
Predicting Enhancer-Promoter Interaction from Genomic
Sequence with Deep Neural Networks

Shashank Singh1, Yang Yang2, Barnabás Póczos1, and Jian Ma2,*

1Machine Learning Department
2Computational Biology Department

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
*Corresponding author: jianma@cs.cmu.edu

Abstract

In the human genome, distal enhancers are involved in regulating target genes through proxi-
mal promoters by forming enhancer-promoter interactions. Although recently developed high-
throughput experimental approaches have allowed us to recognize potential enhancer-promoter
interactions genome-wide, it is still largely unclear to what extent the sequence-level information
encoded in our genome help guide such interactions. Here we report a new computational method
(named “SPEID”) using deep learning models to predict enhancer-promoter interactions based
on sequence-based features only, when the locations of putative enhancers and promoters in a
particular cell type are given. Our results across six different cell types demonstrate that SPEID
is effective in predicting enhancer-promoter interactions as compared to state-of-the-art methods
that only use information from a single cell type. As a proof-of-principle, we also applied SPEID
to identify somatic non-coding mutations in melanoma samples that may have reduced enhancer-
promoter interactions in tumor genomes. This work demonstrates that deep learning models can
help reveal that sequence-based features alone are sufficient to reliably predict enhancer-promoter
interactions genome-wide.

INTRODUCTION

Our understanding of how the human genome regulates complex cellular functions in a living organ-
ism is still limited. A critical challenge is to fundamentally decode the instructions encoded in the
genome sequence that regulate genome organization and function. One particular aspect that we still
know little about is the three-dimensional higher-order organization of the human genome in cell nu-
cleus. The chromosomes in each human cell are folded and packaged into a nucleus with about 5µm
diameter. Intriguingly, this packaging is highly organized and tightly controlled [1]. Any disruption
and perturbation of the organization may lead to disease. Recent development of new high-throughput
whole-genome mapping approaches such as Hi-C [2] and ChIA-PET [3, 4] has allowed us to iden-
tify genome-wide chromatin organization and interactions comprehensively. We now know that the
global genome organization is more complex than previously thought, in particular, in regards to
enhancer-promoter interactions. Distal regulatory enhancer elements can interact with proximal pro-
moter regions to regulate the target gene’s expression, and mutations that change such interactions
will cause target gene to be dysregulated [5–7]. In mammalian and vertebrate genomes, the promoter

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

mailto:jianma@cs.cmu.edu
https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


regions of the gene and their distal enhancers may be millions of base-pairs away from each other; and
a promoter may not interact with its closest enhancer. Indeed, the mappings of global chromatin inter-
action based on Hi-C and ChIA-PET have shown that a significant proportion of enhancer elements
skip nearby genes and interact with promoters further away in the genome by forming long-range
chromatin loops [8, 9]. However, the principles encoded at the genomic sequence level underlying
such organization and chromatin interaction are poorly understood.

In this work, we focus on determining whether the sequence features encoded in the genome
within enhancer elements and promoter elements are sufficient to predict enhancer-promoter inter-
actions (EPI). Although certain sequence features (e.g., CTCF binding motifs [10]) are known to
be involved in mediating chromatin loops, it remains largely under-explored whether and what in-
formation encoded in the genome sequence contains important instructions for forming EPI. There
exists some recent work on predicting EPI based on functional genomic features [11, 12]. In [11],
a method called RIPPLE was developed using a combination of random forests and group LASSO
in a multi-task learning framework to predict EPIs in multiple cell lines, using DNase-seq, histone
marks, transcription factor (TF) ChIP-seq, and RNA-seq data as input features. In [12] the authors
developed TargetFinder based on boosted trees to predict EPI using DNase-seq, DNA methylation,
TF ChIP-seq, histone marks, CAGE, and gene expression data. From RIPPLE and TargetFinder, it is
clear that signals from functional genomic data are informative to computationally distinguish EPIs
from non-interacting enhancer-promoter pairs. There are also recent works that utilize functional
genomic data from multiple datasets to identify EPIs [13, 14]. These studies suggest that important
proteins and chemical modifications that may be involved in mediating chromatin loops for EPIs can
be recognized. However, it remains unclear whether the information in genome sequences within
enhancers and promoters alone is sufficient to distinguish EPIs. Indeed, no other algorithm cur-
rently exists to predict EPI using sequence-level signatures only except our own recent work called
PEP [15] (which we will directly compare in this work). PEP uses a machine learning model Gradi-
ent Tree Boosting [16] based only on features from the DNA sequences of the enhancer and promoter
regions. Specifically, it considers two variants, PEP-Motif, which only uses motif enrichment fea-
tures for known TF binding motifs, and PEP-Word, which uses word embeddings, a recent innovation
from natural language processing that allows representing (arbitrary-length) sentences from a discrete
vocabulary as fixed-length numerical vectors, while retaining semantic meaning. PEP’s results show
that it is possible to achieve comparable results using sequence-based features only to predict EPIs.
However, it is unclear whether different models can be developed to have even better performance.

In this paper, we want to answer the following question: if we are only given the locations of
putative enhancers and promoters in a particular cell type, can we train a predictive model using deep
neural networks to identify EPIs directly from the genomic sequences without using other functional
genomic signals? In the past two years, there have been many deep learning applications to regulatory
genomics [17–26]. The deep learning framework has the advantage of automatically extracting useful
features from the genome sequence and can capture non-linear dependencies in the sequence to predict
specific functional annotations [27]. However, three-dimensional genome organization and high-order
chromatin interaction of functional elements remain an unexplored area for deep learning models.

To approach this, we develop, to the best of our knowledge, the first deep learning architecture for
predicting EPIs using only sequence-based features, which in turn demonstrates that the principles of
regulating EPI may be largely encoded in the genome sequences within enhancer and promoter ele-
ments. We call our model SPEID (Sequence-based Promoter-Enhancer Interaction with Deep learn-
ing; pronounced “speed”). Given the location of putative enhancers and promoters (that are largely
cell-type specific) in a particular cell type, SPEID can effectively predict EPI in that cell type us-

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


ing sequence-based features extracted from the given enhancers and promoters based on a predictive
model trained for that cell type. In six different cell lines, we show that SPEID achieved better results
in both AUROC and AUPR as compared to PEP and TargetFinder. We also present two approaches for
using SPEID to identify sequence features that are informative for predicting EPI. While feature im-
portance as measured by TargetFinder and PEP, which incorporate hand-crafted features, can depend
on these handcrafted features, SPEID allows a more objective approach to feature identification. In
addition, we demonstrate that SPEID can help identify possible important non-coding mutations that
may reduce or disrupt chromatin loops in cancer genomes. We believe that SPEID has the potential
to become a generic model to allow us to better understand sequence level mechanistic instructions
encoded in our genome that determine long-range gene regulation in different cell types. The source
code of SPEID is available at: https://github.com/ma-compbio/SPEID

RESULTS

Overview of the SPEID model and data

Like all deep learning models, SPEID learns a sequence of increasingly complex feature represen-
tations. Specifically, as illustrated in Fig. 1, SPEID consists of three main layers: a convolutional
layer, a recurrent layer, and a dense layer. The convolution layer learns a large array of independent
‘kernels’. Kernels are short (40bp) weighted sequence patterns that are convolved with the input se-
quence to compute the match of that pattern at each position of the input. Hence, the convolution layer
outputs, for each kernel, the match at each position of the input. The recurrent layer re-weights each
kernel match, so as to learn predictive combinations of kernel features. It does this by iterating across
the length of the input sequence (in both directions, in parallel), and selectively down-weighting ker-
nel matches based on the match strength and the weights of previously observed kernel matches.
Finally, the dense layer is a simple, essentially linear, classifier learned on top of the combinations of
sequence features output by the recurrent layer. We assume that important sequence features may dif-
fer between enhancers and promoters, and that interactions between enhancer and promoter sequence
features determine EPI. Hence, convolution layers are separate for enhancers and promoters, and the
outputs of the convolution layers are concatenated before feeding into the recurrent layer.

We utilized the EPI datasets previously used in TargetFinder [12], which was also used in PEP [15],
for our model training and evaluation so that we can also directly compare with TargetFinder and
PEP. The data include six cell lines (GM12878, HeLa-S3, HUVEC, IMR90, K562, and NHEK). Cell-
line specific active enhancers and promoters were identified using annotations from the ENCODE
Project [28] and Roadmap Epigenomics Project [29]. The locations of these putative enhancers and
promoters are the input for SPEID for each cell line. The data for each cell line consist of enhancer-
promoter pairs that are annotated as positive (interacting) or negative (non-interacting) using high-
resolution genome-wide measurements of chromatin contacts in each cell line based on Hi-C [10], as
used in [12]. 20 negative pairs were sampled per positive pair, under constraints on the genomic dis-
tance between the paired enhancer and promoter as described in [12], such that positive and negative
pairs had similar enhancer-promoter distance distributions.

To address the problem of class imbalance, we applied data augmentation to the positive pairs
(see below). The original annotated enhancers in the datasets of each cell type are mostly only a few
hundred base pairs (bp) in length, with average length varying from 340 bp to 720 bp across the six
cell types. We extended the enhancers to be 3 kbp in length by including adjustable flanking regions,
both for augmentation of positive samples and for more informative feature extraction with the use of

3

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://github.com/ma-compbio/SPEID
https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


the surrounding sequence context. The enhancers are fitted to a uniform length with the extensions,
as sequences of fixed sizes are needed as input to our model. The original annotated promoters are
mostly 1-2 kbp in length, with average varying from 450 bp to 1.96 kbp across cell types. Promoters
are similarly fitted to a fixed window size of 2 kbp. If the original region is shorter than 3 kbp (for
enhancer) or 2 kbp (for promoter), random shifting of the flanking regions is performed to get multiple
samples. If it is longer than 3 kbp or 2 kbp, segments of the fixed length are randomly sampled from
the original sequence.

For negative pairs, enhancers and promoters are also fixed to the window sizes of 3 kbp and 2 kbp,
respectively, in the similar approach performed over the positive pairs, but without augmentation.
The numbers of positive pairs, augmented positive pairs, and negative pairs on each cell line and the
combined cell lines are listed in Table 1.

SPEID can effectively predict EPIs using sequence features only

We compared our prediction results to two state-of-the-art models using only information from in-
dividual cell type, TargetFinder [12] and PEP [15]. TargetFinder predicts EPI based on many func-
tional genomic signals and annotations, including DNase-seq, DNA methylation, TF ChIP-seq, his-
tone marks ChIP-seq, CAGE, and gene expression data. TargetFinder uses a dataset of enhancer and
promoter pairs, labeled as interacting (positive) or non-interacting (negative). This dataset has 3 vari-
ants, which use features from different regions: Enhancer/Promoter (E/P) uses only annotations within
the enhancer and promoter, Extended Enhancer/Promoter (EE/P) additionally uses annotations within
an extended 3kbp flanking region around each enhancer, and Enhancer/Promoter/Window (E/P/W)
additionally uses annotations in the region between the enhancer and promoter. PEP uses sequence-
based features only and was trained and tested using the same collection of enhancers and promoters
as TargetFinder (in all three variants). Note that in SPEID, our input sequences only include the
surrounding sequences of the enhancer and promoter (as we discussed above). We did not compare
SPEID with RIPPLE mainly because RIPPLE was trained on features similar to the EE/P dataset,
but it is not compatible with the E/P/W data that we use here, and, furthermore, PEP was previously
shown to consistently outperform RIPPLE in all cell lines on the EE/P dataset [15]. We therefore only
directly compared with TargetFinder and PEP. SPEID and PEP both only consider sequence-based
features, but SPEID has one advantage from a methodology stand-point. Since PEP performs sepa-
rate feature extraction and prediction steps, the prediction model loses information about the contexts
of features. In contrast, SPEID, which performs prediction directly from the sequences, can leverage
the additional contextual information, such as relative positions of the features.

Fig. 2 shows the comparison of prediction performance between our SPEID method, the best
PEP model, and the best TargetFinder model, on each of six different cell types, under each of the
following performance metrics: (1) AUROC (area under receiver operating characteristic curve); (2)
AUPR (area under precision-recall curve); and (3) F1 score (harmonic mean of precision and recall).
AUROC and AUPR have the advantage that they do not depend on a particular classifier threshold. For
F1, we used a classifier threshold that performed best on a predetermined validation data subset (10%
of the training set, disjoint from the test set). We found that, although results vary across different cell
lines, SPEID performs comparably to the most competitive variants of TargetFinder and PEP. Detailed
numerical results and performance of other variants of TargetFinder and PEP are shown in Table S1.
In summary, our results suggest that sequence contains important information that can determine EPI,
and, if we are given the locations of enhancers and promoters for a particular cell type, our SPEID
model can effectively predict EPI using sequence features only.

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evaluating the importance of known sequence features using in silico mutagenesis

A major motivation for accurately predicting EPI from sequence is being able identify features of
the DNA sequence that determine EPI. Unfortunately, unlike simpler models, deep learning mod-
els do not directly encode the features that they use to make their predictions. Nonlinearities in the
deep network mean that ‘weights’ do not necessarily reflect ‘importance’, as in a linear regression
model, and dropout regularization promotes a distributed representation of features within each layer
of the network, such that small portions of learned features tend to be encoded in redundant frag-
ments. Consequently, important features are difficult to extract directly from the network. Our main
approach is therefore to study how changes in input sequences affect the predictions of SPEID for
those sequences, a technique known as in silico mutagenesis. The mechanism underlying in silico
mutagenesis is straightforward: for any particular pair of enhancer and promoter sequences, we can
query SPEID with any mutation of those sequences to see whether this increases or decreases the pre-
dicted EPI probability. This allows us to predict how alterations to sequence affect EPI at nucleotide
resolution.

While there are many ways this can be leveraged to identify important sequence features, we
focused on measuring importance of known sequence motifs from the HOCOMOCO Human v10
database [30], which includes 640 motifs for 601 human TFs. Due to a high degree of redun-
dancy/similarity of many of the motifs in HOCOMOCO, we first clustered the motifs (using the same
approach described in Supplementary Methods A.2 of [15]), resulting in 503 motif clusters (including
427 single motifs and 76 small clusters of 24 motifs). For each motif cluster, in each of enhancers
and promoters, we measured the change in prediction accuracy when all occurrences of motifs in that
cluster in the test cross-validation fold were replaced with random noise (see Methods for more de-
tails). The average (over occurrences of that motif cluster) drop in prediction performance was then
used as a measure of feature importance. Fig. S1 shows the distributions of estimated feature impor-
tance across all 503 motifs clusters, for each cell line, in each of enhancers and promoters. Since
our measure of feature importance is an empirical average, the central limit theorem suggests that,
if all features were equally important, all distributions in Fig. S1 would be approximately normal.
However, most exhibit apparent positive skew, indicating the presence of a small number of highly
positive feature importance values. In general, we found that enhancer features tended to be more
important, consistent with the results in [12] and [15]. The top features according to SPEID’s feature
importance scores also correlate significantly with those found by PEP [15], as shown in Table 2.

To identify features that were consistently important across cell lines, we ranked features by im-
portance within each cell line, and then averaged this rank across cell lines. Fig. 3 shows the 20 most
important features (according to this average rank) in both enhancers and promoters, as well as their
importance rank in each cell line. Table S2 shows the correlations between feature importance across
different cell lines. The correlations are significantly positive, ranging from 0.24 to 0.37, suggesting
that a considerable number of TF motifs play shared roles across multiple cell lines, while either
∆(M) is quite noisy or many motifs are important in some cell lines but not in others. The poten-
tially important TFs include known ones such as CTCF , as well as a number of TFs whose roles in
EPI have not been well studied at present, such as SRF, JUND, SPI1 , SP1, EBF1, and JUN, which
were also reported in [12]. Some of the highly predictive corresponding motif features discovered
by SPEID are also consistent with evidence from existing studies. For example, SPEID ranks the
motif of BCL11A in the top 5% important feature in both enhancer and promoter regions on aver-
age across different cell lines. Studies have shown that BCL11A could modulate chromosomal loop
formation [31]. SPEID also ranks ZIC4, E2F3 and FOXK1 motifs as having top 5%, top 10%, and

5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


top 5% feature importance, respectively, in enhancer regions. ZIC4 and E2F3 are factors known to
interact with enhancers [32], and their motifs are both found to be enriched in cohesin-occupied en-
hancers together with the CTCF motif [33]. FOXK1 has been shown to localize in both enhancers
and promoters [34]. SPI1 (PU.1) is found by SPEID to be a corresponding motif feature with top
5% feature importance in promoter regions. Studies have revealed the important role of SPI1 in gene
regulation [35, 36]. These results demonstrate the potential of SPEID in identifying important TF
motif sequences involved in EPI without using any known TF motif information.

Convolution features in SPEID reflect important TFs that mediate EPIs

Besides in silico mutagenesis, another useful way of understanding the features related to TF binding
learned by SPEID is to compare the patterns of the convolutional kernels learned during training to
known TF binding motifs (although SPEID likely also captures other informative features that do
not match TF motifs). Using a similar procedure as in [20] and [19], we converted each kernel into
a position frequency matrix (PFM). In short, this involves reconstructing the rectified output of the
convolutional layer on each input sample sequence to identify subsequence alignments that best match
each kernel, and then computing PFMs from these aligned subsequences (we used the same approach
described in Supplementary Section 10.2 of [19]). We then used the motif comparison tool Tomtom
4.11.2 [37] to match these PFMs to known TF motifs from the HOCOMOCO Human v10 database.

Due to non-linearities in the deep network and the use of dropout during training, it is not obvious
how to measure importance of specific convolutional features to prediction. Dropout encourages
the model to develop redundant representations for important features, so that they are consistently
available. As a result, we cannot measure importance of a convolutional kernel in terms of the change
in prediction performance when holding that convolutional kernel out of the model directly. For
the same reason, however, one measure of a feature’s importance is the redundancy of that feature’s
representation in the model. Specifically, when using a dropout probability of 50%, the probability
of a convolutional feature being available to the model is 1 − 2−r, where r is the number of copies
of that convolutional feature, so that r is expected to be larger for more important features. As an
example, the most frequently observed motif was the binding motif pattern of MAZ, which matched
with 28 promoter convolution kernels. Note that MAZ was similarly reported as “of high importance”
in promoter regions by TargetFinder. With this reasoning, we pruned the number of motif matches to
report TFs that independently matched with at least 3 kernels in SPEID with an E-value of less than
E < 0.5 according to Tomtom.

In Table 3, for each cell line, we give the number of motifs identified by SPEID using the ap-
proached introduced above, as well as the numbers of features found to be in the top 50% of impor-
tance by TargetFinder. Care must be taken when comparing the motifs discovered by SPEID with
the features found important by TargetFinder; the latter used many features such as histone marks
and gene expression data that lack corresponding motifs, and, even among TF features, many do not
have corresponding motifs in the HOCOMOCO database. Furthermore, TargetFinder focused on TF
ChIP-seq signals as features not only in the enhancer and promoter regions but also in the window
region between them, while SPEID only uses sequence features from the input enhancer and promoter
sequences and their flanking regions. Indeed, the importance of another feature, as measured by Tar-
getFinder, is a function of the other features available to the model, and avoiding this subjectivity is an
additional strength of SPEID. However, among the features that can be compared, the results suggest
many commonalities between the findings of SPEID and TargetFinder. For example, of the 27 K562
enhancer motifs we discovered with corresponding features in TargetFinder, 23 were in the 30% of

6

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


features considered most important by TargetFinder. Table 4 shows TFs with motifs discovered by
SPEID, in two cell lines GM12878 and K562 (the two cell types with the largest number features in
TargetFinder having corresponding motif, as well as the largest EPI datasets). These results further
demonstrate the capability of SPEID in identifying important sequence features involved in EPI.

Predicting effects of somatic mutations on EPI in melanoma

To further demonstrate the usefulness of EPI prediction, we applied SPEID to study the effects of
somatic mutations on EPI in melanoma patients. We used a somatic mutation dataset involving 183
melanoma patients [25, 38]. The positions and types of DNA mutations on the whole genome were
identified for each of the patients. We extracted DNA sequences from the same pairs of interacting
enhancer and promoter regions as we used in the NHEK (Normal Human Epidermal Keratinocytes),
which serves as the normal skin cell here. For each of 183 patients and each of the 1,291 positive
EPI loops in the NHEK training dataset, we used SPEID to predict the interaction likelihood of that
EPI given the patient’s mutated enhancer and promoter sequences. For certain EPI pairs, SPEID pre-
dicted a significantly lower interaction likelihood (caused by somatic mutations) than for the original
sequences, suggesting that those EPI might be potentially reduced in the patient sample. In particu-
lar, we identified those EPIs that are predicted as being potentially reduced in multiple patients. By
using a threshold to select loops with more significant decrease of interaction likelihood predicted by
SPEID, we identified 178 EPIs that are reduced in at least one of the 183 patients. We identified 61
EPIs that are likely to be reduced in at least two patients and 27 EPIs which are likely to be reduced
in at least three patients (see Supplementary Table S3 for the list).

We then investigated whether the mutations might interfere with TF motifs that SPEID had pre-
viously identified as having high importance in NHEK. We first identified TF motifs in the normal
sequences of the 1,291 positive EPIs, using the results of motif scanning we performed in the in silico
mutagenesis. For each possibly reduced EPI of each patient, we searched for the motifs that are over-
lapping with at least one somatic mutation in the patient sample. We ranked the motifs by the total
number of mutations they encountered across different enhancer/promoter pairs of different patients.
We observed that the motifs of MAZ, SP1, and EGR1 are the top 3 TF motifs with the highest frequent
mutations. MAZ, SP1, and EGR1 are also predicted by SPEID to be of high feature importance in
NHEK. We then examined how the mutations may affect the likelihood of a TF binding site, using the
Position Weight Matrices (PWM) of motifs from the HOCOMOCO human v10 database. For each
mutated position, we compared the position weight of the original nucleotide and the nucleotide after
mutation. We observed that in the predicted reduced EPIs, 86% of the mutations within MAZ motifs,
78% of the mutations within SP1 motifs, and 63% of the mutations within EGR1 motifs have induced
decrease of the position weight, respectively. For example, in Fig. 4 we show that the EPI connecting
the enhancer at chr19:6,516,000-6,516,200 and the promoter at chr19:6,737,600-6,737,800 in NHEK
is predicted by SPEID to be reduced in 5 patients. There are 5 mutations within the enhancer or
promoter regions of this EPI of 5 patients, of which 3 overlap with the motifs of SP1 or NFKB1. In
Fig. 4 we show one somatic mutation in Patient # DO220903 where the estimated reduction likeli-
hood ranked in the top 0.2% of all the EPIs in NHEK. This analysis provides a proof-of-principle
to demonstrate the potential of applying SPEID to identify somatic non-coding mutations that may
reduce or disrupt important EPIs.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION

Long-range interaction between enhancers and promoters is one of the most intriguing phenomena in
gene regulation. Although new high-throughput experimental approaches have provided us with tools
to identify potential EPIs genome-wide, it is largely less clear whether there are sequence-level in-
structions already encoded in our genome that help determine EPIs. In this work, we have developed,
to the best of our knowledge, the first deep learning model, SPEID, to directly tackle this question.
The resulting contributions are as follows: (1) We have shown that sequenced-based features alone
can indeed effectively predict EPIs, given the genomic locations of putative enhancers and promoters
in a particular cell type; SPEID achieves performance competitive with the state-of-the-art method
TargetFinder that uses a large number of functional genomic signals instead of sequence features. (2)
By learning important sequence features in a supervised manner, deep models can outperform meth-
ods such as PEP that use either manual or unsupervised feature extraction (i.e., independent of the
classification task). (3) The deep learning framework in SPEID provides a useful predictive model
for studying genomic sequence-level interactions by extracting relevant sequence information, repre-
senting an important conceptual expansion of the application of deep learning models in regulatory
genomics. (4) Despite the complexity of deep learning models, important sequence features can be
extracted, both by inspection of the convolutional kernels, and via in silico mutagenesis. (5) The pre-
dictions from deep learning models can be applied downstream to investigate connections between
non-coding mutations and diseases.

However, methods used with PEP [15] and TargetFinder [12] and our in silico mutagenesis method
used with SPEID have two main differences:
1. When measuring feature importance, TargetFinder and PEP are restricted to hand-picked features,

rather than arbitrary sequence features. 1 This is important because (a), unlike our methods, these
cannot be used for measuring importance of novel features, and (b), perhaps more importantly,
the importance of a feature in a predictive model depends on the other features available to the
model. As a result, our importance measure, based on using the entire sequence rather than hand-
picked features, is more objectively interpretable than those of PEP and TargetFinder. Specifically,
it measures the importance of sequence features relative to the rest of the sequence, rather than
relative to the other hand-picked features available to the model.

2. While all these approaches rely on heuristics to search the huge space of possible features combina-
tions, the importance measures used with PEP and TargetFinder are “additive” (i.e., they measure
benefit of adding a feature), while our measure is “subtractive” (i.e., it measures cost of removing
a feature). Said another way, PEP and TargetFinder identify features that are sufficient for pre-
diction, whereas SPEID identifies features that are necessary for prediction, given the rest of the
sequence. These approaches are complementary.

Both these differences make our feature importance measure more conservative than the measure of
PEP; although the measures are strongly correlated, in Fig. S2, most points at which PEP and SPEID
differ lie above the diagonal.

There are a number of directions in which our method can be further improved. First, our current
ability in determining the potentially informative features remains limited. Although we were able to
identify some informative TFs that may play roles in mediating EPIs in a certain cell type and that
were also identified from TargetFinder, a significant proportion of sequence features from our model

1Although the PEP-Word module allows prediction of EPI from sequence without manual feature selection, [15] used
only the PEP-Motif module, based on known motifs from HOCOMOCO, to measure feature importance.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


cannot be easily interpreted and their contributions are also hard to evaluate. One approach may be
to apply very recently developed methods such as DeepLIFT [39] and deep feature selection [40] for
measuring importance of and selecting among different convolutional features, to identify those that
might mediate EPI within or across cell lines.

However, in silico mutagenesis is a versatile tool, with several potential applications beyond just
measuring predictive importance of given sequence features. For example, it can also provide more
information about the role of important sequence features. A reduction in prediction accuracy asso-
ciated with removing a particular feature might be driven by increasing the false positive rate or by
increasing the false negative rate. The former would suggest that the presence of the feature promotes
interactions, whereas the latter would suggest that it represses interactions. However, since in silico
mutagenesis is also computationally intensive (in each cell line and each of enhancers and promoters,
a total of around 400 hours are needed to complete). Thus, while it may have other applications in
this context, we have restricted ourselves to measuring feature importance. 2

The current SPEID framework depends on sequence features that are cell-type specific, and is un-
able to automatically capture relevant sequence features operating across cell types. As more positive
EPI samples and data in additional cell types become available, more work is needed to determine
exactly what, if any, sequence features mediate EPI consistently across cell types. Finally, though
we demonstrated that sequence features alone can effectively predict EPI, it would be important to
explore the optimal combination of sequence-based features and features from functional genomic
signals to achieve the strongest predictive power in a cell-type specific manner. Such an approach
would be useful in understanding the genetic and epigenetic mechanisms that determine EPIs, and
their variation across different cell types. Our work lays foundation for this by providing a new
framework to potentially decode important sequence determinants for long-range gene regulation.

2This procedure takes order O(nMC) time, where n is the average sample size per cell line, C is the number of cell
lines, and M is the number of motifs. However, it also parallelizes well when multiple GPUs are available.

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


MATERIALS AND METHODS

Model framework of SPEID

As shown in Fig. 1, the main layers of the network are pairs of layers for convolution, activation, and
max-pool layers, respectively, together with a single recurrent long short-term memory (LSTM) layer,
and a dense layer.

Input, convolution, and max-pooling

The first layers of the network are responsible for learning informative subsequence features of the
inputs. Because informative subsequence features may differ between enhancers and promoters, we
train separate branches for each. These features might include, for example, TF protein binding motifs
and other sequence-based signals. Each branch consists of a convolution layer and a rectified linear
unit (ReLU) activation layer [41], which together extract subsequence features from the input, and a
pooling layer, which reduces dimensionality. Recall that each sequence input is a 4 × 3000 matrix
(for enhancer) or 4 × 2000 matrix (for promoter), with a one-hot encoding (e.g., ‘A’ is (1, 0, 0, 0)T ,
‘G’ is (0, 1, 0, 0)T , ‘C’ is (0, 0, 1, 0)T , and ‘T’ is (0, 0, 0, 1)T ). The convolution layer consists of an
array of 200 ‘kernels’, 4 × 40 signed weight matrices that are convolved with the input sequence to
output a sequence of ‘scores’, indicating how well the kernel matches with each 40bp window of the
input sequence at each possible offset. More precisely, each kernel is a matrix K ∈ R4×40, and, for
each one-hot encoded input matrix X ∈ {0, 1}4×L and each offset ` ∈ {0, ..., L− 40} (where L is the
length of the input sequence), the convolution layer outputs the matrix inner product:

C` =
4∑

b=1

40∑
j=1

Kb,jXb,`+j, (1)

between K and the 40bp submatrix of X at offset `. A higher (more positive) C` indicates a better
match between K and the `th offset subsequence of the input.

C` is then passed through a ReLU activation R(x) = max{0, x}, which propagates positive out-
puts (i.e., sequence ‘matches’) from the convolution layer, while eliminating negative outputs (i.e.,
‘non-matches’). Of the various non-linearities that can be used in deep learning models, ReLU acti-
vations are the most popular, due to their computational efficiency, and because they naturally sparsify
the output of the convolution layer to only include positive matches [42].

Max-pooling then reduces the output of the convolution/activation layer by propagating only the
largest output of each kernel within each ‘stride’ (i.e., 20 bp window), effectively outputting the ‘best’
alignment of each kernel within each stride. Specifically, it reduces the sequenceR(C1), R(C2), ..., R(CL−40)
of length L− 40 to the subsampled sequence:

max
`∈{1,...,20}

R(C`), max
`∈{21,...,40}

R(C`), ..., max
`∈{L−59,...,L−40}

R(C`), (2)

of length (L − 40)/20. Pooling is especially important in EPI prediction because of the long input
sequence (5kbp, as compared to 1kbp used when predicting function of single sequence variants [17,
20]). Here we use the following parameters: Number of Kernels: 200, Filter Length: 40, L2 penalty
weight: 10−5, Pool Length: 20, Stride: 20.

Before feeding into the next layer, the enhancer and promoter branches are concatenated into a
single output. The remaining layers of the network act jointly on this concatenation, rather than as
disjoint pairs of layers, as in the previous layers (see Fig. 1).

10

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


LSTM, dense layer, and final output

The next layer is a recurrent long short-term memory (LSTM) layer [43], responsible for identifying
informative combinations of the extracted subsequence features, across the extent of the sequence
(for the internal mechanism of an LSTM, see [44] for the detailed explanation of the particular LSTM
implementation we use). As a brief intuition, the LSTM outputs a low-dimensional weighted lin-
ear projection of the input, and, as the LSTM sweeps across each element of the input sequence, it
chooses, based on previous inputs, the current input, and weights learned by the model, to add or
exclude each feature in this lower dimensional representation. This layer is bidirectional; that is it
sweeps from both left to right and right to left, and the outputs of each direction are concatenated for
a total output dimension of 100.

The final dense layer is simply an array of 800 hidden units with nonlinear (ReLU) activations
feeding into a single sigmoid (i.e., logistic regression) unit that predicts the probability of an inter-
action. That is, if y ∈ R100 denotes the output of the LSTM layer, then then final output is a pre-
dicted interaction probability S(vTR(Wy)) ∈ (0, 1), where W ∈ R800×100 and v ∈ R100 are learned
weights, R denotes ReLU activation (applied to each component of Wy), and S(t) = 1

1+e−t denotes
the sigmoid function.

Similar (albeit simpler) architectures have been used for the related problem of predicting function
of non-coding sequence variants [17, 20]. In fact, our use of a recurrent LSTM layer rather than a
hierarchy of convolutional/max-pooling layers is inspired by the architecture of the DanQ model [20],
which suggests that the LSTM is better able to model a “regulatory grammar” by incorporating long
range dependencies between subsequences identified by the convolution layer. However, our method
solves a fundamentally different problem – predicting interactions between sequences rather than
predicting annotations from a single sequence. Hence, our model has a branched architecture, taking
two inputs and producing a single classification, rather than a sequential architecture. Because the
data for this problem are far sparser, we require a more careful training procedure, as detailed in the
next section. There are also several finer distinctions between the models, such as our use of batch
normalization to accelerate training and weight regularization to improve generalization.

Other model and implementation details

We implemented our deep learning model using Keras 1.1.0 [45]. The model was trained in mini-
batches of 100 samples by back-propagation, using binary cross-entropy loss, minimized by Adam [46]
with a learning rate of 10−5. The pre-training and re-training phases lasted 32 epochs and 80 epochs,
respectively. The training time was linear in the sample size for each cell line, taking, for example, 11
and 6 hours for pre-training and retraining phases, respectively, on K562 data, on an NVIDIA GTX
1080 GPU.

Due to SPEID’s many hyperparameters and the computational overhead of training the model,
we tuned hyperparameters using the full data set from only one cell line (K562), and then used the
same hyperparameter values for all other cell lines. For this reason, we emphasize our results on the
remaining 5 cell lines, where the trained model is entirely independent of the test data. Here, we list
the full range of model parameters we tried, with the finally selected values in bold:
1. Convolution kernel lengths: 26, 40, 50
2. Number of convolution kernels: 100, 200, 320, 512, 1024
3. Number of neurons in dense layer: 600, 800, 1000
4. LSTM output dimension: 50, 100, 200, 500
5. Dropout probability: 0.25, 0.5, 0.6

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


6. L2 regularization weight: 0, 10−6,10−3

Addressing potential overfitting

When training very large models such as deep networks, potential overfitting is a concern. This is
particularly relevant because our datasets are small (< 104 positive samples per cell line) compared to
the massive data sets often used to train deep networks (e.g., with imaging or text data). We employ
multiple approaches to prevent or mitigate overfitting, both within the deep learning model, and in
our training and evaluation procedures.

Firstly, note that we provide results on six independent data sets from different cell lines. While
we experimented with multiple deep network models, utilizing different layers and training hyperpa-
rameters, we did this based on only test results from K562. In particular, results on the remaining 5
cell lines are independent of model selection. Second, by randomly shifting positive inputs, our data
augmentation (see below) specifically prevents the model from overfitting to any region of the input.
Finally, our deep network model itself incorporates three tools to reduce overfitting during training:
batch normalization, dropout, and L2 regularization.

Batch normalization [47] is the process of linearly normalizing the outputs of neurons on each
training batch to have sample mean 0 and standard deviation 1. That is, if the i-th batch consists of
100 samples for which a particular neuron gives outputs Ni,1, ..., Ni,100, then we replace these outputs
with normalized outputs

Ni,1 − N̄i

σi
, ...,

Ni,100 − N̄i

σi
, where N̄i =

1

n

100∑
j=1

Ni,j and σ2
i =

1

n− 1

100∑
j=1

(
Ni,j − N̄i

)2
(3)

N̄i and σ2
i are the sample mean and sample variance, respectively. Batch normalization combats

overfitting by limiting the range of non-linearities (in our case, ReLU function) in the network, and
also accelerates training (i.e., reduces the number of epochs till convergence) by restricting the input
space of downstream neurons. We batch-normalize the outputs of 4 layers in the network: the max-
pooling layer, the LSTM layer, the dense layer (i.e., before the ReLU activation), and the ReLU
activation (i.e., before the final sigmoid classifier). Note that, during prediction, batch means and
variances are replaced with population means and variances, which are computed while training over
all batches.

Dropout, a common regularization technique in neural networks, refers to randomly ‘dropping’
(i.e., setting to zero) the output of a neuron with some fixed probability p. That is, for each sample i
and each neuron j, we sample a Bernoulli(p) random variable Di,j and replace the output Ni,j with
(1−Di,j)Ni,j . Applying dropout to a layer Li prevents the subsequent layer Li+1 from overfitting to
any subset of neurons Li in intermediate layers, and there by promotes a distributed representation,
which can be thought of as model averaging (i.e., learning the average of many models, as in ensemble
techniques). We apply dropout with p = 0.5 to the outputs of 3 layers: the max-pooling layer, the
LSTM, and the dense layer (dropout is always applied after batch normalization). Note that dropout
is only applied in training; all neurons’ outputs are used during testing.

Finally, we apply an L2-norm penalty to the kernels in the convolution layer and on the matrix of
weights of the dense layer. As with the L2 penalty commonly applied in linear regression, this helps
ensure that no particular weight becomes too large.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Training procedure

Recall that our data set is highly imbalanced – there are many more negative (non-interacting) pairs
than positive (interacting) pairs. In each cell line, there are typically 20 times more negative samples
than positive samples. To combat the difficulty of learning highly imbalanced classes, we utilize a
two-stage training procedure that involves pre-training on a data set balanced with data augmentation,
followed by training on the original data.

Pre-training with data augmentation

Data augmentation is commonly used as an alternative to re-weighting data when training deep learn-
ing models on highly imbalanced classes. For example, image data is often augmented with random
translations, scalings, and rotations of the original data [48]. In our case, because enhancers and pro-
moters are typically smaller than the fixed window size we use as input, the labels are invariant to
small shifts of the input sequence, as long as the enhancer or promoter remains within this window.
By randomly shifting each positive promoter and enhancer within this window, we generated “new”
positive samples. We did this 20 times with each positive sample, resulting in balanced positive and
negative classes. In addition to balancing class sizes, this data augmentation has the additional ben-
efit of promoting translation invariance in our model, preventing it from overfitting to any particular
region of the input sequence.

Imbalanced training

Data augmentation results in a consistent training procedure for the network, allowing the convolu-
tional layers to identify informative subsequence features and the recurrent layer to identify long-
range dependencies between these features. However, in typical applications of predicting interac-
tions, classes are, as in our original data, highly imbalanced. In these contexts, naively using the
network trained on augmented data results in a very high false positive rate. Fortunately, this has
relatively little to do with the convolutional and recurrent layers of the network, which correctly learn
features that distinguish positive and negative samples, and this issue is largely due to the dense layer,
which performs prediction based on these features. Hence, to correct for this, we only re-train the
dense layer. We do this by “freezing” the lower layers of the network (i.e., setting the learning rate to
0), and then continuing to train the network as usual on the subset of the original imbalanced data that
was used to generate the augmented data.

Summary of training procedure

The following procedure is repeated independently for each of the five cell lines we used for evalua-
tion:
1. Begin with an imbalanced data set A.
2. Split A uniformly at random into a training set B (90% of A) and a test set C (10% of A).
3. Augment positive samples in B to produce a balanced data set D.
4. Train the model on D, using a small (10%) subset for model validation.
5. Freeze the convolution and recurrent layers of the model.
6. Continue training the dense layer of the model on B.
7. Evaluate on C.
We performed 10-fold cross-validation, repeat steps 2 through 7 for each of 10 disjoint training-test
splits to reduce evaluation variance.

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Measuring feature importance with in silico mutagenesis

Here, we describe our procedure for using SPEID, together with in silico mutagenesis, to measure
the importance of motifs in the HOCOMOCO database [30] as predictive features for EPI. For each
motif M in the HOCOMOCO database, each cell line, and each of enhancers and promoters, we first
used FIMO [49] to scan for all occurrences of M in our test set D. Next, we replaced each occurrence
of M with random noise, in a copy D′ of D. We then measured the prediction performance P ′(M)
of SPEID on D′, subtracted this from the performance P on D, and normalized by dividing by the
number of occurrencesN(M) ofM . Our measure of the importance of motifM was then represented
as:

∆(M) =
P − P ′(M)

N(M)
(4)

which measures, on average, how necessary occurrences of motif M are for predicting EPI. We used
AUPR to avoid dependence on the classification threshold. To prevent biasing towards longer mo-
tifs (whose modification would change more of the input sequence), rather than mutating the exact
sequence match identified by FIMO, we mutated a 20 bp window centered at the match center (as
nearly all HOCOMOCO motifs are less than 20 bp long). If a match center was within 10 bp of the
end of the input sequence, we mutated the 20 bp at that end of the sequence. For each motif, this pro-
cedure was performed separately for both enhancer and promoter inputs, producing two independent
scores for each motif. To minimize variance in estimating ∆(M), we averaged estimates over each
of 10 cross-validation folds, so that each occurrence of each motif in the dataset was mutated exactly
once (since each sample occurs in the test set of exactly one CV fold).

Acknowledgments

We thank the members of the Ma lab, especially Yang Zhang, Yuchuan Wang, Ruochi Zhang, and
Dechao Tian, for helpful discussions. This work was supported in part by the National Science
Foundation [1252522 to S.S., 1054309 and 1262575 to J.M.] and the National Institutes of Health
[HG007352 and DK107965 to J.M.].

14

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

[1] Sexton, T. and Cavalli, G. (2015) The role of chromosome domains in shaping the functional
genome. Cell, 160(6), 1049–1059.

[2] Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A.,
Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., et al. (2009) Comprehensive mapping
of long-range interactions reveals folding principles of the human genome. Science, 326(5950),
289–293.

[3] Fullwood, M. J. and Ruan, Y. (2009) ChIP-based methods for the identification of long-range
chromatin interactions. Journal of Cellular Biochemistry, 107(1), 30–39.

[4] Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A.,
Wlodarczyk, J., Ruszczycki, B., et al. (2015) CTCF-mediated human 3D genome architecture
reveals chromatin topology for transcription. Cell, 163(7), 1611–1627.

[5] Zhang, Y., Wong, C.-H., Birnbaum, R. Y., Li, G., Favaro, R., Ngan, C. Y., Lim, J., Tai, E., Poh,
H. M., Wong, E., et al. (2013) Chromatin connectivity maps reveal dynamic promoter-enhancer
long-range associations. Nature, 504(7479), 306–310.

[6] Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye, Z., Kim,
A., Rajagopal, N., Xie, W., et al. (2015) Chromatin architecture reorganization during stem cell
differentiation. Nature, 518(7539), 331–336.

[7] Guo, Y., Xu, Q., Canzio, D., Shou, J., Li, J., Gorkin, D. U., Jung, I., Wu, H., Zhai, Y., Tang, Y.,
et al. (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter
function. Cell, 162(4), 900–910.

[8] Sanyal, A., Lajoie, B. R., Jain, G., and Dekker, J. (2012) The long-range interaction landscape
of gene promoters. Nature, 489(7414), 109–113.

[9] Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y.,
Lim, J., Zhang, J., et al. (2012) Extensive promoter-centered chromatin interactions provide a
topological basis for transcription regulation. Cell, 148(1), 84–98.

[10] Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T.,
Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al. (2014) A 3D map of the human
genome at kilobase resolution reveals principles of chromatin looping. Cell, 159(7), 1665–1680.

[11] Roy, S., Siahpirani, A. F., Chasman, D., Knaack, S., Ay, F., Stewart, R., Wilson, M., and Srid-
haran, R. (2015) A predictive modeling approach for cell line-specific long-range regulatory
interactions. Nucleic acids research, 43(18), 8694–8712.

[12] Whalen, S., Truty, R. M., and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded
by complex genomic signatures on looping chromatin. Nature genetics, 48(5), 488–496.

[13] Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J. W., Ding, B., Li, N.,
Zheng, L., and Wang, W. (2016) Constructing 3D interaction maps from 1D epigenomes. Nature
Communications, 7.

[14] Cao, Q., Anyansi, C., Hu, X., Xu, L., Xiong, L., Tang, W., Mok, M. T., Cheng, C., Fan, X.,
Gerstein, M., et al. (2017) Reconstruction of enhancer–target networks in 935 samples of human
primary cells, tissues and cell lines. Nature Genetics, 201, 7.

[15] Yang, Y., Zhang, R., Singh, S., and Ma, J. (2017) Exploiting sequence-based features for pre-
dicting enhancer-promoter interactions. Bioinformatics/ISMB, 33(14), i252–i260.

[16] Friedman, J. H. (2001) Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232.

[17] Zhou, J. and Troyanskaya, O. G. (2015) Predicting effects of noncoding variants with deep

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


learning-based sequence model. Nature methods, 12(10), 931–934.
[18] Park, Y. and Kellis, M. (2015) Deep learning for regulatory genomics. Nature Biotechnology,

33(8), 825–826.
[19] Alipanahi, B., Delong, A., Weirauch, M. T., and Frey, B. J. (2015) Predicting the sequence

specificities of DNA-and RNA-binding proteins by deep learning. Nature biotechnology, 33(8),
831–838.

[20] Quang, D. and Xie, X. (2016) DanQ: a hybrid convolutional and recurrent deep neural network
for quantifying the function of DNA sequences. Nucleic acids research, p. gkw226.

[21] Li, Y., Shi, W., and Wasserman, W. W. (2016) Genome-Wide Prediction of cis-Regulatory Re-
gions Using Supervised Deep Learning Methods. bioRxiv, p. 041616.

[22] Kelley, D. R., Snoek, J., and Rinn, J. L. (2016) Basset: Learning the regulatory code of the
accessible genome with deep convolutional neural networks. Genome research,.

[23] Zhang, S., Hu, H., Jiang, T., Zhang, L., and Zeng, J. (2017) TIDE: predicting translation initia-
tion sites by deep learning. bioRxiv, p. 103374.

[24] Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S., and Seelig,
G. (2017) Deep Learning Of The Regulatory Grammar Of Yeast 5 Untranslated Regions From
500,000 Random Sequences. bioRxiv, p. 137547.

[25] Singh, R., Lanchantin, J., Sekhon, A., and Qi, Y. (2017) Attend and Predict: Understanding
Gene Regulation by Selective Attention on Chromatin. arXiv preprint arXiv:1708.00339,.

[26] Zhang, S., Hu, H., Jiang, T., Zhang, L., and Zeng, J. (2017) TITER: predicting translation
initiation sites by deep learning. Bioinformatics, 33(14), i234–i242.

[27] Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016) Deep learning for computational
biology. Molecular Systems Biology, 12(7), 878.

[28] ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the hu-
man genome. Nature, 489(7414), 57–74.

[29] Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour,
P., Zhang, Z., Wang, J., Ziller, M. J., et al. (2015) Integrative analysis of 111 reference human
epigenomes. Nature, 518(7539), 317–330.

[30] Kulakovskiy, I. V., Vorontsov, I. E., Yevshin, I. S., Soboleva, A. V., Kasianov, A. S., Ashoor, H.,
Ba-alawi, W., Bajic, V. B., Medvedeva, Y. A., Kolpakov, F. A., et al. (2016) HOCOMOCO: ex-
pansion and enhancement of the collection of transcription factor binding sites models. Nucleic
Acids Research, 44(D1), D116–D125.

[31] Xu, J., Sankaran, V. G., Ni, M., Menne, T. F., Puram, R. V., Kim, W., and Orkin, S. H. (2010)
Transcriptional silencing of γ-globin by BCL11A involves long-range interactions and cooper-
ation with SOX6. Genes & development, 24(8), 783–798.

[32] Frank, C. L., Liu, F., Wijayatunge, R., Song, L., Biegler, M. T., Yang, M. G., Vockley, C. M.,
Safi, A., Gersbach, C. A., Crawford, G. E., et al. (2015) Regulation of chromatin accessibility
and Zic binding at enhancers in the developing cerebellum. Nature neuroscience, 18(5), 647–
656.

[33] Krivega, I. and Dean, A. (2017) LDB1-mediated enhancer looping can be established indepen-
dent of mediator and cohesin. Nucleic Acids Research, p. gkx433.

[34] Bowman, C. J., Ayer, D. E., and Dynlacht, B. D. (2014) Foxk proteins repress the initiation of
starvation-induced atrophy and autophagy programs. Nature cell biology, 16(12), 1202–1214.

[35] van Riel, B. and Rosenbauer, F. (2014) Epigenetic control of hematopoiesis: the PU. 1 chromatin
connection. Biological chemistry, 395(11), 1265–1274.

[36] Steidl, U., Rosenbauer, F., Verhaak, R. G., Gu, X., Ebralidze, A., Otu, H. H., Klippel, S., Steidl,

16

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


C., Bruns, I., Costa, D. B., et al. (2006) Essential role of Jun family transcription factors in PU.
1 knockdown–induced leukemic stem cells. Nature genetics, 38(11), 1269–1277.

[37] Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L., and Noble, W. S. (2007) Quantifying simi-
larity between motifs. Genome biology, 8(2), 1.

[38] Hodis, E., Watson, I. R., Kryukov, G. V., Arold, S. T., Imielinski, M., Theurillat, J.-P., Nickerson,
E., Auclair, D., Li, L., Place, C., et al. (2012) A landscape of driver mutations in melanoma. Cell,
150(2), 251–263.

[39] Shrikumar, A., Greenside, P., Shcherbina, A., and Kundaje, A. (2016) Not Just a Black
Box: Learning Important Features Through Propagating Activation Differences. arXiv preprint
arXiv:1605.01713,.

[40] Li, Y., Chen, C.-Y., and Wasserman, W. W. (2016) Deep feature selection: theory and application
to identify enhancers and promoters. Journal of Computational Biology, 23(5), 322–336.

[41] Glorot, X., Bordes, A., and Bengio, Y. (2011) Deep Sparse Rectifier Neural Networks.. In AIS-
TATS Vol. 15, p. 275.

[42] LeCun, Y., Bengio, Y., and Hinton, G. (2015) Deep learning. Nature, 521(7553), 436–444.
[43] Hochreiter, S. and Schmidhuber, J. (1997) Long short-term memory. Neural computation, 9(8),

1735–1780.
[44] Graves, A., Jaitly, N., and Mohamed, A.-R. (2013) Hybrid speech recognition with deep bidirec-

tional LSTM. In Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Work-
shop on IEEE pp. 273–278.

[45] Chollet, F. Keras. https://github.com/fchollet/keras (2015).
[46] Kingma, D. and Ba, J. (2014) Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980,.
[47] Ioffe, S. and Szegedy, C. (2015) Batch Normalization: Accelerating Deep Network Training

by Reducing Internal Covariate Shift. In Proceedings of The 32nd International Conference on
Machine Learning pp. 448–456.

[48] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012) Imagenet classification with deep convo-
lutional neural networks. In Advances in Neural Information Processing Systems pp. 1097–1105.

[49] Grant, C. E., Bailey, T. L., and Noble, W. S. (2011) FIMO: scanning for occurrences of a given
motif. Bioinformatics, 27(7), 1017–1018.

17

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://github.com/fchollet/keras
https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Input

Identify
subsequences

Reduce
dimension

Identify long-range
dependencies

Classify

Output

1024 kernels
length: 40

stride: 20

output dim: 20

925 neurons

Sequence 1 
(enhancer element)

Sequence 2
(promoter element)

Convolution Convolution

Max-Pool Max-Pool

Long Short-Term Memory (LSTM)

Dense

Prediction

A
C
G
T

A
C
G
T

One-hot
encoding

?Probability of
interaction

- Rectification

- Batch normalization
- Dropout

- Batch normalization
- Dropout

- Batch normalization
- Rectification
- Dropout

Figure 1: Diagram of our deep learning model SPEID to predict enhancer-promoter interactions based on
sequences only. Key steps involving rectification, batch normalization, and dropout are annotated. Note
that the final output step is essentially a logistic regression in SPEID which provides a probability to indicate
whether the input enhancer element and promoter element would interact.

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 GM12878

SPEID

TargetFinder

PEP

AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 HeLa-S3

AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 HUVEC

AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 IMR90

AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 K562

AUROC AUPR F1
0.5

0.6

0.7

0.8

0.9

1.0 NHEK

Figure 2: Prediction results of SPEID, TargetFinder’s E/P/W model, and PEP’s Integrated model in each
cell line, as estimated by 10-fold cross-validation. AUROC, AUPR, and F1 are shown.

19

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


0 1

G
M

12
87

8
K

56
2

IM
R

90
H
eL
a−
S
3

H
U

V
E

C
N

H
E

K

PROP1
RUNX1_PEBB_RUNX3

LBX2_NOTO
CR3L2_CREB3

CTCFL_CTCF
GLIS3_GLIS1_GLIS2

KLF4_KLF1_KLF3
HXD11_HXC11_HXC12
SOX11_SOX7_SOX21

NR1I3_NR1I2
VSX2
HXB3
IRF4

ZIC2_ZIC1
SHOX2
GSC

PAX7_PAX3
NFAT5_NFAC3

DLX3
NRF1_ZN639

ETS2
BARX2

P73
ETV3

ZN589_SPZ1
SCRT2_SCRT1

SUH
GSX2
HXD9

PO4F3_PO4F1
NKX23_NKX22

MIXL1
SRBP2_SRBP1

ALX1
VAX1

MYOD1
HXA9_MEIS1

GMEB2
BCL6
HMX1
SRY

E2F5_E2F3
ELF2

HEY2_HESX1
LHX8

RXRB_RARA
AP2C_AP2A

MEF2C_MEF2A_MEF2D
FOXB1_FOXD2

HLF

Promoter

0 1

G
M

12
87

8
K

56
2

IM
R

90
H
eL
a−
S
3

H
U

V
E

C
N

H
E

K

DLX1_DLX4_DLX6_ESX1
ARX_ALX4_ALX3_DRGX
HXB2_HSF1_HSF2_HSF4

ETV6_ELK1_ERG_ELK4
HXD8_PO2F2_PO3F3_P5F1B

P53_P63_P73
KLF16_MAZ_SP1_SP2

RELB_TF65_NFKB1_REL
OLIG3_NGN2_OLIG1_BHE22

IRF1_IRF3_IRF8_IRF2
PO5F1_NANOG_SOX2

EMX2
TF2LX_MEIS2_TGIF2

BACH1_NFE2_NF2L2_MAFK
ANDR_PRGR_GCR

THAP1_TYY1_TYY2
E2F1_TFDP1_E2F4

THA_THB_THB
STAT4_STAT1_STAT1

COT1_COT2_COT1_NR1H2
HMX3_ISL2

RARG_NR2C1_RARA_RARG
FOXF2_FOXA1_FOXA2

PAX4
CEBPA_CEBPD_CEBPB

EVX1_FOXG1_FOXL1
RFX2_ZBT7B_RFX3_RFX4

NFIC_NFIA_TLX1
HXB7_HXA5_HXB8

TAL1_GATA1_GATA1
MNT_SPIC

FOSB_FOSL1_FOS_JUND
ONEC2_ONEC3_HNF6

PO2F1
NR1I2_NR1I3

PRGR_GCR
VAX2

PAX5_PAX2_PAX1
PKNX1_PBX2_PBX1

RORG_NR1D1_RORA
GLI3_GLI1_GLI2

MYC_MAX_MYCN
PBX3_NFYB_NFYA_FOXI1

RFX5_RFX1
CREB1_ATF1_ATF7_CREB5

CRX
ESR1_ESR2_ESR1
TFEB_USF1_USF2

EHF
EHF(S)

Promoter

0 1

G
M

12
87

8
K

56
2

IM
R

90
H
eL
a−
S
3

H
U

V
E

C
N

H
E

K

COT1_COT1_NR1H2_COT2
BACH1_NF2L2_NFE2_MAFK

RORG_RORA_NR1D1
PO5F1_SOX2_NANOG
HXC11_HXC12_HXD11
PEBB_RUNX3_RUNX1

PBX1_PKNX1_PBX2
FOS_FOSL1_JUND_FOSB

NR2C1_RARA_RARG_RARG
ONEC2_ONEC3_HNF6

TBR1_TBX4_TBX21
ARX_ALX4_ALX3_DRGX

GATA2
GATA4

SMAD4_SMAD2
NR1I2_NR1I3

NR1I2_NR1I3(S)
HSF1_HSF2_HXB2_HSF4

TAL1_GATA1_GATA1
GLIS1_GLIS2_GLIS3

LEF1
NR4A1

FOXD1_FOXC1
SOX8

ESR1_ESR1_ESR2
ELK1_ELK4_ETV6_ERG

HXA9_MEIS1
FOXA1_FOXA2_FOXF2

PO2F2_PO3F3_HXD8_P5F1B
MEF2D_MEF2A_MEF2C

ANDR_PRGR_GCR
GLI2_GLI3_GLI1

ERR2
P63_P53_P73

RFX2_RFX4_RFX3_ZBT7B
PAX5_PAX2_PAX1

MEIS2_TF2LX_TGIF2
PBX3_NFYB_FOXI1_NFYA

IRF1_IRF2_IRF8_IRF3
PAX8

HNF1B_HNF1A
REL_TF65_RELB_NFKB1
DLX1_DLX6_DLX4_ESX1

NFIA_NFIC_TLX1
SCRT2_SCRT1

RFX5_RFX1
GATA3

NGN2_BHE22_OLIG1_OLIG3
EOMES

USF1_USF2_TFEB

Enhancer

0 1

G
M

12
87

8
K

56
2

IM
R

90
H
eL
a−
S
3

H
U

V
E

C
N

H
E

K

PPARG
PPARG(S)

CREB1_ATF1_ATF7_CREB5
MEOX2

SOX7_SOX11_SOX21
ISL1

FOSL2
SNAI1_TWST1

SOX4
KLF1_KLF3_KLF4

RXRB_RARA
TFE2_TAL1

HIC2
TBX5

HXB7_HXB8_HXA5
NR6A1

COT2
NANOG

SRF
NKX25

THB_THB_THA
CEBPA_CEBPD_CEBPB

JUN
VAX2

FOXO6
HXA7

STAT1_STAT4_STAT1
PDX1

NR4A3
ELF5

E2F3_E2F5
PRGR_GCR

FEV
FOXP3

CTCFL_CTCF
NKX23_NKX22

KLF16_MAZ_SP1_SP2
HMBX1

MYBB
OTX1

HXA10
CUX1

MYC_MAX_MYCN
HES7_HES5_HEY1

NR2F6
HXC13

ERR1
MAFK
PITX2
EVX2

Enhancer

Figure 3: Feature importance in each cell line, for 100 features with highest average importance rank, sorted
by average rank.

20

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


chr19 (p13.3) 19p13.3 19p13.2 p13.11 19p12 p11 q11 19q12 13.11 13.12 19q13.2 13.32 q13.33 13.42 13.43

chr19:

5 kb hg19

6,515,000 6,520,000 6,525,000

H3K27ac

30 -

0 _

chr19: 6,735,000 6,740,000

GPR108 TRIP10

127 -

0 

SP1 motif - chr19:6,737,653-6,737,672

extended enhancer

H3K27ac H3K4me3

promoter

EPI disrupted in melanoma samples

C C G C A C G G C G G G G C C C G C C
C C G C A C G G C A G G G C C C G C C

Patient # DO220903

Original:
Mutated:

Figure 4: Example of a possibly reduced EPI (extended enhancer at chr19:6514600-6517600, promoter at
chr19:6736700-6738700) with mutation occurring within the motif of SP1 in the promoter region shown. The
enhancer region is extended to be 3kb in length and the promoter region is 2kb. The estimated reduction
likelihood of this EPI with the mutation is ranking top 0.2% of all the positive EPIs in the NHEK cell line.

21

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cell Line Positive Pairs Augmented Positive Pairs Negative Pairs
GM12878 2,113 42,260 42,200
HeLa-S3 1,740 34,800 34,800
HUVEC 1,524 30,480 30,400
IMR90 1,254 25,080 25,000
K562 1,977 39,540 39,500
NHEK 1,291 25,820 25,600
Total 9,899 197,980 197,500

Table 1: Number of positive sample, augmented positive sample, and negative sample counts, for each cell
line.

Cell Line Top 5% in both Only in SPEID Only in PEP
GM12878 22 28 26
HeLa-S3 16 34 22
HUVEC 20 29 27
IMR90 23 27 26
K562 18 32 30
NHEK 14 36 17
Chance 5 45 45

Table 2: Number of TF clusters (out of 503) predicted by both SPEID and PEP, only SPEID, and only PEP,
to be in the top 10% feature importance in enhancers and promoters, in each cell line. Rows do not always
sum to 50 due to exclusion of ties at the 10% cutoff, especially in PEP, whose feature importance scores are
given in increments of 5%. For comparison, we have also provided chance values (e.g., if SPEID’s feature
importance scores were randomly shuffled).

Cell Line Predicted important in both Only in SPEID Only in TargetFinder
GM12878 22 9 53
HeLa-S3 13 15 37
HUVEC 1 14 7
IMR90 4 31 16
K562 27 26 85
NHEK 0 16 5

Table 3: Number of potentially important TFs in enhancers involved in EPIs identified by SPEID, Tar-
getFinder, or both. Here we consider the top 50% most informative features from TargetFinder as important.
The two methods have the largest overlap in GM12878 and K562 cell lines, likely because TargetFinder
used many more TF ChIP-seq signals for these two cell lines.

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/


Potentially important TFs involved in EPI
Also in TargetFinder SPI1, EBF1, SP1, IRF3, TCF12, BATF, PAX5, MEF2A,
(GM12878) BCL11A, EGR1, SRF, IRF4, BHLHE40, PBX3, MEF2C,

MAZ, NRF1, YY1, GABPA, ETS1, STAT1, NFYA
Unique in SPEID (GM12878) CPEB1, HXC10, ARI3A, IRF1, IRF8, MNT, TBX15, TBX2, TBX5
Also in TargetFinder CTCF, SRF, ATF3, MAZ, JUND, MEF2A, CEBPD, BHLHE40,
(K562) NR2F2, EGR1, FOSL1, FOS, TAL1, JUNB, JUN, MAFK, E2F6,

SP1, NFE2, NR4A1, GATA1, THAP1, SP2, RFX5, NRF1, USF2
Unique in SPEID (K562) SP4, SP3, TFDP1, ZFX, WT1, KLF15, TBX1, ETV1, ZNF148,

KLF6, HEN1, KLF14, TBX15, CLOCK, ELF2, PLAL1, PURA,
ZNF740, AP2D, CPEB1, EGR2, FOXJ3, HES1, NR1I3,
SREBF2, THA

Table 4: Predicted potentially important TFs in enhancers involved in EPIs from SPEID in GM12878 and
K562.

23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted February 5, 2018. ; https://doi.org/10.1101/085241doi: bioRxiv preprint 

https://doi.org/10.1101/085241
http://creativecommons.org/licenses/by-nc-nd/4.0/

