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Abstract 17 

Larvae of the insect Galleria mellonella are increasingly being used for studying pathogenic 18 

microbes and their virulence mechanisms, and as a rapid model for screening novel 19 

antimicrobial agents. The larvae (waxworms) are most frequently infected by injection of 20 

pathogenic organisms into the haemocoel through the insect’s prolegs. The mostly widely 21 

used method for restraining the waxworms for injection is by grasping them between the 22 

operator’s fingers, which puts the operator at risk of needle stick injury, an important 23 

consideration when working with highly pathogenic and/or drug-resistant microorganisms. 24 

While use of a stab proof glove can reduce this risk of injury, it does so at the loss of manual 25 

dexterity and speed, resulting in a more labour-intensive and cumbersome assay. We describe 26 

a simple cost effective device (the so-called ‘Galleria Grabber’) for restraining waxworms 27 

for injection that keeps the operator’s fingers clear of the needle thus reducing the risk of 28 

injury.  29 

 30 

Introduction 31 

Larvae (waxworms) of the Greater wax moth Galleria melonella have become a widely used 32 

surrogate host for studying pathogenic microbes. In recent years, they have been used for 33 

studying virulence mechanisms, investigating differences between clinical isolates as well as 34 

for preliminary investigation of the efficacy of antimicrobial compounds, for a wide range of 35 

both Gram-positive and Gram-negative bacteria1-12, fungi13-19 and viruses20-22. The use of 36 

waxworms as a model host has many advantages. The waxworms themselves are cheap and 37 

easy to obtain from commercial insect suppliers, and can be housed in large numbers to allow 38 

for greater study sizes at low cost. Waxworms possess an innate immune system that contains 39 

many analogous functions to that seen in humans, including phagocytosis and the production 40 
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of antimicrobial peptides and reactive oxygen and nitrogen species23. Unlike other non-41 

mammalian model organisms, such as Caenorhabditis elegans, Danio rerio and Drosophila 42 

melanogaster24-27, waxworms can be incubated at 37°C which allows for the study of 43 

clinically relevant human pathogens at a temperature that mimics the human host. Finally, as 44 

insects, G. mellonella are not currently subject to the same ethical restrictions that small 45 

mammalian models are, meaning there is a low barrier to entry for researchers wishing to 46 

move their studies into a model host.  47 

Infection of waxworms is typically carried out on 5th instar insects, when the waxworms are 48 

at their largest, typically around 2cm in length and 100mg in weight. The most common 49 

method of infection is by injection into the haemocoel through the last proleg of the insect; 50 

methods for injection vary between laboratories. One method is to immobilize the needle 51 

itself and then place the waxworm onto the needle for injection. Another more favoured 52 

method is to immobilise the waxworms between the operator’s fingers28 and place the needle 53 

into the insect’s proleg, lifting the needle away from the operator with the insect attached 54 

before pushing the plunger on the syringe. Both of these injection techniques present a hazard 55 

to the researcher and can result in needle stick injury and possible infection.  56 

A recent article highlighted the use of a stab-proof glove to reduce the chance of this type of 57 

injury, while immobilising the waxworms over a pipette tip fixed to some paper29. We have 58 

tried this technique, and found that it reduced the efficiency of injection, from 3-4 infections 59 

per minute to 1 infection per minute, resulting in a lower injection rate and a more labour-60 

intensive assay. Because of this, we investigated the possibility of using a simple restraining 61 

device to hold waxworms in place for injection, in a way that removes the operator’s hand 62 

from the vicinity of the needle, allowing for maximum mobility and safety of the operator.  63 

 64 
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Materials and methods 65 

Preparation of bacteria 66 

The Staphylococcus aureus isolate XEN3630 (Perkin Elmer) was grown overnight with 67 

shaking at 200rpm in Tryptic Soy broth (Oxoid) at 37°C. Cells were washed twice in 68 

phosphate buffered saline (PBS) (Sigma-Aldrich) and then resuspended in PBS to an optical 69 

density at 600nm (OD600) of 1, equivalent to approx. 5x109 CFU ml-1. Resuspended cultures 70 

were serially diluted and plated onto Tryptic Soy agar (Oxoid) to retrospectively determine 71 

the bacterial counts used for injection. Inoculation doses were drawn into 1 ml ultra-fine (29 72 

gauge) needle insulin syringes (BD, Wellington) for injection into the waxworms. Groups of 73 

waxworms were injected with 20 µl of either approx. 5x107 CFU ml-1, 5x108 CFU ml-1 or 74 

5x109 CFU ml-1 S. aureus XEN36. 75 

Selection, infection and monitoring of G. mellonella waxworms 76 

5th instar waxworms were selected based on consistency in size and split into eight groups of 77 

12. Four groups were injected with either PBS or doses of 105-107 CFU S. aureus XEN36 78 

using the most common technique of grasping the waxworms between the operator’s thumb 79 

and index finger and injecting into the waxworm’s last proleg. The remaining four groups 80 

were injected with either PBS or doses of 105-107 CFU S. aureus XEN36 using the newly 81 

described restraining device (which we have dubbed the ‘Galleria Grabber’), which 82 

comprises a 12 cm x 9 cm kitchen sponge and a large bulldog clip (approx. 50 cm) (Fig. 1A). 83 

To comfortably restrain the waxworms, the sponge was folded in half and secured using the 84 

bulldog clip (Fig. 1B). The open ends of the folded sponge were peeled back and held in 85 

place (Fig. 1C). Next, a waxworm was placed within the sponge and held in place while the 86 

open end of the sponge was released (Fig. 1D). Once the waxworm was securely held in 87 

place, the insulin syringe was inserted into the haemocoel via the insect’s last proleg (Fig. 88 
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1E). Once the needle was in place the waxworm was released from the restraining device 89 

(Fig. 1F). If the needle is correctly placed, the waxworm remains attached to the needle of the 90 

syringe. Once the needle had been securely inserted into the waxworm, the insect was 91 

removed from the restraining device and the plunger of the syringe pushed down to inject the 92 

desired inoculum.  93 

Once injected, waxworms were housed in individual wells of 24 well tissue culture dishes 94 

(Nunc) with the lids taped down to ensure against escape. These dishes were placed inside a 95 

secondary container to ensure containment. Waxworm mortality was monitored over 5 days.  96 

 97 

Results and discussion 98 

We observed no differences in the infection dynamics between the groups of waxworms 99 

injected with S. aureus XEN36 after restraint using the novel ‘Galleria Grabber’ device 100 

described compared to restraint by holding the waxworms between the operator’s thumb and 101 

index finger. For both restraint techniques, we observed no mortality from the waxworms 102 

injected with PBS (Fig. 2). In contrast, the majority of waxworms injected with approx. 107 103 

CFU S. aureus XEN36 died within 24 hours (Fig. 2). We observed a dose dependent 104 

mortality for waxworms injected with S. aureus XEN36, with 66% of waxworms injected 105 

with approx. 106 CFU succumbing to infection (Fig. 2). No mortality was seen after injection 106 

with 105 CFU S. aureus XEN36 (Fig. 2).     107 

The ‘Galleria Grabber’ allows for easy injection of a large number of waxworms (approx. 3 108 

per minute), while greatly reducing the opportunity for the operator to suffer a needle stick 109 

injury. With the increasing popularity of waxworms as a model host for studies involving 110 

dangerous human pathogens12, including clinical and/or drug-resistant isolates, protecting 111 
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researchers from accidental laboratory infection is of great importance. While the use of a 112 

stab-resistant glove addresses this issue, it does compromise the speed at which waxworms 113 

can be injected. With this new restraint method we were also able to inject smaller waxworms 114 

with ease. Most importantly, the new methodology described removes the operator’s hand 115 

from the vicinity of needles loaded with pathogenic/drug-resistant microbes, allowing for 116 

maximum mobility and safety of the operator without compromising the speed of the assay.  117 
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 213 

Figure legends 214 

Figure 1. Injection of waxworms using a novel restraint device.  215 

The ‘Galleria Grabber’ restraint device is comprised of a 15mm thick sponge and bulldog 216 

clip (A). The sponge is folded in half lengthways and secured within a bull dog clip with the 217 

open end facing outwards (B). The open ends of the folded sponge are peeled back and held 218 

in place (C). The waxworm to be injected is placed within the sponge and held in place while 219 

the open end of the sponge is released. The closing of the sponge secures the waxworm in 220 

place for injection (E). Once the needle is placed, the syringe is lifted with the waxworm in 221 

place and the plunger is pushed to inject the desired inoculum (F).  222 

Figure 2. Survival of waxworms injected with varying concentrations of S. aureus 223 

Waxworms (n=12 per group) were infected with varying concentrations of S. aureus XEN36 224 

by injection into the haemocoel via the last proleg while restrained either between the thumb 225 

and index finger of the operator (solid lines), or using the ‘Galleria Grabber’ restraint device 226 

(dashed lines), and survival measured over 5 days.  227 
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