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Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking
pairs of neuronal populations; the so-called connectome. Prior work has indicated that structural brain
connectivity constrains pairwise correlations in brain dynamics (also called functional connectivity), but it is
not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain
areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the
Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in
184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and
clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome.
We then characterized the univariate rs-fMRI dynamics at each brain region by computing 6 930 time-series
properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong
and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only
when edge weights were accounted for, and were associated with variations in the autocorrelation properties
of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively
correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation
ρ = 0.58), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = −0.43).
Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related
to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections
display longer timescales of activity fluctuations.

Nervous systems are complex networks with a
topology governed by the pattern of axonal con-
nections linking distinct neural elements. Highly
connected and topologically central elements are
thought to play an important role in meditating
the flow of information across different parts of
the system. However, it is unclear how the in-
trinsic dynamics of a given neuronal population
relates to the pattern of connections that popula-
tion shares with other network nodes. In this
work, we show that there is a strong and ro-
bust correlation between the structural connec-
tivity properties of a brain region and its blood-
oxygenation-level-dependent (BOLD) signal dy-
namics, as measured with resting-state fMRI (rs-
fMRI) in the mouse. The strongest relation-
ship is found with the total weight of incoming
connections to a brain region, or weighted in-
degree, which is associated with longer dynamical
timescales of rs-fMRI dynamics. Our findings in-
dicate that structural connection weights convey
important information about neural activity, and

a)s.sethi16@imperial.ac.uk; These authors contributed equally to
this work.
b)ben.fulcher@monash.edu

that the aggregate strength of incoming projec-
tions to a brain region is closely related to its
BOLD signal dynamics.

I. INTRODUCTION

The principle that structure constrains function is
ubiquitous in biology. For example, the molecular struc-
ture of a protein determines the species with which it can
interact. Similarly, the evolution of opposable thumbs in
some primate species enabled high-precision motor con-
trol. Brains are no exception, with neuronal dynamics
unfolding on an intricate and topologically complex net-
work of axonal connections; a network that is commonly
referred to as a connectome1. In a graph representa-
tion of this network, nodes comprise functionally homo-
geneous or anatomically localized neurons or populations
of neurons (depending on the scale of measurement), and
axonal connections between these neural elements are
represented as edges connecting pairs of nodes.

The network representation of the brain has pro-
vided a convenient framework for understanding the re-
lationship between connectome structure and brain dy-
namics. This relationship has typically been exam-
ined at the level of inter-regional structural connectivity
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and inter-regional coupling of brain dynamics, or func-
tional connectivity. Correlations between structural and
functional connectivity have been demonstrated using
a range of approaches and datasets2–8, with computa-
tional modeling playing a key role. Computational mod-
els of brain networks typically simulate dynamical sys-
tems (which define the dynamics of each brain region)
coupled via a network topology determined by the struc-
tural connectome4–6,9–12. Some models can predict em-
pirical measurements of functional connectivity in hu-
man with model predictions correlating with empirical
data in the range 0.4 < r < 0.613, and can be optimized
up to r = 0.7514. These results are impressive given
the known limitations of diffusion MRI in reconstructing
anatomical brain connections7,15. The success of dynam-
ical systems models, as well as simplified network spread-
ing models15–17, in reproducing the correlation structure
of inter-regional brain dynamics suggests that the struc-
tural connectome plays a key role in constraining brain
dynamics.

While there is a growing evidence base linking the
structural topology of a brain network to the inter-
regional coupling of functional connectivity, less is known
about how connectome structure relates to the intrin-
sic dynamics of an individual brain region. Understand-
ing this relationship would provide insight into how pat-
terns of neuronal activity within a specific brain area
may support its specialized function. In addition to
inter-regional variation in microstructural properties and
gene transcription18,19, it has long been thought that
the functional specialization of a given brain region is
in large part determined by its unique profile of ax-
onal inputs and outputs – its so-called connectional
fingerprint20. Moreover, recent work using magnetoen-
cephalogaphy (MEG) has suggested that the dynamics
of individual brain regions (captured using power spec-
tral estimates through time) are sufficiently distinctive
to be predicted across individuals21. Other evidence in-
dicates that brain dynamics are governed by a hierarchy
of intrinsic timescales across regions, from slowly-varying
prefrontal areas high in the anatomical hierarchy22 (that
are thought to accumulate information over longer du-
rations), to the relatively rapid dynamics of sensory re-
gions low in the hierarchy23–28. This hierarchical organi-
zation of timescales across the brain may facilitate pro-
cessing of (and predictions about) the diverse timescales
of stimuli in the world around us. Computational mod-
eling has begun to shed light on the role of connectiv-
ity in shaping this inter-regional heterogeneity in char-
acteristic timescales11, including the emergence of slow
oscillations in densely connected, high-degree brain net-
work hubs in identical, connectome-coupled neural mass
models29. Thus, although preliminary modeling work has
suggested that the connectome may play a role in shap-
ing patterns of dynamical heterogeneity across the brain,
empirical data has been lacking to allow a characteriza-
tion of the relationship between structural connectivity
and dynamics at the level of individual brain regions.

Compared to measures of pairwise correlation between
time series that yield estimates of functional connec-
tivity, a key challenge of analyzing the univariate dy-
namics of individual brain regions is the vast array of
properties that can be estimated for a given time series
recording of neuronal activity. Previous analysis of uni-
variate fMRI dynamics has focused on properties of the
power spectrum, such as the total power in particular fre-
quency bands30. However, quite apart from properties
of the power spectrum, thousands of alternative time-
series analysis methods exist that might contain useful
information, such as those developed for applications
in statistics, electrical engineering, economics, statisti-
cal physics, dynamical systems, and biomedicine31. Here
we leverage this vast interdisciplinary library of time-
series analysis methods to characterize the fluctuations
of spontaneous regional activity using resting-state fMRI
(rs-fMRI), using a recently developed highly compara-
tive analysis framework that extracts over 7 700 prop-
erties from univariate time series31,32. In this way, we
computed thousands of properties of the intrinsic rs-
fMRI dynamics in each brain region using data from
18 anesthetized mice. Structural network connectivity
properties of each brain region were also computed us-
ing a mesoscale mouse connectome estimated from viral
tract-tracing experiments33. Comparing the two mea-
surements while correcting for confounding variations in
region volumes, we demonstrate robust correlations be-
tween a brain region’s structural connectivity and dy-
namics, with the strongest relationship found between
weighted in-degree and autocorrelation properties of the
signal. Our results are consistent with the idea that
the structural connectome constrains regional rs-fMRI
dynamics and underline the importance of measuring
weighted connectomes for probing the structure-function
relationship.

II. DATA AND METHODS

Our approach for relating structural connectivity to re-
gional rs-fMRI dynamics is shown schematically in Fig. 1.
It involves: (i) extracting topological measures from each
node in the network from the structural connectome; (ii)
extracting dynamical properties from the fMRI time se-
ries measured in each brain region; and (iii) correlating
each network property to each dynamical feature. In this
section, we first summarize the structural connectivity
and functional MRI data used in this study, and then
detail the methods used for each of the above steps.

A. Functional MRI data

a. Mice All experiments were performed in accor-
dance to the Swiss federal guidelines for the use of an-
imals in research, and under a license from the Zürich
Cantonal veterinary office. Animals were caged in stan-
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FIG. 1. Relating inter-regional connection topological to intrinsic regional dynamics. A schematic illustration of
the mouse structural connectome (top), in which the brain is represented as a set of nodes (macroscopic brain regions), with
weighted axonal connections between regions represented as directed edges (shown as arrows). Different properties can then
be computed for each brain region according to their network connectivity properties; the example plotted here is number of
connections projecting out of a brain region, also known as ‘out degree’ (shown using color from low, yellow, to high, red).
Resting state BOLD dynamics were measured for each brain region using fMRI (shown as time series). Here we compute 14
different network properties for 184 brain regions from the mesoscale structural connectome (lower, left) and, independently,
compute 6 930 time-series properties of the univariate fMRI dynamics measured in the same set of brain regions (lower, right).
In these lower plots, each row represents a brain region (labeled by broad anatomical divisions of the mouse brain33,34), and
each column represents a property computed for all brain regions, derived from either the structural connectome (lower, left),
or the BOLD time-series dynamics (lower, right). Color encodes the output of each property, from low values (blue) to high
values (red). The aim of this study was to determine whether the fMRI dynamics of a brain region are related to its structural
connectivity properties by computing correlations between the two quantities across the brain.

dard housing, with food and water ad libitum, and 12 h
day and night cycle.

b. Magnetic resonance imaging Eighteen C57BL/6J
mice (age P57 ±7) were used for this experiment. Dur-
ing the MRI session, the levels of anesthesia and mouse
physiological parameters were monitored following an es-
tablished protocol to obtain a reliable measurement of
functional connectivity35. Briefly, anesthesia was in-
duced with 4% isoflurane and the animals were endo-
tracheally intubated and the tail vein cannulated. Mice
were positioned on a MRI-compatible cradle, and artifi-
cially ventilated at 80 breaths per minute, 1:4 O2 to air
ratio, and 1.8 ml/h flow (CWE, Ardmore, USA). A bo-
lus injection of medetomidine 0.05 mg/kg and pancuro-

nium bromide 0.2 mg/kg was administered, and isoflu-
rane was reduced to 1.5%. After 5 min, an infusion of
medetomidine 0.1 mg/kg/h and pancuronium bromide
0.4 mg/kg/h was administered, and isoflurane was fur-
ther reduced to 0.5%. The animal temperature was mon-
itored using a rectal thermometer probe, and maintained
at 36.5 ± 0.5◦C during the measurements. The prepa-
ration of the animals did not exceed 20 minutes. Af-
ter the scans, mice were kept under observation in a
temperature-controlled chamber with mechanical venti-
lation (isoflurane-only, 1%) in order to fully recover from
the muscle relaxant agent, the effects of which may last
longer than the anesthetic. All animals fully recovered af-
ter 30 minutes from the end of the experiment and trans-
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ferred back to their own cages. Data acquisition was
performed on a Pharmascan 7.0 small animal MR sys-
tem operating at 300 MHz (Bruker BioSpin MRI, Ettlin-
gen, Germany). A high SNR receive-only cryogenic coil
(Bruker BioSpin AG, Fällanden, Switzerland) is used in
combination with a linearly polarized room temperature
volume resonator for transmission. Images were acquired
using Paravision 6 software. After standard adjustments,
shim gradients were optimized using mapshim protocol,
with an ellipsoid reference volume covering the whole
brain. Resting-state fMRI (rs-fMRI) was performed with
gradient-echo echo planar images (GE-EPI) that were ac-
quired with repetition time TR = 1000 ms, echo time
TE = 15 ms, flip angle = 60◦, matrix size = 90 × 50,
in-plane resolution = 0.22 × 0.2 mm2, number of slice =
20, slice thickness ST = 0.4 mm, slice gap SG = 0.1 mm,
2000 volumes, for a total scan time of 38 min. Anatom-
ical T1-weighted images were acquired with same ori-
entation as the GE-EPI using a FLASH-T1 sequence
(TE = 3.51 ms, TR = 522 ms, flip angle = 30◦, in-plane
resolution = 0.05× 0.02 mm2, ST = 0.5 mm).

c. Data preprocessing Resting state fMRI datasets
were preprocessed using an existing pipeline for removal
of unwanted confounds from the time-series35, with mod-
ifications (Fig. S1). Briefly, each rs-fMRI dataset was fed
into MELODIC (Multivariate Exploratory Linear Opti-
mized Decomposition of Independent Components36) to
perform within-subject spatial-ICA with a fixed dimen-
sionality estimation (number of components set to 100).
This included high-pass filtering (> 0.01 Hz), correction
for head motion using MCFLIRT37 and in-plane smooth-
ing with a 0.3×0.3 mm kernel. We applied FSL-FIX with
a study-specific classifier obtained from an independent
dataset of 15 mice and used a ‘conservative’ removal of
the variance of the artifactual components (for more de-
tails, see38). Thereafter, FIX-cleaned datasets were co-
registered into the skull-stripped T1-weighted images and
normalized into AMBMC template (www.imaging.org.
au/AMBMC) using ANTs v2.1 (picsl.upenn.edu/ANTS).
Time series were extracted from 370 anatomical regions
using the Allen Reference Atlas ontology34, as in Oh
et al. 33 . Only regions that were fully covered by the
field of view used for fMRI acquisition were included in
the analysis. These regions were then matched to the
Allen Mouse Connectivity Atlas, above, yielding a total
of 184 matching brain regions for each hemisphere. Here
we focus on regions in the right hemisphere, for which
full structural connectivity data is available (see above).
Thus, the final rs-fMRI dataset consisted of 2 000-sample
time series in 184 brain regions for 18 mice; a total of
3 312 time series.

B. Structural connectivity data

The mesoscale structural connectome of the mouse
brain was derived from 469 viral microinjection exper-
iments in the right hemisphere of C57BL/6J male mice

at age P56, obtained from the Allen Mouse Brain Con-
nectivity Atlas (AMBCA)33. These data were summa-
rized in the form of a weighted, directed connectivity
matrix containing 213 brain regions from the Allen Ref-
erence Atlas ontology34 using a regression model33. The
model outputs a normalized connection strength and a p-
value for each edge in the connectome, which can be used
to construct a 213 × 213 ipsilateral connectivity matrix.
We include only edges with p < 0.05 (and exclude self-
connections), resulting in a link density of 6.9%. Note
that our results are not sensitive to this choice; similar
results were obtained from denser connectomes derived
using higher p-value thresholds (up to p = 1, an edge
density of 37.4%).

The ‘normalized connection strength’ edge weight, es-
timated directly from the regression model of Oh et al. 33 ,
scales the injection volume in a source region to ex-
plain the segmented projection volume in a target re-
gion. Alternative edge weight measures can be used,
which rescale these weights to normalize for the volume
of source and target regions33, including: ‘connection
strength’ (multiplies each edge by the source region’s vol-
ume, yielding edge values proportional to the number
of axonal fibers projecting from the source to target re-
gions), ‘normalized connection density’ (multiplies each
edge by the target region’s volume, yielding edges that
measure the fraction of infected volume in the target re-
gion resulting from infection of a unit voxel of the source
region; used in Rubinov et al. 39), and ‘connection den-
sity’ (multiplies each edge by the source region’s volume
and divides by the target region’s volume, yielding edges
that measure the fraction of target region’s volume that
would be infected from the entire source region), as vi-
sualized in Fig. S2. Given the different interpretation of
each edge measure, we compared results using each edge
weight definition.

We focus here on results using the full ipsilateral con-
nectome, but also tested the robustness of the results
when including contralateral connectivity from the right
hemisphere→ left hemisphere33. From contralateral con-
nectivity data, we inferred a complete connectome under
the assumption of hemispheric symmetry (as Rubinov
et al. 39), in which connections from the left to the right
hemisphere match those from right to left hemisphere
exactly, and ipsilateral connectivity within the left hemi-
sphere mirrors that within the right hemisphere.

C. Topological node measures

To characterize the connectivity of each brain region,
we used the 213-node, ipsilateral connectome described
above to calculate node properties (note that, due to
data availability, only 184 of these brain regions were
subsequently matched to rs-fMRI dynamics). To assess
the role of edge weights and edge directionality, we com-
pared four different representations of networks, where
possible: (i) the original directed, weighted connectome

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/085514doi: bioRxiv preprint 

https://doi.org/10.1101/085514
http://creativecommons.org/licenses/by-nc/4.0/


5

(see above); (ii) a directed, unweighted connectome; (iii)
an undirected, weighted connectome; and (iv) an undi-
rected, unweighted connectome. For weighted measures,
we compared edge weights estimated using each of the
different normalizations of the source and target region
volumes: the ‘normalized connection strength’, ‘con-
nection density’, ‘connection strength’, and ‘normalized
connection density’ (Fig. S2). To transform weighted
networks to unweighted networks, we assigned a unit
weight to all edges with non-zero weight; to transform
directed networks to undirected networks, we assigned
edge weights as the sum of the edge weights in and out
of each node in the original network. We computed three
topological properties for each node in each network: (i)
degree; (ii) betweenness centrality; and (iii) clustering
coefficient. These measures are described in turn below.

d. Degree For a directed, unweighted network, the
in-degree, kin(i), of node i is defined as the number of
incoming edges, and the out-degree, kout(i), is defined as
the number of outgoing edges. On undirected networks,
the lack of directional information means that only the
total degree, k(i), can be computed, which is defined as
the total number of connections involving node i. On
weighted networks, the concept of degree can be extended
to incorporate edge weights, where the weighted counter-
part of node degree (also known as ‘node strength’) sums
the weights on edges rather than counting them.

e. Betweenness centrality The betweenness central-
ity of a node, i, is given by

b(i) =
1

(n− 1)(n− 2)

∑
h,j∈N

h6=j,h 6=i,j 6=i

ρhj(i)

ρhj
, (1)

where N is the set of all nodes in the network, n is the
number of nodes, ρhj is the total number of shortest
paths between nodes h and j, and ρhj(i) is the number of
those paths that pass through node i40. For shortest path
information transfer, a node with high betweenness cen-
trality is involved in mediating more signal traffic across
the network. For a binary network, all edges have the
same weight, and the shortest path between nodes h and
j is the path that minimizes the number of edges that
must be traversed. In a weighted network, a distance
metric is defined for each link as the inverse of the edge
weight.

f. Clustering coefficient The clustering coefficient of
a node, i, in an unweighted undirected network is given
by

C(i) =
2e(i)

k(i)(k(i)− 1)
, (2)

where k(i) is the degree of node i and e(i) is the num-
ber of connected pairs between all neighbors of node i41.
The clustering coefficient of node i is equivalent to the
link density of its neighbors, such that C(i) = 1 indi-
cates that node i and its neighbors form a clique, i.e., a
fully connected subgraph. On an unweighted, directed

network, the clustering coefficient of node i is defined
similarly as C→(i) = e(i)/[k(i)(k(i)−1)]. Weighted gen-
eralizations of the clustering coefficient aim to capture
the average intensity with which the neighbors of a node
are connected. For weighted undirected networks, we use
the measure given by Onnela et al. 42 , and for weighted
directed networks we use the measure in Fagiolo 43 .

For a given edge weight definition, we computed a total
of fourteen topological measures for each node: in-degree,
out-degree, betweenness and clustering coefficient on the
directed weighted and unweighted networks, and degree,
betweenness and clustering coefficient on the undirected
weighted and unweighted networks. All measures were
calculated using implementations provided in the Brain
Connectivity Toolbox44 (functions used are listed in Sup-
plementary Table S1).

D. Feature-based representation of rs-fMRI time series

Having quantified different network connectivity prop-
erties, we next aimed to characterize the rs-fMRI dynam-
ics in each brain region. BOLD time series have com-
monly been summarized using features like the amplitude
of low-frequency (0.01-0.08 Hz) fluctuation, ALFF30. Al-
though spectral properties like ALFF are a natural rep-
resentation of stationary oscillatory signals (as is of-
ten approximately the case in brain recordings), there
are thousands of alternative time-series analysis meth-
ods that could be used to meaningfully quantify re-
gional rs-fMRI dynamics. These methods include mea-
sures of autocorrelation, temporal entropy, distributional
spread, outlier properties, stationarity, wavelet trans-
forms, time-delay embeddings, and fits to various time-
series models. Rather than manually selecting a small
number of such time-series features, here we aimed to
determine the most informative features for understand-
ing structural connectivity properties in a purely data-
driven way. To achieve this, we used the highly compar-
ative time-series analysis software package, hctsa (v0.91,
github.com/benfulcher/hctsa)31,32,45 to extract a to-
tal of 7 754 informative features from each of the 3 312
BOLD time series in our dataset (cf. Fig. 1, lower right).
Each of the 7 754 features corresponds to a single inter-
pretable measure of a regional BOLD time series, that
could then be related to structural network connectivity
properties.

Features that did not return a real number for all 3 312
time series in the full dataset (e.g., methods that relied
on fitting positive-only distributions to our real-valued
rs-fMRI data or methods attempting to fit complicated
nonlinear time-series models that were not appropriate
for these data), or features that returned an approxi-
mately constant value across the dataset (standard devi-
ation < 2× 10−15) were removed from the set of features
prior to analysis, resulting in a reduced set of 6 930 well-
behaved time-series features. The results of the mas-
sive feature extraction facilitated by hctsa, was repre-
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sented as a 184 (brain region) × 6 930 (time-series fea-
ture) matrix that summarizes a diverse array of BOLD
time-series properties in each mesoscale brain region for
each mouse. To obtain a group-level summary, we av-
eraged features across all 18 mice for each brain region,
yielding an 184× 6 930 (brain region) × (time-series fea-
ture) matrix, which is plotted in Fig. 1 (lower, right).
This ensured that the features capture overall character-
istics of the BOLD signal at each brain region, averaging
over inter-individual and inter-scan variability. In addi-
tion to obtaining group-averaged results, we also investi-
gated robustness at the level of each individual mouse by
separately analyzing time-series feature matrices for each
individual mouse (i.e., 18 different 184× 6 930 matrices).

E. Relating regional connectivity to rs-fMRI dynamics

Having characterized each brain region in terms of
its (i) structural connectivity properties, and (ii) BOLD
time series, we next sought to find correlations be-
tween these two independent measurements. Spearman
rank correlations were used (instead of Pearson corre-
lations) to allow statistical comparison between the fre-
quently non-normally distributed nodal properties (es-
pecially those derived from weighted connectomes) and
time-series features. To control the family-wise error
rate, we used the Holm-Bonferroni method46, correcting
across 6 930 independent tests at a significance level of
pcorrected < 0.05.

Structural connectivity properties and time-series fea-
tures are both strongly affected by the potentially con-
founding effect of region volume. We estimated region
volume by counting the number of 1.2µm3 isotropic vox-
els assigned to each brain region; volumes vary markedly
across 184 regions, from 17 voxels (subparafascicular
area, SPA, in the thalamus) to 5 052 voxels (caudop-
utamen, CP, in the striatum). A total of 3 688 time-
series features of the rs-fMRI signal were significantly
correlated with region volume (pcorrected < 0.05), with
the strongest correlations obtained for spread-dependent
measures for which larger regions exhibit reduced vari-
ance (e.g., standard deviation: ρ = −0.71). Region vol-
ume was also related to measures of time-series entropy,
spectral power, stationarity, and information theory-
based properties. Topological measures were also cor-
related with region volume for all edge weight defini-
tions; e.g., for ‘connection strength’, weighted topolog-
ical measures all exhibited correlations ρ > 0.5, reach-
ing up to ρ = 0.87 for weighted in-degree, as shown in
Fig. S3. To ensure that our results reflect the contribu-
tion of structural connectivity, and are not a consequence
of regional variations volume, we computed partial Spear-
man rank correlation coefficients, ρ (and an associated p-
value) when comparing connectivity properties to time-
series features.

The high quality of these data allowed us to estimate
the relationship between nodal network connectivity and

rs-fMRI time-series properties using mass univariate test-
ing with family-wise error correction. We correct for
6 930 independent tests, even though there are only ap-
proximately 200 linearly independent time-series behav-
iors in our feature set due to the existence of sets of highly
correlated time-series features, cf. Fulcher et al. 31 . Our
results thus constitute a highly conservative estimate of
the number of time-series features that are significantly
related to each topological quantity, minimizing the false
positive rate (type I error) at the cost of artificially inflat-
ing the false negative rate (type II error). In the absence
of such a strong signal, future work could use multivari-
ate methods (such as canonical correlation analysis or
partial least squares) to find informative component-wise
relationships between the two types of data. This may be
especially useful when using connectomes estimated us-
ing MRI, which lack directed information and are noisier
than the tract tracing-based connectomes analyzed here.

III. RESULTS

We present our results in three parts. First,
we compare nodal network properties derived from
weighted/unweighted and directed/undirected connec-
tomes, in their (partial) correlations to the properties
of rs-fMRI dynamics across the brain (correcting for re-
gion volume). We show that robust correlations between
structural network topology and dynamics exist at the
level of individual brain regions for weighted connectiv-
ity measures, with the strongest relationship found for
weighted in-degree, kwin. We go on to characterize the cor-
relation properties of rs-fMRI time-series that are most
strongly correlated to kwin. Lastly, we demonstrate that
the group-level correlations also hold for the majority of
individual mice.

A. Comparison of topological measures

We first address the question of whether the extrin-
sic axonal connectivity of a brain region is related to
its intrinsic rs-fMRI dynamics. We computed fourteen
structural network measures: degree, betweenness, and
clustering coefficient, computed from weighted and un-
weighted, and directed and undirected versions of the
connectome, from each of 184 brain regions. We indepen-
dently computed 6 930 time-series features derived from
the rs-fMRI BOLD signal in the same set of brain regions.
The relationship between each structural network prop-
erty and each rs-fMRI time-series property was quanti-
fied as a partial Spearman correlation coefficient (using
region volume as a covariate), as depicted in Fig. 1 (see
Methods for details).

The comparisons using weighted connectome prop-
erties were repeated for each of the four connectome
edge weight definitions (depicted in Fig. S2): connec-
tion strength, connection density, normalized connection
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strength, and normalized connection density, as shown
in Fig. S4. Although all definitions exhibit qualita-
tively similar trends, the strongest correlations between
rs-fMRI dynamics and topological structure were found
when connection weights were proportional to the num-
ber of axons connecting two regions (i.e., using ‘connec-
tion strength’ or ‘connection density’), i.e., providing a
meaningful measure of axonal bandwidth. In the remain-
der of this study, we focus on results using connection
strength edge weights.

Results summarizing the relationship between each
structural network property and rs-fMRI dynamics are
shown in Fig. 2(a). For each network measure, the fig-
ure shows: (i) the magnitude of the strongest partial
Spearman correlation, |ρ|, across all 6 930 rs-fMRI time-
series features (color); and (ii) the number of time-series
features that exhibit a significant correlation, (Holm-
Bonferroni pcorrected < 0.05; text annotations). Note that
since in- and out-degree cannot be computed from undi-
rected networks; rectangular boxes in the upper right
hand quarter of Fig. 2(a) indicate results for degree: k
(unweighted) and kw (weighted).

Although we summarize the results using the maxi-
mum correlation, max(|ρ|), in Fig. 2(a), the comparison
of each network property to 6 930 rs-fMRI time series
properties is best represented as a distribution of cor-
relations, such as that shown in Fig. 2(b) for weighted
in-degree, kwin. Figure 2(b) indicates the thresholds for
Holm-Bonferroni pcorrected < 0.05 (vertical blue lines),
revealing a large number of rs-fMRI properties that corre-
late strongly and significantly with kwin across 184 mouse
brain regions, with correlations reaching up to |ρ| = 0.58.
Similar distributions for all node measures are in Fig. S5.

Connection strengths vary over many orders of magni-
tude, from a connection strength of 0.15 for the weakest
connection to 7.03×103 for the strongest connection (ar-
bitrary units, cf. Fig. S6). Node-level structural network
properties are therefore highly sensitive to the incorpo-
ration of edge weights. Strong and robust correlations
to time-series properties were only found for network
properties derived from weighted connectomes, whereas
unweighted connectome measures exhibited weak corre-
lations after controlling for region volume (|ρ| < 0.31),
with none exhibiting statistically significant correlations
after Holm-Bonferroni correction. Amongst the weighted
measures, most connectivity properties exhibit stronger
correlations to rs-fMRI dynamics when edge direction-
ality was taken into account, pointing to an important
role of edge directionality for uncovering the relationship
between structural connectivity and dynamics.

Of the three nodal structural connectome properties
analyzed here, the immediate measure of connectivity,
degree, k, showed the strongest correlations to regional
rs-fMRI dynamics. While a significant correlation was
found using the weighted total degree, kw (up to |ρ| =
0.53), when distinguishing incoming and outgoing con-
nection pathways, our results reveal an asymmetry, with
weighted in-degree, kwin showing the strongest correlations

to rs-fMRI dynamics of all topological properties (up
to |ρ| = 0.58), while weighted out-degree, kwout, showed
weaker correlations (up to |ρ| = 0.39). This increase
in correlation for kwin over kwout demonstrates the rela-
tive importance of incoming structural connectivity for
understanding regional BOLD dynamics (and this trend
holds across all edge weight definitions, cf. Fig. S4).
In addition to degree, we found significant but weaker
correlations between clustering coefficient and proper-
ties of the rs-fMRI dynamics. In the directed network,
C→,w significantly correlated with 477 time-series fea-
tures (pcorrected < 0.05, with correlations reaching as high
as |ρ| = 0.51), while Cw computed from the undirected
network was significantly correlated with 369 time-series
features (up to |ρ| = 0.48). Note that the number of
significant features depends on the shape of the distribu-
tion (like that shown in Fig. 2), and that the maximal
partial correlation, |ρ|, of any single topological measure
does not necessarily reflect the total number of features
with pcorrected < 0.05. Betweenness centrality was the
least correlated nodal connectivity property to proper-
ties of rs-fMRI dynamics (a result that was consistent
across all edge weight definitions, cf. Fig. S4). Only
three of the 6 930 time-series features were significantly
correlated with weighted undirected betweenness, bw, (up
to |ρ| = 0.33) and there were no significant correlations
for b→,w, bw, or b.

Noting that network connectivity measures are them-
selves non-independent and interrelated (perhaps due to
redundancy in the space of allowed networks? ), we cal-
culated Spearman rank correlation coefficients between
all pairs of the fourteen topological measures, across all
184 brain regions (Fig. S7). Topological measures that
showed the strongest partial correlations with time-series
features (kwin, kw, C→,w, and Cw) formed a strongly in-
tercorrelated group (|ρ| > 0.7 for all pairs), while the
unweighted measures C→, C, b→, b and k, were also
strongly intercorrelated. The high level of intercorrela-
tion between kwin, kw, C→,w, and Cw suggests that they
are measuring similar connectivity properties in different
ways, and may therefore be related to similar properties
of the rs-fMRI signal.

Given that weighted in-degree, kwin, shows the strongest
relationship to rs-fMRI dynamical features, and forms
a correlated cluster with other types of weighted con-
nectivity properties, we tested the idea that the vari-
ation of kwin is sufficient to explain the relationship of
the other informative weighted connectivity properties:
Cw, C→,w, and kw. For each of these topological mea-
sures, we computed partial correlations to all 6 930 rs-
fMRI time-series features, controlling for kwin (and region
volume). The number of time-series features that were
significantly related to these measures dropped dramat-
ically after controlling for kwin (pcorrected < 0.05): C→,w

(477→ 4), Cw (369→ 1), and kw (138→ 0), indicating
that the much of the signal relating Cw, C→,w, and kw

with rs-fMRI dynamics can be explained by their cor-
relation with kwin. However, it is not the case that kwin
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FIG. 2. Regional structural network connectivity properties correlate with properties of regional rs-fMRI
dynamics. (a) We compare the degree, k, betweenness, b, and clustering coefficient, C, for (i) directed and undirected, and
(ii) weighted and unweighted structural brain networks (where weights represent connection strengths between regions). For
each nodal network property, we computed the magnitude of the strongest partial Spearman correlation, |ρ|, controlling for
region volume, across 6 930 time-series features of the rs-fMRI signal (shown using color), and the number of time-series features
that are significantly correlated with that property (Holm-Bonferonni pcorrected < 0.05) across all 184 brain regions (annotated
with numbers; missing numbers indicate zero significant features). We see that taking edge weights into account is crucial for
obtaining a strong correlation between regional connectivity and dynamics. (b) The distribution of Spearman correlations, ρ,
of weighted in-degree, kwin, with 6 930 time-series features of rs-fMRI (correlations computed across 184 brain regions). Vertical
blue lines indicate Holm-Bonferonni significance thresholds at pcorrected = 0.05.

is uniquely capturing information about rs-fMRI time-
series. For example, computing a partial correlation be-
tween kwin and time-series properties controlling for both
region volume and kw reduces the number of significant
features (pcorrected < 0.05) to just two; controlling for
C→,w reduces the number to 25; controlling for all other
topological quantities together reduces the number to
zero. Thus, although it does not capture distinct infor-
mation from other connectivity properties, kwin exhibits
the strongest correlation to time-series features, with a
variation across brain regions that can mostly account
for the relationship of other topological quantities to rs-
fMRI properties.

B. Informative time-series features

Having demonstrated a strong relationship between
weighted structural connectivity properties of a brain re-
gion and its rs-fMRI dynamics, and that weighted in-
degree, kwin, shows the strongest correlation, we next
characterize the types of rs-fMRI time-series properties
that drive the effect, focusing on this key topological
measure, kwin. The 229 rs-fMRI time-series properties
that were significantly correlated with kwin (|ρ| ≥ 0.32,
pcorrected < 0.05) constitute different measures of au-
tocorrelation properties of the fMRI signal. For exam-
ple, of the five features with partial Spearman correla-
tions |ρ| > 0.5 (correcting for region volume variations),
four were direct measures of autocorrelation computed
at extended timescales (τ = 16, 23, 26, 34 s), with the
top feature being autocorrelation at τ = 34 s: AC34

(partial Spearman correlation, ρ = 0.58). Other re-
lated features include nonlinear autocorrelations (e.g.,

〈x2txt−5〉, with the average taken across the time series,
x: ρ = 0.46), automutual information (e.g., Gaussian
estimator at time lag τ = 34 s: ρ = 0.44), power in
spectral frequency bands (e.g., power in the range of fre-
quencies from 0.125 Hz ≤ f ≤ 0.375 Hz: ρ = −0.48),
parameters of model fits (e.g., a5 parameter of an au-
toregressive AR(5) model: ρ = −0.51), measures of
randomness (e.g., p-value from an Ljung-Box Q-test? :
ρ = −0.39), and entropy (e.g., normalized permutation
entropy, PermEn(m = 3, τ = 2)? : ρ = −0.36). Be-
tween themselves, these features have highly correlated
outputs across brain regions, indicating that they are
measuring similar properties of the data in different ways
(Fig. S8). Thus, using a highly comparative data-driven
approach to univariate time-series analysis31,32,45, our re-
sults indicate that regions with increased kwin (relative
to their volume) exhibit increased autocorrelation, which
can be measured directly, or with related measures, such
as power in specific frequency bands, or some classes of
entropy/predictability measures.

To investigate the variation in these time-series fea-
tures across brain regions, we first focus on the feature
correlating most strongly with kwin, autocorrelation at a
lag of τ = 34 s (AC34: ρ = 0.58). The rank residuals
of both kwin and AC34 (after correcting for region volume
using a partial Spearman correlation) are plotted as a
scatter in Fig. 3(a). The clear positive trend (ρ = 0.58),
indicates that brain regions with a larger weighted in-
degree exhibit stronger autocorrelations at this extended,
34 s timescale.

Given the ubiquity of power spectral analysis in neu-
roimaging, we next focus on a related spectral fea-
ture, which measures relative high-frequency power, f ≥
0.4 Hz (up to the Nyquist frequency, 0.5 Hz), and corre-
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(a) (b)

(c)

FIG. 3. Weighted in-degree is negatively correlated with regional BOLD signal relative high-frequency power.
Scatter plots of a brain region’s weighted in-degree are shown against (a) autocorrelation of the signal at τ = 34 s, and (b)
relative power of the rs-fMRI signal in frequencies f ≥ 0.4 Hz. For each variable rank residuals are plotted, after correcting for
a Spearman correlation to region volume. Brain regions are colored uniquely, corresponding to anatomical divisions (cf. Fig. 1).
For three selected brain regions, highlighted and labeled in (b), we show power spectral density estimates of their rs-fMRI
signals calculated using a periodogram (smoothed for visualization) in (c). The relative high frequency power measured in (b)
corresponds to the logarithm of the proportion of the power in the top fifth of frequencies (shaded gray) of the power spectral
density estimate, as calculated using a periodogram. This corresponds to the frequency range f ≥ 0.4 Hz, and is lower for
regions with increased kwin.

lates strongly with kwin (ρ = −0.43). The power spectral
density of the BOLD signal is estimated using a peri-
odogram with a Hamming window applied, and this fea-
ture calculates the logarithm of the proportion of the
power in the top fifth of frequencies (i.e., f ≥ 0.4 Hz),
which we term ‘relative high frequency power’ (where
‘high’ is the range from 0.4 Hz up to the Nyquist fre-
quency, 0.5 Hz). This feature displays a negative cor-
relation with kwin (ρ = −0.43) across the brain, shown
as a scatter in Fig. 3(b). That is, brain regions with
greater kwin have decreased relative power in rs-fMRI dy-
namics for f ≥ 0.4 Hz (or, equivalently, have greater
relative power in f < 0.4 Hz). This is consistent with
intuition from AC34, which increases with kwin; brain
regions with increased aggregate incoming connection
weights exhibit ‘slower’ BOLD dynamics. To demon-
strate the relationship in more detail, we plotted power
spectral density estimates for three selected brain regions
in Fig. 3(b): the magnocellular part of the subparafas-
cicular nucleus (SPFm) in the thalamus (kwin = 115.47),
the sensory-related superior colliculus (SCs) in the mid-
brain (kwin = 1660.5), and the ventral part of the anterior
cingulate area (ACAv) in the isocortex (kwin = 2503.4), as
annotated in Fig. 3(c). Frequencies exceeding f = 0.4 Hz
are shaded in Fig. 3(c), indicating the decrease in high
frequency power in regions with a higher kwin.

As noted above, some dynamical properties of the rs-
fMRI signal differ across anatomical divisions (as is evi-
dent by the visual distinction of particularly the isocortex
and hippocampus in Fig. 1, lower right), and may thus

result from broad anatomical differences, or non-specific
spatial gradients in dynamics, rather than reflecting spe-
cific properties of network connectivity. We mapped the
spatial variation of weighted in-degree, kwin, AC34, and
relative high frequency power (as Spearman rank resid-
uals after correcting for region volume variations) across
the brain to better visualize their spatial variation, as
shown in Fig. 4. The rendering for kwin (residuals) in
Fig. 4(a), shows a specific distribution across the brain,
with peaks in the ventral striatum region (i.e., nucleus
accumbens, NAc), a region that integrates a large num-
ber of cortical and midbrain neural inputs, in the su-
perior colliculus (SC), a subcortical area that integrates
visual and sensory information, in the thalamus and in
the cornu ammonis 1 region of the hippocampus (CA1),
which is involved in memory and learning. A similar
spatial specificity is reflected in the variation of rs-fMRI
AC34 residuals across the brain in Fig. 4(b). The high-
frequency power feature [inverted in Fig. 4(c)] is high
in olfactory cortex, midbrain and cerebellar regions, and
low in isocortex, caudoputamen and thalamus.

Above, we focused on characterizing the time-series
features that strongly correlate with kwin with the expec-
tation that similar types of properties would be selected
for the other significant connectivity properties that are
highly correlated to kwin, namely, kw, C→,w, and Cw [see
Fig. 2(a)]. Most of the rs-fMRI time-series features that
were significantly correlated to kw, C→,w and Cw, were
subsets of the 229 features selected for kwin, with all se-
lected features related to linear or nonlinear autocorrela-
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FIG. 4. A three-dimensional rendering of the spatial mapping of 184 regions across the right hemisphere of the mouse brain for:
(a) the topological quantity, weighted in-degree, log10 k

w
in, (b) autocorrelation at lag τ = 34 s, and (c) relative high frequency

BOLD power (f ≥ 0.4 Hz, note inverted color scale). All above variables have been plotted as the rank residuals from a
Spearman partial correlation with region volume. Labelled regions in (a) are: MOp, MOs = primary and secondary motor
cortex; AON = anterior olfactory nucleus; CPu = Caudoputamen; NAc = nucleus accumbens; Pir = piriform cortex; VISp
= primary visual area; SC = superior colliculus; PAG = periaqueductal gray; CA1 = cornus ammonis 1; MRN = midbrain
reticular nucleus; ENTI = entorhinal area.

tions and power spectral properties.

Our analysis above was of ipsilateral connectivity in
the complete connectome available in the right hemi-
sphere of the mouse brain. Inclusion of contralateral
projections, under the assumption of hemispheric sym-
metry (see Methods), yielded qualitatively similar results
to those presented here. In particular, kwin remained the
topological property with the strongest relationship to
rs-fMRI dynamics, and exhibited similar correlations to
autocorrelation-based measures of the rs-fMRI signal, in-

cluding the AC34 (ρ = 0.49, pcorrected = 9 × 10−9) and
relative high frequency power (ρ = −0.36, pcorrected =
0.003) features described above.

C. Individual robustness

The results above involved characterizing the rs-fMRI
dynamics of each brain region by averaging time-series
features across all 18 individual mice. Here we analyze

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 27, 2017. ; https://doi.org/10.1101/085514doi: bioRxiv preprint 

https://doi.org/10.1101/085514
http://creativecommons.org/licenses/by-nc/4.0/


11

the relationships at the level of individual mice. The
strongest correlating feature, the autocorrelation of the
BOLD signal at a time lag τ = 34 s (AC34), showed a
group-level correlation with weighted in-degree, kwin, of
ρ = 0.58. Computing this relationship for each individ-
ual mouse yielded partial Spearman correlations ranging
between −0.22 ≤ ρ ≤ 0.55, with a significant relationship
found for 13 of the 18 mice (right-tailed partial Spear-
man correlations: pcorrected < 0.05, Holm-Bonferroni cor-
rected for 18 comparisons). A similar analysis was per-
formed for relative high frequency power (f ≥ 0.4 Hz,
group-level ρ = −0.43), with Spearman correlation coef-
ficients ranging from −0.64 ≤ ρ ≤ −0.14 across the 18
individual mice. A significant correlation was observed
for each of the 18 mice (pcorrected < 0.05), with 15 of the
18 mice exhibiting a stronger partial correlation than at
the group level (i.e., ρ < −0.43). Although there is vari-
ability across individual mice, these results indicate that
the group-level relationships are not a consequence of av-
eraging over a group of mice, but hold for the majority
of individual mice.

IV. DISCUSSION

In this work we used a weighted, directed mesoscale
structural connectome and high quality rs-fMRI mea-
surements across 184 anatomical brain regions to demon-
strate a robust relationship between a brain region’s
topological role in the structural connectome and its rest-
ing state dynamics in the mouse. Rather than analyz-
ing pairwise structure-function relationships, our results
characterize a potential role of structural connectivity in
shaping the dynamics of individual brain regions. We
show that weighted connectivity information is required
to uncover the regional structure-function relationship,
and that the weight of incoming projections to a region
is a key correlate for regional BOLD dynamics, partic-
ularly with respect to its autocorrelation (and related
spectral power and other measures). As well as provid-
ing new insights into potential functional implications of
structural brain connectivity, our empirical results may
provide a new means of constraining the models we use
to simulate and understand brain dynamics.

We first note the strong effect of region volume vari-
ations on both rs-fMRI dynamics and connectivity mea-
sures. The number of inter-areal axonal connections is
expected to scale with the volume of brain areas and,
consequently, other properties derived from the weighted
connectome (cf. Fig. S3). Similarly, the strong relation-
ship found between a large number of time-series prop-
erties of rs-fMRI dynamics is partially accounted for by
image processing steps that involve averaging over differ-
ent numbers of voxels to produce an overall BOLD time
series for a given brain region. We found that larger
brain regions had lower standard deviation and reduced
high frequency power. However, although corrected for
here using partial Spearman correlations, region volume

is unlikely to be a pure confound, as the mean parcella-
tion size varies markedly across the brain, from very small
average region sizes in the thalamus, medulla, and pons,
for example, and moderate to larger volumes in the iso-
cortex, olfactory areas, and hippocampal formation. By
computing partial correlations that correct fully for vari-
ation in areal volumes, we may therefore be conservative
in the effects we report, as this correction may remove
some signal of connectivity-dynamical coupling, due to
the properties of the anatomical parcellation used.

After correcting for the volume of brain areas, the
strongest correlations between structural connectivity
and rs-fMRI dynamics were found for measures of im-
mediate connectivity (degree) and neighborhood connec-
tivity (clustering coefficient), with the strongest individ-
ual correlation found for weighted in-degree, kwin. By
contrast, the global measure of betweenness centrality
showed minimal correlations to dynamics (potentially re-
lated to the fact that information transmission across
brain networks may more closely follow an unguided,
diffusion-like process rather than shortest paths6,15,16).
Weighted in-degree was significantly correlated to 229
rs-fMRI time-series properties (pcorrected < 0.05, from
a set of 6 930 features), with partial Spearman corre-
lation coefficients reaching up to |ρ| = 0.58 (for linear
autocorrelation at lag τ = 34 s). Given the diversity
of regions across the whole mouse brain analyzed here,
that differ in their functional specialization, gene expres-
sion, and cellular and microcircuit properties18,19, all of
which may affect regional dynamics11,47, this level of cor-
relation with just the incoming mesoscale connectivity
to a brain region, kwin, is remarkable. Apart from kwin,
all other network properties that showed strong and sig-
nificant correlations to rs-fMRI dynamics—kw, Cw, and
C→,w—were related to similar types of time-series prop-
erties as kwin and showed minimal correlations to rs-fMRI
dynamics when kwin was controlled for. Taken together,
our findings indicate that direct influences from other
areas, as measured by kwin (or highly correlated measures
kw, Cw, and C→,w) are closely tied to a brain region’s
spontaneous dynamics. Our findings may also reflect the
hemodynamic measure of neuronal activity provided by
the BOLD signal. The strongest neurophysiological cor-
relate of the BOLD signal is the local field potential,
which is more strongly driven by local synaptic integra-
tion of incoming signals rather than spiking output48,49.
Whether the close association between incoming connec-
tivity and dynamics reported here for mesoscopic brain
regions would also hold using single unit recordings of
individual neurons remains an open question.

Rather than hand-picking particular time-series fea-
tures to investigate for rs-fMRI, our highly compara-
tive approach compared over 6 930 time-series features
of fMRI in a purely data-driven way, including time-
series model fitting and prediction, entropies, distribu-
tional measures, and other types of linear and nonlin-
ear correlation features31,32,45. Of the 229 properties of
regional rs-fMRI dynamics that were significantly corre-
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lated to weighted in-degree, kwin, those with the strongest
relationship were measures of autocorrelation, including
power in spectral frequency bands, parameters of linear
models, and entropy measures. Regions with increased
kwin were most strongly characterized by the autocorre-
lation of their BOLD dynamics at a time lag τ = 34 s
(ρ = 0.58). A range of autocorrelations at similar lags
also exhibited strong correlations to weighted in-degree;
e.g., the four features with the highest correlation to kwin
were all autocorrelations at different time lags: AC34

(ρ = 0.58), AC26 (ρ = 0.56), AC23 (ρ = 0.53), and AC16

(ρ = 0.52). To be selected in a purely data-driven way
from 6 930 features, this result suggests an importance
of these relatively long timescales (lags between 16 s and
34 s). Other features measured similar autocorrelation
properties of the signal in less direct ways, such as com-
puting spectral power in the upper fifth of sampled fre-
quencies, f ≥ 0.4 Hz (ρ = −0.43). These group-level
effects were robust, being reproduced at the level of 13
of the 18 mice for AC34 (pcorrected < 0.05), and 17 of
the 18 individual mice for relative high frequency power
(pcorrected < 0.05).

Our results are consistent with a connectivity-
mediated hierarchy of timescales in the brain that has
been suggested by some computational models11,29. In
Gollo et al. 29 , nonlinear neural mass models were cou-
pled via an unweighted, directed macaque structural con-
nectome, producing an emergent dynamical hierarchy in
which highly connected hub regions exhibited greater
temporal persistence in their dynamics, largely due to
their high (unweighted) in-degree. In Chaudhuri et al. 11 ,
an interplay of intrinsic variation in timescales across
cortical brain regions, inter-areal connectivity, and in-
put to the brain determined the dynamical timescale of a
brain region (estimated as the decay time constant of the
autocorrelation function). Although these models pro-
vide candidate mechanisms that may explain variations
in fMRI autocorrelation timescales across regions of the
mouse brain, it remains unclear whether this relationship
is due to the presence of incoming connections directly
altering the dynamics of that brain region. While this is a
compelling possibility, our results could also be explained
by a common underlying factor, with other types of well-
studied heterogeneity in cytoarchitecture and gene ex-
pression giving rise both to differences in inter-regional
connectivity profiles and characteristic BOLD dynamics,
for example. Future work will be crucial to disentan-
gling the causal mechanisms underlying the correlational
relationships presented here.

Our tract-tracing derived mouse connectivity data al-
lowed us to investigate the role of edge weights and direc-
tionality in contributing to the relationship between the
structural connectome and fMRI dynamics. In particu-
lar, we compared measures computed from the weighted
and directed connectome33 (comparing different edge
weight definitions), as well as unweighted and undirected
approximations of it. Although unweighted brain net-
works are more intuitive and amenable to the applica-

tion of graph theoretic techniques that have tradition-
ally been popular in network neuroscience, one might
expect that incorporating meaningful estimates of edge
weights into brain network analysis is important, as they
vary over several orders of magnitude (see Fig. S6). In-
deed, given recent estimates of cortical connection densi-
ties from high-quality tract-tracing data exceeding 60%
for macaque cortex50,51 and 70% for mouse cortex52, bi-
nary representations of such dense connectomes consti-
tute coarse approximations of true brain connectivity.
Here we demonstrate that network properties derived
from unweighted connectomes do not show strong cor-
relations to univariate rs-fMRI properties, highlighting
the importance of measuring connectome edge weights in
capturing the relationship between connectivity and dy-
namics in the mouse brain. We note that the estimation
of edge weights from tract-tracing based experiments is
non-trivial; here we explored different edge weight defi-
nitions derived from the regression model of Oh et al. 33 ,
but note that alternative estimation methods39,52 and
datasets53 exist. Of the four edge weight definitions con-
sidered here (that normalize source and target regional
volumes differently, cf. Fig. S2), those that took into ac-
count the source volume (i.e., ‘connection strength’ and
‘connection density’, which take into account the volume
of each source region) yielded weighted connectomes that
showed the strongest correlations to rs-fMRI dynamics.
Interpreting this with respect to weighted in-degree, kwin,
for example, this indicates that the connectome represen-
tations that provide the most information about dynam-
ics in a target region are those in which edge weights ac-
count for the volume of source regions that project it, i.e.,
obtain a measure proportional to the number of project-
ing axons. Indeed, the strongest relationships to rs-fMRI
dynamics were found when connectome edge weights
were proportional to the number of axonal pathways
between two regions (i.e., using ‘connection strength’).
Given that human connectomes are commonly estimated
by tractography using diffusion weighted imaging (DWI),
which is noisy and cannot determine the direction of a
pathway, it is important to note that kw is highly cor-
related to kwin (ρ = 0.91), and is related to similar types
of features of rs-fMRI dynamics as kwin (most features
are a subset of those selected for kwin, and all are cor-
related with a feature selected for kwin with ρ > 0.59).
This suggests that, if similar connectivity-dynamics re-
lationships hold in human as in mouse, then weighted
degree, kw, calculated from an undirected connectome
should also contain meaningful information about auto-
correlation properties of rs-fMRI dynamics. Although
weighted degree, kw, measured from the undirected con-
nectome showed strong correlations to rs-fMRI dynamics
(up to |ρ| = 0.53), directed edge information was im-
portant for distinguishing the weighted out-degree of a
node, kwout, which is relatively uninformative of rs-fMRI
dynamics (up to |ρ| = 0.39), from the most informa-
tive weighted in-degree, kwin (up to |ρ| = 0.58). Taking
edge weight and directionality into account when relating
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structure to function in brain networks will be crucial to
understanding whether brain dynamics are causally con-
strained by extrinsic axonal connectivity in future work.

The mouse represents an attractive model system to
study the structure-function relationship, while mini-
mizing the influence of environmental and genetic het-
erogeneity. Our findings relied on long (38 min), high-
quality rs-fMRI measurements of BOLD dynamics across
the whole mouse brain, which were compared to the a
tract-tracing based structural connectome for the first
time in this work. The use of awake mice in rs-fMRI
protocols is impracticable for long scan times (notwith-
standing the use of invasive methods for head fixation54),
making light anesthesia the de facto option55. As previ-
ously demonstrated in rats56 and monkeys57, decreasing
(or abolishing) levels of anesthesia are mirrored by an
increased in BOLD variability. This indicates that data
acquired during anesthesia cannot be fully generalized to
the awake status. Yet, to minimize the effects of anes-
thesia on BOLD dynamics, we employed a combination
of low-dose isoflurane+medetomidine, which previously
demonstrated its efficiency in retaining strong bilateral
brain networks connectivity (i.e., one of the signature of
rs-fMRI observed in both awake humans and rodents)58.

Due to the technical and methodological challenges
in obtaining such long functional scans in a light-
anesthetized regime, one must take care that the phys-
iology of the animals remains stable over time. Several
parameters were considered in this study to achieve this
goal; first, we used mechanical ventilation to maintain the
same tidal volume and blood oxygenation throughout the
experiment. To keep a low but steady level of anesthe-
sia, we combined a continue infusion of medetomedine
i/v with a very low dose of isoflurane (0.5%), optimized
from our previous studies35,59; this allowed us to over-
come the issues related to medetomidine depletion and
isoflurane accumulation over time. As evidenced by our
results, which showed consistency across the majority of
individual mice, this protocol allows for superior data re-
producibility due to a drastic reduction in motion, stable
physiology such as animal temperature and stress levels,
and a regular breathing cycle.

V. CONCLUSION

In this work, we provide the first demonstration of a
robust relationship between the connectivity properties
of a brain region and resting state BOLD dynamics. The
strongest relationships were observed for the weighted in-
degree of a brain region, which is positively correlated to
autocorrelations at extended time lags (e.g., τ = 34 s)
of its rs-fMRI dynamics and, similarly, negatively corre-
lated to their relative high frequency power (f ≥ 0.4 Hz).
Our results are consistent with physiological data indicat-
ing that BOLD signal modulations reflect the integration
of incoming signals, and support preliminary predictions
of computational models suggesting a role for connec-

tivity in mediating differences in the intrinsic dynamical
timescales of distinct regions across the brain, with highly
connected brain regions exhibiting slower BOLD dynam-
ics. These findings also highlight an asymmetry between
incoming and outgoing connectivity, and underline the
importance of weighted information for understanding
brain communication across structural brain networks.

SUPPLEMENTARY MATERIAL

See supplementary material for additional figures and
tables referred to in the text.
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