)−1

kF∗G 1 0.9131 (µM s)−1

k′F∗G 0.50 0.4136 s−1

k′F∗ 0.010 0.01064 s−1

kF∗ 0.010 0.01192 s−1

kπRF
16 18.16 s−1

kπRH
4.5 4.193 s−1

kπHP
0.5 0.5142 s−1

kπF
0.02 0.02112 s−1

dF 0.001 0.0008728 s−1

dHP 0.000086 0.0009384 s−1

dRF 0.0015 0.001719 s−1

dRP 0.0012 0.001017 s−1

Table 2: Values of the rate constants used in the
model. The values employed in all the simulations
shown in this work are those labelled as final val-
ues, while those labelled as fiducial values are those
employed as a starting point for the optimization
procedure described in Section 3.3.

ODEs

d[P#]
dt = −νP + ν′P

d[SK∗]
dt = −νS + ν′S

d[HSF ]
dt = νF + πF + ν′FG − νFG − ν′F − ηF

d[HSF∗]
dt = −νF + ν′F + ν′F∗G − νF∗G

d[HSF∗G]
dt = νF∗G + νF∗ − ν′F∗ − ν′F∗G

d[HSFG]
dt = ν′F∗ + νFG − ν′FG − νF∗

d[mRF ]
dt = πRF − ηRF + πRFbasal

d[mRHP ]
dt = πRP − ηRP + πRPbasal

d[HP ]
dt = πHP − ηHP

Conserved quantities

[P ] + [P#]

[SK] + [SK∗]

[G] + [HSFG] + [HSF ∗G]

Table 3: The ODEs used in the model and the con-
served quantities. Even if the system has twelve
variables (listed in Table 1), only nine ODEs are
required to model it. In fact, there are three con-
served quantities: [P ] + [P#], [SK] + [SK∗] and
[G] + [HSFG] + [HSF ∗G] are constants. The ini-
tial conditions used for the twelve variables are:
[P ] = 100000 µM,

[
P#]

= 1 µM, [SK] = 0.1 µM,
[SK∗] = 0.05 µM, [HSF ] = 10.5 µM, [HSF ∗] = 1
µM, [G] = 0.0012 µM, [HSF ∗G] = 0.0002 µM,
[HSFG] = 0.0008 µM, [mRF ] = 0.0036 µM,
[mRHP ] = 0.0036 µM, [HP ] = 1 µM. Let us re-
mark that the values of the variables are initiated
at the initial conditions above, but before applying
any HS we let the system run for a long time, so
that it has reached the steady state when we apply
any HS. This part of each simulation is not shown
in the plots.
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Rate law Reaction

νP = kP · [P#] · [HP ] P# +HP → P +HP

ν′P = k′P · [P ] · ωTP P → P#

νS = kS · [SK∗] SK∗ → SK

ν′S = k′S · [SK] · ωPS S + P# → SK∗ + P#

ν′F = k′HSF · [HSF ] · [SK∗]
1+[SK∗] HSF + SK∗ → HSF ∗ + SK∗

νF = kHSF · [HSF ∗] HSF ∗ → HSF

ν′HSFG = k′HSFG · [HSFG] HSFG→ HSF +G

νHSFG = kHSFG · [G] · [HSF ] HSF +G→ HSFG

νHSF∗G = kHSF∗G · [G] · [HSF ∗] HSF ∗ +G→ HSF ∗G

ν′F∗G = k′HSF∗G · [HSF ∗G] HSF ∗G→ HSF ∗ +G

ν′HSF∗ = k′HSF∗ · [HSF ∗G] HSF ∗G→ HSFG

νHSF∗ = kHSF∗ · [HSFG] HSFG→ HSF ∗G

πRF = kπRF
· [HSF ∗G] HSF ∗G : HSF ∗G+mRF

πRP = kπRP
· [HSF ∗G] HSF ∗G : HSF ∗G+mRHP

πHP = kπHP
· [mRHP ] mRHP : HP +mRHP

πF = kπF
· [mRF ] mRF : HSF +mRF

ηF = dF · [HSF ] HSF 99K

ηHP = dHP · [HP ] HP 99K

ηRF = dRF · [mRF ] mRF 99K

ηRP = dRP · [mRHP ] mRHP 99K

πRFbasal = pRFbasal → mRF

πRPbasal = pRPbasal → mRP

Table 4: Kinetic rate laws used in the model. The reactions are those represented in the scheme of
Fig. 1, and the rate laws are mainly based on mass action kinetics, a part from some terms winch follows
Arrhenius law or have a Michaelis-Menten or Hill kinetics behaviour. The last is ωPS = [P#]m

Pm
0 +[P#]m ,

where m = 5 and P0 = 600 µM. The term following the Arrhenius law is ωTP = A · exp
(
− Ea

R·T
)
, with an

activation energy of Ea = 174.440 KJ mol−1, perfectly in the wide range reported in the literature for the
activation energies of protein denaturation due to thermal stress (as discussed in [Bischof and He, 2006,He
and Bischof, 2003]), and with A = 9.4318× 1028, R = 8.3144598 J mol−1 K−1 the ideal gas constant and
T the temperature. Finally, the basal rates are computed as pRFbasal = dRF · dF · 0.02125 µM/kπF

and
pRPbasal = dRP · dHP · 17.5 µM/kπHP

.
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Variables Reference value (µM) Figures panel
Proteins 100001 A
SKs 0.105 B
HSFs 300 C
Genes 0.0022 D
mRNAs 15 E
HSP 10000 F

Table 5: Reference values used to rescale the vari-
ables of the model to arbitrary units (a.u.). For
Proteins, SKs and Genes the variables are rescaled
using the corresponding conserved quantity of Ta-
ble 3.

B Supplementary Material: further1

study of the double heat shock2

In this section we present some additional simula-3

tions which illustrate extensively the features of the4

response to a double heat shock, and next we ex-5

plain how we have extended our model to simulate6

the double HS experiments performed in [Schroda7

et al., 2000].8

B.1 Further simulations of double HS ex-9

periments to illustrate their main fea-10

tures11

We present in Fig. 12 a series of four figures which12

illustrate how the HSR dynamics changes when we13

simulate a generic double heat shock experiment,14

providing to the system two HSs at a distance of15

30 min, 2 h, 3 h 30 min and 5 h respectively. For16

this simulation we employ a sudden variation of the17

temperature between 25°C and 42°C.18

As we can see from Fig. 12, when the second HS19

occurs only 30 min after the first, the system shows20

almost no response to the second HS. This is due to21

the fact that during the first HS, thanks to the gene22

activation (panel D) and subsequent production of23

mRNA for the HSF (panel E), the quantity of HSF24

available to the system increases (panel C). When25

the second HS occurs, 30 min after the end of the26

first, the HSF available to the cell is already enough27

and no activation of the SK takes place (panel B).28

When the second HS occurs a lot of HSP is still29

available in the system (panel F) and thus the level 1

of degenerated protein P# does not increase (panel 2

A). 3

When the second HS occurs 2 h after the first, 4

there is a small HSR during the second HS, that we 5

can see at the level of the SK (panel B) and of the 6

mRNAs (panel E). This because even if a lot of HSP 7

is still available (panel F), the HSF concentration 8

is very low (panel C) and then a moderate HSR 9

is necessary to allow the system to quickly refold 10

unfolded proteins. The HSR corresponding to a 11

second HS occurring at 3 h 30 min after the first 12

is similar, but enhanced. When the second HS 13

occurs 5 h or more after the first we see that the 14

concentration of HSP is approaching the level it had 15

before the HS (panel F), all the other quantities are 16

approximately back to the original values, and an 17

almost full HSR takes now place when the second 18

HS is applied (panels B, C, D and E). 19

It is very interesting to remark that, while the 20

concentrations of all the species go back to the values 21

that they had before the first HS quite fast after 22

the end of the first HS, the HSP does not (panel 23

F), and this allows to avoid during the second HS 24

having any but a tiny amount of unfolded protein 25

P# with respect to the amount during the first HS. 26

This can be seen in panel A of any of the sub-figures 27

of Fig. 12, where the concentration of degenerated 28

proteins P# increases by a considerable amount 29

during the first HS, while considerably less during 30

the second even when this is occurring many hours 31

after the first. 32

The behaviour we observe in our simulations likely 33

indicates that the production of HSF which follows 34

a first HSR and the accumulation and slow degrada- 35

tion of HSP have the role of preparing the system 36

for a subsequent occurrence of the same stressing 37

situation (HS) already encountered in the past, thus 38

representing a transient molecular memory. 39

This behaviour is qualitatively consistent with the 40

claim of [Schroda et al., 2000] that C. reinhardtii 41

needs around 5 h to recover and be able for another 42

full HS response. We have seen in the main text 43

a direct comparison of simulations performed with 44

our model and data from [Schroda et al., 2000], and 45

in the next section we provide additional details on 46

how we have extended our model to perform such 47

simulations. 48
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Figure 12: Simulation of a generic double heat shock experiment. The second heat shock is provided
respectively after 30 min, 2 h, 3.5 h and 5 h. We can appreciate how the dynamics changes at the level of
each species. Particularly relevant is the fact that a full response to the second HS is possible only after
about 5 h, as clearly shown by e.g. the SK∗, HSF∗ and mRNAs curves.
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Figure 13: Comparison of simulations (upper pan-
els) with data from [Schroda et al., 2000] (lower
panels) on single heat shock experiment to verify
that the extension of our model allows to reproduce
the behaviour observed therein.

B.2 Extending the model to simulate the1

experiments performed in [Schroda2

et al., 2000]3

To perform the simulation reproducing the data4

of [Schroda et al., 2000], shown in Fig. 5 of the5

main text, we have extended our model including6

few new variables and equations. We included the7

production of ARS enzyme into our model by adding8

two new variables and four new reactions to it. The9

two variables represent the concentration of the10

mRNA coding for the ARS enzyme, due to fusion11

of the ARS gene on the HSP70A promoter, and the12

concentration of the ARS enzyme itself. The four13

new reactions that we add describe the production14

of mRNA coding for the ARS enzyme from G*HSF,15

the translation of ARS mRNA into ARS enzyme16

(i.e. production of ARS), a very slow degradation of17

the ARS enzyme and degradation of ARS mRNA.18

We selected the values of the free parameters19

in order to match the observations. In Fig. 1320

we studied the behaviour of the added part of the21

system and we compare it with experimental data,22

verifying that the qualitative behaviour is similar.23

Applying an HS of 1h by increasing the tempera-24

ture from 23°C to 40°C we have an increase of the25

concentration of the mRNA for the ARS enzyme26

due to the increase of HSF*G in our model, which27

reaches a peek and then drops (panel A). We also28

have an increase of the concentration of the ARS 1

enzyme delayed w.r.t. that of the mRNA (due to 2

the additional time necessary for protein synthesis), 3

and which has a much slower attenuation (panel B) 4

so that it takes ways longer to the ARS concentra- 5

tion to drop that to the mRNA concentration. We 6

can compare the predicted concentration of mRNA 7

with the measured one (panel C, data from [Schroda 8

et al., 2000], and the predicted concentration of ARS 9

enzyme with the measured ARS activity (panel D, 10

data from [Schroda et al., 2000], Fig. 6b). This com- 11

parison requires the simplifying, but still reasonable, 12

additional assumption that the activity of the ARS 13

enzyme is roughly directly proportional to its con- 14

centration. Given the simplicity of the extension 15

that we used to include this into our model, and the 16

rough estimation of the involved parameters, the 17

qualitative agreement between simulation and data 18

is already remarkable. 19

C Supplementary Material: ex- 20

tended description of the calibra- 21

tion of the model 22

In this section we provide more details on the proce- 23

dure that we have employed to calibrate the model. 24

We describe in detail the objective function used and 25

which data are involved in calibration. We then de- 26

scribe the random sampling of the parameter space 27

and the gradient search employed to determine the 28

final set of parameter values. 29

Definition of the objective function 30

To assess how well the model simulations repro- 31

duce the behaviour of the corresponding data points 32

from [Schmollinger et al., 2013], we employ as objec- 33

tive function the root mean square deviation (RMS) 34

of the theoretical prediction w.r.t. the data on 35

mRNA expression for HSF and HSP, for the six 36

controls of the feeding experiments (which we called 37

previously the first group of data). It is important 38

to point out the, as can be seen from the figures 39

of [Schmollinger et al., 2013], the data, obtained 40

with northern blot analysis, correspond to relative 41

concentrations and not to absolute concentrations, 42

i.e. the data points of each control curve are nor- 43

malized to the maximum among all the time points 44

and all the curves (controls and feedings) for that 45

27
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feeding experiment. Thus, to compute the RMS we1

normalize the values of the concentrations to the2

maximum of each curve, to be able to compare these3

with the experimental data. For this reason we can4

only say that the model can reproduce the qualita-5

tive and the quantitative (but relative, not absolute)6

behaviour of the system: the data employed do not7

contain absolute (dimension full) measures of the8

concentrations, but only relative measures (i.e. nor-9

malized to a maximum). Thus, while the qualitative10

and quantitative (relative) behaviour of the simu-11

lations performed with the model are calibrated12

on the data and thus reliable, the absolute quanti-13

ties which it provides represent only a reasonable14

indication of the possible values assumed by the con-15

centrations, and for this reason they appear in each16

figure normalized to a reference value (see Table 5).17

C.1 Random exploration of the parameter18

space employing a Monte-Carlo analy-19

sis20

The fiducial parameter set from which we start,21

manually tuned by means of our understanding of22

the mechanism underlying the model, already al-23

lows the model to roughly reproduce the qualitative24

behaviour observed in the experiments. Neverthe-25

less, we decided to explore more systematically the26

parameter space represented by the twenty rate con-27

stants of Table 2, and study how the RMS just28

defined changes if we move around from the fiducial29

parameter set.30

For this purpose we first performed a Monte Carlo31

(MC) scan of the parameter space. We did so by as-32

suming a flat prior probability distribution between33

half and two times of the fiducial value of each pa-34

rameter. The part of the parameter space which35

we explored is thus a 20-dimensional hypercube,36

every point having the same probability of being37

randomly selected. Then, by randomly extracting a38

value for each parameter from these distributions,39

we generated 105 randomized sets of parameters.40

For each randomized set of parameters we com-41

puted the corresponding value of the RMS with42

respect to the data of the first group, used for cali-43

bration. We obtained values of the RMS ranging ap-44

proximately from 0.13 to 0.70. The fiducial parame-45

ter set has a RMS w.r.t. the controls of the feeding46

experiments of 0.147, which is already remarkably47

close to the lower edge of the range obtained using48

Figure 14: Example showing RMS vs 1 of the
model’s parameters for the points corresponding to
the 5000 random parameter sets with lowest RMS.
We repeated this analysis for the 20 parameters,
obtaining similar results.

random combinations of the parameters. 1

We then select the 5% of the points corresponding 2

to the best (i.e. lowest) values of the RMS (which 3

then range between 0.130 and 0.149). By plotting 4

for these points the value of the RMS versus the 5

value of each parameter (an example is shown in 6

Fig. 14), we observe that for the vast majority of the 7

parameters no preferred interval in which the lowest 8

values of the RMS occur more often can be identified. 9

Very low values of the RMS can occur everywhere 10

in the interval used for the random scan, depending 11

on the values assumed by the other parameters. 12

We subsequently plotted the values of the RMS 13

as function of each couple of parameters (obtaining 14

400 figures). We found that sometimes there is 15

some correlation or anti-correlations between the 16

preferred values for the two parameters of the couple 17

(an example is shown in Fig. 15). Nevertheless, for 18

the majority of the couples no such correlation can 19

be identified. 20

Moreover the parameter set which provides the 21

best RMS among this randomly generated set (i.e. 22

the isolated point at the bottom of Fig. 14) turns 23

out to be not a good one, because if used to run 24

the simulations of other situations as for instance 25

the double HS, it provides to the model a behaviour 26

qualitative completely different from what is ob- 27

served in the experiments. 28

28
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Figure 15: Example of figure showing RMS (colour
coded) as function of two of the model’s parameters
for the same points of Fig. 14. We repeated this
analysis for the 400 combinations of two model’s
parameters at a time. This one is among the few
showing (anti) correlation.

These observations lead us to conclude that many1

very different configurations (distributed almost ev-2

erywhere) in the parameter space would allow us to3

obtain a small RMS with respect to the data, but4

in any case this small RMS would not be that much5

smaller than the value corresponding to the fiducial6

parameter set.7

On the other hand, if we consider small variations8

of one parameter at a time, we observe smooth9

variations in the RMS values, showing that the RMS10

looks roughly parabolic for perturbations of each11

one of the majority of the parameters around the12

corresponding fiducial value, and that the fiducial13

value often lies close to the minimum (as shown in14

the example of Fig. 16).15

Thus, after having performed a global random16

scan of the parameter space to gain a better under-17

standing of how the RMS behave in it, we decided18

to determine the final parameter set by employing a19

local optimization method, namely a gradient search20

starting from the fiducial parameter set.21

This provides a parameter set allowing a better22

fit to the data used to compute the RMS, while23

not moving too far away from our already well24

behaving fiducial set. It is important here to recall25

the generality of the model’s description of the HSR,26

and the lack of measurements on the parameters27

Figure 16: Example of figure showing RMS versus
one of the model’s parameters, when we consider
variations only in one of the parameters at a time.
The points aligned along the vertical line in the cen-
ter of the figure correspond to variations in one of
the other parameters, and are showed for compari-
son. We repeated this analysis for the 20 parameters
of the model.

involved. Thus the goal of the model is, given an 1

input (the temperature as function of time), to 2

simulate a plausible output (the behaviour of the 3

concentrations as functions of time), and not to 4

determine the "internal" parameters involved (the 5

rate constants). 6

As a final test we defined, similarly to what we 7

have done above, a RMS distance between the model 8

simulations and the experimental data from the dou- 9

ble HS experiment of [Schroda et al., 2000] (reported 10

in Fig. 5). Defining such an RMS is much more 11

arbitrary than defining the RMS w.r.t. the controls 12

of the feeding experiments, because of the previ- 13

ously mentioned hypothesis on the proportionality 14

between the enzyme concentration and its activity. 15

We do not combine the two RMSs, as this would 16

require to attribute to the two a weight which would 17

be highly arbitrary. 18

For these reasons we only compute this second 19

RMS a posteriori as a check, for the best 5000 20

among the random parameters sets selected above, 21

and show the distribution of the values of the two 22

different RMS in Fig .17. This shows that minimiz- 23

ing both at the same time cannot be obtained, and 24

one needs to find a trade-off between the two. The 25

29
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Figure 17: RMS w.r.t. the double HS data versus
RMS w.r.t. the controls of the feeding experiments,
magnifying the region where the points with lowest
values of the RMSs lie.

values of the RMS w.r.t. double HS run between1

0.11 and 0.55 (not all visible in the figure, which is2

magnified). We can a posteriori compute this RMS3

for the fiducial parameter set, finding 0.170, and for4

the final parameter set, obtaining 0.168.5

Finally, we verified that in the gradient search6

performed in the next section, if we employ the7

sum of the two RMS instead of the RMS w.r.t. to8

feedings only, we can improve the fit to the double9

HS data, but at the cost of having non-realistic10

behaviours in the model consisting of big oscillations11

in the concentrations after onset of HS (and of12

introducing an arbitrary weight between the two13

RMSs).14

C.2 Local optimization using a gradient15

search to fit the parameters’ values to16

the data17

As discussed above, the fiducial set of parameters18

allows already to obtain a value of the RMS (w.r.t.19

the controls of the feeding experiments) close to20

the lower limit of the random set. We explored21

the parameter space with the MC analysis and22

we concluded that the RMS can be improved only23

marginally w.r.t. the value corresponding to this24

set. Having shown that no region of the parameter25

space is preferred by the RMS, we opted for a local26

optimization procedure, thus performing a gradient27
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Figure 18: RMS decrease for subsequent iterations
of the gradient search algorithm.

search starting from the point represented by the 1

fiducial set of parameters, employing the steepest 2

descent method. 3

This means that we start from a point ~x0 in the 4

parameter space represented by the fiducial value 5

for the 20 rate constants employed in our model (see 6

Table 2). We compute the corresponding value of 7

the root mean square RMS (~x0). We then compute 8

numerically the gradient of the RMS at that point 9

~∇RMS (~x0) (by approximating partial derivatives 10

using the symmetric difference quotient). 11

We then proceed along the direction op- 12

posite to the gradient towards a new point 13

~xn+1 = ~xn − γ~∇RMS (~xn) in the parameter space 14

which provides a smaller value of the RMS. We do 15

so iteratively until a termination criterion described 16

above is satisfied, and label the iteration number by 17

n. At each iteration, we need to decide which is the 18

length of the step γ that we want to use in the direc- 19

tion opposite to the gradient. To do so, we imple- 20

ment a line search with the aim to loosely minimize 21

the function f (γ) .= RMS
(
~xn − γ~∇RMS (~xn)

)
22

w.r.t. γ, i.e. along the direction opposite to the 23

gradient. This means finding the value of γ which 24

minimizes the function f (γ). We do so numerically 25

employing a modification of the bisection rule based 26

on the Golden ratio to save computation time. 27

Since the orders of magnitude of the parameters 28

are very different, we expect the isosurfaces of the 29

function RMS (~x) to be far away from being spher- 30

ical. This would lead to a very slow convergence of 31

30
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Figure 19: Values of one of the parameters for sub-
sequent iterations of the gradient search algorithm.

the method, because the gradient at each step would1

hardly point roughly toward the minimum. We thus2

employed also a preconditioning of the function that3

we want to minimize, i.e. the RMS. We applied the4

numerical procedure of minimization not to the ac-5

tual RMS (~x), but to a function RMS′ (~x′) which6

we obtain by transforming RMS (~x) via a rescaling7

of all the parameters using their fiducial values. In8

this way all the parameters are of order of magni-9

tude one, which is more suitable for the application10

of the described numeric algorithm. Once the mini-11

mization has been performed, we applied the inverse12

transformation to re-obtain the parameters in their13

original form.14

The termination criterion we employed imposes15

the algorithm to stop when the average RMS de-16

crease over the last ten iterations is lower then a17

threshold value. This criterion is of course somewhat18

arbitrary, but we have selected it by empirically ver-19

ifying that it allows a better fit to the control data20

(a lower RMS), avoiding an over-fitting which would21

lead to model behaviour too far away from the be-22

haviour expected w.r.t. other situations as e.g. the23

double HS, as can be seen from Fig. 18 and Fig. 19.24

The algorithm stopped after 31 iterations and re-25

turned the set of parameters listed in the second26

column of Table 2 as final values. The corresponding27

value of the RMS w.r.t. the controls of the feeding28

experiments is 0.137. We have employed this set of29

parameters to perform all the simulations shown in30

this work (a part from the calibration runs).31

C.3 The model reproduces the qualitative 1

behaviour observed in the experiments 2

We have compared the results of our simulations 3

to the corresponding experimental data, those of 4

the second group. These are the double heat shock 5

experiments performed in [Schroda et al., 2000] 6

and shown in Fig. 12 and the feeding with Stau- 7

rosporine and Radicicol performed in [Schmollinger 8

et al., 2013] and shown in Fig. 3 and Fig. 4. Addi- 9

tional comparison with data on the expression of the 10

HP protein collected in [Mühlhaus et al., 2011] are 11

shown in Fig. 21 and discussed in the Supplementary 12

Material. 13

The figures mentioned above show the correspond- 14

ing results of the simulations performed with our 15

model using the final parameter set determined as 16

described in the previous section. The experimental 17

set-ups, the salient features of each experiment and 18

the way to use our model to simulate these exper- 19

iments have been widely described in Sections 3.1 20

and 3.2. As we can see from the figures, the model 21

reproduces well the qualitative and the (relative) 22

quantitative behaviour of these experimental data. 23

D Supplementary Material: Maxi- 24

mal accumulation of degenerated 25

proteins as function of time neces- 26

sary to increase the temperature 27

during HS 28

We might wander how the maximum concentration 29

of unfolded proteins accumulated during a HS de- 30

pends on how fast the temperature has increased 31

from the initial value Tlow to the final value Thigh. 32

To study this we simulate what happens when pro- 33

viding to the system a HS by acclimating the system 34

at the temperature Tlow =25°C, then starting from 35

t = t0, then increasing the temperature following a 36

cosinusoidal function until when the temperature 37

Thigh =42°C is reached at t = t0 + τ , and then 38

keeping the temperature at Thigh. In this way the 39

function T (t) is not only continuous, but also every- 40

where differentiable. We repeat for various values 41

of the time τ which is the time required for the 42

temperature to increase from Tlow to Thigh, and we 43

show the result in Fig. 20. We observe that for in- 44

stantaneous increase in temperature, up to increases 45

which requires about 1 minute, the maximum value 46

31
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of the concentration of degenerated proteins does1

not change. For τ between about 1 minute and 1002

minutes there is a steep fall, and another plateau is3

reached for τ bigger then about 100 minutes. Notice4

that the scale on the horizontal axis of Fig. 20 is5

logarithmic.6
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Figure 20: Study of how the maximum concentra-
tion of unfolded proteins accumulated during a HS
depends on how fast the temperature has increased
from the initial (lower) value to the final (higher)
value.

E Supplementary Material: compar-7

ison with data on HP expression8

from [Mühlhaus et al., 2011]9

Since the comparisons among model’s predictions10

and experimental data worked out so far are mainly11

at the level of mRNA production, here we would like12

to compare with data the model’s predictions for the13

time evolution of the concentration of HP. We con-14

sider the data from [Mühlhaus et al., 2011], which15

using quantitative shotgun proteomics monitors pro-16

teome dynamics in time course experiments on C.17

reinhardtii and, among the thousands of proteins18

analysed, found 38 proteins significantly increased19

upon HS. To simulate this we apply at t=0 min20

an HS by increasing (as in the experiments) the21

temperature from 25°C to 45°C. We compared the22

model simulated behaviour of [HP ] with the data23

relative to HSP70A, HSP70B and HSP90.24

Fig. 21 shows that the model reproduces the qual-25

itative behaviour of the data: the concentration26
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Figure 21: Comparison between the model predic-
tions for the variation of the concentration of HP un-
der HS and the corresponding data from [Mühlhaus
et al., 2011].

of HP increases slowly at the very beginning, then 1

faster, reaching a maximum and mildly decreasing 2

afterwards. Quantitatively, the data are provided 3

in terms of the z-score, a quantity used in statistic 4

to describe a set of data points, which measures the 5

distance of the single data point from the mean, in 6

terms of standard deviations (thus a z-score of -1 7

means 1 standard deviation below the average of 8

the set of data points). While not having access to 9

the absolute values, we nevertheless know given its 10

definition that the z-score is linear with respect to 11

the concentration value represented by each data 12

point, then we do not expect any distortion on the 13

vertical axes of the plot if we would be able to 14

transfer these data to the corresponding original 15

values, which justify the comparison of Fig. 21. The 16

qualitative agreement is good, nevertheless we can 17

notice a somewhat faster increase during the first 18

100 minutes of the model’s prediction w.r.t. the 19

data. 20

32
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