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Abstract

Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and
unwanted technical variation in high-throughput data. Global normalization methods are based on the
assumption that observed variability in global properties is due to technical reasons and are unrelated to
the biology of interest. For example, some methods correct for differences in sequencing read counts by
scaling features to have similar median values across samples, but these fail to reduce other forms of
unwanted technical variation. Methods such as quantile normalization transform the statistical
distributions across samples to be the same and assume global differences in the distribution are induced
by only technical variation. However, it remains unclear how to proceed with normalization if these
assumptions are violated, for example if there are global differences in the statistical distributions between
biological conditions or groups, and external information, such as negative or control features, is not
available. Here we introduce a generalization of quantile normalization, referred to as smooth quantile
normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample
should be the same (or have the same distributional shape) within biological groups or conditions, but
allowing that they may differ between groups. We illustrate the advantages of our method on several
high-throughput datasets with global differences in distributions corresponding to different biological
conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff of
gsmooth compared to other global normalization methods. A software implementation is available from
https://github.com/stephaniehicks/gsmooth.
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Introduction

Multi-sample normalization methods are an important part of any data analysis pipeline to remove
systematic bias and unwanted technical variation, particularly in high-throughput data, where systematic
effects can cause perceived differences between samples irrespective of biological variation. Many global
adjustment normalization methods (Gagnon-Bartsch and Speed 2012; Hicks and Irizarry 2015) have been
developed based on the assumption that observed variability in global properties is due to technical
reasons and are unrelated to the biology of the system under study (Bolstad et al. 2003; Reimers 2010).
Examples of global properties include differences in the total, upper quartile (Bullard et al. 2010) or
median gene expression, proportion of differentially expressed genes (Anders and Huber 2010; Robinson
and Oshlack 2010; Love, Huber, and Anders 2014), observed variance across expression levels (Durbin et
al. 2002) and statistical distribution across samples.

Quantile normalization is a global adjustment normalization method that transforms the statistical
distributions across samples to be the same and assumes global differences in the distribution are induced
by technical variation (Amaratunga and Cabrera 2001; Bolstad et al. 2003). The observed distributions are
forced to be the same to achieve normalization and the average distribution (average of each quantile
across samples) is used as the reference.

Several studies have evaluated quantile normalization and other global adjustment normalization methods
(Robinson and Oshlack 2010; Bullard et al. 2010; Dillies et al. 2013; Aanes et al. 2014). Under the
assumptions of global adjustment normalization methods, quantile normalization has been shown to
reduce the variance in observed gene expression data with a tradeoff of inducing a small amount of bias
(due to the bias-variance tradeoff) (Bolstad et al. 2003; Qiu, Hu, and Wu 2014). However, when the
assumptions of global adjustment normalization methods are violated (for example, if the majority of
genes are up-regulated in one biological condition relative to another (Lovén et al. 2012; Aanes et al.
2014; Hu et al. 2014; Evans, Hardin, and Stoebel 2016), forcing the distributions to be the same can lead
to errors in downstream analyses. Graphical and quantitative assessments (Hicks and Irizarry 2015) have
been developed to assess the assumptions of global normalization methods.

If global adjustment methods are found not to be appropriate, another class of normalization methods can
be applied (application-specific methods), but these often rely on external information such as positive
and negative control features or experimentally measured data (Lovén et al. 2012; Aanes et al. 2014).
However, it is unclear how to proceed with normalization if the assumptions about the observed
variability in global properties are violated, such as they may occur when there are global differences in
the statistical distributions between tissues (Figure 1), and external information is not available.

Here we introduce a generalization of quantile normalization, referred to as smooth quantile
normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample
should be the same (or have the same distributional shape) within a biological group (or condition), but
that the distribution may differ between groups. At each quantile, a weight is computed comparing the
variability between groups relative to the total variability between and within groups (Equation 1). In one
extreme with a weight of zero, gsmooth is quantile normalization within each biological group when there
are global differences in distributions corresponding to differences in biological groups. As the variability
between groups decreases, the weight increases towards one and the quantile is shrunk towards the overall
reference quantile (Equation 2) and is equivalent to standard quantile normalization. In certain portions of
the distributions, the quantiles from different biological groups may be more or less similar to each other
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depending on the biological variability, which is reflected in the weight varying between 0 and 1 across
the quantiles.

Using several high-throughput datasets, we demonstrate the advantages of gsmooth, which include (1)
preservation of global differences in distributions corresponding to different biological conditions, (2)
non-reliance on external information, (3) applicability to many different high-throughput technologies,
and (4) the return of normalized data that can be used for many types of downstream analyses including
finding differences in features (genes, CpGs, etc), clustering and dimensionality reduction. We also
perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff when using gsmooth.

Results

gsmooth: smooth quantile normalization.

Consider a set of high-dimensional vectors Y |,Y,,...,Y, each of length J representing samples from a
high-throughput experiment and each associated with a covariate Z; representing the biological group or
condition. We define F fl(u) as the empirical quantile function for the i" sample and the 1 quantile
where y € [0, 1] . Quantile normalization begins by calculating a reference distribution, which is the

=1 Lo , ,
average at each quantile across the samples, F; (u) = }1 > F,; '(u) . Our method begins by assuming that
i=1

following form F l-_l(u) = Z,f(u) + ¢, . This model is similar to the model described in the functional
normalization method proposed by Fortin et al. (Fortin et al. 2014), which relates the quantile functions of
a set of high-dimensional vectors to a set of known covariates Z; that are not associated with biological
group or condition. Functional normalization attempts to remove the influence of unwanted technical
variation using control features leaving the biological variation in the data. We take a different approach
that does not depend on the use of control features and uses a covariate Z; that is associated with the
biological group or condition. In addition, our model extends the model of Fortin et al. by adaptively
weighting group information in the normalization transformation applied. Here, f(u) are the estimated
regression coefficients representing the reference distributions within each biological group at each

. -1 o
quantile and the predicted values, F'; (1) = Z,(u) correspond to quantile normalized data within
biological groups. We partition the total sum of squares (SST ) into the residual sum of squares (
SSE,, ) and the explained sum of squares (SSB () ),

-1 =l 2 & P DN By =1 2
YE W —F; W)y =YF;, W-F;, W) +XF, wW-F;, W)
i=1 i=1 i=1
For each quantile u, we calculate the weight (w,, ),

SSB,;
Wiy = median{l - Tig;} for j=u—k,..,u,..u+k (1

where we use a rolling median across j = u —k, ...,u, ...,u + k quantiles with a width of + k where

k = floor(N =0.05) to smooth the weights at quantiles with a high variance. The number 0.05 is a
flexible parameter than can be altered to change the window of the number of quantiles considered. The
smooth quantile normalized data is a weighted average,

SMOO — -1 ~ 1
F 2"y = we,Fr )+ (1= we ), (u) 2
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gsmooth
F i

The raw feature values are substituted with the (u) values and then the transformed values are

placed in the original order similar to quantile normalization.

Global differences in distributions between tissues in gene expression and DNA methylation data.
We compared gsmooth to other normalization methods using publicly available gene expression and DNA
methylation datasets with global differences in distributions. We assessed how global normalization
methods impact control features, namely the External RNA Control consortium (ERCC) spike-ins (Jiang
et al. 2011), in samples comparing the gene expression from brain and liver tissue in rats (see
bodymapRat data set in Methods).

We found that global normalization methods remove the global differences in distribution between brain
and liver tissues and induce artificial differences in the spike-in controls compared to using the raw data,
including quantile normalization (p <2.2¢™'°), Relative Log Expression (RLE) normalization (Anders and
Huber 2010) (p <2.2¢™%), and median normalization (p <2.2¢™'%) (Figure 2; Supplementary Figures 1-2). In
contrast, our method, gsmooth, greatly reduces artificial differences induced between the distributions of
the spike-in control genes (p = 9.2¢™).

Using the data from the Genotype-Tissue Expression project (GTEx) (GTEx Consortium 2015), we
compared gsmooth to a number of scaling normalization methods including, RLE, Trimmed Mean of
M-Values (TMM) (Robinson and Oshlack 2010), and upper quartile scaling (Bullard et al. 2010). We
observed that scaling methods did not sufficiently control for variability between distributions within
tissues; in particular, we observed stark differences in global distribution for a number of body regions,
most pronounced between testis, whole blood and other tissues such as artery tibial (Figure 3;
Supplemental Figure 3). Normalizing tissues with global differences (in distribution) using a
tissue-specific reference distribution, such as in gsmooth, can reduce the root mean squared errors
(RMSE) of the overall variability across distributions compared to quantile normalization (Paulson et al.
2016). This occurs because gsmooth is based on the assumption that the statistical distribution of each
sample should be similar within a biological group, but not necessarily across biological groups.

To demonstrate the importance of preserving tissue-specific differences, we assessed the impact of
normalization using quantile normalization and qsmooth using two genes, ENSG00000160882
(CYP11BI) and ENSG00000164532 (TBX20). These two genes are known to be highly expressed in
specific tissues (Figure 4; Supplementary Table 1). The CYPIIBI gene has been shown to play a critical
role in congenital adrenal hyperplasia (Zachmann, Tassinari, and Prader 1983; Curnow et al. 1993;
Joehrer et al. 1997) and the TBX20 gene plays an important role in cardiac chamber differentiation in
adults (Cai et al. 2005; Singh et al. 2005; Stennard et al. 2005; Takeuchi et al. 2005; Qian et al. 2008). In
both genes, we found that quantile normalization removes the biologically known tissue-specific
expression. In contrast, gsmooth preserves the tissue-specificity, which is also observed just using the raw
data. In particular, the CYP1IB]I gene is highly expressed in the testis tissue using both gsmooth
normalized and raw data, but it is reported as lowly expressed in the testis tissue after applying quantile
normalization. Using gsmooth normalized data and raw data, we observe the tissue-specific gene TBX20
as highly expressed in heart atrial appendage and heart left ventricle tissues, but lowly expressed in the
same tissues after applying quantile normalization. Furthermore, quantile normalization results in this
gene being spuriously inflated in other tissues.

We also tested gsmooth using publicly available DNA methylation (DNAm) data from six purified cell
types in whole blood that are known to exhibit global differences in DNAm (Hicks and Irizarry 2015).
Using gsmooth, the global differences in distributions are preserved across purified cell types (Figure 5).
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Furthermore, the cell types cluster more closely along the first two principal components compared to
using the raw data or quantile normalized data, because gsmooth accounts for cell type-specific
differences in DNAm and removes technical variability across samples within each cell-type.

The bias-variance tradeoff of qgsmooth.

We performed a Monte Carlo simulation study to evaluate the performance of gsmooth when the
assumptions related to the observed variability in global properties are violated with the detection of
differentially expressed genes as a measure of overall performance. We generated gene-level RNA-Seq
counts and varied the proportion of differentially expressed genes between biological groups.

As others have noted, when testing for differential expression between groups, quantile normalization
results in increased bias with a tradeoff of a reduction in variance compared to using the raw data. Under
the assumptions of global normalization methods, gsmooth improves upon this tradeoff, resulting in lower
bias compared to quantile normalization, but also less variance compared to using the raw data, and better
overall detection of differential expression. As the number of differentially expressed genes increases,
quantile normalization and gsmooth both reduce the variance compared to using the raw data, but
gsmooth also reduces the bias compared to using the raw data by accounting for global differences
between the biological groups, particularly when the assumptions of global normalization methods are
violated (Supplementary Figure 4).

Conclusions

Global normalization methods are useful for removing unwanted technical variation from high-throughput
data. However, they are based on the assumption that observed variability in global properties is due only
to technical factors and is unrelated to the biology of the system under study. While these assumptions are
usually fine when comparing closely related samples, large-scale studies are increasingly generating data
where those assumptions do not hold. In cases where these global assumptions are violated, more robust
forms of normalization are needed to allow for different distributions in different classes of samples.

Application-specific normalization methods can be applied, but these methods rely on the use of external
information such as positive or negative control features or experimentally measured information, which
are often not available. Furthermore, these methods are also based on assumptions about the nature of the
measured distributions, and these have been shown to be violated in many situations (Dillies et al. 2013;
Risso et al. 2014).

The new method we describe here, smooth quantile normalization (qsmooth), is based on the assumption
that the statistical distribution of each sample should be the same (or have the same distributional shape)
within a biological group or condition, but it does not require that different groups or conditions have the
same distribution. Our method also does not require any external information other than sample group
assignment, it is not specific to one type of high-throughput data, and it returns normalized data that can
be used for many types of downstream analyses including finding differences in features (genes, CpGs,
etc), clustering and dimensionality reduction.

We demonstrated the advantages of gsmooth using several high-throughput datasets that exhibit global
differences in distributions between biological conditions, such as the global changes in gene expression
profiles in brain and liver. We illustrated the bias-variance tradeoff when using gsmooth, which preserves
global differences in distributions corresponding to different biological conditions. We have implemented
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our normalization method into the gsmooth R-package, which is available on GitHub
(https://github.com/stephaniehicks/gsmooth).

Methods

Datasets with global differences in distributions.

We downloaded Affymetrix GeneChip gene expression data for alveolar macrophages (GSE2125), brain
(GSE17612, GSE21935), and liver (GSE29721, GSE14668, GSE6764) samples in human as reported by
a number of studies archived in the Gene Expression Omnibus (GEO) (Edgar, Domrachev, and Lash
2002). We extracted the raw Perfect Match (PM) values from the CEL files using the affy (Gautier et al.
2004) R/Bioconductor package for gene expression.

We downloaded raw RNA-Seq gene counts from the 7. cruzi life cycle (Li et al. 2016). We also
downloaded and mapped raw sequencing reads to obtain raw RNA-Seq gene counts for multiple tissues
from the Rat BodyMap project (Yu et al. 2014) (GSE53960). This data is also available as an R data
package on GitHub, (https://github.com/stephaniehicks/bodymapRat) (see Supplementary Material for
more details). Counts have an added pseudocount of 1 and then are log, transformed. We used the
Kolmogorov—Smirnov test for global differences in distributions in spike-ins from the bodymapRat gene
expression data.

Gene expression data from the Genotype-Tissue Expression (GTEx) consortium was downloaded from
the GTEx portal (http://www.gtexportal.org/) and processed using YARN (Paulson et al. 2016)
(bioconductor.org/packages/yarn) (see Supplementary Materials for more details).

The sorted whole blood cell populations measured on Illumina 450K DNA methylation arrays were
obtained from FlowSorted.Blood.450k R/Bioconductor data package (Jaffe 2015) and the raw beta values
were extracted using the minfi R/Bioconductor package (Aryee et al. 2014).

Monte Carlo simulation study.

We used the polyester R/Bioconductor package (Frazee et al. 2015) to simulate gene-level RNA-Seq
counts while varying the proportion of differentially expressed genes (pDiff) to obtain samples with
global differences in the distributions between biological conditions. Each simulation study considered
ten samples from two groups (total of 20 samples). We added additional non-linear sample-specific noise
by splitting the sample into four quartiles and scaling each quartile within the sample with a draw from a
uniform distribution ranging from 0.5 to 3. This is more realistic than linearly scaling each sample.

As our measure of performance in the detection of differentially expressed genes, we compared the output
of gsmooth to both quantile normalized data and raw (unnormalized) gene counts. We assessed the
bias-variance tradeoff of the log, fold change using these three methods while varying the proportion of
differentially expressed genes between two groups. The plots were created with the ggplot2 R package
(Wickham 2009).

Software
The R-package gsmooth implementing our method is available on GitHub
(https://github.com/stephaniehicks/qsmooth).
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Supplementary Materials

Supplementary materials are available in a single pdf, which contain supplemental figures and a detailed
description of the bodymapRat and GTEx datasets. All scripts containing the code for these analyses are
available on Github (https://github.com/stephaniehicks/gsmoothPaper).
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Figure 1: Using biological information to preserve global differences in distributions. Under the
conditions of no global differences in distributions (A), gsmooth is similar to standard quantile
normalization. Under the conditions of global differences in distributions (B) and (C), quantile

normalization removes the global differences by making the distributions the same, but qgsmooth
preserves global differences in distributions. Examples of gene expression data with (A) Perfect match
(PM) values from n = 45 arrays comparing the gene expression of alveolar macrophages from
nonsmokers (green), smokers (red) and patients with asthma (blue). (B) Gene counts from n =7 from
RNA-Seq samples comparing the 7. cruzi life cycle at the epimastigote (insect vector) stage and

extracellular trypomastigotes. Counts have an added pseudocount of 1 and then are log, transformed. (C)
PM values from n = 82 arrays comparing brain and liver tissue samples colored by tissue (brain [green]
and liver [orange]). The shades represent different Gene Expression Omibus (GEO) IDs.
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Figure 2: Quantile normalization induces artificial differences in spike-in control genes using data
with global differences in distributions. Comparing no normalization (row 1), quantile normalization
(row 2) and gsmooth (row 3) applied RNA-Seq gene counts from brain (green) and liver (orange) tissues
in the bodymapRat dataset. Column 2 contains the density plots for only the spike-in control genes.
Counts have an added pseudocount of 1 and then are log, transformed.


https://doi.org/10.1101/085175

bioRxiv preprint doi: https://doi.org/10.1101/085175; this version posted November 3, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

000 005 000 015 5.21! 025 030
000 005 010 095 3

0

Exprassion Exprassion

Figure 3: Scaling normalization methods do not adequately control within-group variability.
Comparing density plots following either gsmooth (A), Relative Log Expression (RLE) (B), Trimmed
Mean of M-Values (TMM) (C), upper quartile scaling (upperquartile) (D), library size (libSize) (E), or no
(none) (F) normalization. Plotted are the artery tibial (green) and the testis (orange) tissues from the GTEx
consortium. All counts have an added pseudocount of 1 and then are log2 transformed.
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Figure 4: Gene-specific effects induced from quantile normalization. Boxplots of the normalized
expression for ENSG00000160882 (CYP11B1) and ENSG00000164532 (TBX20) are shown for 24 tissues
profiled by GTEx. Top, we see CYP11BI is more highly expressed in testis (TST) and more lowly
expressed in other tissues in both (A) gsmooth and (B) raw expression profiles. However, following
quantile normalization (C) CYP11BI is relatively lowly expressed in TST but now more variably and
highly expressed in the artery aorta (ATA). CYPI1B1 produces 11 beta-hydroxylase, a final step necessary
to convert 11-deoxycortisol into cortisol. Steroid 11 beta-hydroxylase deficiency is the second most
common cause (5-8%) of congenital adrenal hyperplasia (Zachmann, Tassinari, and Prader 1983; Curnow
et al. 1993; Joehrer et al. 1997). Bottom (D, E), TBX20 is a member of the T-box family and encodes the
TBX20 transcription factor and helps dictate cardiac chamber differentiation and in adults regulates
integrity, function and adaptation (Cai et al. 2005; Singh et al. 2005; Stennard et al. 2005; Takeuchi et al.
2005; Qian et al. 2008). We see TBX20 highly expressed in both raw and gsmooth normalized heart atrial
appendage and left ventricle tissues (HRA, HRV). However, following (F) quantile normalization,
expression of the gene in both heart tissues is almost zero and several other tissues are more highly or
variably expressed.
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Figure 5: Density plots (column 1) and boxplots (column 2) with global changes in distributions of beta
values from n = 35 Illumina 450K DNA methylation arrays comparing raw data (row 1), quantile
normalized data (row 2) and gsmooth data (row 3) on six purified cell types from whole blood: CD14+

Monocytes (Mono), CD19+ B-cells (Bcell), CD4+ T-cells (CD4T), CD56+ NK-cells (NK), CD8+ T-cells
(CD8T), and Granulocytes (Gran). Column 3 shows first two principal components using three

normalization methods.
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Supplementary Material to: Smooth Quantile Normalization

bodymapRat data.

Gene expression data from brain and liver tissues in rat measured using RNA-Seq was obtained from the
rat RNA-Seq transcriptomic BodyMap (Yu et al. 2014) (GSE53960), which performed the rat BodyMap
across 11 organs and 4 developmental stages. We download the raw FASTQ files and mapped the reads to
a custom genome reference made up of the ENSEMBL rat genome
(ftp://ftp.ensembl.org/pub/release-80/fasta/rattus_norvegicus/dna), ENSEMBL annotation files
(ftp://ftp.ensembl.org/pub/release-80/gtf/rattus_norvegicus/) and the ERCC RNA spike-ins (Jiang et al.
2011) (https://tools.lifetechnologies.com/content/sfs/manuals/ERCC92.zip).

The reads were mapped to the Rat genome using STAR (Dobin et al. 2013) version 2.3.1 with default
parameters. Reads mapping to annotated exons were counted using the summarizeOverlaps function in
the GenomicAlignments R/Bioconductor package. The raw gene counts are available as an ExpressionSet
in an R data package on GitHub (https://github.com/stephaniehicks/bodymapRat), which includes a
complete description of processing the raw sequencing reads to obtain gene counts. We filtered out the
genes with the sum of counts (across rows) less than the number of samples (columns).

GTEXx data.

Gene expression data from the Genotype-Tissue Expression (GTEx) consortium (GTEx Consortium
2015) was downloaded from the GTEx portal website (www.gtexportal.org) and preprocessed using
YARN (Paulson et al. 2016). In preprocessing the data we removed samples with very few samples,
including the bladder, cervix - ectocervix, cervix - endocervix, fallopian tube, and the leukemia cell line
samples. Following the YARN pipeline we used tissues as the biology of the system under study. For most
analyses we display only tissues with at least 150 samples. See Supplementary Table 1 for a list of the
abbreviations for the tissues.


https://paperpile.com/c/yLLOck/ACkA
https://paperpile.com/c/yLLOck/bMwf
https://paperpile.com/c/yLLOck/bMwf
https://paperpile.com/c/yLLOck/UvWa
https://github.com/stephaniehicks/bodymapRat
https://paperpile.com/c/yLLOck/VZsz
https://paperpile.com/c/yLLOck/VZsz
https://paperpile.com/c/yLLOck/WGCF
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Supplemental Tables

Supplemental Table 1. Abbreviations for GTEx data

Tissue Abbreviation Subtissue
Adipose subcutaneous ADS Adipose - Subcutaneous
Adipose visceral ADV Adipose - Visceral (Omentum)
Artery aorta ATA Artery - Aorta
Artery tibial ATT Artery - Tibial

Brain - Amygdala

Brain - Anterior cingulate cortex (BA24)

Brain - Cortex

Brain - Frontal Cortex (BA9)

Brain other BRO
Brain - Hippocampus
Brain - Hypothalamus
Brain - Spinal cord (cervical c-1)
Brain - Substantia nigra
Brain - Cerebellar Hemisphere
Brain cerebellum BRC
Brain - Cerebellum
Brain - Caudate (basal ganglia)
Brain basal ganglia BRB Brain - Nucleus accumbens (basal ganglia)
Brain - Putamen (basal ganglia)
Breast BST Breast - Mammary Tissue
Fibroblast cell line FIB Cells - Transformed fibroblasts
Colon transverse CLT Colon - Transverse
Gastroesophageal junction GEJ Esophagus - Gastroesophageal Junction

Esophagus mucosa EMC Esophagus - Mucosa
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Esophagus muscularis EMS Esophagus - Muscularis
Heart atrial appendage HRA Heart - Atrial Appendage
Heart left ventricle HRV Heart - Left Ventricle

Lung LNG Lung
Skeletal muscle SMU Muscle - Skeletal
Tibial nerve TNV Nerve - Tibial
Pancreas PNC Pancreas

Skin - Not Sun Exposed (Suprapubic)

Skin SKN
Skin - Sun Exposed (Lower leg)
Stomach STM Stomach
Testis TST Testis
Thyroid THY Thyroid

Whole blood WBL Whole Blood
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bodymapRat dataset. Column 2 contains the boxplots for only the spike-in control genes. Counts have an

gsmooth (row 3) applied RNA-Seq gene counts from brain (green) and liver (orange) tissues in the
added pseudocount of 1 and then are log, transformed.

Supplemental Figure 1
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applied RNA-Seq gene counts from brain (green) and liver (orange) tissues in the bodymapRat dataset.

Supplemental Figure 2

Column 2 contains the boxplots for only the spike-in control genes. Counts have an added pseudocount of

1 and then are log, transformed.
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Supplemental Figure 3: Densities of the gene expression from the GTEx RNA-sequencing samples
colored by tissue. Tissue-specific differences in the gene expression distribution can be seen using
gsmooth normalization. Only tissues with at least 150 samples are displayed.
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Supplemental Figure 4: Bias and variance (Var) trade-off of the raw high-throughput data (Raw),
quantile normalized data (QN), and smooth quantile normalized data (qgsmooth). In each column, we
simulated data 10 samples from two biological groups while sampling the proportion of differentially
expressed genes (pDiff) from a Uniform[0, X] distribution, where X is listed as the column heading in the
figure. Under the assumptions of global normalization methods, gsmooth results in less bias compared to
quantile normalization, but also less variance compared to using the raw data. As the number of
differentially expressed genes increases, quantile normalization and gsmooth both reduce the variance
compared to using the raw data, but gsmooth also reduces the bias compared to using the raw data by
accounting for global differences between the biological groups when the assumptions of global
normalization methods are violated.
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