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Abstract

Background: RNAs play key roles in cells through the interactions with proteins
known as the RNA-binding proteins (RBP) and their binding motifs enable
crucial understanding of the post-transcriptional regulation of RNAs. How the
RBPs correctly recognize the target RNAs and why they bind specific positions is
still far from clear. Machine learning-based algorithms are widely acknowledged to
be capable of speeding up this process. Although many automatic tools have
been developed to predict the RNA-protein binding sites from the rapidly growing
multi-resource data, e.g. sequence, structure, their domain specific features and
formats have posed significant computational challenges. One of current
difficulties is that the cross-source shared common knowledge is at a higher
abstraction level beyond the observed data, resulting in a low efficiency of direct
integration of observed data across domains. The other difficulty is how to
interpret the prediction results. Existing approaches tend to terminate after
outputting the potential discrete binding sites on the sequences, but how to
assemble them into the meaningful binding motifs is a topic worth of further
investigation.

Results: In viewing of these challenges, we propose a deep learning-based
framework (iDeep) by using a novel hybrid convolutional neural network and deep
belief network to predict the RBP interaction sites and motifs on RNAs. This new
protocol is featured by transforming the original observed data into a high-level
abstraction feature space using multiple layers of learning blocks, where the
shared representations across different domains are integrated. To validate our
iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets,
and our results show that by integrating multiple sources of data, the average
AUC can be improved by 8% compared to the best single-source-based predictor;
and through cross-domain knowledge integration at an abstraction level, it
outperforms the state-of-the-art predictors by 6%. Besides the overall enhanced
prediction performance, the convolutional neural network module embedded in
iDeep is also able to automatically capture the interpretable binding motifs for
RBPs. Large-scale experiments demonstrate that these mined binding motifs
agree well with the experimentally verified results, suggesting iDeep is a
promising approach in the real-world applications.

Conclusion: The iDeep framework not only can achieve promising performance
than the state-of-the-art predictors, but also easily capture interpretable binding
motifs. iDeep is available at http://www.csbio.sjtu.edu.cn/bioinf/iDeep

Keywords: RNA-binding protein; CLIP-seq; deep belief network; convolutional
neural network; multimodal deep learning
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Background
RNA-protein interactions are involved in many biological processes, such as gene

regulation and splicing [1]. Discovering the RNA-protein interactions has a great

potential for further understanding the mechanisms behind those biological pro-

cesses. For example, Argonaute (AGO) protein belongs to components of the RNA-

induced silencing complex (RISC), which transfers microRNAs (miRNAs) to be

bound with their target genes, thereby inhibit target gene expression [2]. Sequence-

specific associations between RBPs and their RNA targets are mediated by binding

domains, which recognize binding sites on RNAs. Where the RNA-protein binding

sites on the RNAs are usually short sequences with 4 to 30 base pairs long, typ-

ically referred as binding motif. Detecting them can facilitate the deeper insights

into post-transcriptional regulation.

Although there are many genome-wide RNA-binding protein detection techniques,

such as RNAcompete [3], PAR-CLIP [4], they are still cost-heavy and time-intensive.

Fortunately, with the advent of these high-throughput techniques, many useful

genome-wide data associated with RBPs are generated rapidly, including specific

binding positions on RNAs with proteins. These data provides important bases for

developing computational approaches to predict the RBP binding sites by using the

advanced computational methods [5, 6, 7, 8, 9].

At the very beginning of the methodology development of this field, predictors

are mainly constructed by only using the sequence information. For instance, Ma-

trixREDUCE simply fits a statistical mechanical model to infer the sequence-specific

binding sites for transcription factors from sequences [10]. DRIMust discovers mo-

tifs by integrating the minimum hyper-geometric statistical framework with suffix

trees for fast enumerating motifs [11].

Besides the high-throughput sequences, actually multiple sources of data are avail-

able from the genome-wide RNA-protein CLIP-seq data, such as sequences, struc-

tures, genomic context. Each source of data has a different kind of representation

and correlation structure. A popular straightforward idea is to integrate these data

to construct a predictor, which is expected to be very useful for enhancing the pre-

diction accuracy. Two integration schemes have been widely used in the literatures:

1 Feature-level fusion. This type of fusion strategy is to encode the different

sources into feature vectors, which will be concatenated together. For in-

stance, the OliMoSS model has integrated tetranucleotide sequence, bind-

ing motifs and secondary structures to predict protein specific interactions

on RNAs by simply concatenating the different sources of features into one

high-dimensional features (525-D) [12], which may result in difficulties for

the following statistical learning process. For instance, the learning algorithm

used in the OliMoSS is support vector machine (SVM), which will easily suffer

from the curse of dimension problem. Similar strategy is also applied in DNA-

protein binding sites prediction [13]. The other implementation of feature-level

fusion is the multiple-kernel learning, which design multiple kernels for differ-

ent features, and then combine them together [14, 15]. Similarly, GraphProt

encodes the sequence and structure information to graph kernel to predict

binding reference of RBPs [6].
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2 Decision-level fusion. To solve the high-dimension space learning problem, de-

cision level-based fusion system has been proposed. For instance, the iONMF

[5] is a predictor for predicting RNA-protein interaction sites. It has trained a

model for each of available resource data, e.g. kmer sequence, secondary struc-

ture, CLIP co-binding, Gene Ontology (GO) information, and region type.

These independent 5 models will work independently, which have no inter-

connections between them during the training processes. The final prediction

output of the whole system is the fusion of 5 independent predictions.

Despite the progresses of previously proposed methods, they have a shared draw-

back that the models were constructed on the features extracted from the observed

data, where the frequent noise may make the subsequent classifiers learn wrong

knowledge. Deep learning [16, 17] is a recently developed approach, which works in

a hybrid multiple-layer abstraction way by mapping the observed data to a much

high-level abstraction space, where the prediction model will be constructed. This

new type of approach has provided much attractive solutions for integrating het-

erogeneous data and are effective in automatically learning complex patterns from

multiple simple raw inputs.

One typical deep learning framework is known as the convolutional neural network

(CNN) [18]. The advantage of CNN is that it does not separate feature extraction

and model learning into two independent steps any more as done in the traditional

statistical learning algorithms. Instead it simultaneously learns features and classi-

fication models from the original input in a data-driven way, which will reduce the

potential mismatch effects between the feature extraction and learning classifica-

tion models. The CNN model has been applied in the binding proteins prediction

of DNA or RNA. For instance, a recent CNN-based deep learning approach Deep-

Bind was proposed to predict sequence specificities for protein binding RNA/DNA

[8]. Similarly, the DeepSEA [19] utilizes the deep CNNs to learn regulatory se-

quence motifs for predicting DNA functions from chromatin profiling data; Basset

[20] trained analogous deep CNN models to learn impacts of DNA sequences vari-

ants on chromatin regulation from large-scale DNase-seq data. These studies have

shown that the convolution operation in CNN is able to scan a set of weight matrix

(filters) across the input sequences to recognize relevant patterns that respond to

motifs, like patterns corresponding to edges and curve fragments in images [21, 22],

resulting in better prediction accuracies [12, 5].

The deep belief network (DBN) is another deep learning algorithm to learn high-

level features from large-scale data [26], which is also a recent popular choice for

constructing the computational models. For example, the deepnet-rbp fused the

structural and k-mer sequence features to predict RBP interaction sites [23] us-

ing DBNs. DANN trains a DBN to annotate non-coding variants [24], which is

able to capture non-linear abstraction features. We also developed a model called

IPMiner by applying the stacked autoencoder to learn high-level features for pre-

dicting RNA-protein interactions from raw sequence composition features, and it

yielded promising performance compared to other sequence-based methods [25]. It’s

worth noting that many studies have shown that the CNN and DBN hold their own

advantages due to different deep learning architectures, e.g. CNN is more appro-

priate for sequence data and DBN prefers the numeric inputs. This motivates us

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 3, 2016. ; https://doi.org/10.1101/085191doi: bioRxiv preprint 

https://doi.org/10.1101/085191
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pan and Shen Page 4 of 18

to consider how to integrate the merits of CNN and DBN for better prediction of

RBP binding sites and find the sequence motifs.

In this study, we propose a multimodal deep learning framework iDeep, a hybrid

framework with CNNs and DBNs, to better integrate multiple heterogeneous data

sources for predicting RBP interaction sites on RNAs (Fig. 1). For the data repre-

sented by the binary or numeric features, the DBN networks will be used; While

for the sequence data, the CNN network will be applied. Different deep network

models will be trained and tuned together from the top shared layer to the indi-

vidual bottom layers using backpropagation, and then the shared latent features

are captured across them. Compared to the existing approaches, the iDeep has the

following merits: 1) the iDeep is constructed with a deep learning structure, and it

consists of multiple neural networks stacked together [17, 16], where the outputs of

each layer are the inputs of successive layer. Such layer-by-layer learning helps to

reduce the noise effects in the original input. 2) The iDeep successfully integrates

the CNN and DBN for dealing with the different sources of protein-RNA binding

related data to enhance the discrimination ability. The CNN is able to capture reg-

ulatory motifs, which are recurring patterns in RNA sequences with a biological

function. The DBN learns high-level features regarded as a joint distribution deter-

mined by hidden variables for different inputs. 3) The hybrid framework of flexible

multimodal learning and fusion at an abstraction level makes the iDeep handle dif-

ferent features in an easy manner. The top shared hidden layer at the fusion level

will help discover the shared properties across different modalities [27, 28].

Results
In this study, we evaluated iDeep on independent testing datasets, and also com-

pared it with the performance of DBN and CNN from individual sources of data.

To demonstrate the advantage of iDeep, some state-of-art predictors of iONMF,

DeepBind, and Oli were also compared. Besides, a large-scale analysis has been

conducted to demonstrate the discovered binding motifs using iDeep.

The iDeep’s performance.

To demonstrate the ability of iDeep for predicting RNA-protein binding sites, we

evaluate iDeep on independent testing dataset (see the dataset section). We firstly

use 4000 training samples for model training, 1000 validation sites are evaluated at

the end of each training epoch to monitor the convergence. For each experiment,

iDeep is trained with the same initializations. After we obtain the trained model,

we apply it to predict binding sites for 1000 independent testing samples. The

ROC on 31 experiments are shown in Fig. 2. It indicates that iDeep yields different

performance on different experiments with huge margin, the AUC ranges from 0.70

for protein hnRNPL1-like to 0.98 for protein PUM2. In addition, iDeep achieves

the AUC greater than 0.90 on 23 of 31 experiments, and the average AUC of iDeep

on all experiments is 0.90, indicating that iDeep accurately predict RBP binding

sites on a genome-wide scale.

Comparing iDeep with other state-of-the-art methods.

We firstly compare it with state-of-the-art method iONMF, which has shown better

performance than other existing methods [5], such as GraphProt [6] and RNACon-

text [37]. As shown in Table 2, we can see that iDeep outperform iONMF on most of
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the 31 experiments, the average AUC of the 31 experiments increases from 0.85±0.08

of iONMF to 0.90± 0.09 of iDeep. Furthermore, for some experiments, it improves

the AUC over 15%, such as for protein hnRNPL-2, the AUC increases from 0.66

of iONMF to 0.77 of iDeep. In addition, iDeep also performes better than other

matrix factorization-based methods NMF [38], SNMF [39] and QNO [40], which

achieves the average AUC of 0.83±0.10, 0.71±0.14, 0.79±0.12 on 31 experiments,

respectively.

We further compare iDeep with another protein-specific method Oli [12], which

yields an average AUC of 0.77± 0.16, and 17% lower than the iDeep . We find that

it has a bigger performance variance than other tested methods. For example, Oli

performs very bad on some experiments, e.g. AUC 0.39 on hnRNPL-1 protein, but

on some experiments, its performance is very good, e.g. 0.94 on PUM2 protein. For

the DeepBind [8] approach using the same parameters of CNN integrated in iDeep,

it achieves an average AUC 0.83±0.12 across 31 experiments, which performs worse

than iDeep. The reason is that DeepBind cannot yield promising performance across

all 31 experiments from only sequences.

To demonstrate the merits of the designed framework of iDeep, we also compare

iDeep with its own variant iDeep-kmer, whose input modalities are kmer, region

type, clip-cobinding and structure using the same network architecture. The only

difference is that iDeep uses CNN sequence and motif modalities instead of high-

dimensional kmer modality. As indicated in Table 1, iDeep-kmer yields an aver-

age AUC of 0.87±0.09, which is worse than iDeep, indicating that CNN sequence

and motif modality have better discriminating ability than high-dimensional kmer

modality. On the other hand, iDeep performs faster than iDeep-kmer both in the

training and testing steps.

Overall, compared to other 6 tested methods, iDeep yields the best performance

on 20 of 31 experiments and the same AUCs on other 5 experiments. And it achieves

a little lower AUC only on 6 of the 31 experiments, but it still yields the AUCs above

0.90. For those experiments with AUCs below 0.90 in other six methods, iDeep’s

performance is very encouraging. These results indicate that iDeep’s promising per-

formance.

Comparison between individual modalities.

To show the advantage of integrating multiple modalities of data, we also tested

the performance on individual modalities. The average AUCs of 31 experiments

for region type, clip-cobinding, structure, motif and CNN sequence are 0.73± 0.11,

0.74 ± 0.11, 0.71 ± 0.12, 0.71 ± 0.08 and 0.83 ± 0.12, respectively, indicating that

individual deep networks have the ability of learning high-level features for RBP

binding sites prediction. From the results, we can see that CNN sequence modality

yield the best average performance with roughly 12% improvement over the second

most informative region type. And CNN sequence yields higher AUC on 22 exper-

iments due to sequence specificities of binding RNA [8], where CNN sequence can

automatically learn binding motifs as feature representations for subsequent classi-

fications. The other 4 modalities achieves similar average AUCs on all experiments

without a big difference. Furthermore, we also tested the performance of DBN with

only kmer modality, it yields the average AUC of 0.76 ± 0.13 on 31 experiments,

which is found much worse than CNN sequence modality.
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As indicated in Fig. 3, there exists big performance differences on individual

experiments for different modalities. For instance, on U2AF2 (KD) experiment,

the 5 individual modalities achieve the AUC of 0.66, 0.65, 0.53, 0.72 and 0.91,

respectively. The CNN sequence modality obtains AUC 0.91, outperforming other

4 modalities. While for experiment ELAVL1-MNase, they yield the AUCs of 0.67,

0.70, 0.67, 0.54, and 0.52, respectively. The CNN sequence achieves the worst AUC

of 0.52 and the clip-cobinding modality has the best AUC of 0.70. The results

showed that there were huge differences between different modalities on different

experiments.

Among the 5 Ago2 experiments, structure modality performs a little better on 3

of them. It is because that Ago2 protein requires specific RNA structure binding

interfaces [41]. The motif and CNN sequence modalities perform worse than other

modalities on the 5 Ago2 experiments. The reason is that Ago2 protein has a PAZ

domain and a PIWI domain, but there are no related binding motifs for them in

CISBP-RNA database [32], and hence deep network of motif and CNN sequence

modalities cannot learn high discriminating features for predicting Ago2 binding

sites on RNAs. Although motif and CNN sequence modality are not able to detect

binding sites for Ago2 with high accuracy, other modalities can complement with

them. The more diversity different modalities have, the more accurate the integrated

method is [42]. So integrating the 5 different modalities using multimodal deep

learning makes iDeep perform much better than individual modalities.

Based on the above results, we can have the following conclusions: (1) No sin-

gle modality can beat others on all datasets, their performance varies on different

datasets. (2) The deep network (CNN and DBN) of input modalities are able to

learn high-level features with stronger discriminating ability for RBP interaction

sites. (3) Integrated iDeep performs better than deep networks of individual modal-

ities, it is because that multimodal deep learning is able to learn shared representa-

tion across multiple modalities with strong discriminating ability for RNA-protein

binding sites.

The correlations between different modalities in deep architecture.

In the proposed iDeep model, we integrated 5 sources of data for an ensemble predic-

tion. It will be interesting to see how the 5 independent modalities will complement

with each other. We thus investigated the pairwise correlation between the differ-

ent modalities region type, clip-cobinding, structure, motif, CNN sequence across

31 experiments. In addition, we also demonstrate the correlations between the 5

modalities and unintegrated high-dimensional k-mer modality.

We calculate the Pearson correlation coefficients (PCC) based on the AUCs of

31 experiments from individual modalities. If two modalities have high PCC, they

perform similarly across all 31 experiments. As illustrated in Fig. 4, there are two

obvious subgroups between the 6 modalities. The region type, clip-cobinding and

structure formed the first group; kmer, motif and CNN sequence formed the other

group. These results show that different modalities contain various signals, and they

can complement with each other via integration in iDeep.

The region type and structure modalities have a PCC of 0.89, showing that they

are highly correlated. It is because the same region type may have similar structures,
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they share redundant information for predicting binding sites. CNN sequence and

kmer also have very high PCC of 0.96, indicating that they are also highly related.

As demonstrated in the iONMF [5], kmer modality can capture binding motifs. CNN

sequence also learns motifs using CNN network [8, 19]. In addition, both of them

are highly correlated to motif modality with PCCs of 0.91 and 0.92, respectively.

It indicates that the high-level features learned from CNN sequences and kmer

are closely related to binding motifs, which is consistent with previous findings. In

summary, both the modalities try to learn binding motifs, so they share similar

signals associated with motifs for RBPs across the 31 experiments. That is also the

reason why we used CNN sequence instead of high-dimensional kmer in iDeep.

The iDeep is able to discover new binding motifs.

The iDeep can predict RBP binding sites on RNAs with high accuracy, however

the principles behind it are still not easily interpretable. So here we further use

iDeep to discover binding motifs for RBPs. In previous methods [12, 5], they focus

on directly detecting nucleotide binding sites on RNAs from extracted features,

but did not introduce the motifs during feature learning. Although iONMF tries to

infer the binding motifs after model training, it totally depends on the input kmer

sequences and defines a background distribution. In addition, it limits the learned

motifs to size k, which requires optimization for searching potential motifs and the

time cost exponentially increases with k.

To explore the learned motifs, we investigate the convolve filters of the convolu-

tional layers from CNN module in iDeep, and convert them into position weight

matrices (PWM), which is matched against input sequences to discover binding

motifs, like DeepBind [8] and Basset [20] (Additional file 1). Then, these discovered

motifs are aligned against 102 known motifs in study [32] from CISBP-RNA using

the TOMTOM algorithm [43].

Using p-value <0.05, iDeep captures most of informative motifs for individual

proteins. The significantly matched known motifs for individual experiments are

listed in Table 2, where 14 experiments with known motifs in study [32] are included.

As can be seen from Table 2 that the iDeep is able to mine known motifs for 11 of

14 experiments. For example, there are 5 known motifs (M031, M108, M112, M127,

M232) in study [32] for protein ELAVL1-1, and all of them have been correctly

discovered by iDeep. Fig. 5A illustrates the heatmap of learned weights of convolve

filters of CNN and corresponding matched known motifs for these filters. Besides

the already well-known motifs discovered by iDeep, it is able to find some novel

motifs. For instance, for protein TDP-43, currently there are no verified motifs

for it in CISBP-RNA database, although TDP-43 have been discovered to bind to

thousands of RNAs in neuron [47]. Fig. 5B shows the hierarchical clustering of 102

new filters (motifs) for protein TDP-43 discovered by iDeep. Of them, two newly

identified motif examples for protein TDP-43 are illustrated in Fig. 5C. These new

motifs will provide important clues for further wet-lab verifications. All discovered

motifs by iDeep are available at https://github.com/xypan1232/iDeep/tree/

master/predicted_motifs.
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Discussion and conclusion
In this study, we present a deep learning based hybrid framework to integrate differ-

ent sources of data to predict RNA-protein binding sites on RNAs from CLIP-seq

data, which yields promising performance on large-scale experiment data. The iDeep

has the following advantages: (1) It trains deep neural network on individual sources

of data to learn high-level representations for predicting RNA-protein interaction

sites. (2) Different from other black-box machine learning based approaches, iDeep

is able to discover the interpretable binding motifs, which provides better biolog-

ical insights into RBPs. (3) It makes use of multimodal deep learning to extract

shared features across different sources of data, with the hypothesis that no single

one can overwhelm others across all datasets. Multimodal deep learning is able to

better fuse them and achieve better performance on all datasets. Our proposed deep

learning framework provides a powerful approach and choice for heterogeneous data

integration.

In iDeep, we do not integrate high-dimensional k-mer and GO features, which

possibly causes the over-fitting problem when calculating the partition functions.

In addition, for other 5 integrated features in iDeep, dropout layer was applied for

both CNN and DBN. It randomly sets 0s for some unit activations with certain

probabilities, which can avoid over-fitting for model training [44].

In our 5 modalities integrated in iDeep, CNN sequence modality outperforms

other modalities on most experiments. But for some proteins, such as Ago2, it

performs worse than structure modality, indicating structure information has better

informative signals for Ago2 binding sites. Currently we just use simple probabilities

predicted from RNAfold [30] as the input features, which contain some noises due to

the accuracy below 100%. So in future work, we will extend the CNN to structures,

and design CNN to find high-level structure motifs for RBP binding sites. As done

in GraphProt [6], they apply graph encoding to detect structure motifs. We can

adopt similar strategy for encoding RNA structure to 6 elements (stem, multiloop,

hairpin loop, internal loop, bulge and external regions), which can be fed into CNN

for learning structure motifs automatically to further improve iDeep’s performance.

In addition, Ago2 binding specificity is provided primarily by miRNAs [2], the

expressed miRNAs in a given cell type greatly influences Ago2-RNA interactions,

resulting in a much more variable and cell type-dependent binding motifs than RNA-

binding proteins which bind their mRNA targets directly. Integration of miRNA

expression as an additional modality will conceivably improve the accuracy of iDeep

for Ago2 proteins.

The iDeep outperforms other state-of-the-art methods with the average AUC of

0.90 on 31 experiments and it can easily be used to capture binding motifs. In addi-

tion, iDeep also discovers some novel binding motifs besides those reported motifs

in CISBP-RNA, we expect to verify those novel motifs by investigating whether

the genes with the same predicted motifs are significantly associated with certain

functions.

Despite the promising performance of iDeep, there are still promising avenues

to explore the ability of deep learning. Currently we only use the standard CNNs

for sequences and similar DBNs for other data modalities with only different num-

ber of hidden neurons, which should be designed specifically for different input
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data. Besides, more advanced network architecture could be designed according to

the special characteristics of different input data. For example, DanQ designed a

hybrid convolutional and recurrent neural network to predict the functions from

non-coding DNA sequences [45]. It uses CNN to detect regulatory motifs from se-

quences, followed by bi-directional recurrent layer to capture long-term dependen-

cies between motifs. Furthermore, instead of learning high-level features using deep

learning, another study aims at automatically learning hand-designed optimization

algorithms, which can exploit the structures in network architecture of interest [46].

All these studies indicate that we can further improve the structure of current iDeep

to improve the performance in the future.

Materials and Methods
In this section, we firstly introduce the CLIP-seq datasets and multiple features

extracted in this study, then we design a multi data source driven multimodal deep

learning framework to integrate them for predicting RNA-protein binding sites on

RNAs.

Datasets.

In this study, to compare with the existing state-of-the-art methods, we used the

same benchmark dataset as iONMF [5], which was downloaded from https://

github.com/mstrazar/ionmf. In this dataset, the CLIP-seq data consists of 19

proteins with 31 experiments. As described in the iONMF, each nucleotide within

clusters of interaction sites derived from CLIP-seq were considered as binding sites.

To reduce the redundancy, the positive binding sites were further randomly sampled

with the highest cDNA count and without consecutive sites on genome. Finally,

from those sites with less than 15 nucleotides apart, only one site with the highest

cDNA counts was selected as the positive sample. The negative sites were sampled

from genes that were not identified as interacting in any of 31 experiments. In the

experiments, a total 4,000 crosslinked sites are used for training purpose, 1,000

samples for model optimization and validation, and the other 1,000 samples for

independent testing.

Feature encoding

Feature encoding is critical for a statistical machine learning model. In order to

integrate the merits from both the sequence and numeric features, the iDeep model

makes use of 5 different groups of features, i.e., sequence, structure, clip-cobinding,

region type and motif features. A scale window of [-50, 50] centering the crosslinked

sites is used to generate the feature vectors, which is the same as iONMF [5].

1 Region type. this feature value is assigned to each position within the win-

dow using one of the 5 types (exon, intron, 5‘UTR, 3‘UTR, CDS) from En-

sembl annotation [29], resulting in 101 x 5 = 505 dimensional features.

2 clip-cobinding. This feature represents the correlation among 31 experi-

ments. For each experiment, the cDNA counts at each position within the

window relative to the centring site was reported in the remaining 30 exper-

iments, assign 0 for zero cDNA counts or 1 otherwise, resulting in 101 x 30

=3030 dimensional features.
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3 Structure. RNAfold [30] is used to calculate the probability of RNA sec-

ondary structure for each nucleotide within window, resulting in 101 dimen-

sional features.

4 Motif. Motif scores are used for numerical representation of the RNA se-

quences [31]. We firstly downloaded 102 human RBP binding motifs from

CISBP-RNA [32], then Cluster-Buster [33] was employed to score RNA se-

quences for binding sites clusters. For individual sequence, we can get a score

per motif, resulting in a 102 dimensional features.

5 CNN sequence. The sequence is encoded into a 1000 x 4 binary matrix

corresponding to the presence of A,C,G, U, which is fed into CNN to obtain

high-level sequence feature.

It’s worth noting that since the iDeep model is constructed with the CNN algorithm,

the 25856-D kmer and 39560-D GO features originally used in the iONMF are not

used in our model. The main reasons are: 1) the GO features has been indicated of

lower discriminating power than other sources of data [5] and 2) these two features

are of too high dimensions, even more than the training samples, which easily leads

to over-fitting and dimension disaster for neural networks..We also added two new

feature encoding methods, which have not been applied in the iONMF, i.e., the

sequence and motif features. Our results below will show that the new sequence

feature encoding are critically important for CNNs to learn binding motifs, and

the motif features based on known motifs in CISBP-RNA database are useful to

correlate with functional regulatory regions in RNA sequences.

Convolutional neural network

Convolutional neural network (CNN) is inspired by biological processes, it consists

of one or more convolutional layers, followed by the max pooling layers. And it

enforces a local connectivity pattern between neurons of layers to exploit spatially

local structures. In this study, CNN is used to capture non-linear sequence features,

e.g. motifs, and pull out some high-level features associated with RBP binding.

Here RNA sequence is one-hot representation encoded into a 101 x 4 binary ma-

trix, whose columns correspond to A, C, G and U [8, 19]. Then the inputs are

convolved with tunable patterns called filters, which are weight parameters corre-

sponding to binding motifs and learned from RNA sequences. After convolution, a

rectified linear ReLU is applied to avoid the vanishing gradient problem existing in

deep learning research. Finally, a max pooling operation is used to pool adjacent

positions within a small window, which can reduce the number of parameters and

yield invariance to small sequence shifts.

Deep Belief Network

Deep Belief Network (DBN) consists of multiple layers of Restricted Boltzmann

machines (RBMs) [48], which learns model parameters in bottom-up style and layer-

wise, but it is only able to learn abstract structure from one input source of data.

Some of our extracted input features are binary, such as region type of nucleotides.

RBM is developed for binary-valued inputs, which is a graphical model with visible

v ∈ {0, 1} and hidden units h ∈ {0, 1}. Its joint distribution of hidden and visible
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variables are defined as follows:

P (v,h, θ) =
1

Z(θ)
exp(−E(v,h, θ)) (1)

where E(v,h, θ) is defined:

E(v,h, θ) = −
∑
i

aivi −
∑
j

bjhj −
∑
i

∑
j

vihjwij (2)

where vi and ai are binary state and bias for visible unit i, respectively. hj and bj

are the binary states and bias for hidden unit j respectively.

The partition function Z is calculated by summing over hidden and visible vari-

ables, which is optimized using maximum likelihood estimation based on Contrastive

Divergence algorithm [17]. Besides, we also extract structure probability features,

which are real-valued inputs, and its extension Gaussian RBMs are developed for

modelling real-valued inputs [34]. The parameters weight matrix and biases are

updated using a gradient descent algorithm [17].

DBN is comprised of multiple RBMs, Here we take a DBN with two hidden layers

as example:

E(v,h, θ) = −vTW(1)h(1) −−h(1)TW(2)h(2) (3)

where h(1) and h(2) are hidden units for two hidden layers, and W (1) and W (2) are

weight parameters for visible-to-hidden and hidden-to-hidden connection.

DBN is able to capture high-level features from individual modalities, but it can-

not interactively learn unified feature representations across them.

Multimodal deep learning for Predicting RNA-protein interaction sites

Considering the heterogeneous representations of RBP binding sites, multimodal

deep learning is developed to learn shared features across different sources of data

[27]. It consists of multiple layers of neural networks, which can automatically learn

high-level features hidden in original features [17, 16] and achieve a huge success in

different applications. In this study, we use CNNs and DBNs as the building blocks

for deep learning framework shown in Fig. 1. It adds an additional layer to combine

the outputs from multiple DBNs and CNNs for different inputs. During feature

learning, individual DBNs and CNNs are pre-trained independently and concate-

nated together for final joint training using backpropagation. In each training epoch,

it will automatically tune the learned parameters in respective models. After several

training epochs, it learns shared representations across region type, clip-cobinding,

structure, motif and CNN sequence for subsequent classification. In addition, it

can also learn better features for individual modalities via backpropagation when

multiple modalities exist.

We apply multimodal deep learning to integrate different sources of data to predict

RNA-protein binding sites on RNAs. It first extracts different representations of

different sources of data from CLIP-seq data, which are subsequently integrated

using multimodal deep learning to predict RNA-protein binding sites. The flowchart

is shown in Fig. 1.
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In this study, we set the maximum number of epoch to 20, the batch size is 100.

The neural network models are optimized using RMSprop algorithm [35] to learn all

model parameters, including those convolution filters of CNNs. Validation dataset

is evaluated to monitor the convergence during each epoch of the training process,

so the training process can be stopped early.

The iDeep is implemented in python using keras 1.0.4 library https://github.

com/fchollet/keras. The model architecture consists of hybrid CNNs and DBNs

for individual inputs and additional layer for merging them.

For sequence modality, its one-hot encoding is fed into CNN to learn high-level motif

features. The parameter nb filter (number of motifs) is 102 and the filter length

(motif width) is 7, which agrees with the significantly verified RBP binding motifs

in CISBP-RNA database [32].

The architecture of DBN for input modalities clip-cobinding, Structure, Region

type and Motif consists of fully connected layer and dropout layers (Additional

file 1). In iDeep, for each DBN from individual modalities, we configure different

number of hidden units for two Fully connected layer (FCL) listed in Table 3, and

the dropout probability for each dropout layer is 0.5. To evaluate the performance

of predicting RBP binding sites, we use Receiver Operating Characteristic(ROC)

curve and calculate the area under the ROC curve (AUC).

Baseline methods

There are many computational methods developed for predicting RNA-protein

binding sites. such as iONMF, Oli, DeepBind, GraphProt and RNAContext. As

indicated in [5], iONMF performs a little better than GraphProt, and much better

than RNAContext. In [12]), Oli with only tetranucleotide frequency features yield

better performance than its variant OliMoSS for predicting RBP binding sites. So

in this study, we compared iDeep with other state-of-the-art iONMF, DeepBind and

Oli. iONMF integrates multiple data using orthogonality-regularized nonnegative

matrix factorization, it discovers the hidden modules from non-overlapping features

for RNA-protein interactions. Oli applied linear SVC to classify protein-RNA bind-

ing sites based on their extracted tetranucleotide frequency features. To compare

with Oli fairly, grid-search was used to select the best parameter for linear SVC

of Oli in individual experiments, and the implementation from scikit-learn package

was used in this study [36]. For DeepBind, it only uses CNN from sequences to

predict RBP binding sites.
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neural network, CNN; Deep belief network, DBN; Fully connected layer, FCL; RF,
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teristic;Gene Ontology, GO; AUC, the area under the ROC curve; PCC, Pearson
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Additional file 1 — Supplementary text and Table

Some details of iDeep. The principles about how to identify binding motifs by iDeep, the architecture of deep belief

network and the discovered number of known motifs in CISBP-RNA.
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Figure 1 The flowchart of proposed iDeep for predicting RNA-protein binding sites on RNAs.
It firstly extracted different representation for RNA-protein binding sites within a windows size
101, then use multimodal deep learning consisting of DBNs and CNNs to integrate these
extracted representations to predict RBP interaction sites.
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Figure 2 ROC Performance. The ROC curve for predicting RNA-protein binding sites on 31
experiment dataset.
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Figure 3 Performance of individual modalities. The comparison for predicting RNA-protein
binding sites on 31 experiment dataset using iDeep and individual modalities.
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Figure 4 The correlation between different modalities on 31 experiment dataset. The pearson
correlation coefficient values are calculated using the AUCs from 31 experiments for individual
modalities.
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Figure 5 The identified binding motifs by iDeep. A. The heatmap of learned weights of convolve
filters of CNN and corresponding matched known motifs for this filter. B. The hierarchical
clustering using the cosine distance of 102 filters for protein TDP-43. C. The heatmap of learned
weights of two convolve filters and corresponding motif logos for protein TDP-43, they are still
not verified novel motifs detected by iDeep.

Table 1 The AUC performance comparison between iDeep and other methods on 31
experiments. The performance of iONMF, NMF, SNMF and QNO are taken from [5] . DeepBind,
Oli and iDeep-kmer perform on the same data with iDeep, and iDeep-kmer used kmer to replace
CNN sequence and motif modalities in iDeep.

Protein iDeep iONMF NMF SNMF QNO Oli iDeep-kmer DeepBind
1 Ago/EIF 0.90 0.89 0.89 0.85 0.87 0.61 0.87 0.66

2 Ago2-MNase 0.72 0.71 0.69 0.66 0.69 0.51 0.67 0.52
3 Ago2-1 0.91 0.81 0.81 0.76 0.83 0.80 0.82 0.81
4 Ago2-2 0.92 0.84 0.82 0.79 0.82 0.80 0.83 0.82
5 Ago2 0.74 0.73 0.71 0.65 0.66 0.53 0.65 0.57

6 eIF4AIII-1 0.95 0.92 0.91 0.78 0.95 0.92 0.95 0.94
7 eIF4AIII-2 0.97 0.93 0.93 0.67 0.64 0.93 0.94 0.93
8 ELAVL1-1 0.96 0.91 0.89 0.71 0.80 0.89 0.95 0.90

9 ELAVL1-MNase 0.76 0.71 0.70 0.68 0.70 0.49 0.66 0.52
10 ELAVL1A 0.93 0.94 0.93 0.91 0.92 0.84 0.95 0.87
11 ELAVL1-2 0.97 0.95 0.94 0.90 0.95 0.88 0.97 0.91

12 ESWR1 0.95 0.87 0.85 0.80 0.85 0.81 0.92 0.88
13 FUS 0.91 0.81 0.73 0.55 0.65 0. 85 0.87 0.92

14 Mut FUS 0.97 0.96 0.95 0.91 0.94 0.82 0.97 0.92
15 IGFBP1-3 0.94 0.93 0.92 0.89 0.91 0.57 0.93 0.67
16 hnRNPC-1 0.93 0.95 0.93 0.45 0.63 0.88 0.92 0.95
17 hnRNPC-2 0.97 0.97 0.96 0.48 0.70 0.94 0.95 0.97
18 hnRNPL-1 0.81 0.74 0.73 0.70 0.77 0.39 0.79 0.76
19 hnRNPL-2 0.77 0.66 0.62 0.56 0.61 0.47 0.72 0.74

20 hnRNPL-like 0.70 0.69 0.67 0.63 0.68 0.56 0.70 0.69
21 MOV10 0.98 0.96 0.96 0.89 0.92 0.78 0.97 0.80
22 Nsun2 0.88 0.81 0.80 0.69 0.82 0.75 0.81 0.84
23 PUM2 0.98 0.93 0.92 0.86 0.89 0.94 0.98 0.94

24 QKI 0.94 0.84 0.77 0.52 0.62 0.92 0.92 0.95
25 SRSF1 0.92 0.85 0.85 0.73 0.86 0.84 0.85 0.87
26 TAF15 0.98 0.91 0.89 0.82 0.91 0.80 0.95 0.95

27 TDP-43 0.89 0.84 0.78 0.45 0.57 0.88 0.85 0.88
28 TIA1 0.94 0.93 0.92 0.86 0.90 0.84 0.96 0.91

29 TIAL1 0.94 0.87 0.86 0.73 0.85 0.83 0.90 0.89
30 U2AF2 0.93 0.82 0.74 0.61 0.70 0.86 0.91 0.95

31 U2AF2(KD) 0.92 0.80 0.74 0.60 0.74 0.84 0.88 0.91
Mean 0.90±0.09 0.85±0.08 0.83±0.10 0.71±0.14 0.79±0.12 0.77±0.16 0.87±0.09 0.83± 0.12
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Table 2 iDeep captures known motifs in [32] from CISBP-RNA for proteins. We only
compared our predicted motifs against known motifs in study [32] and the motif name is from
CISBP-RNA. If there is no motifs for this protein, then we ignore them. - means no matched motifs
in our predictions.

Protein Known motifs Matched predicted motifs One example

8 ELAVL1-1 M031,M108,M112,M127,M232 M031,M108,M112,M127,M232

11 ELAVL1-2 M031,M108,M112,M127,M232 M031,M108,M112,M127,M232

13 FUS M018 M018

15 IGFBP1-3 M032 - -

16 hnRNPC-1 M025 M025

17 hnRNPC-2 M025 M025

18 hnRNPL-1 M027,M089 M027,M089

19 hnRNPL-2 M027,M089 - -
24 QKI M046 - -

25 SRSF1
M102,M103,M104
M105,M106,M154 M154

28 TIA1 M075,M156 M075,M156

29 TIAL1 M075,M156 M075,M156

30 U2AF2 M077 M077

31 U2AF2(KD) M077 M077

Table 3 The number of neurons used in Fully connected layer (FCL) for each DBN.

Feature

# of neurons

of first FCL

# of neurons

of second FCL
CLIP-cobinding 768 256

Structure 128 64
Region type 256 128

Motif 128 64
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