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Abstract

Read-based phasing allows to reconstruct the haplotype structure of a sample
purely from sequencing reads. While phasing is a required step for answering
questions about population genetics, compound heterozygosity, and to aid in
clinical decision making, there has been a lack of an accurate, usable and
standards-based software.

WhatsHap is a production-ready tool for highly accurate read-based phasing. It
was designed from the beginning to leverage third-generation sequencing
technologies, whose long reads can span many variants and are therefore ideal for
phasing. WhatsHap works also well with second-generation data, is easy to use
and will phase not only SNVs, but also indels and other variants. It is unique in
its ability to combine read-based with genetic phasing, allowing to further
improve accuracy if multiple related samples are provided.
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1 Background
Variant calling finds isolated differences between an individual’s genome and a

known reference. The most common variants are single nucleotide variants (SNVs),

insertions and deletions (indels). The reported information for a variant includes

its genotype, which is the set of alleles at that locus, such as A/A (homozygous) or

G/A (heterozygous) in a diploid individual. Heterozygous genotypes by definition

allow no conclusions about which of the two alleles is paternal and which one is

maternal – G/A and A/G are equivalent. Thus, the full sequence of nucleotides

in an individual chromosome – the haplotype – cannot be reconstructed. Phasing

is the process of inferring the correct relationship (cis or trans) between alleles at

multiple variant loci using additional information besides genotypes, and allows to

reconstruct these haplotypes. For example, phasing the two heterozygous variants

G/A and C/T may lead to the result that the correct haplotypes are G–T (one

chromosome) and A–C (the other chromosome).

Phasing allows to obtain crucial insight into various aspects of population genetics,

such as population structure, migration and environmental pressure [1, 2]. On an

individual level, phased variant data can significantly aid clinical decision making

[3]. It is important in investigating compound heterozygosity and allele-specific

expression.

1.1 Approaches

Molecular phasing involves physically separating the chromosomes before further

processing (such as sequencing). To our knowledge, few wet-lab researchers have
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succeeded in doing this for arbitrary samples, but the readily available CHM1 cell

line (which is haploid) could be considered to fall in this category.

Genetic (pedigree-based) phasing makes use of family relationships between indi-

viduals. For example, if the genotypes at a locus are A/A in the mother, T/T in

the father, and A/T in the child, then the A allele of the child is on the maternal

haplotype, and the T on the paternal one. Similar conclusions can be made in other

cases and in larger pedigrees as long as the variant is homozygous in at least one

individual.

Population-based (statistical) phasing uses regions of shared ancestry, obtained

from a reference panel created from many individuals.

Finally, read-based phasing uses sequencing reads spanning at least two heterozy-

gous variants to infer phase. It is also called haplotype assembly since the individual

reads may be seen as haplotype fragments that need to be assembled to obtain

larger fragments encompassing more variants. Read-based phasing has started to

become more and more attractive with the arrival of long-read sequencing tech-

nologies since these cover a larger number of variants, allowing to attain a better

phasing quality in terms of haplotype block lengths.

WhatsHap, which we introduce here as a usable tool, and whose core algorithm

has been previously described [4], is a read-based phasing tool, but it can addition-

ally employ pedigree information if provided with multiple, related samples, thus

combining read-based and genetic phasing [5].

1.2 Tools

Until recently, DNA microarrays would be typically used for genotyping, and a range

of state-of-the-art tools exist that can phase from the resulting data. SHAPEIT [6]

is an example of a software for statistical, population-based phasing and Merlin [7]

for genetic, pedigree-based phasing.

Driven by the advances in third-generation sequencing [8, 9, 10] and the corre-

sponding growth in read length, read-based phasing has been gaining attention [11]

because it allows to link consecutive variant alleles directly from single reads.

Read-based phasing can be formulated as the NP-hard Minimum Error Correction

problem [12]. To solve it, heuristic [13, 14, 15] and exact approaches [16, 17, 18, 19]

have been suggested, often accompanied by an implementation of the algorithm.

Arguably, the main focus has often been on creating proof-of-principle implementa-

tions, not on providing stable software. Exceptions to this are GATK’s [20] Read-

BackedPhasing command, which is one of few tools that directly support standard

Variant Call Format (VCF) files for both input and output. It can even be made

to work with long reads when the correct command-line parameters are used. Its

underlying algorithm is not published, and it is no longer maintained. HapCUT [13]

on the other hand is Open Source and even supports phasing of indels, but requires

pre-processing of input data and produces non-standard output. Recently, phASER

[21] was published with a focus on phasing from RNA sequencing data, but it can

also be used for whole genomes, even supporting standard VCF output.

For production use, a software is needed that is easy to use, gives very good

phasing results, works with standard formats (VCF and BAM), supports a variety

of sequencing technologies and is maintained. WhatsHap fulfills these criteria while
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also being based on a solid theoretical framework [4]. It can phase indels, works well

with (potentially error-prone) long reads, and can combine read-based and genetic

phasing [5]. WhatsHap is available as Open Source software under the MIT license.

It has been in production use in various research groups and is being continually

maintained and improved.

2 Algorithm and implementation
We describe the main phasing algorithm first since it is central for an understanding

of the pre-processing steps.

2.1 Phasing algorithm

WhatsHap solves the weighted minimum error correction problem (wMEC) for

diploid samples. We summarize here the previously described algorithm [4].

Conceptually, the algorithm works on a allele matrix with one column per het-

erozygous variant and one row per read. Allowed values are 0, 1 and “-”, which

denote that the read supports the reference allele, the alternative allele, or that the

read does not cover the variant, respectively. Paired-end reads occupy a single row,

but have a stretch of “-” values in the middle. The goal of the MEC problem is to

correct the smallest number of entries from 0 to 1 or vice versa such that the rows

can be partitioned into two haplotypes without conflicts. The wMEC version of the

problem allows weights in the matrix instead of only 0 and 1.

WhatsHap implements a fixed-parameter tractable (FPT) algorithm with read

coverage as fixed parameter that solves the wMEC problem. The algorithm pro-

ceeds from left to right over the variants. At each position, it considers all k reads

covering that position (for read pairs, also the middle section of the fragment with-

out sequencing data is considered to be covering) and tests all 2k possibilities of

assigning the reads to the two haplotypes. The combinations are enumerated in

Gray code order, and dynamic programing with some extra data structures is em-

ployed to avoid score recomputation, which taken together allows to update the

cost for a subsolution in constant time.

Unlike other phasing tools, the read length does not affect the runtime of Whats-

Hap, which means it is ready for the ever-longer reads that might arrive with future

generations of sequencing technology. Rather, the runtime is governed by the cov-

erage of the reads.

2.2 Read selection

To ensure that read coverage does not exceed a desired threshold, WhatsHap uses a

read selection heuristic (see [22] for details) as a pre-processing step. The heuristic

starts from a coverage of zero and greedily selects the reads most informative for

phasing in multiple rounds until the desired coverage is reached. Informative reads

are selected based on a per-read score that reflects its suitability for phasing, in

particular the number of heterozygous variants it covers. Also, a preference for

high-quality over low-quality reads is taken into account in the score. In a separate

step in each iteration, reads are added that would otherwise not be selected but

that “bridge” islands of covered variants (connected components). This includes, for

example, mate-pair reads, which have a low score because they cover few variants,
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but span long distances. Note that the two parts of a paired-end or mate-pair read

are treated as a single read with a gap in the middle.

It was previously demonstrated [22] how this strategy leads to superiour phasing

results compared to random downsampling to the desired coverage. It is particularly

powerful when feeding WhatsHap with sequencing data of mixed types, such as

combining PacBio and Illumina reads.

By default, read selection reduces coverage to 15×. Earlier experiments have

shown that the performance gain beyond that coverage is negligible since mostly

redundant information is added [23].

2.3 Detecting alleles in reads

Before actual phasing can begin, the alleles that each read supports need to be de-

tected. Variants are expected in standard Variant Call Format (VCF), and aligned

sequencing reads are provided as one or multiple BAM files. The input VCF file

contains merely a list of variants and their genotypes, possibly with aggregate infor-

mation such as the number of reads supporting the reference and alternative allele

at a variant position. To use reads covering a heterozygous variant for phasing, we

additionally need to detect for each of those reads whether it supports the reference

or alternative allele.

Two approaches for allele detection are implemented in WhatsHap, both yield a

decision of either “Reference“ (0), “Alternative” (1) or “Unknown/Cannot decide”

(-) for a single read covering a single heterozygous variant.

The first approach is to inspect existing read alignments in the BAM file: When-

ever the alignment contains a match to the reference at a SNV position, the allele

is reported as “Reference”, and if it is a mismatch with the appropriate other nu-

cleotide, it is reported as “Alternative”. A mismatch with one of the other two

nucleotides is reported as “Unknown”.

This approach has severe limitations when PacBio or Oxford Nanopore reads

are involved, which come with high error-rates around 10% that include not only

substitution errors, but equally also indel errors. As an example, assume we have

the reference sequence TCGTGT with a heterozygous G/A variant at the third

nucleotide. One optimal alignment between read TCAGT and the reference could

be:

Read: TC-AGT

Ref.: TCGTGT

Since the aligner is unaware of the alternative allele, it can place the gap at either

pos. 3 or 4 because both options result in the same alignment score (one deletion,

one mismatch), resulting in an “Unknown” allele in the shown case. Aligning to

the alternative reference instead gives a more correct alignment with a better score

(match instead of mismatch):

Read: TCA-GT

Alt.: TCATGT

Current aligners are biased towards the reference sequence since they are unaware

of the existence of the alternative allele. This leads to misdetected or undetected

alleles when the existing read alignment is trusted. Figure 1 illustrates this on real

data.
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Figure 1 Noisy sequencing data benefits from re-alignment. This screenshot from IGV
(Integrative Genomics Viewer) shows PacBio reads aligned to a G/A variant. In Read1, the
variant is covered by a deletion and would be detected as “unknown”. Re-aligning to the
alternative version of the genomic sequence (with an A) would align the read’s A on top of the
variant, and it would therefore be detected as “alternative”, which is likely the correct
explanation. Read2 supports the reference allele although an A insertion is next to the variant.
Depending on how alignment scores are chosen, re-alignment allows us to detect either the
alternative allele or to determine that both alleles are equally likely.

Read1

Read2

Read3

The second allele detection strategy in WhatsHap is therefore based on re-aligning

the read in a way similar to what some variant callers do [24]. Using the existing

alignment, WhatsHap first extracts the read sequence in a window around the

variant (from 10 bp upstream to 10 bp downstream). It then aligns that sequence to

the corresponding section in the reference and also to an artificially created sequence

that represents how the reference would look like if it incorporated the alternative

allele. The allele with a higher alignment score is then assumed to be supported by

the read; for equal scores, the result is “Unknown”.

This strategy has multiple advantages: It not only improves phasing performance

significantly for noisy long-read data (see evaluation), but as a highly desirable

side-effect, the same algorithm allows us to detect and therefore phase indels and

multi-nucleotide variants without extra implementation effort. In fact, any variant

given by reference and alternative allele in the input VCF file, that is, everything

excluding structural variants, can be detected by the re-alignment method.

While re-alignment is slower in theory, it is conceptually simpler, which allowed

us to spend more time on optimizing the code. Thus, in our implementation, it does

not incur any runtime overhead compared to the alignment-inspecting version.

2.4 Software engineering

The command-line front-end of WhatsHap is written in Python 3 due to its sim-

plicity and maintainability. The core dynamic programming algorithm that solves

the wMEC (or PedMEC) problem is implemented in C++. The interface between

Python and C++ is written in Cython, which is a Python dialect that compiles

directly to C/C++ (http://www.cython.org/). Other performance-critical parts

have been implemented directly in Cython, such as the re-alignment algorithm.

External libraries used include PyVCF (https://github.com/jamescasbon/

PyVCF), pysam (https://github.com/pysam-developers/pysam) and pyfaidx

[25].
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2.5 Usage and file formats

WhatsHap is easily installed from the Python Package Index (PyPI) or Conda’s

bioconda channel (https://bioconda.github.io/) with a single pip3 install

or conda install command.

WhatsHap is a command-line tool that expects – in the common case – a single

Variant Call Format (VCF) file and one or more BAM files as input. The command

whatshap phase -o phased.vcf input.vcf input.bam is typically sufficient for

phasing in non-pedigree mode. Instead of BAM, phasing information can be pro-

vided to WhatsHap also as phased VCF files, such as those generated by 10X

Genomics’ phasing pipeline, and already phased blocks are then treated as “reads”.

Whatshap phases all samples it finds in a multi-sample VCF, using BAM read

groups and VCF sample names to associate each read to its originating sample.

Input reads – even those from a single sample – can be distributed over several

BAM (or phased VCF) files, and may use different sequencing technologies. For

example, PacBio, Illumina mate-pair reads, and 10X Genomics phased blocks can

be used simultaneously for phasing.

WhatsHap outputs an augmented version of the input VCF file, where phasing

information for those variants that could be phased has been added. The standard-

ized “PS” tag (phase set) is used to encode phasing results by default. The “HP”

tag – compatible with GATK ReadBackedPhasing output – is also supported.

2.6 Combining read-based and genetic phasing

The core algorithm for solving the wMEC [4], and most of the features we have

outlined thus far involve the phasing of a single individual. Recentely, Garg et al. [5]

have extended the wMEC formalization to exploit pedigree information between a

set of related individuals, referred to as PedMEC, and integrated a pedigree phasing

mode into WhatsHap.

Given multiple samples, the corresponding reads, and a pedigree describing the

relationship between samples, a solution to the PedMEC problem minimizes error

corrections (like wMEC) in such a way that the Mendelian rules of inheritance

imposed by the pedigree are respected and that a minimum recombination cost is

incurred.

Pedigree-aware phasing thus makes use of the fact that the haplotypes of a child

are a recombination of the parental haplotypes. Combining read-based and genetic

phasing is principally more powerful than either method alone: Read-based phasing

is limited by read length while genetic phasing, on the other hand, cannot phase

variants that are heterozygous in all samples, and it cannot find recombination

breakpoints.

Recall that WhatsHap can phase multiple samples that are not related if pro-

vided with a multi-sample VCF file and appropriate reads in one or more BAM or

phased VCF files. WhatsHap switches to the combined read-based/pedigree phas-

ing algorithm if it is additionally supplied with a PED file (see http://pngu.

mgh.harvard.edu/~purcell/plink/data.shtml) that describes the relationship

between the samples. Recombination events are by default assumed to be equally

likely at any position. For more realistic modeling of, for example, recombination

hotspots, a vector of recombination rates along the genome (genetic map) can op-

tionally be given.
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We have demonstrated earlier [5] that adding pedigree information boosts accu-

racy immensely. In some cases, the accuracy attained with 15× coverage on a single

individual can be achieved with just 2× coverage when a mother–father–child trio

is provided.

When in pedigree mode, even variants that are not connected by any read in any

sample can often be connected correctly based on pedigree information, in the best

case allowing to obtain chromosome-length haplotypes when phasing families.

2.7 Supporting tools

Beyond phasing, WhatsHap comes with a collection of other functionalities to han-

dle phasing data. These functionalities are available as sub-commands, allowing to

conveniently combine them into larger analysis pipelines. Available sub-commands

include “unphase” to remove all phasing information present in a VCF file; “stats”

to compute statistics on a phased VCF such as the number of (un)phased variants,

number of phased blocks, and minimum/maximum/average block size; and “com-

pare” to compare two or more phased VCFs with respect to pair-wise switch/flip

errors, but also with respect to a simultaneous comparison of multiple phasings. The

sub-command “haplotag” uses a phased VCF to add tags to each read in a BAM

file that indicate which haplotype it belongs to. This allows further processing, such

as splitting the reads into two BAM files according to haplotype, or to color-code

reads by haplotype in a genome browser (as for example seen in Figure 1).

3 Results
3.1 Experimental setup

We evaluate WhatsHap and other phasing tools on both real and simulated datasets.

The setup we explain in the following is similar to the one described earlier [5].

Real data. As evaluation sample, we chose the child (NA24385) of the Ashkenazim

trio sequenced by the Genome in a Bottle Consortium (GIAB) [26]. We downloaded

a consensus genotype call set (NIST CallsIn2Technologies 05182015) for chromo-

some 1, containing 48 023 heterozygous SNVs and 4 265 heterozygous non-SNVs.

We refer to these variants as ground truth unphased variants. We phased all these

variants with the population-based phasing tool SHAPEIT (v2-r837) [27] with de-

fault parameters, using the reference panel provided by Phase 3 of the 1000 Genomes

Project. We refer to them as ground truth phased variants. Furthermore, we use the

Pacific Biosciences (PacBio) reads from GIAB aligned to chromosome 1. They have

an average coverage of 60.2× and average mapped read-length of 8 687 bp. To ana-

lyze the effect of sequencing depth on phasing performance, we created additional

datasets by downsampling the aligned reads to average coverages of 2×, 3×, 4×,

5×, 10× and 15×.

Simulated data. While population-based phasing is very accurate, it has limita-

tions with respect to low-frequency variants. Since our ground truth phasing will

therefore not be completely error free, we complement our evaluation with a sim-

ulation study. To this end, we generated two haplotypes of a “virtual child” by

recombining the haplotypes of the parents NA24143 and NA24149 in silico as de-

scribed previously [5]. The resulting virtual child has 45 625 heterozygous variants
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with known phasing (ground truth), containing 42 062 SNVs and 3 563 non-SNVs.

Next, we incorporated these true variants into the GRCh37 reference genome to

obtain two FASTA files representing the true haplotypes. We simulated reads that

mimic the read length profile and coverage of the real data using pbsim [28]. The

resulting reads were then aligned to GRCh37 using BWA-MEM (0.7.12-r1039) [29].

Similar to the real dataset, we further downsampled the aligned reads to average

coverages of 2×, 3×, 4×, 5×, 10×, and 15×.

3.2 Tools

We compared WhatsHap to other phasing tools that we were able to get to work

with a reasonable effort of trying, which forced us to omit some tools. We settled

on the ReadBackedPhasing component of the Genome Analysis Toolkit (GATK)

[20]), hapCUT [13] and phASER [21]. We used ReadBackedPhasing as distributed

with GATK v3.5-0-g36282e4, Git revision 844af08c of hapCUT (reporting as version

0.7), revision 8608e1d of phASER (version 0.8) with a fix for CIGAR hard-clipping

available in pull request #14, and revision 09326a5 (version 0.12) of WhatsHap.

ReadBackedPhasing failed to phase any variants in PacBio data with default

settings, and there is no official recommendation for the correct settings[1]. We

therefore tried 144 parameter combinations on a subset of the data and determined

that using options --phaseQualityThresh 1 and --min base quality score 1

gives the best results.

Since hapCUT does not produce VCF, but a custom output format, we imple-

mented a WhatsHap subcommand “hapcut2vcf” that converts the custom format

to VCF. We did not use hapCUT’s --longreads option since the help states that

it should be set if the “program uses too much memory”, which was not the case.

We ran all programs both with and without requesting phasing of non-SNVs

(mostly indels), except ReadBackedPhasing, which does not support indel phasing.

WhatsHap was additionally run in a non-realignment mode, in which it also does

not support non-SNV phasing.

3.3 Measuring performance

We describe here performance metrics that we use to evaluate phasing accuracy

and completeness of the different tools.

For phasing completeness, we need to consider that read-based requires reads

covering two heterozygous variants. The result is therefore a partition of the list of

variants into haplotype blocks, within which all of the variants are phased relative

to each other. In the ideal case, these blocks would correspond to connected com-

ponents of a connectivity graph, which is a graph with heterozygous variants as the

nodes and where an edge is drawn between two variants if a read exists that covers

both. In practice, different tools may choose to not use some reads or may have dif-

ferent notions of connectivity and will therefore output haplotype blocks that are

more fragmented. Note that haplotype blocks are not necessarily contiguous. When

paired-end or mate-pair reads are involved, they may not connect adjacent variants

and may even be nested or interleaved. A haplotype block with only a single variant

is a singleton.

[1]http://gatkforums.broadinstitute.org/gatk/discussion/7129/
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Figure 2 Integrative phasing of SNVs and non-SNVs. Heterozygous variants are shown along a
chromosome, together with reads covering them (grey bars) and resulting phased blocks (red
bars). For each of the three panels, the number of phase connections is given, which for a single
block is its number of variants minues 1. Examples are shown when only phasing SNVs (top),
when only phasing indels (middle) and when using both simultaneously (bottom).
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In a VCF file, haplotype blocks are called phase sets and have a unique identifier,

which is attached to a genotype using the PS tag.

In a block of size k, we say that there are k−1 phase connections between adjacent

variants, assuming the variants are sorted by position. In our evaluation, we count

phase connections because they take the block structure into account; the number

of phase connections is equal to the number of phased variants minus the number

of blocks.

In our results, we will give the phase connection ratio, which is the total number

of phase connections divided by the possible number of phase connections (n − 1

for a chromosome with n heterozygous variants).

Phase can be seen as a relationship between variants along a phase connection:

It can be either cis, meaning that the alleles are on the same haplotype or trans if

they are on different haplotypes.

Errors within phased blocks are counted in terms of switch errors, which occur

when the meaning of cis/trans is reversed from one point on forward within a block.

Switch errors are calculated by traversing the haplotype blocks from left to right and

computing the number of times a jump is needed from one haplotype to the other

in order to reconstruct the true haplotype. Note that flip errors (an isolated variant

assigned to the wrong haplotype) are counted as two switch errors in this model.

For the phasing error rate, we sum the switch errors over all blocks and divide by

the total number of phase connections. Switch errors are detected by comparison

with the ground truth phasing (SHAPEIT result or simulated known phasing).
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Figure 3 Phasing switch errors on simulated and real PacBio data, SNVs only. All tools give
fewer errors with increasing coverage. phASER at full coverage is not shown since the run did not
complete within 24 hours. Note logarithmic scaling of the y axis, which emphasizes the difficulty
of lowering the error rate the closer it already is to zero.
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3.4 Results on SNVs only

As one would expect, the five evaluated algorithms consistently perform better

when coverage increases. For both simulated and real data, switch error rate de-

creases (Figure 3) and the phase connection ratio increases (Figure 4).

WhatsHap with the re-alignment algorithm is clearly the tool with the lowest

switch error rate at all coverages. In real data and at full coverage, it achieves a

switch error rate of 0.24%. The second best is WhatsHap without realignment at

0.48% and full coverage. While the phASER run for full coverage did not finish

within 24 hours, the trend shows that phASER could possibly also achieve a rate

of around 0.5% in this data set.

For simulated data, the shapes of curves and the resulting ranking of tools is iden-

tical, suggesting that the simulation pipeline mimics realistic conditions. WhatsHap

achieves an extremely low error rate of 0.02%, corresponding to just eight switch er-

rors at full coverage. Second best is WhatsHap without re-alignment at 0.3% switch

error rate in simulated data. Again, phASER might have been able to achieve similar

rates if we had waited longer than 24 hours.

Of note is that the switch error rate curves look nearly identical in simulated

and real data, except that they are shifted by one order of magnitude towards

higher errors in real data. Recall that phasing errors in real data are computed by

comparison to the phasing made by SHAPEIT. Statistical phasing is not perfect

and makes errors at rare and de novo variants. Therefore, some “baseline” errors

remaining for all tools in real data may actually be explained by errors made by

SHAPEIT.

Figure 4 shows how many phase connections the tools were able to make. All tools,

as expected, connect more variants when coverage increases. At first sight, Read-

BackedPhasing seems to be the winner as it connects more variants than the other
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Figure 4 Completeness of phasing on simulated and real PacBio data, SNVs only. All tools
make more phase connections as coverage increases. phASER at full coverage is not shown since
the run did not complete within 24 hours. The results for ReadBackedPhasing are higher than
theoretically possible, see main text.
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tools. Already at coverage 5, it connects ca. 95% of all variants in both real and sim-

ulated data. However, when we inspected the haplotype blocks it outputs together

with the reads and variants in IGV, we found examples where ReadBackedPhasing

put variants into the same phased block that clearly had no direct or indirect con-

nection by any reads. We can only presume that ReadBackedPhasing sometimes

connects variants that are not connected by reads.

Another indication that the results are unrealistic for a purely read-based phaser

is that the haplotype blocks that WhatsHap outputs are actually the connected

components of the selected reads. Up to an average coverage of around 15, when

WhatsHap keeps nearly all reads, the WhatsHap curve therefore represents the best

possible phase connection ratio given the reads. Since ReadBackedPhasing shows a

higher ratio, it clearly obtains haplotype blocks that are larger than theoretically

possible, obtained at the expense of a higher switch error rate.

Of all the tools, the two WhatsHap algorithms come therefore closest to the

theoretically best possible phase connection ratio.

3.5 Results on non-SNVs

WhatsHap, hapCUT and phASER are able to phase insertions and deletions.

WhatsHap additionally phases “complex” variants such as CGA → CTCC that are

neither SNV, insertion nor deletion (WhatsHap does not phase structural varia-

tions).

To assess how the three tools handle non-SNVs, we compare the results for phasing

only SNVs to the results for jointly phasing both SNVs and non-SNVs. Figure 6

illustrates that we not only expect to see additionally phased non-SNVs, but also

an increase in the number of phased SNVs as previously unconnected blocks can

become connected due to reads that cover SNVs as well as non-SNVs. Note that
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Figure 5 Additional switch errors when phasing non-SNVs. Enabling phasing of non-SNVs, the
number of phased variants increases (∆p), but so does the number of switch errors (∆e). The y

axis shows ∆p
∆e

.
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phasing only non-SNVs is not useful for assessing performance as this will lead

to an extremely fragmented phasing (even long reads rarely cover more than one

non-SNV).

When phasing of non-SNVs is enabled, the number of phased variants increases

(∆p), but so does the number of switch errors (∆e). We define the switch error

rate over additionally phased variants as the number of additional switch errors

divided by the number of additionally phased variants, ∆p
∆e . The quantity can be

interpreted similar to a phasing error rate, but it takes into account not only switch

errors among the phased non-SNVs, but even additional errors among SNVs. Also,

since ∆e explicitly includes SNVs, any loss of previously phased SNVs is reflected

by an increases of ratio. For example, a rate of 10% means that ten additionally

phased variants come at a price of one additional switch error.

As we can see in Figure 5, the switch error rate over additionally phased variants is

in general much higher than the switch error rate in the SNV-only case. Regardless

of coverage, HapCUT and phASER are at a rate of over 20%. That is, every fifth

additionally phased variant introduces an additional switch error.

WhatsHap is clearly the best of the tools, achieving a rate of 3.8% in simulated

data and 8.3% in real data at full coverage. As mentioned before, part of the errors

in real data might be explained by errors in the ground truth phasing. However,

even on simulated date the switch error rates in the SNV-only case are at least

an order of magnitude lower, which indicates that phasing of non-SNVs is more

difficult than phasing SNVs.

Finally, Figure 6 shows how many non-SNVs could actually be phased by the

programs when instructed to do so. WhatsHap is again the best choice at any

coverage. At full coverage, WhatsHap is able to phase 97% of all non-SNVs in both

simulated and real data, while none of the other tools reach more than 90% phased

non-SNVs.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 2, 2016. ; https://doi.org/10.1101/085050doi: bioRxiv preprint 

https://doi.org/10.1101/085050
http://creativecommons.org/licenses/by/4.0/


Martin et al. Page 13 of 16

Figure 6 Fraction of non-SNVs that can be phased. The y axis shows how many non-SNVs were
phased by each relative to the total number of heterozygous non-SNVs in the dataset.
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Table 1 Running time of phasing tools on human chromosome 1, measured on the artificial child
dataset. Values given are in CPU seconds, actual (wall-clock) times are higher due to I/O.

Coverage 2× 3× 4× 5× 10× 15× all

WhatsHap 75 95 119 142 323 630 969

WhatsHap (no re-align) 163 223 222 353 770 1249 2028

hapCUT 75 122 155 186 284 400 543

ReadBackedPhasing 352 481 573 655 967 1375 2044

phASER 1356 1806 2082 2056 2838 3245 4302

3.6 Runtime

We measured running time of all tools on the artificial child dataset, chromosome 1.

To be able to include all tools, only SNVs were phased. For those tools supporting

non-SNV phasing, the rankings are identical with only slightly higher runtimes.

Results can be seen in Table 1.

WhatsHap’s runtime is clearly competitive with those of the other tools. At all

coverages, WhatsHap or hapCUT is the fastest tool. HapCUT has an advantage

at high coverages, while WhatsHap is faster at low coverages. WhatsHap runtimes

in “no re-alignment” mode are also given for completeness and due to it being

slower than the re-aligment variant of the algorithm, we can see that the additional

optimization efforts that went into the algorithm have paid off.

The two other tools hapCUT and phASER consistently have the highest runtimes.

4 Discussion and Conclusions
The benefit of using long reads for the purpose of phasing is obvious, but it is hard to

actually achieve the benefits using existing tools which have not been designed with

error-prone long reads in mind. WhatsHap is a production-ready tool for read-based

phasing that shows superior performance at any coverage level, in particular with

long reads. Its phasing results are both the most complete and the most accurate

compared to the other tested tools. While non-SNVs still present a challenge for
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phasing tools, WhatsHap even here outperforms other tools in terms of both phasing

completeness and accuracy.

WhatsHap’s core algorithm is based on a sound theoretical framework [4] that

delivers optimal solutions to the wMEC or PedMEC problem. In terms of accuracy,

the results are therefore optimal for any algorithm based on the wMEC formulation.

The FPT formulation with coverage as parameter in combination with a heuristic

read selection algorithm results in an implementation that is fast in practice, and

indeed we see that runtimes are dominated by I/O operations, not by the phasing

algorithm itself.

The program’s ability to integrate read-based and pedigree phasing is unique and

is the perfect match for studies in which family trios are sequenced. As shown

earlier [5], the phasing results obtained in such a setting outperform non-integrated

approaches, while reducing the needed overall coverage to as low as 2×.

While our perception may be biased, we also consider WhatsHap to be the tool

that is easiest to use. Options are set to sensible defaults and typically do not need

to be changed by the user. Input formats are recognized automatically, and output

is standards-compliant VCF, ready to be consumed by other tools. The ability of

using phased VCFs as input allows interesting use cases such as “merging” phasing

results. In fact, reads from any sequencing technology and previously-phased data

are supported, allowing to combine data from Illumina (paired-end and mate-pairs),

PacBio, Oxford Nanopore, 10X Genomics at will.

WhatsHap even comes with a set of extra tools that help in analyzing phasing

results, such as obtaining statistics from phased VCFs or comparing them.

4.1 Limitations

WhatsHap ignores supplementary alignments. These occur when a read aligns to

sufficently different parts of the reference such that the alignment needs to be split

up into multiple parts. With reference sequences that have lower quality than the

human one or that are for a more diverse species, this is more likely to happen.

4.2 Future work

WhatsHap is improved continually, especially in terms of performance, speed and

the ability to work with a wide range of types of input data. For example, we

have nearly finished work on a pure genetic phasing mode in which no reads are

required as input if a pedigree of samples is available. More challenging will be to

integrate read-based and population-based phasing. In the same way that genetic

phasing helps to bridge regions insufficiently covered by reads in related samples,

population-based phasing can help in the same way even in single samples. Over

time, we predict that phasing tools will necessarily have to focus more on these

integrative approaches that make best use of all available data.

4.3 Software availability

WhatsHap is available as Open Source software under the MIT license. The home

page at https://whatshap.readthedocs.io/ contains documentation and instal-

lation instructions. Supported operating systems include Linux and OS X. Instal-

lation requires Python 3.3 or later and a working C/C++ compiler.
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