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Abstract 
Background: The availability of dense genotypes and whole-genome sequence 

variants from various sources offers the opportunity to compile large data sets 

consisting of tens of thousands of animals with genotypes for millions of polymorphic 

sites that may enhance the power of genomic analyses. The imputation of missing 

genotypes ensures that all individuals have genotypes for a shared set of variants. 

Results: We evaluated the accuracy of imputation from dense genotypes to whole-

genome sequence variants in 249 Fleckvieh and 450 Holstein cattle using Minimac 

and FImpute. The sequence variants of a subset of the animals were reduced to the 

variants that were included in the Illumina BovineHD genotyping array and 

subsequently inferred in silico using either within- or multi-breed reference 

populations. The accuracy of imputation varied considerably across chromosomes and 

dropped at regions where the bovine genome contains segmental duplications.  

Depending on the imputation strategy, the correlation between imputed and true 

genotypes ranged from 0.898 to 0.952. The accuracy of imputation was higher with 

Minimac than FImpute particularly for rare alleles. Considering a multi-breed 

reference population increased the accuracy of imputation, particularly when FImpute 

was used to infer genotypes. When the sequence variants were imputed using 

Minimac, the true genotypes were more correlated to predicted allele dosages than 

best-guess genotypes. The computing costs to impute 23,256,743 sequence variants in 

6958 animals were 10-fold higher with Minimac than FImpute. Association studies 

with imputed sequence variants revealed seven quantitative trait loci (QTL) for milk 

fat percentage. Two known causal mutations in the DGAT1 and GHR genes were the 

most significantly associated variants at two QTL on chromosomes 14 and 20 when 

Minimac was used to infer genotypes. 

Conclusions: The population-based imputation of millions of sequence variants in 

large cohorts provides accurate genotypes and is computationally feasible. Using a 

reference population that includes individuals from many breeds increases the 

accuracy of imputation particularly at low-frequency variants. Considering allele 

dosages rather than best-guess genotypes as explanatory variables is advantageous for 

association studies with imputed sequence variants. 
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Background 

Several genotyping arrays that comprise a varying number of single nucleotide 

polymorphisms (SNPs) are routinely used for genome-wide genotyping in cattle. 

Cows are usually genotyped using cost-effective low-density genotyping arrays 

whereas bulls are mostly genotyped at higher density [1]. Moreover, the sequencing 

of important ancestors of many cattle breeds yielded genotypes at millions of 

polymorphic sites [2]. Combining the genotype data from various sources into a 

single large data set may enhance the power of genome-wide analyses. The 

imputation of missing genotypes is necessary to ensure that all individuals have 

genotypes for a shared set of variants. Genotype imputation may also infer dense 

genotypes in silico for animals that were genotyped at lower density using animals 

that were genotyped at a higher density as a reference [3]. 

Algorithms that infer missing genotypes apply family- (e.g., [4]) or population-based 

(e.g., [5-7]) imputation approaches or a combination thereof (e.g., [8-10]). Family-

based imputation approaches rely on Mendelian transmission rules in pedigrees to 

infer missing genotypes. Population-based imputation approaches exploit linkage 

disequilibrium (LD) between adjacent markers to predict missing genotypes using a 

probabilistic framework without (explicitly) considering pedigree information [11]. 

While population-based imputation approaches are accurate, their computing costs are 

too high to infer genotypes for a large number of animals and markers for routine 

applications [12, 13]. Methods that apply a combination of family- and population-

based imputation approaches exploit shared haplotypes among relatives thereby 

enabling rapid imputation of genotypes for tens of thousands of individuals and 

millions of markers in silico [8, 9, 10, 14].  

The accuracy of imputation from low to higher density depends on the relationships 

between target and reference animals, genotype density in both panels, allele 

frequencies of the imputed variants, LD between adjacent markers and algorithms 

applied to infer missing genotypes (e.g., [12, 15, 16]). These parameters also affect 

the accuracy of imputation from dense genotypes to sequence variants [2, 17, 18]. 

However, the accurate imputation of low-frequency variants is critical with sequence 

data because rare alleles are more frequent in sequence than array-derived variants 

and the LD between rare alleles and array-derived variants is low [19, 20]. 
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A number of studies with simulated and real sequence data in cattle indicated that 

using imputed sequence variants may improve genomic predictions and facilitate the 

detection of causal trait variants because the polymorphisms that underlie phenotypic 

variation are included in the data [2, 19, 21-23]. However, the benefits of dense 

marker maps for genome-wide analyses may be compromised when the accuracy of 

imputation is low [24-26]. 

In this paper, we evaluate the accuracy of imputation for sequence variants in two 

cattle breeds using different imputation algorithms and reference populations. We 

perform association studies between imputed sequence variants and milk fat 

percentage in 6958 Fleckvieh bulls and show that the imputation strategy is critical to 

pinpoint causal mutations. 

 

Methods 

Animal ethics statement 
No ethical approval was required for this study. 

Animals 
We used whole-genome sequence data of 1577 taurine animals that were included in 

run 5 of the of the 1000 bull genomes project [2]. The reads were aligned to the 

UMD3.1 bovine reference genome using the BWA-MEM algorithm [27, 28]. SNPs, 

short insertions and deletions were genotyped for all sequenced animals 

simultaneously using a multi-sample variant calling pipeline that was implemented 

with the mpileup module of SAMtools [29] and that is described in Daetwyler et al. 

[2]. The variant calling yielded genotypes at 39,721,987 biallelic sites for 1577 

animals. We considered genotypes at 22,737,136 autosomal sequence variants that 

had a minor allele frequency (MAF) higher than 0.5% to build the genomic 

relationship matrix among the sequenced animals using the plink (version 1.9) 

software tool [30]. Principal components of the genomic relationship matrix were 

calculated using the GCTA (version 1.25.3) software tool [31]. Following the 

inspection of the top principal components, animals whose breed was uncertain were 
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removed leaving 249 Fleckvieh (FV) and 450 Holstein (HOL) cattle (see Additional 

file 1 Figure S1).  

Design of cross-validation scenarios 
The imputation from dense genotypes to full sequence variants was evaluated using 

15-fold cross-validation in FV and HOL cattle. For each fold, the sequenced animals 

were divided into reference and validation animals. Forty-nine FV and 100 HOL 

animals, that were a random subset of the sequenced animals, were considered as 

validation animals. All remaining animals were considered as a multi-breed reference 

population. The within-breed reference populations consisted of only 200 FV or 350 

HOL animals. We considered only sequence variants that were polymorphic in 249 

FV or 450 HOL animals. The genotypes of the validation animals were reduced to the 

variants that were included in the Illumina BovineHD genotyping array (HD) to 

mimic dense genotypes. The masked genotypes of the validation animals were 

subsequently inferred in silico using full sequence information from the reference 

animals. The selection of validation animals and subsequent imputation of genotypes 

was repeated 15 times for six chromosomes (1, 5, 10, 15, 20, 25). 

Evaluation of the accuracy of imputation 
The overall accuracy of imputation was the mean correlation between in silico 

imputed and true (sequenced) genotypes (rIMP,SEQ) across 15 folds and six 

chromosomes analysed. We additionally grouped the imputed sequence variants into 

50 classes with regard to their MAF in the reference population. The rIMP,SEQ–value 

for each MAF class was the mean value across six chromosomes and 15 folds. To 

detect intra-chromosomal variations in the accuracy of imputation, we calculated 

rIMP,SEQ-values for successive 1 Mb segments along each chromosome analysed. 

Differences between imputation scenarios were tested using two-tailed t-tests. 

Imputation methods 
The performance of the FImpute (version 2.2) [9] and Minimac3 (version 2.0.1, 

henceforth referred to as Minimac) [7] software tools was evaluated using default 

parameter settings. The algorithm implemented in FImpute uses family and 

population-based information to infer haplotypes and missing genotypes. A pedigree 

consisting of 47,012 FV animals tracing back ancestry information to animals born in 
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1925 was considered when genotypes were inferred using FImpute. Pedigree records 

for sequenced animals from other breeds were also included. However, their 

pedigrees included only first-degree relatives. Genotypes for the imputed sequence 

variants were coded as 0, 1 and 2 for homozygous, heterozygous and alternative 

homozygous animals, respectively.  

The algorithm implemented in the Minimac software tool uses previously phased 

genotypes, i.e., it takes haplotypes as input for reference and validation animals. 

Haplotype phases were estimated separately for the reference and validation animals 

using the phasing algorithm implemented in the Eagle (version 2.3) software tool 

[32]. Both Eagle and Minimac do not consider pedigree information to infer 

haplotypes and missing genotypes. Minimac provides best-guess genotypes (coded as 

0, 1 and 2 for homozygous, heterozygous and alternative homozygous animals, 

respectively) and allele dosages (continuously distributed values ranging from 0 to 2) 

for the imputed sequence variants. The rIMP,SEQ–values were calculated for best-guess 

genotypes (MinimacBG) and allele dosages (MinimacDOS). 

Imputation of sequence variants in 6958 Fleckvieh animals 
We imputed 23,256,743 autosomal sequence variants that were polymorphic in 249 

sequenced FV animals in 6958 FV bulls that had (partially imputed) array-derived 

genotypes at 603,662 autosomal variants (see [33]). Genotype imputation was 

performed with either FImpute or Minimac using either within- or multi-breed 

reference populations that consisted of 249 FV animals or 1577 animals from various 

bovine breeds (see above). Haplotype phases for reference and target animals were 

estimated using the Eagle software tool (see above). The LD among polymorphic 

sites was calculated as the squared correlation between imputed allele dosages. 

Accuracy of imputation at two known causal mutations 
712 and 902 FV animals that had imputed sequence variants also had direct genotypes 

for two causal mutations in the DGAT1 (rs109234250 and rs109326954, p.A232K) 

and GHR (rs385640152, p.F279Y) genes that were obtained using TaqMan® 

genotyping assays (Life Technologies) [34-37]. The accuracy of imputation at both 

sites was the proportion of correctly imputed genotypes. 
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Association analyses in Fleckvieh cattle 
Association tests between 23,256,743 imputed sequence variants and milk fat 

percentage were carried out in 6958 FV bulls using a variance components-based 

approach that was implemented in the EMMAX software tool and that accounts for 

population stratification by fitting a genomic relationship matrix [38]. The genomic 

relationship matrix was built using array-derived genotypes of 603,662 (partially 

imputed) autosomal SNPs [39]. Daughter yield deviations (DYDs) for milk fat 

percentage were the response variables. The genotypes were coded as 0, 1 and 2 for 

homozygous, heterozygous and alternative homozygous animals, respectively, when 

sequence variants were imputed using FImpute. When the sequence variants were 

imputed using Minimac, we considered both best-guess genotypes and allele dosages 

as explanatory variables for the association tests. Sequence variants with P values less 

than 2.1x10-9 (Bonferroni-corrected significance threshold for 23,256,743 tests) were 

considered as significantly associated. 

Computing environment 
All computations were performed on the Biosciences Advanced Scientific Computing 

cluster that is located at AgriBio, Centre for AgriBiosciences, VIC 3083, Bundoora. 

The memory usage and process time required to infer genotypes for 23,256,743 

sequence variants in 6958 animals was quantified on 12-core Intel® Xeon® 

processors rated at 2.93 Ghz with 96 gigabytes of random-access memory (RAM). 

 

Results 
We evaluated the accuracy of imputation from dense genotypes to full sequence 

variants in 249 FV and 450 HOL animals using sequence data on bovine 

chromosomes (BTA for Bos taurus) 1, 5, 10, 15, 20 and 25. The number of 

polymorphic sites ranged from 413,371 (BTA25) to 1,444,299 (BTA1) and from 

383,072 (BTA25) to 1,382,987 (BTA1) in FV and HOL, respectively, indicating that 

genetic diversity is higher in FV than HOL cattle (Table 1). Rare variants were more 

frequent among the sequence than HD variants; between 58.12 and 60.55% of the 

sequence variants and between 14.27 and 18.55% of the HD variants had a MAF 

lower than 10%. 
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Table 1 - Number of polymorphic sites in Fleckvieh and Holstein cattle 
Chr Chr. 

Length 
(Mb) 

Fleckvieh Holstein 

SEQ (MAF<0.1) 700K (MAF<0.1) SEQ (MAF<0.1) 700K (MAF<0.1) 
1 158.32 1,444,299 (60.55) 38,009 (18.40) 1,382,987 (59.11) 37,397 (17.01) 
5 121.18 1,098,976 (59.64) 28,173 (18.55) 1,073,964 (59.12) 27,667 (15.90) 
10 104.30 959,206 (59.13) 25,787 (17.09) 917,799 (59.48) 25,497 (16.12) 
15 85.27 866,151 (58.54) 20,617 (17.24) 827,526 (58.12) 20,360 (14.38) 
20 71.98 679,738 (59.94) 18,466 (18.18) 649,768 (59.18) 18,264 (18.13) 
25 42.85 413,371 (59.08) 11,370 (14.69) 383,072 (58.14) 11,179 (14.27) 

Number of sequence (SEQ) and HD (700K) variants located on six chromosomes that 
were polymorphic in 249 Fleckvieh and 450 Holstein animals. The proportion of 
variants with a minor allele frequency (MAF) lower than 10% is given in parentheses. 
 

Evaluation of cross-validation accuracy of imputation 
The correlation between imputed and sequenced genotypes (rIMP,SEQ) was higher in 

HOL than FV cattle (Table 2) likely reflecting that more HOL animals were in the 

reference population. When within-breed reference populations were considered, the 

rIMP,SEQ–values were 0.898, 0.908 and 0.934 for FImpute, MinimacBG and MinimacDOS 

in FV and 0.912, 0.929 and 0.951 in HOL, respectively. Adding animals from various 

breeds to the reference panel increased rIMP,SEQ in FV, particularly when FImpute was 

used to impute missing genotypes (P=7.5x10-11, Table 2). The highest accuracy of 

imputation in FV (rIMP,SEQ=0.939) was achieved using MinimacDOS with a multi-breed 

reference population. In HOL, a multi-breed reference population increased rIMP,SEQ 

when FImpute was used to infer missing genotypes (P=4.0x10-4). However, the use of 

a multi-breed reference population had little effect on the rIMP,SEQ-values in HOL 

when Minimac was used (P>0.12). Using MinimacDOS with a within-breed reference 

population provided the highest accuracy of imputation (rIMP,SEQ=0.951) in HOL. 

Regardless of the composition of the reference population, the rIMP,SEQ–values were 

higher for MinimacDOS than MinimacBG in both breeds (PFV<2.9x10-6, PHOL<3.9x10-6). 

A decline in the accuracy of imputation was evident for low-frequency variants across 

all scenarios tested. While rIMP,SEQ was high for variants with a MAF higher than 

10%, it was considerably less for rare variants (Figure 1a-b). In FV, the accuracy of 

imputation was higher for rare alleles using multi- than within-breed reference 

populations (P<6.6x10-6, Table 2). The benefit of multi-breed reference panels was 

less pronounced in HOL and it was only significant (P=0.013) when FImpute was 
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used. The rIMP,SEQ–values for low-frequency variants were higher with Minimac than 

FImpute (PFV<0.005, PHOL<0.002, Table 2, Figure 1a-b). 

Table 2 - Cross-validation imputation accuracy in Fleckvieh and Holstein cattle 
Breed Within-breed reference populations Multi-breed reference populations 

Fimpute MinimacBG MinimacDOS Fimpute MinimacBG MinimacDOS 
Fleckvieh 0.898 

(0.674) 
0.908 

(0.735) 
0.934 

(0.771) 
0.921 

(0.774) 
0.916 

(0.812) 
0.939 

(0.838) 
Holstein 0.912 

(0.681) 
0.929 

(0.772) 
0.951 

(0.798) 
0.926 

(0.732) 
0.928 

(0.797) 
0.948 

(0.820) 
The values represent the correlation between true and imputed genotypes. The 
correlation between true and imputed genotypes for sequence variants with a minor 
allele frequency lower than 10% is given in parentheses. BG: best-guess, DOS: allele 
dosage 

 

 

Figure 1 - The accuracy of imputation in Fleckvieh and Holstein cattle. 
(a-b) The correlation between true and imputed genotypes as a function of the minor 
allele frequency in 249 Fleckvieh (a) and 450 Holstein (b) animals. Colours represent 
different imputation algorithms and reference populations. (c-d) The boxplots 
represent the correlation between true and imputed genotypes for sequence variants 
on six chromosomes in 249 Fleckvieh (c) and 450 Holstein (d) animals. Colours 
represent different imputation algorithms and reference populations.  
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The accuracy of imputation varied considerably across chromosomes. rIMP,SEQ was 

high for sequence variants located on BTA1, BTA20 and BTA25. However, it was 

lower for sequence variants located on BTA5, BTA10 and BTA15 (Figure 1c-d). This 

pattern was observed regardless of the reference population and imputation algorithm 

used. To investigate the reason for the low accuracy of imputation observed for some 

chromosomes, we calculated rIMP,SEQ–values within successive 1 Mb windows along 

the six chromosomes analysed. Multiple (partially extended) segments with high 

imputation errors were located on chromosomes 5, 10 and 15 (see Additional file 2 

Figure S2) at positions where the bovine genome contains segmental duplications [40-

41]. Such segments were not detected along the chromosomes that had a higher 

accuracy of imputation (BTA1, BTA20, BTA25). 

Pinpointing causal mutations among imputed sequence variants 
We imputed genotypes for 756,135 and 679,738 sequence variants that were located 

on BTA14 and BTA20, respectively, in 6958 FV animals using either FImpute or 

Minimac and considering different reference populations. To evaluate the ability to 

detect causal mutations, the imputed genotypes were tested for association with milk 

fat percentage. Milk fat percentage was the target trait because two variants in the 

DGAT1 (rs109326954, pA232K) and GHR (rs385640152, p.F279Y) genes have large 

effects on the milk composition in many cattle breeds including FV. In 249 sequenced 

FV animals, the minor allele frequencies of rs109326954 and rs385640152 were 6.2 

and 7.2%. Both variants were more frequent in the multi-breed reference population 

(17.3 and 12.1%, Table 3). Depending on the reference population and imputation 

algorithm used, the proportion of correctly imputed genotypes was between 99.3 and 

99.9% and between 86.1 and 99.4% for rs109326954 and rs385640152, respectively 

(Table 3). The imputation error rates were lower with Minimac than FImpute. Using 

Minimac and a multi-breed reference population provided the most accurate 

genotypes at both variants (99.9 and 99.4%). 

Association tests between the imputed genotypes and milk fat percentage revealed 

that the DGAT1:p.A232K-variant was among the most significantly associated 

variants across all scenarios tested reflecting high accuracy of imputation regardless 

of the reference population and imputation algorithm used (Figure 2, Table 3). 

However, several adjacent variants (±90 kb) were in complete or near complete LD 
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(r2>0.99) with rs109326954 and had P values that were slightly higher, identical, or 

slightly lower. When the genotypes were imputed with Minimac utilizing a within-

breed reference population, five variants in complete LD including rs109326954 were 

the most significantly associated (Figure 2e,f). 

Table 3 – Accuracy of imputation for two causal variants in Fleckvieh cattle 
Chr Position NCBI 

identifier 
effect Minor allele frequency Proportion of correctly imputed 

genotypes 
Fimpute Minimac 

TaqMan Within-
breed 

Multi-
bred 

Within- 
breed 

Multi- 
breed 

Within- 
breed 

Multi- 
breed 

14a 1,802,266 rs109326954 p.A232K 0.074 0.062 0.183 0.993 0.998 0.999 0.999 
20 31,909,478 rs385640152 p.F279Y 0.074 0.072 0.121 0.861 0.931 0.868 0.994 

The minor allele frequencies were calculated using TaqMan-derived and sequence 
genotypes in either within- or multi-breed reference populations.  
a The p.A232K-variant in the DGAT1 gene results from two adjacent SNPs in LD 
located at 1,802,265 (rs109234250) and 1,802,266 bp (rs109326954). In the present 
study, we considered only the variant at 1,802,266 bp. 

 

 

Figure 2 - Fine-mapping of a fat percentage QTL on bovine chromosome 14. 
(a-e) Association between 48,641 imputed sequence variants located at the proximal 
end of bovine chromosome 14 and milk fat percentage in 6958 Fleckvieh animals. 
Genotypes for the association studies were imputed using either FImpute (a, d) or 
Minimac (b, c, e, f) with either within- (a-c) or multi-breed reference populations (d-
f). Grey and blue colours represent sequence and array-derived variants. The red 
symbol represents the causal p.A232K-mutation in the DGAT1 gene. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 3, 2016. ; https://doi.org/10.1101/085399doi: bioRxiv preprint 

https://doi.org/10.1101/085399
http://creativecommons.org/licenses/by/4.0/


	 12	

The imputation algorithm and composition of the reference population had a large 

effect on the ability to detect an association of the GHR:p.F279Y-variant with fat 

percentage (Figure 3). The GHR:p.F279Y-variant was not significantly associated 

(P>1x10-8) when the genotypes were imputed using FImpute or MinimacBG and a 

within-breed reference population reflecting high imputation error rates (Table 3). 

There were 350 and 395 variants detected, respectively, that had lower P values than 

rs385640152. Association tests with genotypes that were obtained using MinimacDOS 

(within-breed) or FImpute (multi-breed) revealed significant association of 

rs385640152 (P=1.0x10-15, 3.0x10-10). However, six and 1089 variants had lower P 

values than rs385640152. When the genotypes were inferred using Minimac and a 

multi-breed reference population, rs385640152 was the most significantly associated 

variant reflecting higher accuracy of imputation (Figure 3e,f, Table 3). 

 

 

Figure 3 - Fine-mapping of a fat percentage QTL on bovine chromosome 20. 
(a-e) Association between 29,205 imputed sequence variants on bovine chromosome 
20 and milk fat percentage in 6958 Fleckvieh animals. Genotypes for the association 
studies were imputed using either FImpute (a, d) or Minimac (b, c, e, f) with either (a-
c) or multi breed reference populations (d-f). Grey and blue colours represent 
sequence and array-derived variants, respectively. The red symbol represents the 
causal p.F279Y-mutation in the GHR gene. 
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Fine-mapping of five fat percentage QTL with imputed sequence 

variants 
The fine-mapping of two known QTL indicated that genotypes that are imputed using 

Minimac and a multi-breed reference population are an accurate source for association 

tests, particularly when allele dosages rather than best-guess genotypes are 

considered. We thus imputed 23,256,743 sequence variants in 6958 FV animals using 

Minimac and a multi-breed reference population and performed association tests 

between imputed allele dosages and fat percentage. Our association study revealed 

seven QTL, including two QTL on BTA14 and BTA20 that encompassed the DGAT1 

and GHR genes (Figure 4a, Figure 2f, Figure 3f). The top variants were imputed 

sequence variants at all QTL. 

A total of 239 variants located between 91,857,670 and 93,955,207 bp on BTA5 were 

significantly associated (P<2.1x10-9) with fat percentage (Figure 4b, see Additional 

file 7 Table S1). Thirteen variants in the first intron of the MGST1 gene (microsomal 

glutathione S-transferase 1) were in high LD (r2>0.95) with each other and had 

markedly lower P values (P<6.5x10-21) than all other variants. These 13 variants were 

also associated with milk composition in New Zealand dairy cows [23]. The top 

variant (rs208248675) was located at 93,945,991 bp. The rs208248675 A-allele had a 

frequency of 19.4% in FV cattle and it decreased fat percentage. 

A QTL for fat percentage on BTA6 encompassed the casein gene complex (Figure 4c, 

see Additional file 7 Table S1). One hundred and sixty-four variants with P<2.1x10-9 

were located between 87,084,144 and 87,296,017 bp. The most significantly 

associated variant (rs109193501 at 87,154,594 bp, P=7.6x10-14) was located in an 

intron of the CSN1S1 gene (casein alpha s1). 

Two hundred and sixty-two variants located within a 50 kb interval (between 

103,274,736 and 103,324,728 bp) on BTA11 were associated with fat percentage 

(Figure 4d, see Additional file 7 Table S1). The top variant (rs381989107 at 

103,296,192 bp, P=1.5x10-15) was located 5472 bp upstream of the translation start 

site of the LGB gene (beta-lactoglobulin, also known as progestagen associated 

endometrial protein (PAEP)). Two missense variants (p.G80D and p.V134A) in the 

LGB gene (rs110066229 at 103,303,475 bp and rs109625649 at 103,304,757 bp) that 
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distinguish the LGB protein variants A and B [42] were in high LD with rs381989107 

and had P values less than 4.5x10-12 (see Additional file 7 Table S1). A variant in the 

promoter of the LGB gene that causes an aberrant LGB expression in Brown Swiss 

cattle (OMIA 001437-9913) [43] was not polymorphic in the sequenced FV animals. 

 

Figure 4 - Fine-mapping of fat percentage QTL in Fleckvieh cattle 
(a) Manhattan plot representing the association of 23,256,743 imputed sequence 
variants with milk fat percentage in 6958 Fleckvieh animals. Red colours represent 
significantly associated variants (P<2.15x10-9). The y-axis is truncated at –log10(10-

40). (b-e) Fine-mapping of four QTL for milk fat percentage on bovine chromosomes 
5, 6, 11 and 19. Different colours represent the linkage disequilibrium between the 
most significantly associated variant (violet) and all other variants. Blue arrows 
indicate the direction of the gene transcription. 

 

A QTL on BTA16 included 14 significantly associated variants located between 

481,671 and 3,265,708 bp (see Additional file 7 Table S1). The top variant 
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(rs380194132, P=1.6x10-10) was located at 3,242,688 bp. Since the genomic region 

that included associated sequence variants with similar P values extended over almost 

3 Mb, the identification of putative candidate gene(s) underlying the QTL was not 

attempted (see Additional file 3 Figure S3).  

On BTA19, a single variant located at 51,380,692 bp was significantly associated 

(rs208289132, P=4.1x10-10) with fat percentage (Figure 4e, see Additional File 7 

Table S1). The associated variant was located 4230 bp upstream of the translation 

start site of the FASN gene (fatty acid synthase). 

Computing resources required 
We assessed the computing resources required to impute 23,256,743 sequence 

variants in 6958 target animals using 1577 sequenced animals as a reference. Eagle 

and Minimac were run on 10 processors per chromosome, whereas FImpute was run 

on a single processor. FImpute ran out of memory and did not complete the 

imputation on chromosomes 12 and 23 likely because of large structural variants 

located on both chromosomes (see Additional file 4 Figure S4). The process (CPU) 

time to infer haplotypes and impute sequence variants for 27 chromosomes was 1037, 

490 and 146 hours, respectively, for Eagle, Minimac and FImpute.  

The wall-clock time and RAM usage for FImpute was between 2.9 and 9.6 hours and 

6.7 and 29.7 gigabytes per chromosome, respectively (see Additional file 5 Figure 

S5). The estimation of haplotype phases took between 1.6 and 5.9 hours using Eagle 

and it required between 1.8 and 3.4 gigabytes of RAM with between 11,178 and 

38,009 SNPs per chromosome for 6958 animals. The imputation of sequence variants 

using Minimac took between 2.5 and 9.4 hours and it required between 6.3 and 21 

gigabytes of RAM per chromosome.  

The estimation of haplotype phases for 1577 reference animals using Eagle (multi-

threaded on 10 CPUs) took between 4.2 and 15.1 hours with between 413,371 and 

1,444,299 sequence variants, respectively, and it required between 15.4 and 51.7 

gigabytes of RAM per chromosome. 
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Discussion 
We evaluated the accuracy of imputation from dense genotypes to sequence variants 

in 1577 sequenced animals which is a four- to eight-fold increase in sample size 

compared to previous studies in cattle [2, 17, 18]. Our findings are likely to be 

relevant for many cattle populations because we considered animals from two breeds 

with different effective population sizes as validation panel and inferred sequence 

variants on six chromosomes that reflect a broad spectrum of LD [44]. The accuracy 

of imputation was the correlation between imputed and sequenced genotypes 

(rIMP,SEQ), which is a measure that depends less on the allele frequencies of the 

sequence variants than e.g., the proportion of correctly imputed genotypes [45]. 

However, the cross-validation procedure that was applied in our study yields reliable 

results only when the quality of the sequence data is high. Low fold sequencing 

coverage and sequencing or assembly errors may result in flawed genotypes [46]. 

Genotype imputation might infer true genotypes at such positions that differ from the 

sequenced genotypes thereby underestimating the accuracy of imputation. 

Considering that the genotype error rates were low in the sequenced FV and HOL 

animals [2, 47], it is unlikely that our findings are biased due to flawed genotypes at 

sequence variants. 

We assessed the performance of FImpute and Minimac because both methods can 

impute millions of polymorphic sites in large populations within a reasonable time. 

Previous studies showed that FImpute is more accurate than other tools with similar 

computing costs [48, 49]. The population-based genotype imputation algorithm 

implemented in Minimac is highly accurate and fast because it takes previously 

phased genotypes as input [11, 50]. We phased the target population using Eagle 

because it enables timely and accurate haplotype inference [32]. The computing costs 

to impute 23 million sequence variants in 6958 animals were more than ten-fold 

higher with Eagle and Minimac than FImpute. However, the wall-clock time was only 

1.67-fold higher because Eagle and Minimac support multi-threading to reduce the 

process time [32, 50]. The difference in computing costs would be greater when 

haplotypes were not available for the reference animals. Since many variant detection 

pipelines include phasing and imputation algorithms [2, 47, 51], the computing time 

required to phase the sequence data was not considered in our study. However, the 
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phasing of the reference panel was necessary because the variant detection pipeline of 

the 1000 bull genomes project was applied to successive 5 Mb segments rather than 

whole chromosomes [2]. 

The accuracy of imputation was higher with Minimac than FImpute, although 

Minimac does not consider pedigree information. Most sequenced animals of our 

study were selected in a way that they represent a large proportion of the genetic 

variation of current populations [2, 52]. They are likely less related with each other 

than random animals from the population, although some parent-offspring pairs were 

included. The accuracy of imputation might be higher when reference and target 

animals are closely related particularly when FImpute is used [49]. However, dense 

genotypes for reference and target animals, e.g., sequence and HD-derived genotypes, 

can be used to identify short shared haplotypes among apparently unrelated animals 

that originate from ancient ancestors possibly predating the separation of breeds [9, 

53]. Including reference animals from various breeds increased the accuracy of 

imputation, particularly in FV cattle. The principal components analysis revealed that 

animals from many breeds clustered nearby the FV population indicating that they are 

distantly related whereas the HOL animals formed a cluster that was separated from 

all other breeds. The benefit of a multi-breed reference population on the accuracy of 

imputation was less pronounced in HOL cattle. Since the number of reference animals 

was nearly twice as high in HOL, our results may also corroborate the suggestion that 

multi-breed reference panels are particularly useful to impute genotypes when the 

reference population is small [18, 54, 55]. In agreement with previous studies in cattle 

[2, 18], a multi-breed reference population increased the accuracy of imputation at 

rare variants likely reflecting the shared ancestry of many cattle populations and the 

limited number of sequenced animals per breed. However, it seems advisable to 

periodically evaluate different imputation strategies because multi-breed reference 

populations may compromise the imputation of sequence variants when the diversity 

of the reference panel increases [26]. 

The population-based imputation of sequence variants was particularly advantageous 

at rare alleles corroborating previous findings in cattle [12, 49, 56]. The true 

genotypes were even more correlated to predicted allele dosages than best-guess 

genotypes which is in line with the findings of Brøndum et al. [18]. An association 
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study between allele dosages and milk fat percentage revealed that two rare 

(MAF<10%) causal mutations in the DGAT1 [34, 35] and GHR [36] genes were the 

most significantly associated variants at two QTL on BTA14 and BTA20. This 

finding demonstrates that utilizing predicted allele dosages in association studies with 

imputed sequence variants can pinpoint causal mutations which agrees with Zheng at 

al. [57] and Khatkar et al. [58]. So far, imputed sequence variants did not substantially 

improve the accuracies of genomic predictions in real data which might partly result 

from flawed genotypes at low-frequency variants [17, 59]. Our results show that allele 

dosages are more accurate than best-guess genotypes particularly at rare variants 

because they better reflect imputation uncertainty. However, the analysis of allele 

dosages for millions of sequence variants in tens of thousands of individuals for 

genomic predictions is computationally costly and has not been attempted so far [17, 

60]. Since the proportion of rare alleles is more than three-fold higher in sequence 

than HD variants, further research is warranted to investigate if allele dosages may 

enhance genomic predictions with imputed sequence variants. 

Although the accuracy of imputation was high in our study, the rIMP,SEQ–values varied 

considerably across chromosomes and dropped at multiple positions along the 

genome. Previous studies using array-derived genotypes showed that a sudden decline 

in imputation accuracy may indicate intra- or inter-chromosomal misplacement of 

SNPs [12, 61, 62]. We detected strikingly low rIMP,SEQ–values in regions where the 

bovine genome contains large segmental duplications [40, 41]. The population-wide 

imputation of sequence variants for two chromosomes (BTA12, BTA23) was not 

possible using Fimpute. Assessing the accuracy of imputation along these 

chromosomes using cross-validation revealed two large segments including the highly 

variable major histocompatibility complex [63] with low imputation quality. We were 

able to eventually impute genotypes for BTA12 and BTA23 using FImpute when we 

excluded those segments from the reference panel. Imputing genotypes within both 

segments was possible using Minimac. However, the inferred genotypes are flawed 

and must be treated with caution as our results show (see Additional file 4 Figure S4). 

While an improved assembly of the reference genome may resolve some of these 

problems, a better resolution of large structural elements is not possible using short 

paired-end DNA sequencing [64]. Since flawed genotypes are likely to compromise 

downstream analyses [24, 25], it seems advisable to exclude sequence variants within 
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segments of low imputation quality from the target population and retain the array-

derived genotypes only. 

Our findings show that the composition of the reference population and the choice of 

the imputation algorithm are critical to infer accurate genotypes thereby enabling us 

to pinpoint causal mutations in association studies with imputed sequence variants. 

When the accuracy of imputation is low, causal variants may be “buried” among other 

variants in LD (e.g., Figure 3a,d). In such situations, association testing will not reveal 

true causal mutations because variants with lower P values are likely to be prioritized 

as candidate causal variants [23]. Our findings also show that true causal variants are 

not necessarily the top variants in association studies even when their genotypes are 

almost perfectly imputed. Although the imputation accuracy for the causal p.A232K-

polymorphism in the DGAT1 gene was greater than 99.5%, several adjacent variants 

had identical or slightly lower P values likely indicating sampling errors [65] or 

synthetic associations [66, 67]. Nevertheless, the mutations in the DGAT1 and GHR 

genes offer a convenient approach to evaluate the ability to detect causal mutations 

with imputed sequence variants, because both variants segregate in many cattle breeds 

where phenotypes for fat percentage are available. 

Our association study with more than 23 million sequence variants detected seven 

QTL that were significantly associated with milk fat percentage. Applying a less 

stringent significance threshold [68] would reveal additional QTL (see Additional file 

6 Figure S6). Since we were able to pinpoint the actual causal mutations at two QTL, 

it is likely that causal mutations for other QTL are among the most significantly 

associated variants. However, the QTL identified in our study include several 

sequence variants in high LD and with similar P values rendering the identification of 

causal sites difficult. Association studies in animals from multiple breeds may 

facilitate differentiation between causal and non-causal sites in LD [2]. Causal sites 

may be located on ancient haplotypes that still segregate across multiple breeds as is 

the case for the fat percentage QTL on BTA5. Our association study revealed thirteen 

candidate causal variants in high LD in an intron of the MGST1 gene that had 

markedly lower P values than all other variants. It is very likely that one of those 

variants is the actual causal polymorphism because they were also highly significantly 

associated with milk composition in another dairy cattle breed [23]. An improved 
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functional annotation of the bovine genome and a fine-mapping strategy that 

incorporates biological information may facilitate to pinpoint causal mutations at such 

QTL [22, 69]. 

 

Conclusions 
Inferring accurate genotypes for millions of sequence variants in large bovine cohorts 

is feasible using population-based imputation algorithms. Using a multi-breed 

reference population increases the accuracy of imputation for rare alleles. Considering 

the predicted allele dosages rather than best-guess genotypes as explanatory variables 

is beneficial for association studies with imputed sequence variants. The ability to 

pinpoint causal mutations in association studies with imputed sequence variants 

depends on the composition of the reference population and imputation approach used 

to infer genotypes. 
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Additional files 

Additional file 1 Figure S1 
File format: tif 
Title: Principal component analysis of 1577 sequenced animals. 
Description: (a-c) Plot of the top two principal components of the genomic 
relationship matrix. Different colours and symbols represent different breeds. The 
partners of the 1000 bull genomes consortium assigned the animals to breeds (b) Non-
grey symbols indicate 249 animals that were considered as Fleckvieh animals. (c) 
Green symbols indicate 450 Holstein animals.  
 
Additional file 2 Figure S2 
File format: tif 
Title: Imputation accuracy along six chromosomes in Fleckvieh cattle. 
Description: (a-f) The correlation between true and imputed genotypes for sequence 
variants located within successive 1 Mb windows on six chromosomes. Different 
colours and symbols represent correlation coefficients obtained using different 
imputation algorithms and reference populations.  
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Additional file 3 Figure S3 
File format: tif 
Title: Detailed view of a milk fat percentage QTL on bovine chromosome 16 
Description: Different colour represents the linkage disequilibrium between the most 
significantly associated variant (violet) and all other variants. Blue arrows indicate the 
direction of the gene transcription. 
 
Additional file 4 Figure S4 
File format: tif 
Title: Imputation accuracy along chromosomes 12 and 23 in Fleckvieh cattle.  
Description: The correlation between true and imputed genotypes for sequence 
variants located within successive 1 Mb windows on six chromosomes. Different 
colours and symbols represent correlation coefficients obtained using different 
imputation algorithms and reference populations. We were eventually able to impute 
sequence variants for BTA12 and BTA23 using FImpute when we discarded variants 
that were located between 70 and 77 Mb and between 25 and 30 Mb, respectively, 
from the reference panel. 
  
Additional file 5 Figure S5 
File format: tif 
Title: Computing resources required to impute 23,256,742 sequence variants in 
6958 animals.  
Description: The wall-clock times (a) and random-access memory (RAM) usage (b) 
required to infer haplotypes and genotypes with FImpute (green), Eagle (dark blue) 
and Minimac (light blue) were assessed on 12-core Intel® Xeon® processors rated at 
2.93 Ghz with 96 gigabytes of RAM. FImpute ran out of memory and did not finish 
when we attempted to infer genotypes for BTA12 and BTA23. FImpute was ran on a 
single processor whereas Eagle and Minimac used 10 processors per chromosome. 
 
Additional file 6 Figure S6 
File format: tif 
Title: Detailed view of a milk fat percentage QTL on bovine chromosome 27 
Description: Different colour represents the linkage disequilibrium between the top 
variant (violet) and all other variants. Blue arrows indicate the direction of the gene 
transcription. The top variant (36,211,258 bp) was associated with fat percentage 
(P=1.9x10-8) albeit not at genome-scale. Twenty-two variants in high LD (r2>0.68) 
with the top variant were located between 36,200,888 and 36,253,406 bp and had P 
values less than 7.7x10-7. Among those were three candidate causal variants 
(36,211,252 bp with P=2.4x10-8, 36,211,708 bp with P=2.8x10-8, 36,209,319 bp with 
P=3.3x10-8) for fat content in the early lactation that were reported in Daetwyler et al. 
[2].  
 
Additional file 7 Table S1 
File format: tif 
Title: Significantly associated variants at five fat percentage QTL 
Description: Variants located on chromosomes 5, 6, 11, 16 and 19 with P values less 
than 2.1x10-9. The positions of the variants correspond to the UMD3.1 assembly of 
the bovine genome. The substitution effects (beta, standard error of beta) are given for 
the alternative allele. 
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