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Brain dynamics unfold on a network determined by the pattern of axonal connections linking pairs of neuronal
populations; the so-called connectome. Prior work has indicated that structural brain connectivity constrains
pairwise correlations in brain dynamics (also called functional connectivity), but it is not known whether
brain network structure is related to the intrinsic dynamics of individual brain regions. In this study, we
investigate the relationship between a brain region’s inter-regional axonal connectivity and its dynamics using
a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting
state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice.
Three properties of a brain region’s structural network connectivity were measured–degree, betweenness, and
clustering coefficient–from weighted and unweighted, and directed and undirected versions of the connectome.
We then characterised the univariate rs-fMRI dynamics at each brain region by computing 6 930 time-series
properties using recently developed highly comparative time-series analysis software, hctsa. We found that
strong and robust relationships between the inter-regional axonal connectivity of a brain region and its
intrinsic fMRI dynamics were mediated by the weighted in-degree, the total weight of incoming connections
to a brain region, emphasizing the importance of measuring weight and directionality of network connections.
Brain regions with increased weighted in-degree exhibit rs-fMRI dynamics with reduced variance (correlation
to standard deviation, ρ = −0.62), and slower correlation timescales (correlation to relative high frequency
power, f ≥ 0.375 Hz, ρ = −0.58), relationships that were reproduced in each of the eighteen individual
mice that underwent rs-fMRI. Our results indicate that the topology of inter-regional axonal connections
of the mouse brain is closely related to the intrinsic, spontaneous dynamics occurring within a region and
that variations in the aggregate strength of incoming projections to a region are associated with both the
variability and timescales of that region’s activity fluctuations.

Nervous systems are complex networks with a
topology governed by the pattern of axonal con-
nections linking distinct neural elements. Ac-
cordingly, highly connected and topologically cen-
tral neural elements are thought to play an im-
portant role in meditating the flow of informa-
tion across different parts of the system. How-
ever, it is unclear how the intrinsic dynamics of
a given neuronal population relates to the pat-
tern of connections that population shares with
other network nodes. In this work, we show
that there is a strong and robust correlation be-
tween the structural connectivity properties of
a brain region and its blood-oxygenation-level-
dependent (BOLD) signal dynamics, as measured
with resting-state fMRI in the mouse. The re-
lationship is driven by the total weight of in-
coming connections to a brain region, with in-
creased incoming connectivity associated with a
tighter distribution of BOLD values (decrease in
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the standard deviation), and longer dynamical
timescales (decrease in relative power in frequen-
cies f ≥0.375 Hz). Our findings indicate that the
weights and directions of structural connections
convey vital information about neural activity,
and that the aggregate strength of incoming pro-
jections to a brain region is intimately related to
its BOLD signal dynamics.

I. INTRODUCTION

The principle that structure constrains function is
ubiquitous in biology. For example, the molecular struc-
ture of a protein determines the species with which it can
interact. Similarly, the evolution of opposable thumbs in
some primate species enabled high-precision motor con-
trol. Brains are no exception, with neuronal dynamics
unfolding on an intricate and topologically complex net-
work of axonal connections; a network that is commonly
referred to as a connectome1. In a graph representa-
tion of this network, nodes comprise functionally homo-
geneous or anatomically localized neurons or populations
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of neurons (depending on the scale of measurement), and
axonal connections between these neural elements are
represented as edges connecting pairs of nodes.

The network representation of the brain has provided
a convenient framework for understanding the relation-
ship between connectome structure and brain dynam-
ics. This relationship has typically been examined at the
level of inter-regional structural connectivity and inter-
regional coupling of brain dynamics, or functional con-
nectivity. Correlations between structural and functional
connectivity have been demonstrated using a range of
approaches and datasets2–8, with computational mod-
elling playing a key role. Computational models of
brain networks typically simulate dynamical systems
(which define the dynamics of each brain region) cou-
pled via a network topology determined by the structural
connectome3,5,8–11. These models range in complexity
from nonlinear biophysically-based models9,12–14, linear
models15–17, and Kuramoto models18–20. Some models
can predict empirical measurements of functional con-
nectivity in human with model predictions correlating
with empirical data in the range 0.4 < r < 0.621, and
can be optimized up to r = 0.7522. These results are
impressive given the known limitations of diffusion MRI
in reconstructing anatomical brain connections6,23. In-
terestingly, the prediction of empirical functional con-
nectivity from model-based estimates is maximal for pa-
rameter regimes in which the model operates close to a
critical point of a bifurcation, i.e., near the edge of an
instability21,22,24,25. The success of this broad array of
dynamical systems models, as well as simplified network
spreading models23,26,27, in reproducing the correlation
structure of inter-regional brain dynamics suggests that
the structural connectome plays a powerful role in con-
straining brain dynamics.

While there is a growing evidence base linking the
structural topology of a brain network to the inter-
regional coupling of functional connectivity, less is known
about how connectome structure relates to the intrin-
sic dynamics of an individual brain region. Understand-
ing this relationship would provide insight into how pat-
terns of neuronal activity within a given brain region
may support its specialized function. Indeed, in addi-
tion to inter-regional variation in microstructural proper-
ties and gene transcription28,29, it has long been thought
that the functional specialization of a given brain re-
gion is in large part determined by its unique profile of
axonal inputs and outputs – its so-called connectional
fingerprint30. Moreover, recent work using magnetoen-
cephalogaphy (MEG) has suggested that the dynamics
of individual brain regions (captured using power spec-
tral estimates through time) are sufficiently distinctive
to be predicted across individuals31. Other evidence in-
dicates that brain dynamics are governed by a hierarchy
of intrinsic timescales across regions, from slowly-varying
prefrontal areas high in the anatomical hierarchy32 (the
slower timescales allowing integration of diverse inputs),
to the relatively rapid dynamics of sensory regions low

in the hierarchy (that respond more quickly to incom-
ing stimuli)20,33–37. This hierarchical organization of
timescales across the brain may facilitate processing of
the diverse timescales of stimuli the world around us,
as well as the timescales required to make useful pre-
dictions about those stimuli. Computational modeling
has begun to shed light on the role of connectivity in
shaping this inter-regional heterogeneity in characteristic
timescales14, including the emergence of slow oscillations
in densely connected, high-degree brain network hubs
in identical, connectome-coupled neural mass models13.
Thus, although preliminary modeling work has suggested
that the connectome may play a role in shaping dynam-
ical heterogeneity across the brain, empirical data has
been lacking to allow a thorough characterization of the
relationship between connectivity and dynamics at the
level of individual brain regions.

Compared to measures of pairwise correlation between
time series that yield estimates of functional connec-
tivity, a key challenge of analyzing the univariate dy-
namics of individual brain regions is the vast array of
properties that can be estimated for a give time series
recording of neuronal activity. Previous analysis of uni-
variate fMRI dynamics has focused on properties of the
power spectrum, such as the total power in particular fre-
quency bands51. However, quite apart from properties
of the power spectrum, thousands of alternative time-
series analysis methods exist that might contain useful
information, such as those developed for applications
in statistics, electrical engineering, economics, statisti-
cal physics, dynamical systems, and biomedicine38. Here
we leverage this vast interdisciplinary library of time-
series analysis methods to characterize the fluctuations
of spontaneous regional activity using resting-state fMRI
(rs-fMRI), using a recently developed highly compara-
tive analysis framework that extracts over 7 700 prop-
erties from univariate time series38,39. In this way, we
computed thousands of properties of the intrinsic rs-
fMRI dynamics in each brain region using data from
18 anesthetized mice. We also characterized the net-
work connectivity properties of each brain region us-
ing a mesoscale mouse connectome inferred from viral
tract-tracing experiments40. Comparing the two mea-
surements, we demonstrate robust correlations between
a brain region’s structural connectivity and its dynamics,
with the strongest relationship found between weighted
in-degree and (i) decreased standard deviation of rs-fMRI
dynamics, and (ii) decreased relative spectral power in
frequencies f ≥ 0.375 Hz. Our results are consistent with
the idea that the structural connectome constrains re-
gional rs-fMRI dynamics and underline the importance
of measuring directed and weighted information for prob-
ing the structure-function relationship.
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II. DATA AND METHODS

Our approach for relating structural connectivity to re-
gional rs-fMRI dynamics is shown schematically in Fig. 1.
It involves: (i) extracting topological measures from each
node in the network from the structural connectome; (ii)
extracting dynamical properties from the fMRI time se-
ries measured in each brain region; and (iii) correlating
each network property to each dynamical feature. In this
section, we will first summarize the structural connectiv-
ity and functional MRI data used in this study, and then
go on to detail the methods used for each of the above
steps.

A. Structural connectivity data

The mesoscale structural connectome of the mouse
brain was derived from 469 viral microinjection experi-
ments in C57BL/6J male mice at age P56, obtained from
the Allen Mouse Brain Connectivity Atlas (AMBCA)40.
These data were summarized in the form of a weighted,
directed connectivity matrix containing 213 brain regions
from the Allen Reference Atlas ontology41 using a re-
gression model40. The model yields a normalized con-
nection strength (or weight) and a p-value for each edge
in the connectome, quantifying the estimated confidence
that the connection is spurious. Here we analyze the
213 × 213 connectivity matrix corresponding to ipsilat-
eral connectivity between regions in the right hemisphere
of the mouse brain, including only edges with p < 0.05
(and excluding self-connections), resulting in a link den-
sity of 6.9%. We focus on results using this full ipsilat-
eral connectome, but also tested the robustness of the
results when including contralateral connectivity. From
contralateral connectivity data from the right hemisphere
→ left hemispheres40, we extrapolated a complete con-
nectome under the assumption of hemispheric symmetry
(as Rubinov et al. 65), in which connections from the left
to the right hemisphere match those from right to left
hemisphere exactly, and ipsilateral connectivity within
the left hemisphere mirrors that within the right hemi-
sphere.

B. Functional MRI data

a. Mice All experiments were performed in accor-
dance to the Swiss federal guidelines for the use of an-
imals in research, and under a license from the Zürich
Cantonal veterinary office. Animals were caged in stan-
dard housing, with food and water ad libitum, and 12 h
day and night cycle.

b. Magnetic resonance imaging Eighteen C57BL/6J
mice (age P57 ±7) were used for this experiment. Dur-
ing the MRI session, the levels of anesthesia and mouse
physiological parameters were monitored following an es-
tablished protocol to obtain a reliable measurement of

functional connectivity42. Briefly, anesthesia was in-
duced with 4% isoflurane and the animals were endo-
trachally intubated and the tail vein cannulated. Mice
were positioned on a MRI-compatible cradle, and artifi-
cially ventilated at 80 breaths per minute, 1:4 O2 to air
ratio, and 1.8 ml/h flow (CWE, Ardmore, USA). A bo-
lus injection of medetomidine 0.05 mg/kg and pancuro-
nium bromide 0.2 mg/kg was administered, and isoflu-
rane was reduced to 1.5%. After 5 min, an infusion of
medetomidine 0.1 mg/kg/h and pancuronium bromide
0.4 mg/kg/h was administered, and isoflurane was fur-
ther reduced to 0.5%. The animal temperature was mon-
itored using a rectal thermometer probe, and maintained
at 36.5± 0.5◦C during the measurements. The prepara-
tion of the animals did not exceed 20 minutes. After the
scans, mice were kept in a temperature-controlled cham-
ber under mechanical ventilation until they were able to
breath spontaneously. All animals fully recovered after
30 minutes from the end of the experiment and trans-
ferred back to their own cages. Data acquisition was
performed on a Pharmascan 7.0 small animal MR sys-
tem operating at 300 MHz (Bruker BioSpin MRI, Ettlin-
gen, Germany). A high SNR receive-only cryogenic coil
(Bruker BioSpin AG, Fällanden, Switzerland) is used in
combination with a linearly polarized room temperature
volume resonator for transmission. Images were acquired
using Paravision 6 software. After standard adjustments,
shim gradients were optimized using mapshim protocol,
with an ellipsoid reference volume covering the whole
brain. Resting-state fMRI (rs-fMRI) was performed with
gradient-echo echo planar images (GE-EPI) that were ac-
quired with repetition time TR = 1000 ms, echo time
TE = 15 ms, flip angle = 60◦, matrix size = 90 × 50,
in-plane resolution = 0.22 × 0.2 mm2, number of slice =
20, slice thickness ST = 0.4 mm, slice gap SG = 0.1 mm,
2000 volumes, for a total scan time of 38 min. Anatom-
ical T1-weighted images were acquired with same ori-
entation as the GE-EPI using a FLASH-T1 sequence
(TE = 3.51 ms, TR = 522 ms, flip angle = 30◦, in-plane
resolution = 0.05× 0.02 mm2, ST = 0.5 mm).

c. Data preprocessing Resting state fMRI datasets
were preprocessed using an existing pipeline for removal
of unwanted confounds from the time-series42, with mod-
ifications (Fig. S2). Briefly, each rs-fMRI dataset was fed
into MELODIC (Multivariate Exploratory Linear Opti-
mized Decomposition of Independent Components43) to
perform within-subject spatial-ICA with a fixed dimen-
sionality estimation (number of components set to 100).
This included high-pass filtering (> 0.01 Hz), correction
for head motion using MCFLIRT44 and in-plane smooth-
ing with a 0.3×0.3 mm kernel. We applied FSL-FIX with
a study-specific classifier obtained from an independent
dataset of 15 mice and used a ‘conservative’ removal of
the variance of the artefactual components (for more de-
tails, see45). Thereafter, FIX-cleaned datasets were co-
registered into the skull-stripped T1-weighted images and
normalized into AMBMC template (www.imaging.org.
au/AMBMC) using ANTs v2.1 (picsl.upenn.edu/ANTS).
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FIG. 1. Relating inter-regional connection topological to intrinsic regional dynamics. A schematic illustration of
the mouse structural connectome (top), in which the brain is represented as a set of nodes (macroscopic brain regions), and
axonal connections between regions are represented as directed edges (shown as arrows) with a weight reflecting the connection
strength (shown as line width). Different properties can then be computed for each brain region according to their network
connectivity properties; the example plotted here is number of connections projecting out of a brain region, also known as
‘out degree’ (shown using color from low, yellow, to high, red). In addition, spotaneous blood-oxygenation-level-dependent
(BOLD) dynamics were measured for each brain region using fMRI (shown as time series). Here we compute 14 different
network properties for 184 brain regions from the mesoscale structural connectome (lower, left) and, independently, compute
6 930 time-series properties of the univariate fMRI dynamics measured in the same set of brain regions (lower, right). In these
lower plots, each row represents a brain region (labeled by broad anatomical divisions of the mouse brain40,41), and each column
represents a property computed for all brain regions, derived from either the structural connectome (lower, left), or the BOLD
time-series dynamics (lower, right). Color encodes the output of each property, from low values (blue) to high values (red).
The aim of this study was to determine whether the fMRI dynamics of a brain region can be predicted from its structural
connectivity properties by searching for correlations between structural network features and dynamical features across the
brain.

Time series were extracted from 370 anatomical regions
using the Allen Reference Atlas ontology41, as in Oh
et al. 40 . Only regions that were fully covered by the
field of view used for fMRI acquisition were included in
the analysis. These regions were then matched to the
Allen Mouse Connectivity Atlas, above, yielding a total
of 184 matching brain regions for each hemisphere. Here
we focus on regions in the right hemisphere, for which
full structural connectivity data is available (see above).
Thus, the final rs-fMRI dataset consisted of 2 000-sample
time series in 184 brain regions for 18 mice, a total of
3 312 time series.

C. Topological node measures

In order to characterize the connectivity of each brain
region, we used the 213-node, ipsilateral connectome de-
scribed above to calculate node properties (note that, due
to data availability, only 184 of these brain regions were
able to be matched to rs-fMRI dynamics). We focused
on three key properties: (i) degree; (ii) betweenness cen-
trality; and (iii) clustering coefficient (described in detail
below). These measures were chosen as they encapsu-
late conceptually different network properties, and are
commonly used in the literature. To assess the role of
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edge weights and edge directionality, we computed these
three node properties for four different types of networks,
where possible: (i) the original directed, weighted con-
nectome (see above); (ii) a directed, unweighted connec-
tome; (iii) an undirected, weighted connectome; and (iv)
an undirected, unweighted connectome. To transform
weighted networks to unweighted networks, we assigned
a unit weight to all edges with non-zero weight, and to
transform directed networks to undirected networks, we
assigned edge weights as the sum of the edge weights in
and out of each node in the original network. The mea-
sures are described in turn below.

d. Degree For a directed, unweighted network, the
in-degree, kin(i), of node i is defined as the number of
incoming edges, and the out-degree, kout(i), is defined as
the number of outgoing edges. On undirected networks,
the lack of directional information means that only the
total degree, k(i), can be computed, which is defined as
the total number of connections involving node i. On
weighted networks, the concept of degree can be extended
to incorporate edge weights, where the weighted counter-
part of node degree (also known as ‘node strength’) sums
the weights on edges rather than counting them. For ex-
ample, the weighted in-degree, kwin(i) is the sum of the
edge weights on the incoming edges to node i.

e. Betweenness centrality The betweenness central-
ity of a node, i, is given by

b(i) =
1

(n− 1)(n− 2)

∑
h,j∈N

h6=j,h 6=i,j 6=i

ρhj(i)

ρhj
, (1)

where N is the set of all nodes in the network, n is the
number of nodes, ρhj is the total number of shortest
paths between nodes h and j, and ρhj(i) is the num-
ber of those paths that pass through node i46. For a
binary network, all edges have the same weight, and the
shortest path between nodes h and j is the path that min-
imises the number of edges that must be traversed. In a
weighted network, a distance metric is defined for each
link as the inverse of the edge weight. On a directed net-
work, the shortest path must follow the direction of the
edges. Assuming shortest path information transfer, a
node with high betweenness centrality is more likely to
be involved in mediating signal traffic across the network,
with b thus providing an index of node ‘centrality’.

f. Clustering coefficient The clustering coefficient of
a node, i, in an unweighted undirected network is given
by

C(i) =
2e(i)

k(i)(k(i)− 1)
, (2)

where k(i) is the degree of node i and e(i) is the number
of connected pairs between all neighbours of node i47.
The clustering coefficient of node i is equivalent to the
link density of its neighbors, such that C(i) = 1 indi-
cates that node i and its neighbours form a clique, i.e.,
a fully connected subgraph. On an unweighted, directed

network, the clustering coefficient of node i is defined
similarly as C→(i) = e(i)/[k(i)(k(i) − 1)]. The equation
is modified because there are twice as many possible links
between nodes in a directed network as compared with in
an undirected network. Weighted generalisations of the
clustering coefficient aim to capture the average intensity
with which the neighbours of a node are connected. For
weighted undirected networks, we use the measure given
by Onnela et al. 48 , and for weighted directed networks
we use the measure in Fagiolo 49 .

Applying the above three measures to the four types of
networks (where possible), we computed a total of four-
teen topological measures for each node: in-degree, out-
degree, betweenness and clustering coefficient on the di-
rected weighted and unweighted networks, and degree,
betweenness and clustering coefficient on the undirected
weighted and unweighted networks. All measures were
calculated using implementations provided in the Brain
Connectivity Toolbox50 (functions used are listed in Sup-
plementary Table S1).

D. Feature-based representation of rs-fMRI time series

Having quantified different aspects of nodal network
connectivity, we next aimed to quantify the rs-fMRI
dynamics at each node. Typically, blood-oxygenation-
level-dependent (BOLD) time series are characterized
using properties, or features, like the amplitude of low-
frequency (0.01-0.08 Hz) fluctuation, ALFF51. Although
spectral properties like ALFF are a natural representa-
tion of stationary oscillatory signals (as is often appoxi-
mately the case in brain recordings), there are thousands
of alternative time-series analysis methods that could be
used to meaningfully quantify regional rs-fMRI dynam-
ics. These methods include measures of autocorrelation,
temporal entropy, distributional spread, outlier proper-
ties, stationarity, wavelet transforms, time-delay embed-
dings, and fits to various time-series models. Rather
than manually selecting a small number of such features,
here we aimed to determine the most informative time-
series features for understanding structural connectivity
properties in a purely data-driven way. To achieve this,
we used the highly comparative time-series analysis soft-
ware package, hctsa (v0.91, github.com/benfulcher/
hctsa)38,39,52 to extract a total of 7 754 informative fea-
tures from each of the 3 312 BOLD time series in our
dataset (cf. Fig. 1, lower right). Each of the 7 754 fea-
tures corresponds to a single interpretable measure of a
regional BOLD time series, that could then be related to
structural network connectivity properties.

Features that did not return a real number for all 3 312
time series in the full dataset (e.g., methods that relied
on fitting positive-only distributions to our real-valued
rs-fMRI data or methods attempting to fit complicated
nonlinear time-series models that were not appropriate
for these data), or features that returned an approxi-
mately constant value across the dataset (standard devi-
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ation < 2× 10−15) were removed from the set of features
prior to analysis, resulting in a reduced set of 6 930 well-
behaved time-series features. The results of the mas-
sive feature extraction facilitated by hctsa, could thus
be represented as a 184 (brain region) × 6 930 (time-
series feature) matrix that summarizes a diverse array
of BOLD time-series properties in each mesoscale brain
region for each mouse. To obtain a group-level under-
standing of the dynamics, we averaged features across
all 18 mice for each brain region, yielding an averaged
184 × 6 930 (brain region) × (time-series feature) ma-
trix, which is plotted in Fig. 1 (lower, right). This en-
sured that the features capture overall characteristics of
the BOLD signal at each brain region, averaging over
inter-individual and inter-scan variability. In addition to
obtaining group-averaged results, we also investigated ro-
bustness at the level of each individual mouse, in which
case the individual-specific time-series feature matrices
(18 different 184 × 6 930 matrices) were analyzed sepa-
rately.

E. Connecting topology to dynamics

Having characterized each brain region in terms of its
(i) nodal properties in the structural connectome, and (ii)
BOLD dynamics, we next sought to find correlations be-
tween these two independent measurements. For each of
the fourteen connectivity properties, we computed Spear-
man’s rank correlation coefficient, ρ, and an associated
p-value, for each of the 6 930 time-series features (across
all 184 brain regions). We used Spearman’s rank cor-
relations throughout this work, allowing statistical com-
parison between the frequently non-normally distributed
nodal properties (especially those derived from weighted
connectomes) and time-series properties. The family
wise error rate was controlled using the Holm-Bonferroni
method53, correcting across 6 930 independent tests at
a significance level of pcorrected < 0.05. Note that we
are correcting for 6 930 independent tests even though
there are approximately 200 linearly independent time-
series behaviors in our feature set due to the existence of
sets of highly correlated time-series features (cf. Fulcher
et al. 38). Our results thus constitute a conservative esti-
mate of the number of time-series features that are signif-
icantly related to each topological quantity, minimising
the false positive rate (type I error) at the cost of artifi-
cially inflating the false negative rate (type II error).

III. RESULTS

Our results are presented in three parts. First,
we compare nodal network properties derived from
weighted/unweighted and directed/undirected connec-
tomes, in their correlations to the properties of rs-fMRI
dynamics across the brain. We show that robust correla-
tions between structural network topology and dynamics

exist at the level of individual brain regions, and that
the relationship is driven by the weighted in-degree, kwin,
demonstrating the importance of measuring edge weights
and directionality for addressing our hypothesis. We then
characterize the types of rs-fMRI time-series properties
that are most strongly correlated to weighted in-degree,
kwin. Lastly, we demonstrate that the correlations hold
not only on the group level, but also at the level of indi-
vidual mice.

A. Comparison of topological measures and network types

We first address the question of whether the extrin-
sic axonal connectivity of a brain region is related to
its intrinsic rs-fMRI dynamics. We computed fourteen
structural network measures: degree, betweenness, and
clustering coefficient, computed from weighted and un-
weighted, and directed and undirected versions of the
connectome, from each of 184 brain regions, and indepe-
dently computed 6 930 time-series features derived from
the rs-fMRI BOLD signal in the same set of brain re-
gions. We evaluated the relationship of each structural
network property to the rs-fMRI time-series properties
using Spearman correlations, as depicted in Fig. 1 (see
Methods for details).

Results summarizing the relationship between each
structural network property and rs-fMRI dynamics are
shown in Fig. 2(a). For each network measure, the figure
shows: (i) the magnitude of the strongest Spearman cor-
relation, |ρ|, across all 6 930 rs-fMRI time-series features
(using color); and (ii) the number of time-series features
that exhibit a significant correlation, Holm-Bonferroni
pcorrected < 0.05 (using text annotations). Note that
since in- and out-degree cannot be computed from undi-
rected networks; rectangular boxes in the upper right
hand quarter of Fig. 2(a) indicate results for degree, k
(unweighted) and kw (weighted).

Although we summarize the results using the maxi-
mum correlation, |ρ| in Fig. 2(a), the comparison of each
network property to 6 930 rs-fMRI time series properties
is best represented as a distribution of correlations, such
as that shown in Fig. 2(b) for weighted in-degree, kin.
Figure 2(b) indicates the thresholds for Holm-Bonferroni
pcorrected < 0.05 (vertical blue lines), revealing a large
number of rs-fMRI properties that correlate strongly and
significantly with kwin across 184 mouse brain regions,
with correlations, |ρ|, reaching up to 0.68. Similar dis-
tributions for all node measures are in Supplementary
Fig. S4.

Edge weights vary over many orders of magnitude,
from a normalized connection density of 2.91× 10−4 for
the weakest connection to 20.4 for the strongest connec-
tion (cf. Fig. S1). Node-level structural network prop-
erties are therefore highly sensitive to the incorporation
of edge weights. Overwhelmingly, network properties de-
rived from the weighted connectome are more strongly
correlated to properties of rs-fMRI time series than those
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FIG. 2. Regional structural network connectivity properties correlate with properties of regional rs-fMRI
dynamics. (a) We compare the degree, k, betweenness, b, and clustering coefficient, C, for (i) directed and undirected, and
(ii) weighted and unweighted structural brain networks. For each nodal network property, we computed the magnitude of the
strongest Spearman correlation, |ρ|, across 6 930 time-series features of the rs-fMRI signal (shown using color), and the number
of time-series features that are significantly correlated with that property (Holm-Bonferonni pcorrected < 0.05) across all 184
brain regions (annotated with numbers; missing numbers indicate zero significant features). We see that taking edge weights into
account is crucial for obtaining a strong correlation between regional connectivity and dynamics, and that edge directionality
is also important. (b) The distribution of Spearman correlations, ρ, of weighted in-degree, kwin with 6 930 time-series features of
rs-fMRI (correlations computed across 184 brain regions). Vertical blue lines indicate Holm-Bonferonni significance thresholds
at pcorrected < 0.05.

computed from the unweighted connectome. For exam-
ple, for in-degree and clustering coefficient, strong and
significant correlations with time-series features present
in the weighted networks are strongly diminished (or van-
ish) when computed from unweighted connectomes. As
well as edge weights, our results also point to an impor-
tant role of edge directionality for uncovering the rela-
tionship between structural connectivity and dynamics.
All node measures, from both weighted and unweighted
connectomes, showed stronger correlations to rs-fMRI
dynamics when edge directionality was taken into ac-
count.

Of the three nodal structural connectome properties
analyzed here, the immediate measure of connectivity,
degree, k, showed the strongest correlations to regional
rs-fMRI dynamics. While a moderate correlation was
found using the undirected weighted degree, kw (up to
|ρ| = 0.49), when distinguishing incoming and outgoing
connectivity pathways, our results reveal a strong asym-
metry, with weighted in-degree, kwin showing the strongest
correlations to rs-fMRI dynamics of all topological prop-
erties (up to |ρ| = 0.68), while weighted out-degree, kwout
showed no significant correlations. This demonstrates the
relative importance of incoming structural connectivity
for understanding regional BOLD dynamics. In addi-
tion to degree, we found significant, but weaker correla-
tions between clustering coefficient and properties of the
rs-fMRI dynamics. In the directed network, C→,w sig-
nificantly correlated with 896 time-series features (up to
|ρ| = 0.49), while Cw computed from the undirected net-
work was significantly correlated with 433 time-series fea-
tures (pcorrected < 0.05). Reiterating the importance of
edge weights in uncovering relationships between struc-
tural connectivity and BOLD dynamics, unweighted ver-

sions of the clustering coefficient, C→ and C, exhib-
ited no significant correlations to time-series features
(pcorrected < 0.05). Betweenness centrality was the least
informative nodal connectivity property for understand-
ing rs-fMRI dynamics. Only one of the 6 930 time-series
features correlated significantly with weighted directed
betweenness, b→,w, (|ρ| = 0.36) and there were no signif-
icant correlations for b→, bw, or b.

To understand the relationship between network con-
nectivity measures and dynamics in more detail, we an-
alyzed interrelationships between the structural network
properties. Figure 3 shows inter-relationships between
network properties derived from different connectomes
as a pairwise Spearman correlation plot, where correla-
tions were computed across all 184 brain regions. The
plot show that the fourteen network connectivity mea-
sures computed here are not independent, in some cases
forming clusters of inter-correlated nodal measures.

Figure 3 shows that many unweighted structural net-
work properties are highly inter-correlated. For example,
correlations between unweighted network properties: b,
b→, k, C and C→ are all higher correlated to each other,
|ρ| ≥ 0.72 (with C and C→ negatively correlated to b, b→,
and k), forming a cluster in the centre of Fig. 3. By con-
trast, the weighted counterparts of these measures: bw,
b→,w, kw, Cw and C→,w, were less strongly correlated to
each other. A similar result is seen for b and C, which
are highly correlated across brain regions (ρ = −0.92),
whereas the weighted versions bw and Cw are much more
weakly correlated (ρ = 0.11). The wide distribution
of edge weights, across many orders of magnitude (cf.
Fig. S1), allows the weighted network properties to cap-
ture distinct types of information than their unweighted
counterparts that treat all edges are equivalent.
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FIG. 3. Correlation structure of topological descrip-
tors of inter-regional structural connectivity. Each col-
umn (and, equivalently, row) represents one of the fourteen
different network properties, and each element of the plot
represents a Spearman correlation between the correspond-
ing pair of node measures, computed across 184 brain regions.
Rows (and columns) have been reordered by hierarchical clus-
tering, using an absolute correlation-based distance metric,
1 − |ρ|, to place similar node properties close to each other.
Nodal network properties are named according to the network
type from which they were derived: directed or undirected,
weighted or unweighted.

The topological property with the strongest correla-
tion to rs-fMRI dynamics is the weighted in-degree, kwin,
with |ρ| reaching up to 0.68 (pcorrected < 7.0 × 10−21),
consistent with a simple model of directed influence in
which the BOLD signal fluctuations of a node are most
strongly influenced by other brain regions projecting to
it. Interestingly, we find that other structural connectiv-
ity properties that are correlated to rs-fMRI dynamics
tend to be correlated with weighted in-degree, kwin. For
example, weighted degree computed from the undirected
network, kw, is correlated with weighted in-degree, kwin
(ρ = 0.56) and is also correlated to properties of the
rs-fMRI dynamics (exhibiting significant correlations to
884 features). The weighted clustering coefficients, Cw

and C→,w, were correlated with weighted in-degree, kwin
(ρ = 0.38 for both), and were significantly correlated with
rs-fMRI dynamics, whereas the unweighted clustering co-
efficients, C and C→ were less strongly correlated with
kwin (ρ = −0.21, |ρ| = −0.18 respectively) and showed
no significant correlations with any time series features,
see Fig. 2(a). We tested the idea that kwin is mediat-
ing the relationship between structural connectivity and
rs-fMRI dynamics, focusing on the three features other
than kwin that exhibit strong and statistically significant
correlations to rs-fMRI dynamics: Cw, C→,w, and kw.
To do this, we computed partial correlations to all 6 930
rs-fMRI time-series features, controlling for the effect of
weighted in-degree, kwin. The number of time-series fea-
tures that were significantly related to these measures
dropped dramatically (pcorrected < 0.05): Cw (433→ 1),
C→,w (896→ 1), and kw (884→ 3). Thus, the relation-
ship between Cw, C→,w, and kw and rs-fMRI dynamics is

mainly due to their correlation with kwin, indicating that
they are not capturing interesting new information about
rs-fMRI dynamics beyond what is captured by kwin. We
conclude that the relationship between network proper-
ties and rs-fMRI dynamics is strongly mediated by kwin.

B. Correlations between topological node properties and
rs-fMRI dynamics

Having demonstrated a strong relationship between
the structural connectivity properties of a brain region
and its rs-fMRI dynamics mediated most strongly by
weighted in-degree, kwin, we next characterize the types
of rs-fMRI time-series properties that drive the effect,
focusing in on this key topological measure, kwin.

From inspecting the 3 003 rs-fMRI time-series proper-
ties that were significantly correlated with weighted in-
degree, kwin (|ρ| ≥ 0.32 ,pcorrected < 0.05), we found that
they span a broad range time-series analysis methods,
including measures of distribution spread and outliers,
temporal entropies, autocorrelations, power spectral fea-
tures, stationarity measures, fits to time-series models,
wavelet measures, and methods from fluctutation analy-
sis. To understand which of these diverse types of time-
series features most strongly drive the relationship be-
tween kwin and rs-fMRI dynamics, we focused in on the
80 time-series features with the strongest correlations to
kwin across the brain (|ρ| ≥ 0.55), shown as a pairwise
correlation matrix in Fig. 4. For all pairs of these top
80 time-series features, Fig. 4 shows their Spearman cor-
relation across all 184 brain regions, with hierarchical
linkage clustering (on distance metric 1− |ρ|) used to re-
order the features for visualization. The figure reveals
two main clusters of time-series properties, which we la-
beled as ‘A’ and ‘B’. We selected the top 80 features as
a manageable set to characterize in detail here, but note
that increasing this number beyond 80 does not reveal
any new structure until ≈ 1000 features are included, at
which point the correlations between the features and kwin
are much weaker, ρ < 0.45.

The first cluster of features, labeled ‘A’ in Fig. 4, are
highly inter-correlated, and measure the spread of the rs-
fMRI signal, including the inter-quartile range and mean
absolute deviation. The weighted in-degree, kwin, is neg-
atively correlated with these measures of BOLD signal
spread, e.g., ρ = −0.62 with standard deviation. The sec-
ond cluster, labeled ‘B’ in Fig. 4, contains features that
measure correlation timescales in the fMRI signal, includ-
ing the power in specific spectral frequency bands and the
goodness of fit of sinusoidal and autoregressive models to
the time series. The weighted in-degree, kwin, increases
with the timescale of the fMRI signal (e.g., kwin is nega-
tively correlated with the relative high-frequency power,
f ≥ 0.375 Hz: ρ = −0.58). Thus, using a highly com-
parative data-driven approach to univariate time-series
characterization38,39,52, we determine that kwin is the most
informative network property for understanding regional
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rs-fMRI dynamics, and that the time-series properties of
the rs-fMRI dynamics that mostly strongly correlate with
kwin are capturing two distinct types of signal properties:
(i) spread of the BOLD signal (e.g., standard deviation),
which decreases with increasing kwin, and (ii) power in dif-
ferent frequency bands of the BOLD signal, with reduced
power for f ≥ 0.375 Hz in brain regions with high kwin.

A

B

FIG. 4. Features of the rs-fMRI signal that corre-
late most strongly with weighted in-degree across the
brain form two clusters, related to the spread and
correlation timescales in the BOLD dynamics. Cor-
relations between the 80 time-series features that correlated
most strongly with weighted in-degree, kwin, are shown as an
80 × 80 pairwise correlation matrix using color. Feature-
feature Spearman correlations are measured across 184 brain
regions, and features have been reordered using hierarchical
clustering (with an absolute correlation-based distance met-
ric, 1− |ρ|), to place pairs of correlated features close to each
other. These 80 time-series features fall into two clear clus-
ters, labeled ‘A’: measures related to the spread of the BOLD
signal (e.g., standard deviation), and ‘B’: measures related
to correlation timescales in the signal (e.g., power in spectral
frequency bands). Note that, this figure is reproduced larger
in Fig. S3, where the names for all 80 features, and their cor-
relations to kwin could be labeled. Two key features discussed
in the text, standard deviation and high frequency power, are
annotated with white stars.

We first focus on the negative correlation found be-
tween kwin and the spread of the rs-fMRI signal. The
time-series feature with the highest Spearman correla-
tion, |ρ|, to kwin across all 6 930 time-series features, is
MD rawHRVmeas SD1 (ρ = −0.68), which is a spread-
dependent feature that lies in group ‘A’ of Fig. 4. This
time-series feature is popular in the heart-rate variabil-
ity literature, and is proportional to the standard devia-
tion of the successive differences of the time series54. As
shown in Fig. 4, features in group ‘A’ are highly inter-
correlated, and this cluster also contains a simpler and
more intuitive feature: the standard deviation of the time

series, standard deviation (annotated with a star in
Fig. 4). The standard deviation exhibits a correlation
to kwin of ρ = −0.62. Due to its ease of interpretation,
we investigate the standard deviation of the BOLD sig-
nal in more detail as an intuitive representative of clus-
ter ‘A’, shown as a scatterplot with kwin in Fig. 5(a). In
this plot, each brain region is colored according to the
Allen Reference Atlas28,41, with colors broadly represent-
ing anatomical divisions of the mouse brain (as in Fig. 1).
The plot reveals a strong negative relationship between
weighted in-degree, kwin, and the standard deviation of
the BOLD signal across the brain. The mix of colors
in Fig. 5(a) reflects the fact that the negative relation-
ship holds relatively consistently across anatomical brain
divisions. For three specific brain regions annotated in
Fig. 5(a): the subparafascicular area (SPA) of the thala-
mus (kwin = 0.55), the medial orbital area (ORBm) of the
isocortex (kwin = 4.39), and the external nucleus of the
inferior colliculus (ICe) of the midbrain (kwin = 10.56),
we plotted the distribution of BOLD signal values as a
smoothed density plot, shown in Fig. 5(b). The figure
shows a clear decrease in the spread of the BOLD signal
in brain regions with higher weighted in-degree, kwin.

The second group of time-series features, labeled
‘B’ in Fig. 4, consists of time-series features mea-
suring different aspects of correlation timescales in
the regional BOLD time series, including fitting os-
cillation models to the data, and extracting fea-
tures from the power spectrum. The feature in this
group with the strongest Spearman correlation to kwin
is SP Summaries pgram hamm linfitloglog all sigma
(ρ = 0.60), which computes the goodness of a linear fit
to the log-log power spectrum of the BOLD signal (esti-
mated as a periodogram using a Hamming window). This
tells us that the log-log power spectrum of the BOLD
signal is more linear in brain regions with higher kwin, a
result with an intruiging connection to the relationship
between brain network connectivity and scale-free brain
dynamics21,25. However, we focus here on the more in-
tuitive feature, SP Summaries welch rect logarea 4 4,
labeled as a star in cluster ‘B’ of Fig. 4. This feature
estimates the power spectral density of the BOLD signal
using Welch’s method55, and then calculates the loga-
rithm of the proportion of the power in the top quarter
of frequencies (i.e., f ≥ 0.375 Hz), which we thus refer to
as a measure of ‘relative high frequency power’ (where
‘high’ is the range from 0.375 Hz up to the sampling
rate, 0.5 Hz). This feature displays a negative correla-
tion with kwin (ρ = −0.58) across the brain, shown as a
scatter in Fig. 5(c). That is, brain regions with increased
kwin have decreased relative power in f ≥ 0.375 Hz con-
tent in their rs-fMRI dynamics, or, equivalently, brain
regions with increased kwin have greater relative power in
f < 0.375 Hz. This corresponds to brain regions with an
overall increase in incoming connectivity weights exhibit-
ing slower dynamics. Compared to standard deviation,
shown in Fig. 5(a), the negative trend in relative high fre-
quency power is dominated by a strong reduction in high
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FIG. 5. Weighted in-degree is negatively correlated with regional BOLD signal variability and relative high-
frequency power. Scatter plots of a brain region’s weighted in-degree are shown against: (a) standard deviation of the
rs-fMRI signal (c) relative power of the rs-fMRI signal in frequencies f ≥ 0.375 Hz. Brain regions are colored uniquely,
corresponding to anatomical divisions (cf. Fig. 1). For three selected brain regions (ICe = Inferior colliculus, external nucleus,
ORBm = Orbital area, medial part, SPA = Subparafascicular area), highlighted and labeled in (a), we plot a kernel-smoothed
distribution of their resting state BOLD time series in (b), demonstrating a decrease in standard deviation for regions with a
larger kwin. Similarly, for three labelled brain regions in (c), we show power spectral density estimates of their rs-fMRI signals
using Welch’s method (smoothed for visualisation) in (d). The relative high frequency power measured in (c) corresponds
to the logarithm of the proportion of the power in the top quarter of frequencies (shaded gray) of the power spectral density
estimate, as calculated using Welch’s method55. This corresponds to the frequency range f ≥ 0.375 Hz, and is higher for regions
with increased kwin.

frequency rs-fMRI dynamics in the cerebral cortex rela-
tive to the brainstem and cerebellum. To demonstrate
the relationship in more detail, we plotted power spec-
tral density estimates for three selected brain regions in
Fig. 5(d): the magnocellular part of the subparafascic-
ular nucleus (SPFm) in the thalamus (kwin = 0.65), the
anterior olfactory nucleus (AON) in the olfactory areas
(kwin = 7.59), and the ventral part of the anterior cingu-
late area (ACAv) in the isocortex (kwin = 12.37), as an-
notated in Fig. 5(c). Frequencies exceeding f = 0.375 Hz
are shaded in Fig. 5(d), indicating the decrease in high
frequency power in regions with greater total incoming
structural connection weights.

As noted above, some dynamical properties of the rs-
fMRI signal differ across anatomical divisions (as is ev-
ident by the visual disinction of particularly the isocor-
tex and hippocampus in Fig. 1, lower right), and may
thus result from broad anatomical differences, or non-
specific spatial gradients in dynamics, rather than reflect-

ing specific properties of network connectivity. To probe
the contribution of space in contributing to variations
in weighted in-degree, kwin, and the two types of features
shown in Fig. 4, BOLD standard deviation and relative
high frequency power, we mapped their variation across
all brain regions in Fig. 6. The three-dimensional render-
ing for weighted in-degree, kwin in Fig. 6(a), clearly shows
a specific, non-uniform distribution across the brain, with
the highest values in the caudate-putamen (CPu), a re-
gion that integrates a large number of cortical and mid-
brain neural inputs, followed by the superior colliculus
(SC), a subcortical area that integrates visual and sen-
sory information, and the piriform cortex (Pir), which
mediates olfactory processing. A similar spatial distri-
bution is reflected in the variation of rs-fMRI standard
deviation across the brain [Fig. 6(b), note inversion of
color scale], which also exhibits a specific spatial pat-
terning across brain regions. The relative high-frequency
power is low in motor and somatosensory cortical regions,
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in the caudoputamen and in the hippocampus, and high
in the thalamus and midbrain.

To ensure that our results are not driven by broad
anatomical variations or non-specific spatial gradients in
BOLD dynamics (or connectivity properties) across the
brain, we repeated our analysis using the 38 brain regions
in the more homogeneous and spatially constrainted iso-
cortex of the mouse brain. For this analysis we calculated
the weighted in-degree, kwin, of each node of the cortical
connectome, considering only cortico-cortical connectiv-
ity rather than the whole right hemisphere. Once again,
significant negative correlations were observed between
kwin and the standard deviation (ρ = −0.38, p = 0.02),
and high frequency power (ρ = −0.44, p = 0.006). These
correlations are weaker than those seen across the whole
right hemisphere, indicating that to broad spatial varia-
tions may contribute in part to the relationship between
kin and rs-fMRI dynamics. However, our ability to repro-
duce the whole-brain result in the cortical connectome
demonstrates that the intrinstic rs-fMRI dynamics of a
brain region are closely related to its extrinstic axonal
connectivity.

Above, we focused on characterising the time-series
features that strongly correlate with kwin. However, as
described in Sec. III A, many other network proper-
ties showed significant correlations to rs-fMRI across the
brain, most notably, weighted degree, kw, and weighted
clustering coefficients, C→,w and Cw. We demonstrated
that, kw, C→,w and Cw did not capture unique infor-
mation about rs-fMRI dynamics, with correlations to rs-
fMRI properties mediated by kwin. Thus they should be
expected to correlate with similar time-series properties
as kwin. Indeed, we found that the rs-fMRI time-series
features that were significantly correlated to kw, C→,w

and Cw, were almost complete subsets of the 3 003 that
displayed significant correlations with kwin (sharing over
96% of the same features). Thus, correlations between
kw, Cw, and C→,w and rs-fMRI time-series properties,
are weaker than corresponding correlations for kwin, and
involve the same types of dynamical properties, support-
ing the view of kwin as the structural connectivity property
mediating the relationship to regional dynamics.

Here we analyzed only the ipsilateral connectivity in
the complete connectome available in the right hemi-
sphere of the mouse brain. We note, however, that inclu-
sion of contralateral projections, under the assumption
of hemispheric symmetry (see Methods), yielded quali-
tatively similar results to those presented here. In par-
ticular, kwin remained the topological property with the
strongest relationship to rs-fMRI dynamics, and exhib-
ited similar correlations with standard deviation (ρ =
−0.60) and high frequency power (ρ = −0.53).

C. Individual analysis

The results above involved characterizing the rs-fMRI
dynamics of each brain region by averaging time-series

features across all 18 individual mice. In this section, we
investigate whether the results reported above between
topological nodal measures and rs-fMRI dynamics, also
hold on an individual level.

The key structural connectivity property, weighted in-
degree, kwin, showed a group-level correlation with the
standard deviation of BOLD of ρ = −0.62. The distri-
bution of correlations across all eighteen individual mice
is shown as a histogram in Fig. 7. The Spearman cor-
relation, ρ, between kwin and rs-fMRI standard deviation
was significant and highly consistent for each individual
mouse (pcorrected < 0.05, correcting for the comparisons
across the eighteen mice), with individual correlations
remaining high and relatively consistent, ranging from
ρ = −0.68 to ρ = −0.51. The relative high frequency
power (f ≥ 0.375 Hz) feature characterized above also
exhibited consistent and significant correlations for all
eighteen individual mice. Indeed, 72 of the 80 features
shown in Fig. S3, exhibited correlations that remain sig-
nificant on an individual-level for all 18 mice.

Our results indicate that the relationships shown above
using group-level dynamical summaries of the rs-fMRI
data, are not a consequence of averaging over individuals,
but hold on an individual level.

IV. DISCUSSION

In this work we used a weighted, directed mesoscale
structural connectome and high quality rs-fMRI mea-
surements across 184 anatomical brain regions to demon-
strate a robust relationship between a brain region’s
topological role in the structural connectome and its rest-
ing state dynamics in the mouse. Rather than analysing
pairwise structure-function relationships, our results pro-
vide the first characterization of a potential role of struc-
tural connectivity in shaping the dynamics of individual
brain regions. We show that weighted and directed in-
formation is required to optimally uncover the regional
structure-function relationship, and that the weight of
incoming projections to a region is the primary correlate
for regional BOLD dynamics, particularly with respect
to its variability and correlation timescales. As well as
providing new insights into the role of structural connec-
tivity in the brain, our empirical results may provide a
new means of constraining the models we use to simulate
and understand brain dynamics.

The nodal network properties analyzed here can be di-
vided into measures of immediate connectivity (degree,
k), neighborhood connectivity (clustering coefficient, C),
and global connectivity (betweenness centrality, b). The
strongest correlations between nodal connectivity and rs-
fMRI dynamics were found for degree-based measures of
immediate connectivity, with the strongest correlation
found for weighted in-degree, kwin, the weighted sum of
inputs from other brain regions. The weighted in-degree
was significantly correlated to 3 003 time-series rs-fMRI
time-series properties (from a set of 6 930, pcorrected <

.CC-BY-NC 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 6, 2016. ; https://doi.org/10.1101/085514doi: bioRxiv preprint 

https://doi.org/10.1101/085514
http://creativecommons.org/licenses/by-nc/4.0/


12

FIG. 6. A three-dimensional rendering of the spatial mapping of 184 regions across the right hemisphere of the mouse brain
for: (a) the topological quantity, weighted in-degree, log10 k

w
in, (b) standard deviation of the BOLD signal (note inverted color

scale), and (c) relative high frequency BOLD power (f ≥ 0.375 Hz, note inverted color scale). Highlighted in the 2D slices in
(a) are the twelve regions with the highest weighted-in degree. Labelled regions are: MOp, MOs = primary and secondary
motor cortex; AON = anterior olfactory nucleus; CPu = Caudoputamen; NAc = nucleus accumbens; Pir = piriform cortex;
VISp = primary visual area; SC = superior colliculus; PAG = periaqueductal gray; CA1 = cornus ammonis 1; MRN = midbrain
reticular nucleus; ENTI = entorhinal area.

0.05), with Spearman correlations reaching up to |ρ| =
0.68. Given the diversity of regions across the whole brain
analyzed here, including regions that differ in terms of
their functional specialization, gene expression, and cel-
lular and microcircuit properties28,29, all of which may

affect regional dynamics (cf.14,59), this level of correla-
tion with just the incoming mesoscale connectivity to a
brain region, kwin, is remarkable. Other properties, like
the global measure of betweenness centrality, b, showed
minimal correlations to dynamics (potentially related to
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FIG. 7. Weighted in-degree shows a robust and signif-
icant negative correlation to the standard deviation
of the rs-fMRI signal for all individual mice. Here
we plot the distribution, across eighteen individual mice, of
the Spearman correlation between weighted in-degree and rs-
fMRI standard deviation over all 184 brain regions. The green
vertical line indicates the correlation value when the standard
deviation in each brain region is taken as the average across
all individuals.

the fact that information transmission across brain net-
works may more closely follow an unguided, diffusion-
like process rather than shortest paths5,23,26). Structural
network properties other than kwin that showed strong
and significant correlations to rs-fMRI dynamics—kw,
Cw, and C→,w—were driven by their correlation to kwin
across the brain; these measures were related to the same
types of time-series properties as kwin and showed mini-
mal correlations to rs-fMRI dynamics when kwin was con-
trolled for. Thus, although the clustering coefficient mea-
sures distinct information to weighted in-degree, kwin (e.g.,
broadly distinguishing different local connectivity motifs
that have been proposed to have distinctive functional
roles and dynamics56–58), our results indicate that it does
not provides unique information about rs-fMRI dynam-
ics. Taken together, our results distinguish kwin as the
key driver of the regional structure-function relationship,
and indicate that incoming influences from other areas
are closely tied to a region’s spontaneous dynamics. Our
findings may also reflect the haemodynamic measure of
neuronal activity provided by the BOLD signal. The
strongest neurophysiological correlate of the BOLD sig-
nal is the local field potential, which is more strongly
driven by local synaptic integration of incoming signals
rather than spiking output60,61. Whether the close as-
sociation between incoming connectivity and dynamics
reported here for mesoscopic brain regions would also
hold using single unit recordings of individual neurons
remains an open question.

Rather than hand-picking particular time-series fea-
tures to investigate for rs-fMRI, our highly compara-
tive approach compared over 6 930 time-series features
of fMRI in a purely data-driven way, including time-
series model fitting and prediction, entropies, distribu-
tional measures, and other types of linear and nonlin-

ear correlation features38,39,52. Of the 3 003 properties of
regional rs-fMRI dynamics that were significantly corre-
lated to weighted in-degree, kwin, those with the strongest
relationship formed two clusters: one containing mea-
sures of the spread of the BOLD signal, and the other
containing measures of correlation timescales, including
power in spectral frequency bands, sinusoidal model fits,
and the linearity of the log-log power spectrum. Select-
ing the simplest measures from each cluster to aid inter-
pretation, we determined that kwin was most distinctively
characterized by BOLD dynamics with reduced variance
and reduced relative high frequency power (0.375 Hz≤
f ≤ 0.5 Hz or, equivalently, increased power in low-mid
frequencies, f < 0.375). These effects found at the group
level for the whole brain were highly robust, being re-
produced for all eighteen individual mice, and when just
analyzing the reduced cortical network. To our knowl-
edge, this is the first report of a relationship between
brain connectivity and the standard deviation of BOLD
dynamics. The negative relationship between kwin and
fMRI signal variance was highly significant, and driven
by variation within and across broad anatomical divi-
sions of the mouse brain, including the brain stem, cere-
bellum, and cerebrum. The finding goes against the in-
tuitive view that stronger inputs increase the variance of
the dynamics in a brain region, and may be key to better
constraining our models of brain dynamics in the future.
The highly comparative approach used here also selected
time-series properties related to correlation timescales as
being highly correlated with kwin, with brain regions with
stronger inputs exhibiting slower dynamics (greater rel-
ative power in f < 0.375 Hz). This is consistent with
a connectivity-mediated hierarchy of timescales in the
brain13,14. In Gollo et al. 13 , nonlinear neural mass mod-
els were coupled via an unweighted, directed macaque
structural connectome, producing an emergent dynami-
cal hierarchy in which highly connected hub regions ex-
hibited greater temporal persistence in their dynamics,
largely due to their high (unweighted) in-degree. In
Chaudhuri et al. 14 , an interplay of intrinsic variation in
timescales across cortical brain regions, inter-areal con-
nectivity, and input to the brain determined the dynam-
ical timescale of a brain region (estimated as the decay
time constant of the autocorrelation function). Our work
thus provides new insights into the role of the connectome
in contributing to a variation of dynamical timescales
across the brain.

Our tract-tracing derived mouse connectivity data al-
lowed us to investigate the role of edge weights and direc-
tionality in contributing to the relationship between the
structural connectome and fMRI dynamics. In particu-
lar, we compared measures computed from the original
weighted, directed connectome40, as well as unweighted
and undirected approximations to it. Although un-
weighted brain networks are more intuitive and amenable
to the application of graph theoretic techniques that have
been popular in connectomic research, one might expect
that incorporating meaningful estimates of edge weights
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into brain network analysis is important, as they vary
over several orders of magnitude (see Fig. S1). Indeed,
given recent estimates of cortical connection densities
from high-quality tract-tracing data exceeding 60% for
macaque cortex62,63 and 70% for mouse cortex64, bi-
nary representations of such dense connectomes consti-
tute coarse approximations of true brain connectivity.
Here we demonstrate that network properties derived
from unweighted connectomes show negligible correla-
tions to properties of rs-fMRI, supporting the importance
of connectome edge weights in capturing the relationship
between connectivity and dynamics in the mouse brain.
We note that the estimation of edge weights from tract-
tracing based experiments is non-trivial, and while here
we used normalized connection densities derived from the
regression model of Oh et al. 40 , alternative estimation
methods64,65 and datasets66 exist. Given that human
connectomes are commonly estimated by tractography
using diffusion weighted imaging (DWI), which is noisy
and cannot determine the direction of a pathway, it is im-
portant to note that kw is significantly correlated with
similar types of features of rs-fMRI dynamics as kwin. This
suggests that, if similar connectivity-dynamics relation-
ships hold in human as in mouse, then the undirected
connectome estimated using DTI should constitue a use-
ful approximation to the connectome, despite limiting
our ability to capture the strongest structure-function re-
lationships mediated by kwin. In addition to edge weights,
we found that directed edge information was critical for
distinguishing the weighted out-degree of a node, kwout,
which is relatively uninformative of rs-fMRI dynamics,
from the highly informative weighted in-degree, kwin. In-
deed, the importance of taking edge weight and direc-
tionality into account in relating structure to function
suggests that the coupling of tract-tracing based connec-
tomes with measurements of dynamics in model animals
will be crucial to understanding how brain dynamics are
constrained by extrinsic axonal connectivity, and will be
key in constraining computational models of brain dy-
namics in future work.

The mouse represents an extremely attractive model
system to study the structure-function relationship, while
minimizing the influence of environmental and genetic
heterogeneity. Our findings relied on long (38 min), high-
quality rs-fMRI measurements of BOLD dynamics across
the whole mouse brain, which were compared to the a
tract-tracing based structural connectome for the first
time in this work. The use of awake mice in rs-fMRI
protocols is impracticable for long scan times (notwith-
standing the use of invasive methods for head fixation68),
making light anesthesia the de facto option69. Due to
the technical and methodological challenges in obtain-
ing such long functional scans in an anesthetized regime,
one must take care that the physiology of the animals
remains stable over time. Several parameters were con-
sidered in this study to achieve this goal; first, we used
mechanical ventilation to maintain the same tidal volume
and blood oxygenation throughout the experiment. To

keep a low but steady level of anesthesia, we combined
a continue infusion of medetomedine i/v with a very low
dose of isoflurane (0.5%), optimized from our previous
studies42,67; this allowed us to overcome the issues related
to medetomidine depletion and isoflurane accumulation
over time. As evidenced by our results, which showed
high consistency across all eighteen mice, this protocol
allows for superior data reproducibility due to a drastic
reduction in motion, stable physiology such as animal
temperature and stress levels, and a regular breathing
cycle.

V. CONCLUSION

In this work, we provide the first demonstration of
a robust relationship between the connectivity proper-
ties of a brain region and resting state BOLD dynam-
ics. The strongest relationships are for the weighted in-
degree of a brain region, which is negatively correlated to
the standard deviation and relative high frequency power
(f ≥ 0.375 Hz) of its rs-fMRI dynamics. Our results are
consistent with physiological data indicating that BOLD
signal modulations reflect the integration of incoming sig-
nals, and support preliminary predictions of computa-
tional models suggesting a role for connectivity in medi-
ating differences in the intrinsic dynamical timescales of
distinct regions across the brain. Our results also high-
light the importance of directed and weighted informa-
tion for understanding brain communication across the
connectome.
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