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  10 

Abstract 11 

The stability of messenger RNA (mRNA) is one of the major determinants of gene 12 

expression. Although a wealth of sequence elements regulating mRNA stability has 13 

been described, their quantitative contributions to half-life are unknown. Here, we 14 

built a quantitative model for Saccharomyces cerevisiae explaining 60% of the half-15 

life variation between genes based on mRNA sequence features alone, and predicts 16 

half-life at a median relative error of 30%. The model integrates known cis-regulatory 17 

elements, identifies novel ones, and quantifies their contributions at single-nucleotide 18 

resolution. We show quantitatively that codon usage is the major determinant of 19 

mRNA stability. Nonetheless, single-nucleotide variations have the largest effect 20 

when occurring on 3’UTR motifs or upstream AUGs. Application of the approach to 21 

Schizosaccharomyces pombe supports the generality of these findings. Analyzing the 22 

effect of these sequence elements on mRNA half-life data of 34 knockout strains 23 

showed that the effect of codon usage not only requires functional decapping and 24 

deadenylation, but also the 5’-to-3’ exonuclease Xrn1, the non-sense mediated 25 

decay proteins Upf2 and Upf3, and does not require no-go decay. Altogether, this 26 

study quantitatively delineates the contributions of mRNA sequence features on 27 

stability in yeast, reveals their functional dependencies on degradation pathways, 28 

and allows accurate prediction of half-life from mRNA sequence. 29 

 30 

Author Summary 31 
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The stability of mRNA plays a key role in gene regulation: It influences not only the 32 

mRNA abundance but also how quickly new steady-state levels are reached upon a 33 

transcriptional trigger. How is mRNA half-life encoded in a gene sequence? Through 34 

systematic discovery of novel half-life associated sequence elements and collecting 35 

known ones, we show that mRNA half-life can be predicted from sequence in yeast, 36 

at an accuracy close to measurement precision. Our analysis reveals new conserved 37 

motifs in 3’UTRs predictive for half-life. While codon usage appears to be the major 38 

determinant of half-life, motifs in 3’UTRs are the most sensitive elements to 39 

mutations: a single nucleotide change can affect the half-life of an mRNA by as much 40 

as 30%. Analyzing half-life data of knockout strains, we furthermore dissected the 41 

dependency of the elements with respect to various mRNA degradation pathways. 42 

This revealed the dependency of codon-mediated mRNA stability control to 5’-3’ 43 

degradation and non-sense mediated decay genes. Altogether, our study is a 44 

significant step forward in predicting gene expression from a genome sequence and 45 

understanding codon-mediated mRNA stability control. 46 

 47 

Introduction 48 

 49 

The stability of messenger RNAs is an important aspect of gene regulation. It 50 

influences the overall cellular mRNA concentration, as mRNA steady-state levels are 51 

the ratio of synthesis and degradation rate. Moreover, low stability confers high 52 

turnover to mRNA and therefore the capacity to rapidly reach a new steady-state 53 

level in response to a transcriptional trigger (1). Hence, stress genes, which must 54 

rapidly respond to environmental signals, show low stability (2,3). In contrast, high 55 

stability provides robustness to variations in transcription. Accordingly, a wide range 56 

of mRNA-half-lives is observed in eukaryotes, with typical variations in a given 57 

genome spanning one to two orders of magnitude (4–6). Also, significant variability in 58 

mRNA half-life among human individuals could be demonstrated for about a quarters 59 

of genes in lymphoblastoid cells and estimated to account for more than a third of the 60 

gene expression variability (7). 61 

 62 

How mRNA stability is encoded in a gene sequence has long been a subject of 63 

study. Cis-regulatory elements (CREs) affecting mRNA stability are mainly encoded 64 
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in the mRNA itself. They include but are not limited to secondary structure (8,9), 65 

sequence motifs present in the 3’UTR including binding sites of RNA-binding proteins 66 

(10–12), and, in higher eukaryotes, microRNAs (13). Moreover, translation-related 67 

features are frequently associated with mRNA stability. For instance, inserting strong 68 

secondary structure elements in the 5’UTR or modifying the translation start codon 69 

context strongly destabilizes the long-lived PGK1 mRNA in S. cerevisiae (14,15). 70 

Codon usage, which affects translation elongation rate, also regulates mRNA stability 71 

(16–19), Further correlations between codon usage and mRNA stability have been 72 

reported in E. coli and S. pombe (20,21). 73 

 74 

Since the RNA degradation machineries are well conserved among eukaryotes, the 75 

pathways have been extensively studied using S. cerevisiae as a model organism 76 

(22,23). The general mRNA degradation pathway starts with the removal of the 77 

poly(A) tail by the Pan2/Pan3 (24) and Ccr4/Not complexes (25). Subsequently, 78 

mRNA is subjected to decapping carried out by Dcp2 and promoted by several 79 

factors including Dhh1 and Pat1 (26,27). The decapped and deadenylated mRNA 80 

can be rapidly degraded in the 3’ to 5’ direction by the exosome (28) or in the 5’ to 3’ 81 

direction by Xrn1 (29). Further mRNA degradation pathways are triggered when 82 

aberrant translational status is detected, including Nonsense-mediated decay (NMD), 83 

No-go decay (NGD) and Non-stop decay (NSD) (22,23). 84 

 85 

Despite all this knowledge, prediction of mRNA half-life from a gene sequence is still 86 

not established. Moreover, most of the mechanistic studies so far could only be 87 

performed on individual genes or reporter genes and it is therefore unclear how the 88 

effects generalize genome-wide. A recent study showed that translation-related 89 

features can be predictive for mRNA stability (30). Although this analysis supported 90 

the general correlation between translation and stability (31,32), the model was not 91 

based purely on sequence-derived features but contained measured transcript 92 

properties such as ribosome density and normalized translation efficiencies. Hence, 93 

the question of how half-life is genetically encoded in mRNA sequence remains to be 94 

addressed. Additionally, the dependences of sequence features to distinct mRNA 95 

degradation pathways have not been systematically studied. One example of this is 96 

codon-mediated stability control. Although a causal link from codon usage to mRNA 97 

half-life has been shown in a wide range of organisms (16–19), the underlying 98 
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mechanism remains poorly understood. In S. cerevisiae, reporter gene experiments 99 

showed that codon-mediated stability control depends on the RNA helicase Dhh1 100 

(33). However, neither is it clear how this generalizes genome-wide nor the role of 101 

other closely related genes has been systematically assessed. 102 

 103 

Here, we used an integrative approach where we mathematically modelled mRNA 104 

half-life as a function of its sequence and applied it to S .cerevisiae. For the first time, 105 

our model can explain most of the between-gene half-life variance from sequence 106 

alone. Using a semi-mechanistic model, we could interpret individual sequence 107 

features in the 5’UTR, coding region, and 3’UTR. Our approach de novo recovered 108 

known cis-regulatory elements and identified novel ones. Quantification of the 109 

respective contributions revealed that codon usage is the major contributor to mRNA 110 

stability. Applying the modeling approach to S. pombe supports the generality of 111 

these findings. We systematically assessed the dependencies of these sequence 112 

elements on mRNA degradation pathways using half-life data for 34 knockout strains, 113 

and notably delineated novel pathways through which codon usage affects half-life.  114 

 115 

Results 116 

 117 

Regression reveals novel mRNA sequence features associated with 118 

mRNA stability  119 

To study cis-regulatory determinants of mRNA stability in S. cerevisiae, we chose the 120 

dataset by Sun and colleagues (34), which provides genome-wide half-life 121 

measurements for 4,388 expressed genes of a wild-type lab strain and 34 strains 122 

knocked out for RNA degradation pathway genes (Fig 1, S1 Table). When applicable, 123 

we also investigated half-life measurements of S. pombe for 3,614 expressed 124 

mRNAs in a wild-type lab strain from Eser and colleagues (6). We considered 125 

sequence features within 5 overlapping regions: the 5’UTR, the start codon context, 126 

the coding sequence, the stop codon context and the 3’UTR. The correlations 127 

between sequence lengths, GC contents and folding energies (Materials and 128 

Methods) with half-life and corresponding P-values are summarized in S2 Table and 129 

S1-S3 Figs.  In general, sequence lengths correlated negatively with half-life and 130 
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folding energies correlated positively with half-life in both yeast species, whereas 131 

correlations of GC content varied with species and gene regions. 132 

 133 

Motif search (Materials and Methods) recovered de novo the Puf3 binding motif 134 

TGTAAATA in 3’UTR (35,36), a well-studied CRE that confers RNA instability, a 135 

polyU motif (TTTTTTA), which is likely bound by the mRNA-stabilizing protein Pub1 136 

(12), as well as the Whi3 binding motif TGCAT (37,38). Two new motifs were found: 137 

AAACAAA in 5’UTR, and ATATTC in 3’UTR (Fig 2A). Except for AAACAAA and 138 

TTTTTTA, all motifs associated with shorter half-lives (Fig 2A). Notably, the motif 139 

ATATTC, was found in 13% of the genes (591 out of 4,388) and significantly co-140 

occurred with the other two destabilizing motifs found in 3’UTR: Puf3 (FDR = 0.02) 141 

and Whi3 (FDR = 7× 10-3) binding motifs (Fig 2B).  142 

 143 

In the following subsections, we describe first the findings for each of the 5 gene 144 

regions and then a model that integrates all these sequence features.  145 

 146 

Upstream AUGs destabilize mRNAs by triggering nonsense-147 

mediated decay 148 

Occurrence of an upstream AUG (uAUG) associated significantly with shorter half-life 149 

(median fold-change = 1.37, P < 2 × 10-16). This effect strengthened for genes with 150 

two or more AUGs (Fig 3A, B). Among the 34 knock-out strains, the association 151 

between uAUG and shorter half-life was almost lost only for mutants of the two 152 

essential components of the nonsense-mediated mRNA decay (NMD) UPF2 and 153 

UPF3 (39,40), and for the general 5’-3’ exonuclease Xrn1 (Fig 2A). The dependence 154 

on NMD suggested that the association might be due to the occurrence of a 155 

premature stop codon. Consistent with this hypothesis, the association of uAUG with 156 

decreased half-lives was only found for genes with a premature stop codon cognate 157 

with the uAUG (Fig 3C). This held not only for cognate premature stop codons within 158 

the 5’UTR, leading to a potential upstream ORF, but also for cognate premature stop 159 

codons within the ORF, which occurred almost always for uAUG out-of-frame with 160 

the main ORF (Fig 3C). This finding likely holds for many other eukaryotes as we 161 

found the same trends in S. pombe (Fig 3D). These observations are consistent with 162 

a single-gene study demonstrating that translation of upstream ORFs can lead to 163 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 19, 2017. ; https://doi.org/10.1101/085522doi: bioRxiv preprint 

https://doi.org/10.1101/085522
http://creativecommons.org/licenses/by-nc-nd/4.0/


crPage 6 | 28 

 

RNA degradation by nonsense-mediated decay (41). Altogether, these results show 164 

that uAUGs are mRNA destabilizing elements as they almost surely match with a 165 

cognate premature stop codon, which, whether in frame or not with the gene, and 166 

within the UTR or in the coding region, trigger NMD. 167 

 168 

Translation initiation predicts mRNA stability 169 

Several sequence features in the 5’UTR associated significantly with mRNA half-life. 170 

 171 

First, longer 5’UTRs associated with less stable mRNAs (ρ = -0.17, P < 2 × 10-16 for 172 

S. cerevisiae and ρ = -0.26, P = < 2 × 10-16 for S. pombe, S1A, B Fig). In mouse 173 

cells, mRNA isoforms with longer 5’UTR are translated with lower efficiency (42), 174 

possibly because longer 5’UTR generally harbor more translation-repressive 175 

elements. Hence, longer 5’UTR may confer mRNA instability by decreasing 176 

translation initiation and therefore decreasing the protection by the translation 177 

machinery. 178 

 179 

Second, a significant association between the third nucleotide 5’ of the start codon 180 

and mRNA half-life was observed (Fig 4A). The median half-life correlated with the 181 

nucleotide frequency at this position (S4A Fig), associating with 1.28 median fold-182 

change (P = 1.7x10-11) between the adenosine (2,736 genes, most frequent) and 183 

cytosine (360 genes, the least frequent).  The same correlation was also significant 184 

for S. pombe (P = 1.2x10-4, S4A, B Fig). Functional effect of the start codon context 185 

on mRNA stability has been established as the long-lived PGK1 mRNA was strongly 186 

destabilized when substituting the sequence context around its start codon with the 187 

one from the short-lived MFA2 mRNA (15). Our genome-wide analysis indicates that 188 

this effect generalizes to other genes. The start codon context, which controls 189 

translation initiation efficiency (43,44), increases ribosome density which may protect 190 

mRNA from degradation as hypothesized by Edri and Tuller (31). 191 

 192 

Finally, de novo search for regulatory motifs identified AAACAAA motif to be 193 

significantly (FDR < 0.1) associated with longer half-lives. However, this association 194 

might be merely correlative as the motif failed for further support (S5 Fig). 195 

 196 
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Altogether, these findings indicate that 5’UTR elements, including the start codon 197 

context, may affect mRNA stability by altering translation initiation.  198 

 199 

Codon usage regulates mRNA stability through common mRNA 200 

decay pathways 201 

First, species-specific tRNA adaptation index (sTAI) (45) significantly correlated with 202 

half-life in both S. cerevisiae (Fig 4C, ρ = 0.55, P < 2.2x10-16) and S. pombe (Fig 203 

S4C, ρ = 0.41, P < 2. 2x10-16), confirming previously observed association between 204 

codon optimality and mRNA stability (17,21). Next, using the out-of-folds explained 205 

variance as a summary statistics, we assessed its variation across different gene 206 

knockouts (Materials and Methods). The effect of codon usage exclusively depended 207 

on the genes from the common deadenylation- and decapping-dependent 5’ to 3’ 208 

mRNA decay pathway and the NMD pathway (all FDR < 0.1, Fig 4C). In particular, all 209 

assayed genes of the Ccr4-Not complex, including CCR4, NOT3, CAF40 and POP2, 210 

were required for wild-type level effects of codon usage on mRNA decay. Among 211 

them, CCR4 has the largest effect. This confirmed a recent study in zebrafish 212 

showing that accelerated decay of non-optimal codon genes requires deadenylation 213 

activities of Ccr4-Not (18). In contrast to genes of the Ccr4-Not complex, PAN2/3 214 

genes which encode also deadenylation enzymes, were not found to be essential for 215 

the coupling between codon usage and mRNA decay (Fig 4C).  216 

Furthermore, our results not only confirm the dependence on Dhh1 (33), but also on 217 

its interacting partner Pat1. Our findings of Pat1 and Ccr4 contradict the negative 218 

results for these genes reported by Radhakrishnan et al. (33). The difference might 219 

come from the fact that our analysis is genome-wide, whereas Radhakrishnan and 220 

colleagues used a reporter assay.  221 

 222 

Our systematic analysis revealed two additional novel dependencies: First, on the 223 

common 5’ to 3’ exonuclease Xrn1, and second, on UPF2 and UPF3 genes, which 224 

are essential players of NMD (all FDR < 0.1, Fig 4C). Previous studies have shown 225 

that NMD is more than just a RNA surveillance pathway, but rather one of the general 226 

mRNA decay mechanisms that target a wide range of mRNAs, including aberrant 227 

and normal ones (46,47). Notably, we did not observe any change of effect upon 228 

knockout of DOM34 and HBS1 (S6 Fig), which are essential genes for the No-Go 229 
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decay pathway. This implies that the effect of codon usage is unlikely due to stalled 230 

ribosomes at non-optimal codons.  231 

 232 

Altogether, our analysis strongly indicates that, the so-called “codon-mediated decay” 233 

is not an mRNA decay pathway itself, but a regulatory mechanism of the common 234 

mRNA decay pathways.  235 

 236 

Stop codon context associates with mRNA stability 237 

Linear regression against the 6 bases 5’ and 3’ of the stop codon revealed the first 238 

nucleotide 3’ of the stop codon to most strongly associate with mRNA stability. This 239 

association was observed for each of the three possible stop codons, and for each 240 

codon a cytosine significantly associated with lower half-life (all P < 0.01, Fig 4D). 241 

This also held for S. pombe (all P < 0.01, S4D Fig). A cytosine following the stop 242 

codon structurally interferes with stop codon recognition (48), thereby leading to stop 243 

codon read-through events (49). Of all combinations, TGA-C is known to be the 244 

leakiest stop codon context (50) and also associated with shortest mRNA half-life 245 

(Fig 4D). These results are consistent with non-stop decay, a mechanism that 246 

triggers exosome-dependent RNA degradation when the ribosome reaches the 247 

poly(A) tail. Consistent with this interpretation, mRNAs with additional in-frame stop 248 

codons in the 3’UTR, which are over-represented in yeast (51), exhibited significantly 249 

higher half-life (P = 7.5x10-5 for S. cerevisiae and P = 0.011 for S. pombe, S4E, F 250 

Fig). However, the association between the stop codon context and half-life was not 251 

weakened in mutants of the Ski complex, which is required for the cytoplasmic 252 

functions of the exosome (S6 Fig). These results indicate that the fourth nucleotide 253 

after the stop codon is an important determinant of mRNA stability, likely because of 254 

translational read-through.  255 

 256 

Sequence motifs in 3’UTR  257 

Four motifs in the 3’UTR were found to be significantly associated with mRNA 258 

stability (Fig 5A, all FDR < 0.1, Materials and Methods). This analysis recovered 259 

three described motifs: the Puf3 binding motif TGTAAATA (35), the Whi3 binding 260 

motif TGCAT (37,38), and a poly(U) motif TTTTTTA, which can be bound by Pub1 261 

(12), or is part of the long poly(U) stretch that forms a looping structure with poly(A) 262 
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tail (9). We also identified a novel motif, ATATTC, which associated with lower mRNA 263 

half-life. This motif was reported to be enriched in 3’UTRs for a cluster of genes with 264 

correlated expression pattern (52), but its function remains unknown. Genes 265 

harboring this motif are significantly enriched for genes involved in oxidative 266 

phosphorylation (Bonferroni corrected P < 0.01, Gene Ontology analysis, 267 

Supplementary Methods and S3 Table). 268 

 269 

Four lines of evidence supported the potential functionality of the new motif. First, it 270 

preferentially localizes in the vicinity of the poly(A) site (Fig 5B), and functionally 271 

depends on Ccr4 (S6 Fig), suggesting a potential interaction with deadenylation 272 

factors. Second, single nucleotide deviations from the consensus sequence of the 273 

motif associated with decreased effects on half-life (Fig 5C, linear regression allowing 274 

for one mismatch, Materials and Methods). Moreover, the flanking nucleotides did not 275 

show further associations indicating that the whole lengths of the motifs were 276 

recovered (Fig 5C). Third, when allowing for one mismatch, the motif still showed 277 

strong preferences (Fig 5D). Fourth, the motif instances were more conserved than 278 

their flanking bases (Fig 5E). 279 

 280 

Consistent with the role of Puf3 in recruiting deadenylation factors, Puf3 binding motif 281 

localized preferentially close to the poly(A) site (Fig 5B). The effect of the Puf3 motifs 282 

was significantly lower in the knockout of PUF3 (FDR < 0.1, S6 Fig). We also found a 283 

significant dependence on the deadenylation (CCR4, POP2) and decapping (DHH1, 284 

PAT1) pathways (all FDR < 0.1, S6 Fig), consistent with previous single gene 285 

experiment showing that Puf3 binding promotes both deadenylation and decapping 286 

(10,53). Strikingly, Puf3 binding motif switched to a stabilization motif in the absence 287 

of Puf3 and Ccr4, suggesting that deadenylation of Puf3 motif containing mRNAs is 288 

not only facilitated by Puf3 binding, but also depends on it. 289 

 290 

Whi3 plays an important role in cell cycle control (54). Binding of Whi3 leads to 291 

destabilization of the CLN3 mRNA (38). A subset of yeast genes are up-regulated in 292 

the Whi3 knockout strain (38). However, it was so far unclear whether Whi3 generally 293 

destabilizes mRNAs upon its binding. Our analysis showed that mRNAs containing 294 

the Whi3 binding motif (TGCAT) have significantly shorter half-life (FDR = 6.9x10-04). 295 

Surprisingly, this binding motif is extremely widespread, with 896 out of 4,388 (20%) 296 
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genes that we examined containing the motif on the 3’UTR region, which enriched for 297 

genes involved in several processes (S3 Table). No significant genetic dependence 298 

of the effect of the Whi3 binding motif was found (S6 Fig). 299 

 300 

The mRNAs harboring the TTTTTTA motif tended to be more stable and enriched for 301 

translation (P = 1.34x10-03, S3 Table, Fig 5A). No positional preferences were 302 

observed for this motif (Fig 5B). Effects of this motif depends on genes from Ccr4-Not 303 

complex and Xrn1 (S6 Fig). 304 

   305 

60% between-gene half-life variation can be explained by sequence 306 

features 307 

We next asked how well one could predict mRNA half-life from these mRNA 308 

sequence features, and what their respective contributions were when considered 309 

jointly. To this end, we performed a multivariate linear regression of the logarithm of 310 

the half-life against the identified sequence features. The predictive power of the 311 

model on unseen data was assessed using 10-fold cross validation (Material and 312 

Methods). Also, motif discovery performed on each of the 10 training sets retrieved 313 

the same set of motifs, showing that their identification was not due to over-fit on the 314 

complete dataset. Altogether, 60% of S. cerevisiae half-life variance in the logarithmic 315 

scale can be explained by simple linear combinations of the above sequence 316 

features (Fig 6A). The median out-of-folds relative error across genes is 30%. A 317 

median relative error of 30% for half-life is remarkably low because it is in the order of 318 

magnitude of the expression variation that is typically physiologically tolerated, and it 319 

is also about the amount of variation observed between replicate experiments (6). To 320 

make sure that our findings are not biased to a specific dataset, we fitted the same 321 

model to a dataset using RATE-seq (55), a modified version of the protocol used by 322 

Sun and colleagues (34). On this data, the model was able to explain 50% of the 323 

variance (S7 Fig). Moreover, the same procedure applied to S. pombe explained 324 

47% of the total half-life variance, suggesting the generality of this approach. 325 

Because the measures also entail measurement noise, these numbers are 326 

conservative underestimations of the total biological variance explained by our 327 

model. 328 

 329 
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The uAUG, 5’UTR length, 5’UTR GC content, 61 coding codons, CDS length, all four 330 

3’UTR motifs, and 3’UTR length remained significant in the joint model indicating that 331 

they contributed independently to half-life (complete list of p-values given in S4 332 

Table). In contrast, start codon context, stop codon context, 5’ folding energy, the 333 

5’UTR motif AAACAAA, and 3’UTR GC content dropped below the significance when 334 

considered in the joint model (Materials and Methods). This loss of statistical 335 

significance may be due to lack of statistical power. Another possibility is that the 336 

marginal association of these sequence features with half-life is a consequence of a 337 

correlation with other sequence features. Among all sequence features, codon usage 338 

as a group is the best predictor both in a univariate model (55.23%) and in the joint 339 

model (43.84 %) (Fig 6C). This shows that, quantitatively, codon usage is the major 340 

determinant of mRNA stability in yeast.  341 

 342 

The variance analysis quantifies the contribution of each sequence feature to the 343 

variation across genes. Features that vary a lot between genes, such as UTR length 344 

and codon usage, favorably contribute to the variation. However, this does not reflect 345 

the effect on a given gene of elementary sequence variations in these features. For 346 

instance, a single-nucleotide variant can lead to the creation of an uAUG with a 347 

strong effect on half-life, but a single nucleotide variant in the coding sequence may 348 

have little impact on overall codon usage. We used the joint model to assess the 349 

sensitivity of each feature to single-nucleotide mutations as median fold-change 350 

across genes, simulating single-nucleotide deletions for the length features and 351 

single nucleotide substitutions for the remaining ones (Materials and Methods). 352 

Single-nucleotide variations typically altered half-life by less than 10%. The largest 353 

effects were observed in the 3’UTR motifs and uAUG (Fig 6D). Notably, although 354 

codon usage was the major contributor to the variance, synonymous variation on 355 

codons typically affected half-life by less than 2% (Fig 6D; S8 Fig). For those 356 

synonymous variations that changed half-life by more than 2%, most of them were 357 

variations that involved the most non-optimized codons CGA or ATA (S8 Fig, 358 

Presnyak et al. 2015).  359 

 360 

Altogether, our results show that most of yeast mRNA half-life variation can be 361 

predicted from mRNA sequence alone, with codon usage being the major contributor. 362 
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However, single-nucleotide variation at 3’UTR motifs or uAUG had the largest 363 

expected effect on mRNA stability. 364 

 365 

 366 

Discussion 367 

 368 

We systematically searched for mRNA sequence features associating with mRNA 369 

stability and estimated their effects at single-nucleotide resolution in a joint model. 370 

Overall, the joint model showed that 60% of the variance could be predicted from 371 

mRNA sequence alone in S. cerevisiae. This analysis showed that translation-related 372 

features, in particular codon usage, contributed most to the explained variance. This 373 

findings strengthens further the importance of the coupling between translation and 374 

mRNA degradation (56–58). Moreover, we assessed the RNA degradation pathway 375 

dependencies of each sequence feature. Remarkably, we identified that codon-376 

mediated decay is a regulatory mechanism of the canonical decay pathways, 377 

including deadenylation- and decapping-dependent 5’ to 3’ decay and NMD (Fig 6E). 378 

 379 

Integrative analyses of cis-regulatory elements on various aspects of gene 380 

expression (59,60) as we used here complement mechanistic single-gene studies for 381 

important aspects. They allow assessing genome-wide the importance of CREs that 382 

have been reported previously with single-gene experiments. Also, single-nucleotide 383 

effect prediction can more precisely supports the interpretation of genetic variants, 384 

including mutations in non-coding region as well as synonymous transitions in coding 385 

region. Furthermore, such integrative analyses can be combined with a search for 386 

novel sequence features, as we did here with k-mers, allowing the identification of 387 

novel candidate cis-regulatory elements. An alternative approach to the modeling of 388 

endogenous sequence is to use large-scale perturbation screens (1,44,61). Although 389 

very powerful to dissect known cis-regulatory elements or to investigate small 390 

variations around select genes, the sequence space is so large that these large-scale 391 

perturbation screens cannot uncover all regulatory motifs. It would be interesting to 392 

combine both approaches and design large-scale validation experiments guided by 393 

insights coming from modeling of endogenous sequences as we developed here. 394 

 395 
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Recently, Neymotin and colleagues (30) showed that several translation-related 396 

transcript properties associated with half-life. This study derived a model explaining 397 

50% of the total variance using many transcript properties including some not based 398 

on sequence (ribosome profiling, expression levels, etc.). Although non-sequence 399 

based predictors can facilitate prediction, they may do so because they are 400 

consequences rather than causes of half-life. For instance increased half-life causes 401 

higher expression level. Also, increased cytoplasmic half-life, provides a higher ratio 402 

of cytoplasmic over nuclear RNA, and thus more RNAs available to ribosomes. 403 

Hence both expression level and ribosome density may help making good predictions 404 

of half-life, but not necessarily because they causally increase half-life. In contrast, 405 

we aimed here to understand how mRNA half-life is encoded in mRNA sequence. 406 

Our model was therefore solely based on mRNA sequence. This avoided using 407 

transcript properties which could be consequences of mRNA stability. Hence, our 408 

present analysis confirms the quantitative importance of translation in determining 409 

mRNA stability that Neymotin and colleagues quantified, and anchors it into pure 410 

sequence elements. 411 

 412 

Causality cannot be proven through a regression analysis approach. Genes under 413 

selection pressure for high expression levels could evolve to have both CREs for high 414 

mRNA stability and CREs for high translation rate. When possible, we referred to 415 

single gene studies that had proven causal effects on half-life. For novel motifs, we 416 

provided several complementary analyses to further assess their potential 417 

functionality. These include conservation, positional preferences, and epistasis 418 

analyses to assess the dependencies on RNA degradation pathways. The novel half-419 

life associated motif ATATTC in 3’UTR is strongly supported by these complementary 420 

analyses and is also significant in the joint model (P = 5.8x10-14). One of the most 421 

interesting sequence features that we identified but still need to be functionally 422 

assayed is the start codon context. Given its established effect on translation 423 

initiation (44,62), the general coupling between translation and mRNA degradation 424 

(56–58), as well as several observations directly on mRNA stability for single genes 425 

(15,63), they are very likely to be functional on most genes. Consistent with this 426 

hypothesis, large scale experiments that perturb 5’ sequence secondary structure 427 

and start codon context indeed showed a wide range of mRNA level changes in the 428 

direction that we would predict (44). Altogether, such integrative approaches allow 429 
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the identification of candidate regulatory elements that could be functionally tested 430 

later on. 431 

 432 

We are not aware of previous studies that systematically assessed the effects of cis-433 

regulatory elements in the context of knockout backgrounds, as we did here. This 434 

part of our analysis turned out to be very insightful. By assessing the dependencies 435 

of codon usage mediated mRNA stability control systematically and 436 

comprehensively, we generalized results from recent studies on the Ccr4-Not 437 

complex and Dhh1, but also identified important novel ones including NMD factors, 438 

Pat1 and Xrn1. With the growing availability of knockout or mutant background in 439 

model organisms and human cell lines, we anticipate this approach to become a 440 

fruitful methodology to unravel regulatory mechanisms.  441 

 442 

 443 

Materials and Methods 444 

 445 

Data and Genomes 446 

Wild-type and knockout genome-wide S. cerevisiae half-life data were obtained from 447 

Sun and colleagues (34), whereby all strains are histidine, leucine, methionine and 448 

uracil auxotrophs. S. cerevisiae gene boundaries were taken from the boundaries of 449 

the most abundant isoform quantified by Pelechano and colleagues (64). Reference 450 

genome fasta file and genome annotation were obtained from the Ensembl database 451 

(release 79). UTR regions were defined by subtracting out gene body (exon and 452 

introns from the Ensembl annotation) from the gene boundaries.  453 

Genome-wide half-life data of S. pombe as well as refined transcription unit 454 

annotation were obtained from Eser and colleagues (6).  Reference genome version 455 

ASM294v2.26 was used to obtain sequence information. Half-life outliers of S. 456 

pombe (half-life less than 1 or larger than 250 mins) were removed. 457 

For both half-life datasets, only mRNAs with mapped 5’UTR and 3’UTR were 458 

considered. mRNAs with 5’UTR length shorter than 6nt were further filtered out.  459 

Codon-wise species-specific tRNA adaptation index (sTAI) of yeasts were obtained 460 

from Sabi and Tuller (45). Gene-wise sTAIs were calculated as the geometric mean 461 

of sTAIs of all its codons (stop codon excluded). 462 
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 463 

Analysis of knockout strains 464 

The effect level of an individual sequence feature was compared against the wild-465 

type with Wilcoxon rank-sum test followed by multiple hypothesis testing p-value 466 

correction (FDR < 0.1). For details see Supplementary methods.  467 

 468 

Motif discovery 469 

Motif discovery was conducted for the 5’UTR, the CDS and the 3’UTR regions. A 470 

linear mixed effect model was used to assess the effect of each individual k-mer 471 

while controlling the effects of the others and for the region length as a covariate as 472 

described previously (Eser et al. 2016). For CDS we also used codons as further 473 

covariates. In contrast to Eser and colleagues, we tested the effects of all possible k-474 

mers with length from 3 to 8. The linear mixed model for motif discovery was fitted 475 

with GEMMA software (65). P-values were corrected for multiple testing using 476 

Benjamini-Hochberg’s FDR. Motifs were subsequently manually assembled based on 477 

overlapping significant (FDR < 0.1) k-mers. 478 

 479 

Folding energy calculation 480 

RNA sequence folding energy was calculated with RNAfold from ViennaRNA version 481 

2.1.9 (66), with default parameters.  482 

 483 

S. cerevisiae conservation analysis 484 

The phastCons (67) conservation track for S. cerevisiae was downloaded from the 485 

UCSC Genome browser 486 

(http://hgdownload.cse.ucsc.edu/goldenPath/sacCer3/phastCons7way/). Motif single-487 

nucleotide level conservation scores were computed as the mean conservation score 488 

of each nucleotide (including 2 extended nucleotide at each side of the motif) across 489 

all motif instances genome-wide (removing NA values).  490 

 491 

Linear model for genome-wide half-life prediction 492 

Multivariate linear regression models were used to predict genome-wide mRNA half-493 

life on the logarithmic scale from sequence features. Only mRNAs that contain all 494 

features were used to fit the models, resulting with 3,862 mRNAs for S. cerevisiae 495 

and 3,130 mRNAs for S. pombe. Out-of-fold predictions were applied with 10-fold 496 
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cross validation for any prediction task in this study. For each fold, a linear model was 497 

first fitted to the training data with all sequence features as covariates, then a 498 

stepwise model selection procedure was applied to select the best model with 499 

Bayesian Information Criterion as criteria (step function in R, with k = log(n)).  L1 or 500 

L2 regularization were not necessary, as they did not improve the out-of-fold 501 

prediction accuracy (tested with glmnet R package (68)). Motif discovery was 502 

performed again at each fold. The same set of motifs were identified within each 503 

training set only. A complete list of model features and their p-values in a joint model 504 

for both yeast species are provided in S4 Table. For details see Supplementary 505 

methods. 506 

 507 

Analysis of sequence feature contribution 508 

Linear models were first fitted on the complete data with all sequence features as 509 

covariates, non-significant sequence features were then removed from the final 510 

models, ending up with 70 features for S. cerevisiae model and 75 features for S. 511 

pombe (each single coding codon was fitted as a single covariate). A complete list of 512 

selected significant features and their p-values in a joint model were provided in S4 513 

Table. The contribution of each sequence feature was analyzed individually as a 514 

univariate regression and also jointly in a multivariate regression model. The 515 

contribution of each feature individually was calculated as the variance explained by 516 

a univariate model. Features were then added in a descending order of their 517 

individual explained variance to a joint model, cumulative variance explained were 518 

then calculated. The drop quantify the drop of variance explained as leaving out one 519 

feature separately from the full model. All contributions statistics were quantified by 520 

taking the average of 100 times of 10-fold cross-validation. 521 

 522 

Single-nucleotide variant effect predictions 523 

The same model that used in sequence feature contribution analysis was used for 524 

single-nucleotide variant effect prediction. For motifs, effects of single-nucleotide 525 

variants were predicted with linear model modified from (6). When assessing the 526 

effect of a given motif variation, instead of estimating the marginal effect size, we 527 

controlled for the effect of all other sequence features using a linear model with the 528 

other features as covariates. For details see Supplementary methods. For other 529 

sequence features, effects of single-nucleotide variants were predicted by 530 
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introducing a single nucleotide perturbation into the full prediction model for each 531 

gene, and summarizing the effect with the median half-life change across all genes. 532 

For details see Supplementary methods.  533 

 534 

Code availability 535 

Analysis scripts are available at: https://i12g-536 

gagneurweb.in.tum.de/gitlab/Cheng/mRNA_half_life_public. 537 
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 744 

Figure captions 745 

Fig 1. Study overview. The goal of this study is to discover and integrate cis-746 

regulatory mRNA elements a_ecting mRNA stability and assess their dependence on 747 

mRNA degradation pathways. Data) We obtained S. cerevisiae genome-wide half-life 748 

data from wild-type (WT) as well as from 34 knockout strains from Sun et al. 2013. 749 

Each of the knockout strains has one gene closely related to mRNA degradation 750 

pathways knocked out. Analysis) We systematically searched for novel sequence 751 

features associating with half-life from 5'UTR, start codon context, CDS, stop codon 752 

context, and 3'UTR. Effects of previously reported cis-regulatory elements were also 753 

assessed. Moreover, we assessed the dependencies of different sequence features 754 

on degradation pathways by analyzing their effects in the knockout strains. 755 

Integrative model) We build a statistical model to predict genome-wide half-life 756 

solely from mRNA sequence. This allowed the quantification of the relative 757 

contributions of the sequence features to the overall variation across genes and 758 

assessing the sensitivity of mRNA stability with respect to single-nucleotide variants. 759 

 760 

Fig 2. Overview of identified or collected sequence features. (A) Sequence 761 

features that were identified or collected from different sequence regions in this 762 

study. When applicable, stabilizing elements are shown in blue, destabilizing in red. 763 

(B) Co-occurrence significance (FDR, Fisher test p-value corrected with Benjamini-764 

Hochberg) between different motifs (left). Number of occurrences among the 4,388 765 

mRNAs (right). 766 
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 767 

Fig 3. Upstream AUG codon (uAUG) destabilize mRNA. (A) Distribution of mRNA 768 

half-life for mRNAs without uAUG (left) and with at least one uAUG (right) in, from left 769 

to right: wild type, XRN1, UPF2 and UPF3 knockout S. cerevisiae strains. Median 770 

fold-change (Median FC) calculated by dividing the median of the group without 771 

uAUG with the group with uAUG. (B) Distribution of mRNA half-lives for mRNAs with 772 

zero (left), one (middle), or more (right) uAUGs in S. cerevisiae. (C) Distribution of 773 

mRNA half-lives for S. cerevisiae mRNAs with, from left to right: no uAUG, with one 774 

in-frame uAUG but no cognate premature termination codon, with one out-of-frame 775 

uAUG and one cognate premature termination codon in the CDS, and with one 776 

uAUG and one cognate stop codon in the 5'UTR (uORF). (D) Same as in (C) for S. 777 

pombe mRNAs. All p-values were calculated with Wilcoxon rank-sum test. Numbers 778 

in the boxes indicate number of members in the corresponding group. Boxes 779 

represent quartiles, whiskers extend to the highest or lowest value within 1.5 times 780 

the interquartile range and horizontal bars in the boxes represent medians. Data 781 

points falling further than 1.5-fold the interquartile distance are considered outliers 782 

and are shown as dots. 783 

 784 

Fig 4. Translation initiation, elongation and termination features associate with 785 

mRNA half-life. (A) Distribution of half-life for mRNAs grouped by the third 786 

nucleotide before the start codon. Group sizes (numbers in boxes) show that 787 

nucleotide frequency at this position positively associates with half-life. (B) mRNA 788 

half-life (y-axis) versus species-specific tRNA adaptation index (sTAI) (x-axis) for S. 789 

cerevisiae. (C) mRNA half-life explained variance (y-axis, Materials and Methods) in 790 

wild-type (WT) and across all 34 knockout strains (grouped according to their 791 

functions). Each blue dot represents one replicate, bar heights indicate means across 792 

replicates. Bars with a red star are significantly different from the wild type level (FDR 793 

< 0.1, Wilcoxon rank-sum test, followed by Benjamini-Hochberg correction). (D) 794 

Distribution of half-life for mRNAs grouped by the stop codon and the following 795 

nucleotide. Colors represent three different stop codons (TAA, TAG and TGA), within 796 

each stop codon group, boxes are shown in G, A, T, C order of their following base. 797 

Only the P-values for the most drastic pairwise comparisons (A versus C within each 798 

stop codon group) are shown. All p-values in boxplots were calculated with Wilcoxon 799 

rank-sum test. Boxplots computed as in Fig 3. 800 
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 801 

Fig 5. 3'UTR half-life determinant motifs in S. cerevisiae. (A) Distribution of half-802 

lives for mRNAs grouped by the number of occurrence(s) of the motif ATATTC, 803 

TGCAT (Whi3), TGTAAATA (Puf3) and TTTTTTA respectively in their 3'UTR 804 

sequence. Numbers in the boxes represent the number of members in each box. 805 

FDR were reported from the linear mixed effect model (Materials and Methods). (B) 806 

Fraction of transcripts containing the motif (y-axis) within a 20-bp window centered at 807 

a position (x-axis) with respect to poly(A) site for different motifs (facet titles). 808 

Positional bias was not observed when aligning 3'UTR motifs with respect to the stop 809 

codon. (C) Prediction of the relative effect on half-life (y-axis) for single-nucleotide 810 

substitution in the motif with respect to the consensus motif (y=1, horizontal line). The 811 

motifs were extended 2 bases at each flanking site (positions +1, +2, -1, -2). (D) 812 

Nucleotide frequency within motif instances, when allowing for one mismatch 813 

compared to the consensus motif. (E) Mean conservation score (phastCons, 814 

Materials and Methods) of each base in the consensus motif with 2 flanking 815 

nucleotides (y-axis). 816 

 817 

Fig 6. Genome-wide prediction of mRNA half-lives from sequence features and 818 

analysis of the contributions. (A-B) mRNA half-lives predicted (x-axis) versus 819 

measured (y-axis) for S. cerevisiae (A) and S. pombe (B) respectively. (C) 820 

Contribution of each sequence feature individually (Individual), cumulatively when 821 

sequentially added into a combined model (Cumulative) and explained variance drop 822 

when each single feature is removed from the full model separately (Drop). Values 823 

reported are the mean of 100 times of cross-validated evaluation (Materials and 824 

Methods). (D) Expected half-life fold-change of single-nucleotide variations on 825 

sequence features. For length and GC, dot represent median half-life fold change of 826 

one nucleotide shorter or one G/C to A/T transition respectively. For codon usage, 827 

each dot represents median half-life fold-change of one type of synonymous 828 

mutation, all kinds of synonymous mutations are considered. For uAUG, each dot 829 

represents median half-life fold-change of mutating out one uAUG. For motifs, each 830 

dot represents median half-life fold-change of one type of nucleotide transition at one 831 

position on the motif (Materials and Methods). Medians are calculated across all 832 

mRNAs. (E) Overview of conclusions. 833 

 834 
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Supporting Information 835 

S1 Fig. Length of 5’UTR, CDS and 3’UTR correlate with mRNA half-life. (A-B) 836 

5’UTR length (x-axis) versus half-life (y-axis) for S. cerevisiae (A) and S. pombe (B). 837 

(C-D) CDS length (x-axis) versus half-life (y-axis) for S. cerevisiae (C) and S. pombe 838 

(D). (E-F) 3’UTR length (x-axis) versus half-life (y-axis) for S. cerevisiae (E) and S. 839 

pombe (F).  840 

 841 

S2 Fig. GC content of 5’UTR, CDS and 3’UTR correlate with mRNA half-life. (A-842 

B) 5’UTR GC content (x-axis) versus half-life (y-axis) for S. cerevisiae (A) and S. 843 

pombe. (C-D) CDS GC content (x-axis) versus half-life (y-axis) for S. cerevisiae (C) 844 

and S. pombe (D). (E-F) 3’UTR GC content (x-axis) versus half-life (y-axis) for S. 845 

cerevisiae (E) and S. pombe (F).  846 

 847 

S3 Fig. Folding energy of 5’UTR, CDS and 3’UTR correlate with mRNA half-life. 848 

(A-B) 5’ free energy (x-axis) versus half-life (y-axis) for S. cerevisiae (A) and S. 849 

pombe (B). (C-D) CDS free energy (x-axis) versus half-life (y-axis) for S. cerevisiae 850 

(C) and S. pombe (D). (E-F) 3’ free energy (x-axis) versus half-life (y-axis) for S. 851 

cerevisiae (E) and S. pombe (F).  852 

 853 

S4 Fig. Translation initiation, elongation and termination features associate 854 

with mRNA half-life. (A) Start codon context (Kozak sequence) generated from 855 

4388 S. cerevisiae genes and 3713 S. pombe genes. (B) Distribution of half-life for 856 

mRNAs grouped by the third nucleotide before the start codon for S. pombe. Group 857 

sizes (numbers in boxes) show that nucleotide frequency at this position positively 858 

associates with half-life. (C) mRNA half-life (y-axis) versus species-specific tRNA 859 

adaptation index (sTAI) (x-axis) for S. pombe. (D) Distribution of half-life for mRNAs 860 

grouped by the stop codon and the following nucleotide for S. pombe. Colors 861 

represent three different stop codons (TAA, TAG and TGA), within each stop codon 862 

group, boxes are shown in G, A, T, C order of their following base. Only the P-values 863 

for the most drastic pairwise comparisons (A versus C within each stop codon group) 864 

are shown. (E) Distribution of half-life for mRNAs grouped by with or without 865 

additional 3’UTR in-frame stop codon for S. cerevisiae. 30 bases window after the 866 
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main stop codon was considered. (F) Same as (E) for S. pombe. All p-values in 867 

boxplot were calculated with Wilcoxon rank-sum test. Boxplots computed as in Fig 3. 868 

 869 

S5 Fig. S. cerevisiae 5’UTR mRNA half-life associated motif. (A) Distribution of 870 

half-lives for mRNAs grouped by the number of occurrence(s) of the motif AAACAAA 871 

in their 5’UTR sequence. Numbers in the boxes represent the number of members in 872 

each box. FDR were reported from the linear mixed effect model (Materials and 873 

Methods). (B) Prediction of the relative effect on half-life (y-axis) for single-nucleotide 874 

substitution in the motif with respect to the consensus motif (y=1, horizontal line). The 875 

motifs were extended 2 bases at each flanking site (positions +1, +2, -1, -2). (C) 876 

Nucleotide frequency within motif instances, when allowing for one mismatch 877 

compared to the consensus motif. (D) Mean conservation score (phastCons, 878 

Materials and Methods) of each base in the consensus motif with 2 flanking 879 

nucleotides (y-axis). 880 

 881 

S6 Fig. Summary of CREs effect changes across all 34 knockouts comparing 882 

with WT. Colour represent the relative effect size (motifs, St-3 C-A, TGAG-TGAC, 883 

uAUG), correlation (5’ folding energy) or explained variance (codon usage) upon 884 

knockout of different genes (y-axis) (Materials and Methods for detailed description). 885 

Wild-type label is shown in the bottom (WT) P-values calculated with Wilcoxon rank-886 

sum test by comparing each mutant to wild-type level, multiple testing p-values 887 

corrected with Bonferroni & Hochberg (FDR). Stars indicating significance of 888 

statistical testing (FDR < 0.1). 5’ energy: correlation of 5’end (5’UTR plus first 10 889 

codons) folding energy with mRNA half-lives; St-3 C-A: relative median half-life 890 

difference between genes with cytosine and adenine at start codon -3 position; 891 

TGAC-TGAG: relative median half-life difference between genes with stop codon +1 892 

TGAC and TGAG. Codon usage: codon usage explained mRNA half-life variance. 893 

uAUG: relative median half-life difference between genes without and with upstream 894 

AUG in the 5’UTR (Materials and Methods)  895 

 896 

S7 Fig. Genome-wide prediction of mRNA half-lives from sequence features 897 

with RATE-seq data. mRNA half-lives predicted (x-axis) versus measured (y-axis) 898 

with RATE-seq data for 3,539 genes that have complete profiles of all features.  899 

 900 
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S8 Fig. Predicted effects of synonymous codon transitions on half-life. 901 

Expected half-life fold-change (x-axis) at each synonymous codon transitions. Each 902 

row represent transition from one codon (y-axis) to its synonymous partners. Only 903 

synonymous codons that differ by one base were considered.  904 

 905 

S1 Table.  List of 34 knockout strains analyzed in this study. 906 

S2 Table. List of correlation and p-value between sequence length, GC content 907 

and folding energy with mRNA half-life for S. cerevisiae and S. pombe. 908 

S3 Table. GO enrichment results for 3’UTR motifs. 909 

S4 Table. Regression coefficients in the joint model for S. cerevisiae (Sun and 910 

Neymotin data) and S. pombe. 911 

S5 Table. Out-of-fold mRNA half-life prediction results for S. cerevisiae (Sun 912 

and Neymotin data) and S. pombe. 913 

 914 

 915 
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