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Abstract 

GenBank, the EMBL European Nucleotide Archive, and the DNA DataBank of Japan, known 

collectively as the International Nucleotide Sequence Database Collaboration or INSDC, are the three 

most significant nucleotide sequence databases. Their records are derived from laboratory work 

undertaken by different individuals, by different teams, with a range of technologies and assumptions, 

and over a period of decades. As a consequence, they contain a great many duplicates, redundancies, 

and inconsistencies, but neither the prevalence nor the characteristics of various types of duplicates 

have been rigorously assessed. Existing duplicate detection methods in bioinformatics only address 

specific duplicate types, with inconsistent assumptions; and the impact of duplicates in bioinformatics 

databases has not been carefully assessed, making it difficult to judge the value of such methods. Our 

goal is to assess the scale, kinds, and impact of duplicates in bioinformatics databases, through a 

retrospective analysis of merged groups in INSDC databases. Our outcomes are threefold: (1) We 

analyse a benchmark dataset consisting of duplicates manually identified in INSDC – a dataset of 

67,888 merged groups with 111,823 duplicate pairs across 21 organisms from INSDC databases – in 

terms of the prevalence, types, and impacts of duplicates. (2) We categorise duplicates at both 

sequence and annotation level, with supporting quantitative statistics, showing that different 

organisms have different prevalence of distinct kinds of duplicate. (3) We show that the presence of 

duplicates has practical impact via a simple case study on duplicates, in terms of GC content and 

melting temperature. We demonstrate that duplicates not only introduce redundancy, but can lead to 

inconsistent results for certain tasks. Our findings lead to a better understanding of the problem of 

duplication in biological databases. 

1. Introduction  

Many kinds of database contain multiple instances of records. These instances may be identical, or 

may be similar but with inconsistencies; in traditional database contexts, this means that the same 

entity may be described in conflicting ways. In this paper, as elsewhere in the literature, we refer to 

such repetitions – whether redundant or inconsistent – as duplicates. The presence of any of these 

kinds of duplicate has the potential to confound analysis that aggregates or reasons from the data. 

Thus it is valuable to understand the extent and kind of duplication, and to have methods for 

managing it. 
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We regard two records as duplicates if, in the context of a particular task, the presence of one means 

that the other is not required. Duplicates are an ongoing data quality problem reported in diverse 

domains, including business (1), health care (2), and molecular biology (3). The five most severe data 

quality issues in general domains have been identified as redundancy, inconsistency, inaccuracy, 

incompleteness, and untimeliness (4). We must consider whether these issues also occur in nucleotide 

sequence databases. 

GenBank, the EMBL European Nucleotide Archive (ENA), and the DNA DataBank of Japan (DDBJ), 

the three most significant nucleotide sequence databases, together form the International Nucleotide 

Sequence Database Collaboration (INSDC) (5). The problem of duplication in the bioinformatics 

domain is in some respects more acute than in general databases, as the underlying entities being 

modelled are imperfectly defined, and scientific understanding of them is changing over time. As 

early as 1996, data quality problems in sequence databases were observed, and concerns were raised 

that these errors may affect the interpretation (6). However, data quality problems persist, and current 

strategies for cleansing do not scale (7). Technological advances have led to rapid generation of 

genomic data. Data is exchanged between repositories that have different standards for inclusion. 

Ontologies are changing over time, as are data generation and validation methodologies. Data from 

different individual organisms, with genomic variations, may be conflated, while some data that is 

apparently duplicated – such as identical sequences from different individuals, or even different 

species – may in fact not be redundant at all. The same gene may be stored multiple times with 

flanking regions of different length, or, more perniciously, with different annotations. In the absence 

of a thorough study of the prevalence and kind of such issues, it is not known what impact they might 

have in practical biological investigations. 

A range of duplicate detection methods for biological databases have been proposed (8-18). However, 

this existing work has defined duplicates in inconsistent ways, usually in the context of a specific 

method for duplicate detection. For example, some define duplicates solely on the basis of gene 

sequence identity, while others also consider metadata. These studies addressed only some of the 

kinds of duplication, and neither the prevalence nor the characteristics of different kinds of duplicate 

were measured. 

A further, fundamental issue is that duplication (redundancy or inconsistency) cannot be defined 

purely in terms of the content of a database. A pair of records might only be regarded as duplicates in 

the context of a particular application. For example, two records that report the coding sequence for a 

protein may be redundant for tasks that concern RNA expression, but not redundant for tasks that seek 

to identify their (different) locations in the genome. Methods that seek to de-duplicate databases based 

on specific assumptions about how the data is to be used will have unquantified, potentially 

deleterious, impact on other uses of the same data. 

Thus definitions of duplicates, redundancy, and inconsistency depend on context. In standard 

databases, a duplicate occurs when a unique entity is represented multiple times. In bioinformatics 

databases, duplicates have different representations, and the definition of ‘entity’ may be unclear. 

Also, duplicates arise in a variety of ways. The same data can be submitted by different research 

groups to a database multiple times, or to different databases without cross-reference. An updated 

version of a record can be entered while the old version still remains. Or there may be records 

representing the same entity, but with different sequences or different annotations. 

Duplication can affect use of INSDC databases in a variety of ways. A simple example is that 

redundancy (such as records with near-identical sequences and consistent annotations) creates 
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inefficiency, both in automatic processes such as search, and in manual assessment of the results of 

search. 

More significantly, sequences or annotations that are inconsistent can affect analyses such as 

quantification of the correlation between coding and non-coding sequences (19), or finding of repeat 

sequence markers (20). Inconsistencies in functional annotations (21) have the potential to be 

confusing; despite this, an assessment of 37 North American branchiobdellidans records concluded 

that nearly half are inconsistent with the latest taxonomy (22). Function assignments may rely on the 

assumption that similar sequences have similar function (23), but repeated sequences may bias the 

output sequences from the database searches (24). 

Why care about duplicates?  

Research in other disciplines has emphasised the importance of studying duplicates. Here we 

assemble comments on the impacts of duplicates in biological databases, derived from public or 

published material and curator interviews:  

(1) Duplicates lead to redundancies: ‘Automated analyses contain a significant amount of redundant 

data and therefore violate the principles of normalization… In a typical Illumina Genomestudio 

results file 63% of the output file is composed of unnecessarily redundant data’ (25). ‘High 

redundancy led to an increase in the size of UniProtKB (TrEMBL), and thus to the amount of data 

to be processed internally and by our users, but also to repetitive results in BLAST searches … 

46.9 million (redundant) entries were removed (in 2015).’
1
 We explain the TrEMBL redundancy 

issue in detail below. 

(2) Duplicates lead to inconsistencies: ‘Duplicated samples might provide a false sense of 

confidence in a result, which is in fact only supported by one experimental data point’ (26), ‘two 

genes are present in the duplicated syntenic regions, but not listed as duplicates (true duplicates 

but are not labelled). This might be due to local sequence rearrangements that can influence the 

results of global synteny analysis’ (25). 

(3) Duplicates waste curation effort and impair data quality: ‘for UniProtKB/SwissProt, as 

everything is checked manually, duplication has impacts in terms of curation time. For 

UniProtKB/TrEMBL, as it (duplication) is not manually curated, it will impact quality of the 

dataset’.
2
  

(4) Duplicates have propagated impacts even after being detected or removed: ‘Highlighting and 

resolving missing, duplicate or inconsistent fields … ~20% of (these) errors require additional 

rebuild time and effort from both developer and biologist’ (27), ‘The removal of bacterial 

redundancy in UniProtKB (and normal flux in protein) would have meant that nearly all (>90%) 

of Pfam (a highly curated protein family database using UniProtKB data) seed alignments would 

have needed manual verification (and potential modification) …This imposes a significant 

manual biocuration burden’ (28). 

The presence of duplicates is not always problematic, however. For instance, the purpose of the 

INSDC databases is mainly to archive nucleotide records. Arguably, duplicates are not a significant 

concern from an archival perspective; indeed the presence of a duplicate may indicate that a result has 

been reproduced and should be viewed as confident. That is, duplicates can be evidence for 

correctness. Recognition of such duplicates supports record linkage and helps researchers to verify 

their sequencing and annotation processes. However, there is an implicit assumption that those 

                                                           
1
 http://www.uniprot.org/help/proteome_redundancy. 

2
 Quoted from Sylvain Poux, leader of manual curation and quality control in SwissProt. 
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duplicates have been labelled accurately. Without labelling, those duplicates may confuse users, 

whether or not the records represent the same entities. 

To summarise, the question of duplication is context-dependent, and its significance varies in these 

contexts: different biological databases, different biocuration processes, and different biological tasks. 

But it is clear that we should still be concerned about duplicates in INSDC. Over 95% of UniProtKB 

data are from INSDC and parts of UniProtKB are heavily curated; hence duplicates in INSDC would 

delay the curation time and waste curation effort in this case. Furthermore, its archival nature does not 

limit the potential uses of the data; other uses may be impacted by duplicates. Thus it remains 

important to understand the nature of duplication in INSDC. 

In this paper, we analyse the scale, kind and impacts of duplicates in nucleotide databases, to seek 

better understanding of the problem of duplication. We focus on INSDC records that have been 

reported as duplicates by manual processes and then merged. As advised to us by database staff, 

submitters spot duplicates and are the major means of quality checking in these databases; duplicates 

are also reported by other users, and in some cases directly identified by curators. Revision histories 

of records track the merges of duplicates. Based on an investigation of the revision history, we 

collected and analysed 67,888 merged groups containing 111,823 duplicate pairs, across 21 major 

organisms. This is one of three benchmarks of duplicates that we have constructed (53). While it is the 

smallest and most narrowly defined of the three benchmarks, it allows us to investigate the nature of 

duplication in INSDC as it arises during generation and submission of biological sequences, and 

facilitates understanding the value of later curation. 

Our analysis demonstrates that various duplicate types are present, and that their prevalence varies 

between organisms. We also consider how different duplicate types may impact biological studies. 

We provide a case study, an assessment of sequence GC content and of melting point, to demonstrate 

the potential impact of various kinds of duplicates. We show that the presence of duplicates can alter 

the results, and thus demonstrate the need for accurate recognition and management of duplicates in 

genomic databases. 

2. Background 

While the task of detecting duplicate records in biological databases has been explored, previous 

studies have made a range of inconsistent assumptions about duplicates. Here, we review and 

compare these prior studies. 

2.1 Definitions of duplication 

In the introduction, we described repeated, redundant, and inconsistent records as duplicates. We use 

a broad definition of duplicates because no precise technical definition will be valid in all contexts. 

‘Duplicate’ is often used to mean that two (or more) records refer to the same entity, but this leads to 

two further definitional problems: determining what ‘entities’ are and what ‘same’ means. 

Considering a simple example, if two records have the same nucleotide sequences, are they duplicates? 

Some people may argue that they are, because they have exactly the same sequences, but others may 

disagree because they could come from different organisms. 

These kinds of variation in perspective have led to a great deal of inconsistency. Table 1 shows a list 

of biological databases from 2009 to 2015 and their corresponding definitions of duplicates. We 

extracted the definition of duplicates, if clearly provided; alternatively, we interpreted the definition 

based on the examples of duplicates or other related descriptions from the database documentation. It 
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can be observed that the definition dramatically varies between databases, even those in the same 

domain. Therefore we reflectively use a broader definition of duplicates rather than an explicit or 

narrow one. In this work we consider records that have been merged during a manual or semi-

automatic review as duplicates. We explain the characteristics of the merged record dataset in detail 

later. 

Table 1. Definitions of ‘duplicate’ in genomic databases from 2009 to 2015 

Database Domain Interpretation of the term ‘duplicate’  

(29) biomolecular 

interaction 

network 

repeated interactions between protein to protein, protein to 

DNA, gene to gene; same interactions but in different 

organism-specific files 

(30) gene annotation (near) identical genes; fragments; incomplete gene duplication; 

and different stages of gene duplication 

(31) gene annotation near or identical coding genes 

(32) 
gene annotation 

same measurements on different tissues for gene expression 

(33) genome 

characterization 

records with same meta data; same records with inconsistent 

meta data; same or inconsistent record submissions  

(34) 
genome 

characterization 

create a new record with the configuration of a selected record 

(35) 
ligand for drug 

discovery 

records with multiple synonyms; for example, same entries for 

TR4 (Testicular Receptor 4) but some used a synonym TAK1 

(a shared name) rather than TR4 

(36) peptidase 

cleavages 

cleavages being mapped into wrong residues or sequences 

Databases in the same domain, for example gene annotation, may be specialized for different perspectives, such as 

annotations on genes in different organisms or different functions, but they arguably belong to the same broad 

domain. 

 

A pragmatic definition for duplication is that a pair of records A and B are duplicates if the presence 

of A means that B is not required, that is, B is redundant in the context of a specific task or is 

superseded by A. This is, after all, the basis of much record merging, and encompasses many of the 

forms of duplicate we have observed in the literature. Such a definition provides a basis for exploring 

alternative technical definitions of what constitutes a duplicate and provides a conceptual basis for 

exploring duplicate detection mechanisms. We recognise that (counterintuitively) this definition is 

asymmetric, but it reflects the in-practice treatment of duplicates in the INSDC databases. We also 

recognize that the definition is imperfect, but the aim of our work is to establish a shared 

understanding of the problem, and it is our view that a definition of this kind provides a valuable first 

step. 

2.2 Duplicates based on a simple similarity threshold (redundancies) 

In some previous work, a single sequence similarity threshold is used to find duplicates 

(8,9,11,14,16,18). In this work, duplicates are typically defined as records with sequence similarity 
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over a certain threshold, and other factors are not considered. These kinds of duplicates are often 

referred to as approximate duplicates or near duplicates (37), and are interchangeable with 

redundancies. For instance, one study located all records with over 90% mutual sequence identity (11). 

(A definition that allows efficient implementation, but is clearly poor from the point of view of the 

meaning of the data; an argument that 90% similar sequences are duplicated, but that 89% similar 

sequences are not, does not reflect biological reality.) A sequence identity threshold also applies in the 

CD-HIT method for sequence clustering, where it is assumed that duplicates have over 90% sequence 

identity (38). The sequence-based approach also forms the basis of the non-redundant database used 

for BLAST (39). 

Methods based on the assumption that duplication is equivalent to high sequence similarity usually 

share two characteristics. First, efficiency is the highest priority; the goal is to handle large datasets. 

While some of these methods also consider sensitivity (40), efficiency is still the major concern. 

Second, in order to achieve efficiency, many methods apply heuristics to eliminate unnecessary 

pairwise comparisons. For example, CD-HIT estimates the sequence identity by word (short substring) 

counting and only applies sequence alignment if the pair is expected to have high identity. 

However, duplication is not simply redundancy. Records with similar sequences are not necessarily 

duplicates and vice versa. As we will show later, some of the duplicates we study are records with 

close to exactly identical sequences, but other types also exist. Thus use of a simple similarity 

threshold may mistakenly merge distinct records with similar sequences (false positives) and likewise 

may fail to merge duplicates with different sequences (false negatives). Both are problematic in 

specific studies (41,42). 

2.3 Duplicates based on expert labelling  

A simple threshold can find only one kind of duplicate, while others are ignored. Previous work on 

duplicate detection has acknowledged that expert curation is the best strategy for determining 

duplicates, due to the rich experience, human intuition and the possibility of checking external 

resources that experts bring (43-45). Methods using human-generated labels aim to detect duplicates 

precisely, either to build models to mimic expert curation behaviour (44), or to use expert curated 

datasets to quantify method performance (46).They can find more diverse types than using a simple 

threshold, but are still not able to capture the diversity of duplication in biological databases. The 

prevalence and characteristics of each duplicate type are still not clear. This lack of identified scope 

introduces restrictions that, as we will demonstrate, impair duplicate detection. 

Korning et al. (13) identified two types of duplicates: the same gene submitted multiple times (near-

identical sequences), and different genes belonging to the same family. In the latter case, the authors 

argue that, since such genes are highly related, one of them is sufficient to represent the others. 

However, this assumption that only one version is required is task-dependent; as noted in the 

introduction, for other tasks the existence of multiple versions is significant. To our knowledge, this is 

the first published work that identified different kinds of duplicates in bioinformatics databases, but 

the impact, prevalence, and characteristics of the types of duplicates they identify is not discussed.  

Koh et al. (12) separated the fields of each gene record, such as species and sequences, and measured 

the similarities among these fields. They then applied association rule mining to pairs of duplicates 

using the values of these fields as features. In this way, they characterized duplicates in terms of 

specific attributes and their combination. The classes of duplicates considered were broader than 

Korning et al.’s, but are primarily records containing the same sequence, specifically: (1) the same 
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sequence submitted to different databases; (2) the same sequence submitted to the same database 

multiple times; (3) the same sequence with different annotations; and (4) partial records. This means 

that the (near-)identity of the sequence dominates the mined rules. Indeed, the top ten rules generated 

from Koh et al.’s analysis share the feature that the sequences have exact (100%) sequence identity. 

This classification is also used in other work (10,15,17), which therefore has the same limitation. This 

work again does not consider the prevalence and characteristics of the various duplicate types. While 

Koh has a more detailed classification in her thesis (47), the problem of characterization of duplicates 

remains. 

In this previous work, the potential impact on bioinformatics analysis caused by duplicates in gene 

databases is not quantified. Many refer to the work of Muller et al. (7) on data quality, but Muller et al. 

do not encourage the study of duplicates; indeed, they claim that duplicates do not interfere with 

interpretation, and even suggest that duplicates may in fact have a positive impact, by ‘providing 

evidence of correctness’. However, the paper does not provide definitions or examples of duplicates, 

nor does it provide case studies to justify these claims. 

2.4 Duplication persists due to its complexity 

De-duplication is a key early step in standard data curation. Amongst biological databases, UniProt 

databases are well-known to have high quality data and detailed curation processes (48).We find that 

they have four different assumptions: ‘one record for 100% identical full-length sequences in one 

species’; ‘one record per gene in one species’; ‘one record for 100% identical sequences over the 

entire length, regardless of the species’; and ‘one record for 100% identical sequences, including 

fragments, regardless of the species’, for UniProtKB/TrEMBL, UniProtKB/SwissProt, UniParc, and 

UniRef100 respectively.
3
 We note the emphasis on sequence identity in these requirements. 

Each database has its specific design and purpose, so the assumptions made about duplication differ. 

One community may consider a given pair to be a duplicate whereas other communities may not. The 

definition of duplication varies between biologists, database staff and computer scientists. In different 

curated biological databases, de-duplication is handled in different ways. It is far more complex than a 

simple similarity threshold; we want to analyse duplicates that are labelled based on human 

judgements rather than using a single threshold. Therefore, we created three benchmarks of nucleotide 

duplicates from different perspectives (53). In this work we focus on analysing one of these 

benchmarks, containing records directly merged in INSDC. Merging of records is a way to address 

data duplication. Examination of merged records facilitates understanding of what constitutes 

duplication.  

Recently, in TrEMBL, UniProt staff observed that it had a high prevalence of redundancy. A typical 

example is that 1692 strains of Mycobacterium tuberculosis have been represented in 5.97 million 

entries, because strains of this same species have been sequenced and submitted multiple times. 

UniProt staff have expressed concern that such high redundancy will lead to repetitive results in 

BLAST searches. Hence they used a mix of manual and automatic approaches to de-duplicate 

bacterial proteome records, and removed 46.9 million entries in April 2015.
4
 A ‘duplicate’ proteome 

is selected by identifying:  (a) two proteomes under the same taxonomic species group, (b) having 

over 90% identity, and (c) selecting the proteome of the pair with the highest number of similar 

proteomes for removal; specifically, all protein records in TrEMBL belonging to the proteome will be 

                                                           
3
 http://www.uniprot.org/help/redundancy 

4
 http://www.uniprot.org/help/proteome_redundancy 
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removed.
5
 If proteome A and B satisfy criteria (a) and (b), and proteome A has 5 other proteomes with 

over 90% identity, whereas proteome B only has one, A will be removed rather than B. This notion of 

a duplicate differs from those above, emphasising the context dependency of the definition of a 

‘duplicate’. This de-duplication strategy is incomplete as it removes only one kind of duplicate, and is 

limited in application to full proteome sequences; the accuracy and sensitivity of the strategy is 

unknown. Nevertheless removing one duplicate type already significantly reduces the size of 

TrEMBL. This not only benefits database search, but also affects studies or other databases using 

TrEMBL records. 

This de-duplication is considered to be one of the two significant changes in UniProtKB database in 

2015 (the other change being the establishment of a comprehensive reference proteome set) (28). It 

clearly illustrates that duplication in biological databases is not a fully solved problem and that de-

duplication is necessary. 

Overall, we can see that foundational work on the problem of duplication in biological sequence 

databases has not previously been undertaken. There is no prior thorough analysis of the presence, 

kind, and impact of duplicates in these databases. 

3. Data and methods  

Exploration of duplication and its impacts requires data. We have collected and analysed duplicates 

from INSDC databases to create a benchmark set, as we now discuss. 

3.1 Collection of duplicates  

Some of the duplicates in INSDC databases have been found and then merged into one representative 

record. We call this record the exemplar, that is, the current record retained as a proxy for a set of 

records. Staff working at EMBL ENA advised us (by personal communication) that a merge may be 

initiated by original record submitter, database staff, or occasionally in other ways. We further explain 

the characteristics of the merged dataset below, but note that records are merged for different reasons, 

showing that diverse causes can lead to duplication. The merged records are documented in the 

revision history. For instance, GenBank record gi:6017069 is the complete sequence of both 

BACR01G10 and BACR05I08 clones for chromosome 2 in Drosophila melanogaster. Its revision 

history
6
 shows that it has replaced two records gi:6015178 and gi:6012087, because they are 

‘SEQUENCING IN PROGRESS’ records with 57 and 21 unordered pieces for BACR01G10 and 

BACR05I08 clones respectively. As explained in the supplementary materials, the groups of records 

can readily be fetched using NCBI tools. 

For our analysis, we collected 67,888 groups (during 15–27 July 2015), which contained 111,823 

duplicates (a given group can contain more than one record merge) across the 21 popular organisms 

used in molecular research listed in the NCBI Taxonomy web page.
7
 The data collection is 

summarized in Supplementary Table S1, and, the details of the collection procedure underlying the 

data are elaborated in the Supplementary file Details of the record collection procedure. As an 

example, the Xenopus laevis organism has 35,544 directly related records. Of these, 1,690 have 

merged accession IDs; 1,620 merged groups for 1,660 duplicate pairs can be identified in the revision 

history. 

                                                           
5
 http://insideuniprot.blogspot.com.au/2015/05/uniprot-knowledgebase-just-got-smaller.html 

6
 http://www.ncbi.nlm.nih.gov/nuccore/6017069?report=girevhist 

7
 http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/ 
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3.2 Characteristics of the duplicate collection  

As explained in Section 2, we use a broad definition of duplicates. This data collection reflects the 

broad definition, and in our view is representative of an aspect of duplication: these are records that 

are regarded as similar or related enough to merit removal, that is, are redundant. The records were 

merged for different reasons, including: 

• Changes to data submission policies. Before 2003, the sequence submission length limit was 

350 kb. After releasing the limit, the shorter sequence submissions were merged into a single 

comprehensive sequence record. 

• Updates of sequencing projects. Research groups may deposit current draft records; later 

records will merge the earlier ones. 

• Merges from other data sources. For example, RefSeq uses INSDC records as a main source 

for genome assembly (49). The assembly is made according to different organism models and 

updated periodically and the records may be merged or split during each update (50).  

• Merges by record submitters or database staff occur when they notice multiple submissions of 

the same record. 

While the records were merged due to different reasons, they can all be considered duplicates. The 

various reasons for merging records represent the diversity. If those records above had not been 

merged, they would cause data redundancy and inconsistency. 

These merged records are illustrations of the problem of duplicates rather than current instances to be 

cleaned. Once the records are merged, they are no longer active or directly available to database users. 

However, the obsolete records are still of value. For example, even though over 45 million duplicate 

records were removed from UniProt, the key database staff who were involved in this activity
8
 are 

still interested in investigating their characteristics. They would like to understand the similarity of 

duplicates for more rapid and accurate duplicate identification in future, and to understand their 

impacts, such as how their removal affects database search.  

From the perspective of a submitter, those records removed from UniProtKB may not be duplicates, 

since they may represent different entities, have different annotations, and serve different applications. 

However, from a database perspective, they challenge database storage, searches, and curation (48). 

‘Most of the growth in sequences is due to the increased submission of complete genomes to the 

nucleotide sequence databases’ (48). This also indicates that records in one data source may not be 

considered as duplicates, but do impact other data sources. 

To our knowledge, our collection is the largest set of duplicate records merged in INSDC considered 

to date. Note that we have collected even larger datasets based on other strategies, including expert 

and automatic curation (51). We focus on this collection here, to analyse how submitters understand 

duplicates as one perspective. This duplicate dataset is based on duplicates identified by those closest 

to the data itself, the original data submitters, and is therefore of high quality.  

We acknowledge that the data set is by its nature incomplete; the number of duplicates that we have 

collected is likely to be a vast undercounting of the exact or real prevalence of duplicates in the 

INSDC databases. There are various reasons for this that we detail here.  

                                                           
8
 Ramona Britto and Benoit Bely, the key staff who removed over 45 million duplicate records from UniProtKB. 
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First, as mentioned above, both database staff and submitters can request merges. However, for 

submitters, records can only be modified or updated if they are the record owner. Other parties who 

want to update records that they did not themselves submit must get permission from at least one 

original submitter.
9
 In EMBL ENA, it is suggested to contact the original submitter first, but there is 

an additional process for reporting errors to the database staff.
10

 Due to the effort required for these 

procedures, the probability that there are duplicates that have not been merged or labelled is very high. 

Additionally, as the documentation shows, submitter-based updates or correction are the main quality 

control mechanisms in these databases. Hence the full collection of duplicates listed in Supplementary 

Table S1 presented in this work are limited to those identified by (some) submitters. Our other 

duplicate benchmarks, derived from mapping INSDC to Swiss-Prot and TrEMBL, contain many more 

duplicates (53). This implies that many more potential duplicates remain in INSDC.  

The impact of curation on marking of duplicates can be observed in some organisms. The total 

number of records in Bos taurus is about 14% and 1.9% of the number of records in Mus musculus 

and Homo sapiens, respectively, yet Bos taurus has a disproportionately high number of duplicates in 

the benchmark: more than 20,000 duplicate pairs, which is close (in absolute terms) to the number of 

duplicates identified in the other two species. Another example is Schizosaccharomyces pombe, which 

only has around 4000 records but a relatively large number (545) of duplicate pairs have been found. 

An organism may have many more duplicates if its sub-organisms are considered. The records 

counted in the table are directly associated to the listed organism; we did not include records 

belonging to any sub-organisms in this study. An example of the impact of this is record 

gi:56384585, which replaced 500 records in 2004.
11

 This record belongs to Escherichia coli 

O157:H7 strain EDL933, which is not directly associated to Escherichia coli and therefore not 

counted here. The collection statistics also demonstrate that 13 organisms contain at least some 

merged records for which the original records have different submitters. This is particularly evident in 

Caenorhabditis elegans and Schizosaccharomyces pombe (where 92.4% and 81.8%, respectively, of 

duplicate records are from different submitters). The possible explanations are that database staff 

merged those records, or that an error was reported to database staff by a third party. 

This benchmark is the only resource currently available for duplicates directly merged in INSDC. 

Staff have also advised that there is currently no automatic process for collecting such duplicates.  

3.3 Categorization of duplicates  

Observing the duplicates in the collection, we find that some of them share the same sequences, 

whereas others have sequences with varied lengths. Some have been annotated by submitters with 

notes such as ‘WORKING DRAFT’. We therefore categorized records at both sequence level and 

annotation level. For sequence level, we identified five categories: Exact sequences, Similar 

sequences, Exact fragments, Similar fragments, and Low-identity sequences. For annotation level, we 

identified three categories: Working draft, Sequencing-in-progress, and Predicted. We do not restrict 

a duplicate instance to be in only one category. 

This categorization represents diverse types of duplicates in nucleotide databases, and each distinct 

kind has different characteristics. As discussed previously, there is no existing categorization of 

                                                           
9
 http://www.ncbi.nlm.nih.gov/books/NBK53704/ 

10
 http://www.ebi.ac.uk/ena/submit/sequence-submission#how_to_update 

11
 http://www.ncbi.nlm.nih.gov/nuccore/56384585 
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duplicates with supporting measures or quantities in prior work. Hence we adopt this categorization 

and quantify the prevalence and characteristics of each kind, as a starting point for understanding the 

nature of duplicates in INSDC databases more deeply. 

The detailed criteria and description of each category are as follows. For sequence level, we measured 

local sequence identity using BLAST (9). This measures whether two sequences share similar 

subsequences. We also calculated the local alignment proportion (the number of identical bases in 

BLAST divided by the length of the longer sequence of the pair) to estimate the possible coverage of 

the pair globally without performing a complete (expensive) global alignment. Details, including 

formulas, are provided in the supplementary materials Details of measuring submitter similarity and 

Details of measuring sequence similarities. 

Category 1, sequence level: Exact sequences. This category consists of records that share exact 

sequences. We require that the local identity and local alignment proportion must both be 100%. 

While this cannot guarantee that the two sequences are exactly identical without a full global 

alignment, having both local identity and alignment coverage of 100% strongly implies that two 

records have the same sequences. 

Category 2, sequence level: Similar sequences. This category consists of records that have near-

identical sequences, where the local identity and local alignment proportion are less than 100% but no 

less than 90%. 

Category 3, sequence level: Exact fragments. This category consists of records that have identical 

subsequences, where the local identity is 100% and the alignment proportion is less than 90%, 

implying that the duplicate is identical to a fragment of its replacement. 

Category 4, sequence level: Similar fragments. By correspondence with the relationship between 

Categories 1 and 2, this category relaxes the constraints of Category 3. It has the same criteria of 

alignment proportion as Category 3, but reduces the requirement for local identity to no less than 90%. 

Category 5, sequence level: Low-identity sequences. This category corresponds to duplicate pairs 

that exhibit weak or no sequence similarity. This category has three tests: first, the local sequence 

identity is less than 90%; second, BLAST output is ‘NO HIT’, that is, no significant similarity has 

been found; third, the expected value of the BLAST score is greater than 0.001, that is, the found 

match is not significant enough. 

Categories based on annotations The categories at the annotation level are identified based on 

record submitters’ annotations in the ‘DEFINITION’ field. Some annotations are consistently used 

across the organisms, so we used them to categorise records. 

If at least one record of the pair contains the words ‘WORKING DRAFT’, it will be classified as 

Working draft, and similarly for Sequencing-in-progress and Predicted, containing ‘SEQUENCING 

IN PROGRESS’ and ‘PREDICTED’, respectively. 

A more detailed categorization could be developed based on this information. For instance, there are 

cases where both a duplicate and its replacement are working drafts, and other cases where the 

duplicate is a working draft while the replacement is the finalized record. It might also be appropriate 

to merge Working draft and Sequencing-in-progress into one category, since they seem to capture the 

same meaning. However, to respect the original distinctions made by submitters, we have retained it. 
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4. Presence of different duplicate types  

Supplementary Table S2 shows the distribution of duplicates across our categories. Table 1 extracts a 

representative subset. 

Recall that existing work mainly focuses on duplicates with similar or identical sequences. However, 

based on the duplicates in our collection, we observe that duplicates under the Exact sequence and 

Similar sequence categories only represent a fraction of the known duplicates. Only nine of the 21 

organisms have Exact sequence as the most common duplicate type, and six organisms have small 

numbers of this type. Thus the general applicability of prior proposals for identifying duplicates is 

questionable. 

Additionally, it is apparent that the prevalence of duplicate types is different across the organisms. For 

sequence-based categorization, for nine organisms the highest prevalence is Exact sequence (as 

mentioned above), for two organisms it is Similar sequences, for eight organisms it is Exact fragments, 

and for three organisms it is Similar fragments (one organism has been counted twice since Exact 

sequence and Similar fragments have the same count). It also shows that ten organisms have 

duplicates that have relatively low sequence identity. 

Table 2. Samples of duplicates types classified in both sequence level and annotation level 

Organism Total 

records 

Sequence-based Annotation-based Others 

ES SS EF SF LI WD SP PR LS UC 

Bos taurus 245,188 2,923 3,633 5,167 6,984 147 0 0 18,120 2,089 0 

Homo sapiens 12,506,281 2,844 7,139 11,325 6,889 642 2,951 316 17,243 1,496 0 

Caenorhabditis 

elegans 

74,404 1736 7 109 44 5 0 121 0 0 0 

Rattus 

norvegicus 

318,577 2,511 5,302 7,556 3,817 107 0 0 15,382 2 0 

Danio rerio 153,360 721 2740 1662 3504 75 1 34 7684 521 491 

Mus musculus 1,730941 2,597 4,689 6,678 7,377 379 1,926 1,305 16,510 2,011 1 

 
Total records: Number of records in total directly belong to the organism (derived from NCBI taxonomy database);ES: 

exact sequences; SS: similar sequences; EF: exact fragments; SF: similar fragments; LI: low-identity sequences; WD: 

working draft; SP: sequencing-in-progress record; PR: predicted sequence; LS: long sequence; UC: unclassified pairs 

 

Overall, even this simple initial categorization illustrates the diversity and complexity of known 

duplicates in the primary nucleotide databases. In other work (52), we reproduced a representative 

duplicate detection method using association rule mining (12) and evaluated it with a sample of 3498 

merged groups from Homo Sapiens. The performance of this method was extremely poor. The major 

underlying issues were that the original dataset only contains duplicates with identical sequences and 

that the method did not consider diverse duplicate types. 

Thus it is necessary to categorize and quantify duplicates to find out distinct characteristics held by 

different categories and organisms; we suggest that these different duplicate types must be separately 

addressed in any duplicate detection strategy. 

5. Impacts of duplicates: case study  

An interesting question is whether duplicates affect biological studies, and to what extent. As a 

preliminary investigation, we conducted a case study on two characteristics of DNA sequences: GC 

content and melting temperature. The GC content is the proportion of bases G and C over the 
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sequence. Biologists have found that GC content is correlated with local rates of recombination in the 

human genome (53). The GC content of microorganisms is used to distinguish species during the 

taxonomic classification process. 

The melting temperature of a DNA sequence is the temperature at which half of the molecules of the 

sequence form double strands, while another half are single-stranded, a key sequence property that is 

commonly used in molecular studies (54). Accurate prediction of the melting temperature is an 

important factor in experimental success (55). The GC content and the melting temperature are 

correlated, as the former is used in determination of the latter. The details of calculations of GC 

content and melting temperature are provided in the supplementary Details of formulas in the case 

study. 

We computed and compared these two characteristics in two settings: by comparing exemplars with 

the original group, which contains the exemplars along with their duplicates; and by comparing 

exemplars with their corresponding duplicates, but with the exemplar removed. 

Table 3. A selection of results for organisms in terms of GC content and melting temperatures (Exemplar vs. Original 

merged groups) 

 

Organism Category Size GC (%) Melting temperature 

 Tb Ts Ta 

mdiff std mdiff std mdiff std mdiff std 
 

Bos taurus 

EF 3,530 1.85 1.83 0.74 0.76 0.74 0.78 0.94 0.94 

SF 4,441 1.61 1.61 0.64 0.64 0.64 0.64 0.82 0.81 

LI 101 2.80 3.10 1.14 1.40 1.15 1.46 1.45 1.69 

ALL 12,822 1.11 1.54 0.44 0.63 0.44 0.63 0.57 0.79 

 

Homo 

sapiens 

EF 5,360 1.51 2.04 0.92 1.28 1.01 1.50 1.01 1.28 

SF 5,003 1.01 1.60 0.41 0.63 0.41 0.71 0.52 0.84 

LI 369 3.47 3.28 1.56 2.11 1.60 2.42 1.93 2.43 

ALL 16,545 0.87 1.65 0.46 0.92 0.48 1.04 0.52 0.99 

 

Rattus 

norvegicus 

EF 4,880 1.47 1.48 0.58 0.60 0.58 0.62 0.74 0.74 

SF 2,846 1.21 1.25 0.47 0.48 0.47 0.48 0.61 0.61 

LI 9,286 0.97 1.31 0.38 0.50 0.37 0.50 0.49 0.65 

ALL 12,411 0.91 1.25 0.36 0.50 0.36 0.51 0.46 0.63 

 

Danio 

rerio 

EF 1,496 1.59 1.54 0.59 0.57 0.58 0.57 0.77 0.75 

SF 3,142 1.55 1.44 0.59 0.55 0.58 0.55 0.76 0.71 

LI 6,761 1.06 1.35 0.40 0.51 0.39 0.50 0.52 0.66 

ALL 7,895 1.01 1.32 0.38 0.50 0.38 0.49 0.50 0.65 

 
Categories are the same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference 

between each exemplar and the mean of the original group respectively; Tb, Ts, Ta: melting temperature calculated using 

basic, salted and advanced formula in supplement respectively; 
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Figure 1 A selection of results for organisms in terms of GC content (Exemplar vs. Original merged groups) Categories are 

the same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference between each 

exemplar and the mean of the original group respectively. 

 

Figure 2 A selection of results for organisms in terms of melting temperatures (Exemplar vs. Original merged groups) 

mdiff and std: the mean and standard deviation of absolute value of the difference between each exemplar and the 

mean of the original group respectively; Tb, Ts, Ta: melting temperature calculated using basic, salted and advanced 

formula in supplement respectively. 

EF SF LI ALL EF SF LI ALL EF SF LI ALL EF SF LI ALL

Bos taurus Homo sapiens Rattus norvegicus Danio rerio

GC mdiff 1.85 1.61 2.8 1.11 1.51 1.01 3.47 0.87 1.47 1.21 0.97 0.91 1.59 1.55 1.06 1.01

GC std 1.83 1.61 3.1 1.54 2.04 1.6 3.28 1.65 1.48 1.25 1.31 1.25 1.54 1.44 1.35 1.32

0

1

2

3

4

GC mdiff GC std

EF SF LI ALL EF SF LI ALL EF SF LI ALL EF SF LI ALL

Bos taurus Homo sapiens Rattus norvegicus Danio rerio

Tb mdiff 0.74 0.64 1.14 0.44 0.92 0.41 1.56 0.46 0.58 0.47 0.38 0.36 0.59 0.59 0.4 0.38

Tb std 0.76 0.64 1.4 0.63 1.28 0.63 2.11 0.92 0.6 0.48 0.5 0.5 0.57 0.55 0.51 0.5

Ts mdiff 0.74 0.64 1.15 0.44 1.01 0.41 1.6 0.48 0.58 0.47 0.37 0.36 0.58 0.58 0.39 0.38

Ts std 0.78 0.64 1.46 0.63 1.5 0.71 2.42 1.04 0.62 0.48 0.5 0.51 0.57 0.55 0.5 0.49

Ta mdiff 0.94 0.82 1.45 0.57 1.01 0.52 1.93 0.52 0.74 0.61 0.49 0.46 0.77 0.76 0.52 0.5

Ta std 0.94 0.81 1.69 0.79 1.28 0.84 2.43 0.99 0.74 0.61 0.65 0.63 0.75 0.71 0.66 0.65

0

1

2

3

Tb mdiff Tb std Ts mdiff Ts std Ta mdiff Ta std
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Table 4. A selection of results for organisms in terms of GC content and melting temperatures (Exemplar vs. Duplicate 

pairs) 

 

Organism Category Size GC (%) Melting temperature (°C) 

 Tb Ts Ta 

mdiff std mdiff std mdiff std mdiff std 
 

Bos taurus 

EF 5,167 3.44 3.41 1.40 1.58 1.41 1.69 1.77 1.85 

SF 6,984 2.86 2.86 1.14 1.13 1.13 1.13 1.46 1.45 

LI 149 5.47 5.41 2.22 2.42 2.22 2.50 2.83 2.93 

ALL 20,945 2.18 2.80 0.88 1.19 0.88 1.23 1.12 1.46 

 

Homo 

sapiens 

EF 11,325 3.38 3.79 1.99 2.85 2.20 3.35 2.14 2.73 

SF 6,890 2.19 3.02 0.89 1.27 0.89 1.31 1.31 1.57 
LI 642 5.67 5.40 2.49 3.32 2.54 3.78 3.09 3.86 

ALL 30,336 2.15 3.24 1.11 2.09 1.19 2.40 1.26 2.13 

 

Rattus 

norvegicus 

EF 7,556 2.58 2.59 1.03 1.14 1.04 1.20 1.31 1.36 

SF 3,817 2.19 2,27 0.85 0.88 0.85 0.88 1.10 1.13 

LI 107 3.73 3.43 1.58 1.48 1.59 1.53 1.98 1.81 

ALL 19,295 1.63 2.21 0.65 0.93 0.65 0.96 0.83 1.14 

 

Danio 

rerio 

EF 1,662 3.06 3.00 1.14 1.11 1.12 1.10 1.49 1.45 

SF 3,504 3.03 2.81 1.15 1.07 1.14 1.07 1.49 1.39 
LI 7,684 2.06 2.62 0.78 0.98 0.77 0.98 1.01 1.28 

ALL 9,227 1.95 2.55 0.74 0.96 0.73 0.95 0.96 1.25 

 
Categories are the same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference 

between each exemplar and the mean of the duplicates group respectively; Tb, Ts, Ta: melting temperature calculated using 

basic, salted and advanced formula in supplement respectively; 

 

 

Figure 3 A selection of results for organisms in terms of GC content (Exemplar vs. Duplicate pairs) Categories are the 

same as Table 1; mdiff and std: the mean and standard deviation of absolute value of the difference between each 

exemplar and the mean of the duplicates group respectively. 

 

EF SF LI ALL EF SF LI ALL EF SF LI ALL EF SF LI ALL

Bos taurus Homo sapiens Rattus norvegicus Danio rerio

GC mdiff 3.44 2.86 5.47 2.18 3.38 2.19 5.67 2.15 2.58 2.19 3.73 1.63 3.06 3.03 2.06 1.95

GC std 3.41 2.86 5.41 2.8 3.79 3.02 5.4 3.24 2.59 2.27 3.43 2.21 3 2.81 2.62 2.55

0

1

2
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4

5

6

GC mdiff GC std
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Figure 4 A selection of results for organisms in terms of melting temperatures (Exemplar vs. Duplicate pairs) mdiff and 

std: the mean and standard deviation of absolute value of the difference between each exemplar and the mean of the 

original group respectively; Tb, Ts, Ta: melting temperature calculated using basic, salted and advanced formula in 

supplement respectively. 

Selected results are in Table 3 (visually represented in Figures 1 and 2) and 4 (visually represented in 

Figures 3 and 4) respectively (full results in Supplementary Tables S3 and S4). First, it is obvious that 

the existence of duplicates introduces much redundancy. After de-duplication, the size of original 

duplicate set is reduced by 50% or more for all the organisms shown in the table. This follows from 

the structure of the data collection. 

Critically, it is also evident that all the categories of duplicates except Exact sequences introduce 

differences for the calculation of GC content and melting temperature. These mdiff (mean of 

difference) values are significant, as they exceed other experimental tolerances, as we explain below. 

(The values illustrating larger distinctions have been made bold in the table.) Table 2 already shows 

that exemplars have distinctions with their original groups. When examining exemplars with their 

specific pairs, the differences become even larger as shown in Table 3. Their mean differences and 

standard deviations are different, meaning that exemplars have distinct characteristics compared to 

their duplicates. 

These differences are significant and can impact interpretation of the analysis. It has been argued in 

the context of a wet-lab experiment exploring GC content that well-defined species fall within a 3% 

range of variation in GC percentage (56). Here, duplicates under specific categories could introduce 

variation of close to or more than 3%. For melting temperatures, dimethyl sulfoxide (DMSO), an 

external chemical factor, is commonly used to facilitate the amplification process of determining the 

temperature. An additional 1% DMSO leads to a temperature difference ranging from 0.5°C to 0.75°C 

(54). However, six of our measurements in Homo sapiens have differences of over 0.5°C and four of 

them are 0.75°C or more, showing that duplicates alone can have the same or more impact as external 

factors. 

EF SF LI ALL EF SF LI ALL EF SF LI ALL EF SF LI ALL

Bos Taurus Homo Sapiens Rattus Norvegicus Danio Rerio

Tb mdiff 1.4 1.14 2.22 0.88 1.99 0.89 2.49 1.11 1.03 0.85 1.58 0.65 1.14 1.15 0.78 0.74

Tb std 1.58 1.13 2.42 1.19 2.85 1.27 3.32 2.09 1.14 0.88 1.48 0.93 1.11 1.07 0.98 0.96

Ts mdiff 1.41 1.13 2.22 0.88 2.2 0.89 2.54 1.19 1.04 0.85 1.59 0.65 1.12 1.14 0.77 0.73

Ts std 1.69 1.13 2.5 1.23 3.35 1.31 3.78 2.4 1.2 0.88 1.53 0.96 1.1 1.07 0.98 0.95

Ta mdiff 1.77 1.46 2.83 1.12 2.14 1.31 3.09 1.26 1.31 1.1 1.98 0.83 1.49 1.49 1.01 0.96

Ta std 1.85 1.45 2.93 1.46 2.73 1.57 3.86 2.13 1.36 1.13 1.81 1.14 1.45 1.39 1.28 1.25

0

1

2

3

4

5

Tb mdiff Tb std Ts mdiff Ts std Ta mdiff Ta std

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted November 3, 2016. ; https://doi.org/10.1101/085019doi: bioRxiv preprint 

https://doi.org/10.1101/085019


17 
 

Overall, other than the Exact fragments and Similar fragments categories, the majority of the 

remainder has differences of GC content and melting temperature of over 0.1°C. Many studies report 

these values to three digits of precision, or even more (57-62). The presence of duplicates means that 

these values in fact have considerable uncertainty. The impact depends on which duplicate type is 

considered. In this study, duplicates under the Exact fragments, Similar fragments, and Low-identity 

categories have comparatively higher differences than other categories. In contrast, Exact sequences 

and Similar sequences have only small differences. The impact of duplicates is also dependent on the 

specific organism: some have specific duplicate types with relatively large differences, and the overall 

difference is large as well; some only differ in specific duplicate types, and the overall difference is 

smaller; and so on. Thus it is valuable to be aware of the prevalence of different duplicate types in 

specific organisms. 

In general, we find that duplicates bring much redundancy; this is certainly disadvantageous for 

studies such as sequence searching. Also, exemplars have distinct characteristics from their original 

groups such that sequence-based measurement involving duplicates may have biased results. The 

differences are more obvious for specific duplicate pairs within the groups. For studies that randomly 

select the records or have dataset with limited size, the results may be affected, due to possible 

considerable differences. Together they show that why de-duplication is necessary. Note that the 

purpose of our case study is not to argue that previous studies are wrong or try to better estimate 

melting temperatures. Our aim is only to show that the presence of duplicates, and of specific types of 

duplicates, can have a meaningful impact on biological studies based on sequence analysis. 

Furthermore, it provides evidence for the value of expert curation of sequence databases (63). 

Our case study illustrates that different kinds of duplicates can have distinct impacts on biological 

studies. As described, the Exact sequences records have only a minor impact under the context of the 

case study. Such duplicates can be regarded as redundant. Redundancy increases the database size and 

slows down the database search, but may have no impact on biological studies. 

In contrast, some duplicates can be defined as inconsistent. Their characteristics are substantially 

different to the ‘primary’ sequence record to which they correspond, so they can mislead sequence 

analysis. We need to be aware of the presence of such duplicates, and consider whether it they must 

be detected and managed. 

In addition, we observe that the impact of these different duplicate types, and whether they should be 

considered to be redundant or inconsistent, is task-dependent. In the case of GC content analysis, 

duplicates under Similar fragments may have severe impact. For other tasks, there may be different 

effects; consider for example exploration of the correlation between non-codon and codon sequences 

(19) and the task of finding repeat sequence markers (20). We should measure the impact of 

duplicates in the context of such activities and then respond appropriately. 

Duplicates can have impacts in other ways. Machine learning is a popular technique and effective 

technique for analysis of large sets of records. The presence of duplicates, however, may bias the 

performance of learning techniques because they can affect the inferred statistical distribution of data 

features. For example, it was found that much duplication existed in a popular dataset that has been 

widely used for evaluating machine learning methods used to detect anomalies (64); its training 

dataset has over 78% redundancy with 1,074,992 records over-represented into 4,898,431 records. 

Removal of the duplicates significantly changed reported performance, and behaviour, of methods 

developed on that data. 
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In bioinformatics, we also observe this problem. In earlier work we reproduced and evaluated a 

duplicate detection method (12) and found that it has poor generalisation performance because the 

training and testing dataset consists of only one duplicate type (52). Thus it is important to be aware 

of constructing the training and testing datasets based on representative instances. In general two 

strategies for addressing this issue: one using different candidate selection techniques (65); another is 

using large-scale validated benchmarks (66). In particular duplicate detection surveys point out the 

importance of the latter: as different individuals have different definitions or assumptions on what 

duplicates are, this often leads to the corresponding methods working only in narrow datasets (66).  

6. Conclusion  

Duplication, redundancy, and inconsistency have the potential to undermine the accuracy of analyses 

undertaken on bioinformatics databases, particularly if the analyses involve any form of summary or 

aggregation. We have undertaken a foundational analysis to understand the scale, kinds, and impacts 

of duplicates. For this work, we analysed a benchmark consisting of duplicates spotted by INSDC 

record submitters, one of the benchmarks we collected in (53). We have shown that the prevalence of 

duplicates in the broad nucleotide databases is potentially high. The study also illustrates the presence 

of diverse duplicate types and that different organisms have different prevalence of duplicates, 

making the situation even more complex. Our investigation suggests that different or even simplified 

definitions of duplicates, such as those in previous studies, may not be valuable in practice. 

The quantitative measurement of these duplicate records showed that they can vary substantially from 

other records, and that different kinds of duplicates have distinct features that imply that they require 

different approaches for detection. As a preliminary case study, we considered the impact of these 

duplicates on measurements that depend on quantitative information in sequence databases (GC 

content and melting temperature analysis), which demonstrated that the presence of duplicates 

introduces error. 

Our analysis illustrates that some duplicates only introduce redundancy, whereas other types lead to 

inconsistency. The impact of duplicates is also task-dependent; it is a fallacy to suppose that a 

database can be fully de-duplicated, as one task’s duplicate can be valuable information in another 

context. 

The work we have presented based on the merge-based benchmark as a source of duplication, may not 

be fully representative of duplicates overall. Nevertheless, the collected data and the conclusions 

derived from them are reliable. Although records were merged due to different reasons, these reasons 

reflect the diversity and complexity of duplication. It is far from clear how the overall prevalence of 

duplication might be more comprehensively assessed. This would require a discovery method, which 

would inherently be biased by the assumptions of the method. We therefore present this work as a 

contribution to understanding what assumptions might be valid. 
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