bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Dynamic Modeling, Parameter Estimation and
Uncertainty Analysis in R

Daniel Kaschek Wolfgang Mader
University of Freiburg University of Freiburg

Mirjam Fehling-Kaschek Marcus Rosenblatt Jens Timmer
University of Freiburg University of Freiburg University of Freiburg

Abstract

In a wide variety of research fields, dynamic modeling is employed as an instrument
to learn and understand complex systems. The differential equations involved in this
process are usually non-linear and depend on many parameters whose values decide upon
the characteristics of the emergent system. The inverse problem, i.e. the inference or
estimation of parameter values from observed data, is of interest from two points of view.
First, the existence point of view, dealing with the question whether the system is able
to reproduce the observed dynamics for any parameter values. Second, the identifiability
point of view, investigating invariance of the prediction under change of parameter values,
as well as the quantification of parameter uncertainty.

In this paper, we present the R package dMod providing a framework for dealing with
the inverse problem in dynamic systems. The particularity of the approach taken by
dMod is to provide and propagate accurate derivatives computed from symbolic expres-
sions wherever possible. This derivative information highly supports the convergence of
optimization routines and enhances their numerical stability, a requirement for the appli-
cability of sofisticated uncertainty analysis methods. Computational efficiency is achieved
by automatic generation and execution of C code. The framework is object oriented (S3)
and provides a variety of functions to set up dynamic models, observation functions and
parameter transformations for multi-conditional parameter estimation.

The key elements of the framework and the methodology implemented in dMod are
highlighted by an application on a three-compartment transporter model.

Keywords: Dynamic models, parameter estimation, code generation, maximum likelihood,
uncertainty analysis.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2 Dynamic Modeling and Parameter Estimation in R

1. Introduction

Dynamic models are found in several research fields, such as physics, biology or finance. In all
these fields, models link theoretical concepts and empirical evidence. Single mechanisms or
single processes of a complex system are represented by respective terms in the equations of
a dynamic model. Parameter estimation can then identify those processes which are crucial
to explain the observation. In that sense, parameter estimation can be employed as an
instrument to understand complex systems. Once, the link between observation and model
is established by the estimated parameters, questions about their identifiability arise. The
parameter space needs to be explored to analyze whether the estimate is unique and to
determine confidence bounds.

Although the problem of parameter estimation in non-linear dynamic systems is highly rel-
evant and at the heart of statistical computing, to this day there are not more than four R
packages published on the topic on the Comprehensive R Archive Network (CRAN), namely
FME (Soetaert and Petzoldt 2010), nlmeODE (Tornoe 2012), mkin (Ranke, Lindenberger,
and Lehmann 2016) and scaRabee (Bihorel 2014). All packages have in common that they
are built upon the deSolve package (Soetaert, Petzoldt, and Setzer 2010). The packages mkin
and FME support ODEs defined by compiled code where mkin also provides tools to autogen-
erate the C code and compile it using the inline package. For model fitting and uncertainty
analysis, mkin fully resorts to the functionality of FME. Concerning model fitting, FME and
nlmeODE (with nlme in the background) use deterministic derivative-based optimizers by
default, i.e. either Levenberg-Marquardt or Newton methods provided by nls.1m(), optim()
or nlmimb (). Although all these optimizers support gradient or Hessian information as input,
only the nlmeODE package provides an option to augment the ODE by its sensitivity equa-
tions to generate derivates for the residuals. By default, sensitivities are computed by finite
differences. Last but not least, the scaRabee package uses the Nelder-Mead optimization
algorithm which is derivative-free but needs in general more iterations until convergence com-
pared to derivative-based methods. In all packages, uncertainty analysis is by default based
on the variance-covariance matrix, i.e. on the inverse Hessian matrix of the least squares func-
tion. For non-linear models, this method provides a good approximation only if parameters
are identifiable and the data is highly informative. If these conditions are not met, more
sophisticated methods like e.g. Markov chain Monte Carlo (MCMC) sampling, implemented
in FME, are required. The strength of scaRabee and especially nlmeODE is multi-conditional
fitting. This means that the same model with the same parameters but different forcings to
reflect experimental conditions is fitted simultaneously to the condition-specific data sets. In
the context of mixed-effects modeling as provided by nlmeODE, parameters can be grouped
in fixed effects (same parameters over all conditions) and random effects (parameters are
different between conditions).

In this paper we present dMod, an R package on dynamic modeling and parameter estimation.
The aim and core functionality of dMod is

(i) facilitated set-up of dynamic models with automated C code generation for fast simula-
tion of model predictions and model sensitivities,

(ii) flexible set-up of general parameter transformations (explicit or implicit) and observation
functions, allowing for the implementation of multiple experimental conditions similar
to mixed-effects modeling,

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(iii) parameter estimation based on trust-region optimization of the negative log-likelihood,
making use of the sensitivity equations of the dynamic system and of symbolic derivatives
of the observation- and parameter transformation functions,

(iv) identifiability and uncertainty analysis based on the profile-likelihood method to deter-
mine confidence intervals for parameters and predictions.

The core functionality is extended by two symbolic methods implemented in Python and inter-
faced via the rPython package: identifiability and observability analysis based on Lie-group
symmetries (Merkt, Timmer, and Kaschek 2015) and steady-state constraints for parameter
estimation (Rosenblatt, Timmer, and Kaschek 2016).

The consequent implementation of capabilities to generate and propagate derivatives on a
compiled-code level distinguishes dMod from other modeling frameworks as discussed above.
Most of the standard optimization routines implemented in R need derivative information.
However, the computation of derivatives in the context of ODE models holds some pitfalls.
The accuracy of sensitivities obtained from finite differences can be insufficient because the
step control of the integrator presents an additional source of numeric inaccuracy. Even
for numeric methods circumventing this problem, e.g. complex-step derivatives (Squire and
Trapp 1998), the use of sensitivity equations is still beneficial judging from the accuracy
vs. computational cost ratio. See (Raue, Schilling, Bachmann, Matteson, Schelker, Kaschek,
Hug, Kreutz, Harms, Theis, Klingmiiller, and Timmer 2013b) for a comparison of methods.

Another distinguishing feature of dMod is the handling of non-identifiability of parameters,
a phenomenon occurring frequently in the context of parameter estimation in dynamic sys-
tems. In some cases, non-identifiability has structural reasons. The differential equations
bear certain symmetries and these can or cannot be broken, depending on the structure of
the observation. A functional relationship between parameters that leaves the observation
invariant is the consequence of the latter. In other cases, the data allows to determine a
unique optimum but other solutions, although worse, cannot be statistically rejected. The
dMod package deals with parameter identifiability and parameter uncertainty by the profile-
likelihood method (Murphy and Van der Vaart 2000; Raue, Kreutz, Maiwald, Bachmann,
Schilling, Klingmiiller, and Timmer 2009; Kreutz, Raue, Kaschek, and Timmer 2013). The
method has proven especially useful in the case of non-identifiable parameters where re-
sults obtained from both, the quadratic approximation by the variance-covariance matrix and
MCMC sampling can be misleading (Raue, Kreutz, Theis, and Timmer 2013a). Besides pa-
rameter uncertainties, the profile likelihood method allows to estimate prediction uncertainty
(Kreutz, Raue, and Timmer 2012). It therefore supports the planning of new informative
experiments (Raue, Kreutz, Maiwald, Klingmiiller, and Timmer 2011) or suggests possible
model reductions (Maiwald, Hass, Steiert, Vanlier, Engesser, Raue, Kipkeew, Bock, Kaschek,
Kreutz, and Timmer 2016).

The key methods implemented in dMod are illustrated in great detail on a dynamic model of
bile acid flow. The example is a show-case of how modeling is a dynamic process, using the
analysis tools implemented in dMod to predict, plan new experiments, combine data from
different experiments and include non-linear parameter constraints to improve parameter
identifiability. Thereby, we show that dMod is a full-grown, flexible modeling environment,
fast, thanks to compiled code, reliable, thanks to symbolic derivatives, and accurate, thanks
to advanced statistical methods.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

4 Dynamic Modeling and Parameter Estimation in R

The paper is organized as follows: Section 2 introduces the mathematical set-up of dynamic
modeling, symmetries in dynamic systems, parameter estimation by the maximum-likelihood
method and the profile likelihood. Section 3 discusses the implementation and design princi-
ples behind the dMod software. The functionality of dMod is presented in Section 4 on the
example of bile acid flow in a three-compartment model and finally, Section 5 discusses the
two Python extensions shipped with dMod.

The dMod package is available on the Comprehensive R Archive Network at http://CRAN.
R-project.org/package=dMod. The project is hosted on GitHub, https://github.com/

dkaschek/dMod, where the most recent development version is available. dMod is licensed
under the GPL-3 license.

2. Theoretical background

2.1. Dynamic models and model sensitivities

Dynamic models describe systems with states z, usually quantifying the involved species,
their interaction and evolution over time. The time evolution of the states is expressed via
a set of ODEs, © = f(x). Although constituting quite a special class of dynamic systems,
chemical reaction networks formulated by the law of mass action as considered here allow for
surprisingly general applications. Typical ODE examples derived from the law of mass action
are:

e &4 = kp, constant production of z4 () — A)
e tc =k.-xyg-xp=—04= —ip, complex formation (A+ B — C)
e ic = —kg- zc, proportional degradation of z¢ (C' — ()

each generally written as

= ko (H x;'">(1/' —v) o X+t umX, — X+ + v X)) (1)
N———
vo(x,ko)
where X1,..., X, are the n species involved, v and v/ encode the stoichiometry of the reaction
and ko is the reaction rate. When several reactions are involved, eq. (1) generalizes to

=25 v(z,k) (2)

with the stoichiometry matrix S obtained from the collection of vectors v/ — v for reactions
1,...,r, and the flux vector v(z,k) € R". Eq. (2) also holds for general ODEs that do not
follow from mass action kinetics. Moreover the system may be explicitly time-dependent
and may contain forcings u(t) which e.g. describe the external stimulation of the system. A
general form of the dynamic model is therefore given by

T = f(x,k,u,t) =S -v(x, k,u,t), with z(t = 0) = xo. (3)

The solution z(t,) for a given parameter vector 6 = (k, z¢) is called model prediction. It is
generally assumed that the stoichiometry matrix S of the system is known. Besides the model

http://CRAN.R-project.org/package=dMod
http://CRAN.R-project.org/package=dMod
https://github.com/dkaschek/dMod
https://github.com/dkaschek/dMod
https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

predition itself, also the sensitivity of the prediction to changes in the parameter values is of
interest. The sensitivities s; = g—gi satisfy the sensitivity equations

. _of of
5= 955 By,

with s;(t = 0) = %, (4)

a system of ordinary differential equations that in general depend on the states = and, there-
fore, need to be solved jointly with the original ODE.

Often, the experimentally observed quantities y¥ do not directly correspond to the species x
described by the ODE, but are obtained via an observation function g : R® — R™,

y=g(z,0) ()

with the observation parameters c¢. Examples for observation functions are scaling and offset
transformations, y = ¢5-x+c¢,, or the measurement of a superposition of species, y; = > ;G
The model prediction for the observed states is obtained by evaluating the observation function
on the solution of the ODE. Following the chain rule of differentation also the sensitivities of
the observed states g—gi = %g—(fi + é%qi are obtained. Here, the parameter vector 6 has been

augmented by the observation parameters, 0 = (k, xo, c).

The estimation of the parameters 6 given the observation y() is addressed in the next section.

2.2. Maximum-likelihood method

Parameter estimation is a common task in statistics. It describes the process of inferring
parameter values or parameter ranges of a statistical model based on observed data. Over
decades, appropriate estimators have been developed for different problem classes. The prin-
ciple of maximum likelihood allows to derive an estimator which is especially suited for appli-
cations where the distribution of the measurement noise is known. This knowledge about the
structure of the noise constitutes additional information that makes the maximum-likelihood
estimator (MLE) efficient, i.e. from all unbiased estimators the MLE has the lowest variance.
Other properties of maximume-likelihood estimation are consistency, i.e. the estimated param-
eter value approaches the true parameter value in the limit of infinite data-sample size, and
asymptotic normality, i.e. in the limit of infinite data the MLE follows a multivariate normal
distribution. See (Azzalini 1996) for an introduction to likelihood theory.

Maximum-likelihood estimation is based on the maximization of the likelihood function L(#) =
#(yP|0). Here, ¢ is the joint probability density for a vector of observations y, c.f. eq. (5),
evaluated at the point y = yP, the vector of data points. The distribution ¢ depends para-
metrically on model parameters 6. The maximum-likelihood estimator 8 is defined as

0 := arg max L(0),
0

meaning that 6 is an extremum estimator. Depending on the model class and the probability
distribution ¢, maximization of the likelihood can be a challenge beyond the scope of ana-
lytical methods. Numerical optimization methods help to solve the maximization problem in
practical applications.

The easiest and one of the most frequent situations is when ¢ follows a normal distribution,
¢ ~ N(y(0),%). When measurements are statistically independent, the variance-covariance

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

6 Dynamic Modeling and Parameter Estimation in R
matrix ¥ = diag(c?,...,0%) is diagonal and ¢ factorizes. The likelihood function reads
1 (i (0)—yP)?
L) =] e ¥ (6)

2o

7]

=1

Taking twice the negative logarithm, eq. (6) turns into

yi(0) — yP\’

1(0) = —2log L(9) = S S)+ log(2mo? 7
)= 218 1(0) = 3 [(I o wog>], g
thus converting the maximization of L() to a minimization of [(#). Assuming that the data
uncertainties o; are known, eq. (7) is the weighted least-squares function shifted by a constant.
For unknown o;, eq. (7) can be optimized with respect to § and o jointly, yielding the MLE

0 = (6,6).

2.3. Non-linear optimization

Numerical optimization is a diverse field with as many algorithms as there are optimiza-
tion problems around. For our application, derivative-based methods, and in particular the
Newton method, play a major role.

Optimization by the Newton method attempts to iteratively find the root of the gradient
VI(#) by the recursion

o+ = o) — H1(9)7'VI(6), (8)

where HI(f) denotes the Hessian, i.e. the matrix of second derivatives of [(f). The fact
that for normally distributed noise the log-likelihood is a least squares function, has a big
advantage: gradient and (approximate) Hessian can be computed from first-order derivatives
(Press, Teukolsky, Vetterling, and Flannery 1996). Since the second-order contributions to
the Hessian can be neglected, gradient and Hessian read

ViO) =2r(0)J(0) HIO) ~2J0)LJ6), (9)

with the weighted residual vector r;(0) = W and its first derivative, the Jacobian matrix
or; 1 Oy;

T(0) = 55 7 (10)

=550 = 5550

As indicated by egs. (9)-(10), first order model sensitivities gg; are sufficient to compute
gradient and Hessian in good approximation.

The Newton recursion, eq. (8), converges in one iteration if I(6) is a quadratic form. However,
[(0) is only quadratic if the model y(#) is linear in 6 which is usually not the case for ODE
models. On the other hand, each smooth function, no matter if quadratic or not, can be
approximated by a quadratic function based on its Taylor series. Thus, [(#) can be approxi-
mated by a quadratic function in at least a small region around 6. The idea of trust-region
optimization is to confine a Newton step to a region, the trust region, where the quadratic
approximation holds (Wright and Nocedal 1999). In each iteration, the trust-region radius is

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

adjusted and the optimization problem restricted to the trust region is solved. For parameter
estimation in ODE models this has the additional advantage that parameter changes are con-
stricted and optimization steps into parameter regions where the ODE cannot be numerically
solved any more become less frequent. This make trust-region optimization the method of
choice for ODEs.

2.4. Uncertainty analysis

Parameter estimates 6 are obtained by non-linear optimization of the log-likelihood function
1(#). Although being a function of the parameters, the log-likelihood depends on the data,
too. Consequently, ’ equlvalent” random realizations of the data would lead to different pa-
rameter estimates 6. Given 6 for one random realization of the data, the question is, at
which significance level we can reject other parameters 6. This leads to the related question
of parameter convidence intervals.

A useful tool to derive confidence intervals beyond the scope of Fisher Information Matrix is
the profile likelihood. Consider a parameter of interest, 6;, being one of the parameters in the
vector 6. Furthermore, let ¢, (0) = 6; — 7 = 0 be a parameter constraint. Then, extending the
likelihood with the constraint via a Lagrange multiplier A yields

p,: R—R

. 11
T —> 1{&1}3 [1(0) + Aer ()] (11)

which is called the profile likelihood of the i ™ parameter. The path 7 (éT, 5\7) along the
minimizing parameters is called the profile likelihood path Hence, the profile likelihood pl;

returns the minimal log-likelihood under the constraint ; = 7. By construction, the inequality
D; :=pl,(1)—pl, (9) > 0 holds for all 7, assuming equality at least for 7 = 6;. Interpreting the
unconstrained model as the null model, which we assume to be true, and that with 6; fixed to
7 as the alternative model, the value D is twice the log of the likelihood-ratio between those.
Hence, a likelihood-ratio test can be performed to accept or reject the alternative model at a
given confidence level. To compute the corresponding threshold, we assume Wilks’ theorem
according to which the thresholds are the quantiles of the y? distribution with one degree of
freedom. Consequently, the 68%/90% /95%-confidence intervals of 6; are those values of 7 for
which D;(7) <1, 2.71 and 3.84, respectively.

The reason to formulate the profile likelihood by Lagrangian multipliers is that we can directly
use eq. (11) to derive the profile likelihood path (6, A;) with respect to 7:

()= (oo 7o) ())

Eq. (12) forms the basis of what is implemented in dMod for computing the profile likelihood.

The profile likelihood approach can be applied to compute confidence intervals for model
predictions, too, see (Kreutz et al. 2012; Hass, Kreutz, Timmer, and Kaschek 2016).

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

8 Dynamic Modeling and Parameter Estimation in R

3. Implementation and design principles

The guiding idea behind the implementation of dMod is to provide a class structure for models,
predictions, observations and parameter transformations that allows a flexible combination of
many experimental conditions in one objective function to fit models to data. This flexibility
is achieved by two concepts: (1) concatenation of functions by the "*" operator and (2)
stacking of functions representing different conditions by the "+" operator. The handling and
propagation of derivatives is part of the classes and happens in the background. Methods for
the generic print (), plot () and summary() functions are implemented for most outputs.

3.1. Model formulation

A system of ODEs & = f(x,p,u,t) is represented by a named character vector of symbolic
expressions, the right-hand side of the ODE, involving symbols for the states z, the parameters
p, the forcings u and the keyword time for ¢. The names of the vector are the state names.
The class provided by dMod for such objects is the eqnvec class which checks whether the
character can be parsed and thus, can be interpreted as an equation.

dMod provides several ways to define the differential equations. An eqnvec of equations can
be explicitly formulated, analogously to a c() command. Especially for chemical reactions it
can be tedious to keep track of all gain and loss terms. Therefore, dMod provides also the
eqnlist class which encodes the ODE by a list of (1) state names, (2) rate expressions, (3)
compartment volumes and (4) the stoichiometric matrix. Each reaction flux, c.f. eq. (2), occurs
only once and the gain and loss is represented by the coefficients in the stoichiometric matrix.
dMod supports the read-in of a csv file with the stoichiometric matrix and rate expressions
and provides a function addReaction() to construct an eqnlist object step-by-step or add
further reactions to an already existing eqnlist. An eqnlist is converted to (differential)
equations, i.e. an eqnvec, by as.eqnvec(). The conversion does all the bookkeeping of gain
and loss terms and volume ratios due to compartment transitions.

dMod makes use of derivatives wherever possible. It is one of the core functionalities of the
cOde package upon which dMod is based to augment a system of ODEs by its sensitivity
equations. If r parameters are involved and the system consists of n states, the number of
equations grows as quick as n? + nr. Solving the equations can be considerably accelerated
by utilizing compiled code. dMod provides the odemodel class. An object of class odemodel
is generated from an eqnlist or eqnvec. In the background, C code for the ODE and
the combined system of ODE and sensitivity equations is generated, written to the working
directory and compiled. The odemodel object keeps track of the shared objects. It is the
basis of a prediction function z(t,p) generated by the Xs() command.

3.2. Prediction functions

dMod seeks to stay close to the mathematical formulation, i.e. x <- Xs(myodemodel) will
indeed return an R function, an object of class prdfn, which expects arguments times and
pars and turns them into a model prediction. The letter "s" in "Xs" refers to sensitivities,
i.e. the solution xz(t) is returned, the sensitivities g—ﬁ(t) are returned, too.

Besides parameters, the prediction might also depend on forcings u(t) and sudden events,
e.g. setting states to 0 at a predefined point in time. Since forcings and events are by default
fixed, they are defined together with the prediction function, x <- Xs(odemodel, forcings

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

= myforcings, events = myevents). The definitions of both, forcings and events, are com-
patible with the way they are defined in deSolve.

3.3. Observation functions

An observation function is a function g(z,pobs,t) that evaluates the solution x(t) together
with additional (observation) parameters pops. The function can explicitly depend on time t.
Similar to the ODE case, an observation function can be expressed as a character vector with
names corresponding to the names of the observables and equations involving symbols for the
states, parameters and the keyword time. An observation function is defined as an eqnvec
and turned into an R function via Y().

It is one of the fundamental concepts of dMod to allow concatenation of functions via the "*"
operator. The mathematical formulation y = g o x, i.e. y(t,p) = (g o x)(t,p) := g(z(t,p), p,t)
becomes y = g*x in R. To obtain derivatives %’ the chain rule is applied: 6% = %g—g + g—g.
This means that Y() needs to be informed which symbols are states and parameters to gen-
erate the corresponding expressions % and %}Z' The observation function g takes care of
computing theses derivatives from the symbolic expressions and doing the matrix multiplica-
tion with the sensitivities g—g from the prediction function. Evaluation of symbolic expressions
can become inefficient in R. Therefore, the observation function is usually translated into a C

code and compiled.

When observation- and prediction functions are concatenated, the result is a prediction func-
tion, e.g. y = g*x is the R function computing values y(t) from the arguments times and
pars via evaluation of the ODE and subsequent evaluation of the observation function. Two
observation functions can be concatenated, too, again yielding an observation function.

3.4. Parameter transformations

Parameter transformations are the key element of dMod to formulate different kinds of con-
straints and allow the combination of several experimental/modeling conditions in one pa-
rameter vector.

In principle, a parameter transformation p = ®(0) is a (differentiable) function connecting
inner parameters p with outer parameters 6. The rationale behind the distinction of inner
and outer parameters is that the vector p usually desribes those parameters defined in the
model equations. The outer parameters 6 refer to a convenient parameterization by which
the model parameters are computed. Examples are a log-transform of the inner parameters,
0 =log(p) & p = ®(A) = €Y, or parameter constraints like (py,p2) = (61,601 + 62).

An R function of class parfn is produced by the P() command. Transformations can either be
formulated explicitly or implicitly. In the explicit case, the function p = ®(6) corresponds to
an eqnvec whose names are the names of the inner parameters and entries are equations with
symbols for the outer parameters. An implicit transformation has the form f (p = ®(0), 9) =
0. In this case, f is expressed by an eqnvec with equations containing symbols for p and 6
and the names of the eqnvec are the symbols for p.

Similar to prediction- and observation functions, parameter functions not only return pa-
rameter values but the Jacobian of the transformation, too. Exploiting the chain rule, the
derivatives are propagated, allowing to define y = g*x*p which is a function returning y(t, 0)
and %(t), i.e. gxx*p is a prediction function.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

10 Dynamic Modeling and Parameter Estimation in R

Let g, x, pl and p2 be an observation-, a prediction- and two parameter transformation
functions. Then p1*p2 is a parameter transformation function, x*p1 is a prediction function
and g*pl is an observation function.

3.5. Multi-conditional prediction

A set of parameter values, forcings and events capture a certain condition in which we find the
modeled system. Manipulating the system, single model parameters, forcings or events need
to be changed to account for the manipulation. It is a typical approach in systems inference
to systematically perturb small parts of a modeled system to reveal information about the
processes.

The aim of dMod is to allow for ”simultaneous” predictions under several conditions and
compare these predictions to the corresponding experimental data sets to estimate model
parameters. Different experimental conditions are typically expressed by that fact that some
parameters are different between conditions whereas others are common to all conditions.
This situation occurs e.g. if perturbation experiments are performed, affecting only few parts
of a system. Mathematically speaking, we want to construct a parameter transformation

P : RpHéRq

1 (13)
0 (D1(0),...,0,(0))
where ¢ = 1,...,n corresponds to the different conditions. If all parameters are shared

throughout all conditions, then p = q. If, however, all parameters are distinct, then p =n-q.
Perturbation experiments correspond to a situation where p 2 q.

The dMod package allows to define transformations @, see eq. (13), by the "+" operator:
p <- P(eqnvecl, condition = "one") + P(eqnvec2, condition = "two").

All symbols from eqnvecl and eqnvec? are collected and their union constitutes the symbols
of 6. The evaluation p(theta) returns a list of length n (in the example n = 2) with inner
parameters. The "+" operator can be applied consecutively to add conditions.

Prediction- and observation functions are generalized to multiple conditions by the "+" oper-
ator, too. Mathematically speaking, they become

n n

T R x PRI — PHR™
i=1 i=1

(tapla s 7pn) — (a"l(tapl)) s 7xn(tapn))

n n n

g: @Rmx@quRH@RS
i=1 i=1 i=1

(x1(t)y .y xn(t),p1y oy Py t) — (g1(1(t), p1,t), - -, gn(Tn(t, Pn), P, t)).

In words, if prediction- or observation functions are defined for different conditions then they
expect condition-specific inputs which are evaluated by the matching functions. Examples for
condition-specific prediction functions typically involve different forcings or events. Observa-
tion functions can e.g. differ between different measurement techniques. In all these cases,

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

11

the different prediction functions x1,...,x, or observation functions g¢i,..., g, are defined,
referencing the condition, and combined by the "+" operator analogously to p.

All commands, P(), Xs(), Y(), etc. can be executed with condition = NULL. In that case,
the corresponding returned function is generic and, if called for different conditions, the same
identical function is evaluated with the condition-specific input. The other way round, if a
function, say, x is defined for several conditions, its prediction can be evaluated only for a
subset of conditions by x(times, pars, conditions = myconditions).

3.6. The data structure

In dMod different experimental conditions are handled by lists. Parameter transformations,
prediction- and observation functions stacked by the "+" operator return list objects. On
the other hand, data.frames as they are used for linear modeling, mixed-effects modeling or
plotting with ggplot2 are highly convenient to organize the data. The class datalist provides
the interface between dMod’s list structures and data.frame objects. A datalist is a list
of data frames with identical structure: observable names, time points, measured values and
measurement uncertainty.

Objects of class datalist are usually generated by the as.datalist() command from a
data.frame. The factor variables in the data frame to be used as generators for the unique
condition names can be passed by the split.by argument. The resulting list of data frames
has an additional attribute "condition.grid", a translation table between the condition
names and the original factor variables which can be used for specification of parameter
transformations or augmentation of predictions by descriptive columns.

3.7. Objective function

The aim of dMod is parameter estimation. The objective function to be minimized for
this purpose is the weighted least squares function which is produced by the command
normL2(data, prdfn) where data is a datalist object and prdfn is a prediction function.

The objective function is the final link connecting the chain of parameter transformations,
prediction- and observation functions to observations. It collects all derivative information
and besides the objective value it also computes gradient and Hessian. The standard optimizer
employed within dMod is the trust () optimizer from the trust package.

Objective functions can be added by the "+" operator, meaning the objective values, gradi-
ents and Hessians are accumulated by summation. Besides the standard function normL2 (),
dMod provides several other functions returning objective functions, e.g. constraintL2() or
datapointL2(). They allow to define parameter priors or treat data points as parameters, as
shown in Section 4. Thus, a typical objective function used for parameter estimation could
be

obj <- normL2(data, g*x*(pl+p2+p3)) + constraintlL2(mu, sigma).

4. Three-compartment model of bile acid transport

The following model is a simplified dynamic model on bile acid transport. Bile acids are
produced in the liver. They are necessary for the digestion of fat and oil. In the liver, bile

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

12 Dynamic Modeling and Parameter Estimation in R

acids are taken up in hepatocytes (liver cells) by specific transporter molecules. Clearance
occurs either via canalicular or sinusoidal export, i.e. export to the bile transportation system
of bile canaliculi or the intercellular space.

To study bile clearance, experiments with hepatocytes or hepatocyte-derived cell lines are
performed in-vitro. Cells in a Petri dish stick together to a monolayer of cells, forming bile
canaliculi in between cells. They adhere to the dish and are surrounded by a buffer providing
the cells with nutrients. A radioactive label allows to measure the bile acid taurocholic acide
(TCA).

For the mathematical description of bile flow, a three-compartment differential equation
model is used. TCA is pipetted into the buffer compartment (TCA_buffer) from where it
is transported into the cells (TCA_cell). Intracellular TCA is exported back to the buffer
or the canalicular compartment (TCA_cana). Finally, canalicular TCA flows back into the
buffer compartment. These processes give rise to the differential equations and corresponding
flowchart presented in Figure 1.

A B

d
—TCA_buffer = -import * TCA_buffer
dt reflux l

+ export_sinus * TCA_cell
+ reflux * TCA_cana buffer

aTCA_cana = export_cana * TCA_cell

- reflux * TCA_cana @
d cana
—TCA_cell = import * TCA_buffer L .
de \ cell
|

- export_sinus * TCA_cell

export_sinus

qxodut

- export_cana * TCA_cell. exportcana
Figure 1: Differential equations and flowchart of the reaction network. Taurocholic acid,
TCA, is transported between three compartments by four different processes. (A) Assuming
mass-action kinetics, the three dynamic states satisfy a set of coupled differential equations.
(B) The equations are visualized in a flowchart.

4.1. Simulation and prediction

Each transportation process is modeled by mass-action kinetics. A possible implementation
in dMod is:

Add reactions

reactions <- NULL

reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
rate = "import*TCA_buffer"”,
description = "Uptake")

reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",
rate = "export_sinus*TCA_cell",

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

13

description = "Sinusoidal export")
reactions <- addReaction(reactions, "TCA_cell", "TCA_cana",

rate = "export_cana*TCA_cell",

description = "Canalicular export")
reactions <- addReaction(reactions, "TCA_cana'", "TCA_buffer",

rate = "reflux*TCA_cana",

description = "Reflux into the buffer")

Translate into ODE model
mymodel <- odemodel (reactions, modelname = "bamodel")

Generate prediction function from OUDE model
x <- Xs(mymodel, condition = NULL)

The reactions are collected in an eqnlist object. The odemodel () command composes the
single reactions to an ODE system and auto-generates the C code which is used by the deSolve
package to evaluate the ODE. Prediction functions are generated by the Xs () command. The
usage of the prediction function is illustrated by the following code chunk. Time points are
defined between 0 and 50, numeric values are assigned to all model parameters. Finally the
prediction function is called and both, the prediction and the sensitivities, are plotted, shown
in Figure 2.

times <- seq(0, 50, .1)

pars <- c(TCA_buffer = 1, # initial values
TCA_cell = 0, # initial values
TCA_cana = 0, # initial values

import = 0.2,
export_sinus = 0.2,
export_cana = 0.04,
reflux = 0.1)

Generate the prediction
out <- x(times, pars)
plot(out)

Get sensitivities for the rate parameters only, pars[4:7]
out <- getDerivs(x(times, pars[4:7], fixed = pars[1:3]))
plot (out)

Figure 2A shows the uptake of TCA_buffer in the cell and canaliculi, saturating around ¢ = 50.
The prediction parametrically depends on initial values and rate parameters. Figure 2B shows
the model sensitivities g—;ﬁ for the rate parameters.

4.2. Observation function and simulated data

In experiments, the three dynamic states, TCA_buffer, TCA_cell and TCA_cana cannot be
directly measured. Rather, the radioactivity can only be measured separately for two com-
partments, namely the buffer and the cellular compartment, where the latter contains cells

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

14 Dynamic Modeling and Parameter Estimation in R
A . B P ellimpor ana.imDor
TCA_buffer TCA_buffer.import TCA_ cell.import TCA__cana.import
1.04 0.0 104 031
-0.5 1 0.2
0.8 1 21.0 1 0.5 - 0.1
. -1.5 T T T T T 0.0 = T — T ~ 0.0 — T T T
0.6 1 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
T T T T T T TCA_ buffer.export_ sinus TCA_ cell.export__sinus TCA__cana.export_ sinus
0 10 20 30 40 50 0.00 0.0
> 0.9]
TCA cell = 061 -0.25 -0.11
2 -0.50 |
2 o4 £ 03 o -0.27
3 04 b -0.75 7|
= 0.3 Z 0.0 T T T T T ’ T ¥ — T ~ -0.3 ¢ — T T T
g) e 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
0.2 4
é é TCA_ buffer.export_cana TCA_cell.export_cana TCA _cana.export_cana
g 0179 € 007 0.0 3
g ool — 1 5021 0.5 5
504 -1.01
0 10 20 30 40 50 s -1.5 - 1+
2.-0.6 90
TCA_ cana — — 0o+r— -
0.15 4 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
TCA_ buffer.reflux TCA_ cell.reflux TCA__cana.reflux
0.10 0.6 0.0
067 0.4+
0.05 0.4 4) -0.5 1
0.2 4 0.2 -1.0 4
0.00 15 . . . r . 00+ =+ = —_———
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time time

Figure 2: Output of the prediction function. (A) Prediction of the TCA states. (B) Sensitiv-
ities of the three TCA states for the rate parameters only.

and canaliculi. This translates into the following relation between the radioactive counts and
the dynamic states of our ODE model:

buffer = s * TCA_buffer

14

cellular = s * (TCA_cana + TCA_cell) (14)

The scaling factor s translates amounts of TCA into radioactive counts. The observation
function is expressed in dMod as follows.

First, observables are defined by an eqnvec object from which an observation function g
is generated by the YOO command. The Y() command needs to be informed which of the
symbols are variables (dynamic states) or parameters. Conveniently, Y() can parse an eqnvec
or eqnlist such as reactions to retrieve this information.

Generate observation function
observables <- eqnvec(

buffer = "s*TCA_buffer",

cellular = "s*(TCA_cana + TCA_cell)"

g <- Y(observables, f = reactions, condition = NULL,
compile = TRUE, modelname = "obsfn")

Observation functions link internal to observable states. Thus, providing values for the model
parameters, the observation function can be used to simulate the outcome of an experiment.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

15

Adding noise to the prediction, experimental data is simulated. In the following, we will sim-
ulate the outcome of an efflur experiment. The experiment start with all TCA concentrations
in steady state, such as shown in Figure 2 after ¢t = 50. To initiate the eflux, the buffer is
replaced by TCA-free buffer, i.e. TCA_buffer = 0. This translates into the following initial
parameter values:

Reset parameter values
pars["TCA_cell"] <- 0.3846154
pars["TCA_cana"] <- 0.1538462
pars["TCA_buffer"] <- 0
pars["s"] <- 1e3

The predicted dynamics of the system’s internal and observable states is obtained by evalu-
ation of the concatenated prediction function g o x, formulated as g*x in dMod. The scaling
parameter s is set to 1000.

out <- (g*x)(times, pars, conditions = "standard")

Since g and x have been generated as generic functions, i.e. condition = NULL, we can assign
the output to a condition of our choice, in thas case "standard”. The predicted noiseless obser-
vation is obtained by considering the observable states only at the time point of observation
timesD.

Simuate data
timesD <- ¢(0.1, 1, 3, 7, 11, 15, 20, 41)
datasheet <- subset(wide2long(out),
time Jinj, timesD & name 7inj, names (observables))

Data uncertainties o are derived by the Poisson nature of radioactive count experiments, i.e.
oz = +/z. To avoid division by 0, the minimal o-value is set to 1. Random values are added to
the predicted values to simulate observation noise. In the end, the data.frame is converted
into a datalist object.

datasheet$sigma <- sqrt(datasheet$value + 1)
datasheet$value <- rnorm(nrow(datasheet), datasheet$value, datasheet$sigma)

data <- as.datalist(datasheet)
plot(out, data)

Both, the simulated data and the model prediction from which the data is derived are shown
in Figure 3. The data reflects a typical time course of an eflux experiment, showing decreasing
cellular TCA levels and increasing levels of TCA in the buffer.

4.3. Parameter transformation

Parameter transformations play a crucial role in the set-up of dMod. They can have several
purposes such as fixing paramer values, implementing parameter bounds, including steady-
state constraints or mapping parameters to different conditions. While being conceptually the

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

16 Dynamic Modeling and Parameter Estimation in R
buffer cellular TCA_ buffer TCA_ cell TCA_cana
0.25
g $ 500 - 0.20 0.35 - 0.14 -
% 200 1 ’ ' '
£ 0.15 a0 4
g 100 0.30 0.12
8 100 0.10
] 0.25 - 101
g 300 0.05 0-10
Uiy A . .+. —dooo JO00] A s
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time

Figure 3: Model prediction of the observable and internal states. Simulated data is shown as
dots with error bars.

same, it might be worth noting that parameters can be distinguished in two classes. The first
class of parameters are initial values for dynamic states, such as TCA_buffer. Parameters of
the second class, such as rate parameters, have no accompanying dynamic state.

First, we use parameter transformations to constrain all parameters to be positive or zero
because all our parameters are either amounts or rate parameters. The parameter transfor-
mation is generated by the P() command taking an eqnvec object. Parameter transformations
explicitly state the relation between the inner parameters, i.e. the parameter values that are
evaluated within the model, and the outer parameters, i.e. the parameter values provided by
the user or by an optimizer. In our case, we imply positivity of inner parameters using the
exp() function on outer parameters. The corresponding code reads:

p <- P(
trafo = eqnvec(
TCA_buffer = "0",
TCA_cell "exp(TCA_cell)",
TCA_cana = "exp(TCA_cana)",
import = "exp(import)",
export_sinus = "exp(export_sinus)",

export_cana = "exp(export_cana)",
reflux = "exp(reflux)",
s = "exp(s)"

),

condition = "standard"

outerpars <- getParameters(p)
pouter <- structure(rep(-1, length(outerpars)), names = outerpars)
plot ((g*x*p) (times, pouter), data)

The vector outerpars is the collection of all symbols on the right-hand side of trafo. It
coincides with names (pars) except for TCA_buffer, which is fixed to a constant expression,
here 0, by the transformation. However, the interpretation of the parameters has changed
since now their values are on a log-scale. All three functions, the observation function, pre-
diction function and parameter transformation can be concatenated to one new prediction

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

17

function, g*x*p which takes times and values of the outer parameters to predict internal and
observable states. The model prediction generated by pouter is shown in Figure 4.

buffer cellular TCA_ buffer TCA_ cell TCA_cana

o TR ’ ’. o 0.35 1 0.35 1
) .3 -
5 2007 400 71® 030 030
= ¢ .. L4 ° 0.2 -
g * 0.25
S 100 A 200 - 0.25
= b 0.1-
Qo 0.20 4
S : 0.20 A

e _ V=l o ——

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

time

Figure 4: Prediction of internal and observed states. All values of the outer parameters have
been set to —1. Simulated data points are shown as dots with error bars.

4.4. Objective function and model fitting

The objective of model fitting is to find parameter values such that the corresponding model
prediction matches the observation. In Figure 4, the graphs of buffer and cellular should
match the observation within the error. For normally distributed measurement noise, maxi-
mum-likelihood estimation is equivalent to least-squares estimation. A least-squares objective
function can be generated by the normL2() command which requires a datalist object, in
our case data, and a prediction function, in our case gxx*p.

Frequently, non-identifiable parameters are encountered in non-linear dynamic systems. To
prevent the optimizer from selecting extreme parameter values for which the ODE solver
aborts, a general quadratic prior can be entailed on all parameters by calling constraintL2().
The objective functions returned by normL2() and constraintL2() are objects of class objfn
and can be added by the "+" operator.

The following code illustrates the implementation of the objective function and how it is used
with the trust () optimizer from the trust package to obtain a model fit, shown in Figure 5.

obj <- normL2(data, g*x*p) + constraintL2(pouter, sigma = 10)
myfit <- trust(obj, pouter, rinit = 1, rmax = 10)

plot ((g*x*p) (times, myfit$argument), data)

Besides non-identifiability of parameters, local optima constitute another pit-fall when op-
timizing non-linear functions. The trust() optimizer employs derivative information and
therefore, if starting within a certain region around a local optimum, is very efficient in find-
ing it back. Once an optimum is found, we can be confident that there is no deeper point
around. However, to be confident that an optimum is the globally best solution, we might
want to scatter starting points for optimization runs all over the parameter space. The dMod
package provides the mstrust () function based on trust() to do a multi-start search:

out_mstrust <- mstrust(obj, pouter, rinit = 1, rmax = 10, iterlim = 500,
sd = 4,

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

18 Dynamic Modeling and Parameter Estimation in R
buffer cellular TCA_ buffer TCA_ cell TCA_ cana
2.5
g ¢ 500 4 9 B
= 200 1) 2.0 90-
g 6 1.5
= 400
& 100 1 3 1.0 4 157
g 300 1 ’
¢ 0.5
(Ul — — W
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time

Figure 5: Prediction of internal and observed states after optimization of the objective func-
tion. Simulated data points are shown as dots with error bars.

cores = 4, fits = 50)
myframe <- as.parframe (out_mstrust)

plotValues (myframe, value < 100)
plotPars (myframe, value < 100)

Here, we have searched according to p; = po + Ap; where py is the center, in our case pouter,
Ap; ~ N(0,0?) is a random parameter vector taken from a normal distribution, in our case
o = 4, and the index ¢ runs from 1 to fits = 50. The mclapply() command from the
parallel package is used internally to run fits in parallel, here cores = 4. The result of
mstrust () is a list of all returned values of trust(). To extract the final objective value,
parameter values, convergence information and the number of iterations, as.parframe() is
used. The multi-start approach identifies four local optima, see Figure 6, which yield almost
the same objective value, Figure 6A. Despite the similar objective value, the optima are not
close to each other in parameter space, as being illustrated by Figure 6B, and lead to different
predictions, Figure 6C. Figure 6B suggests that the two initial values TCA_cell and TCA_cana
are connected in the sense that if one takes a large value, the other takes a small value and
vice versa. This is not surprising because the observed cellular TCA amount is the sum of
both. A new experiment needs to be designed to distinguish one situation from another.

4.5. Working with several conditions

In practice, the canaliculi only form a closed compartment if Ca?*/Mg?* ions are present in
the buffer. Therefore, if the experiment is repeated with Ca?*/Mg?*-free efflux buffer, the
contents of the canaliculi escapes quickly into the buffer compartment. Under this condition,
the buffer measurement reflects what was formerly the total TCA content in buffer and
canaliculi whereas the cellular measurement reflects what was fomerly the TCA content
of the cells. Mathematically, two experimental conditions which differ only by the reflux
parameter need to be combined in one objective function.

Like before, we simulate a data set. Then, a parameter transformation for the additional
condition is set up and the parameter space is explored by a multi-start fit.

To simulate the new experimental condition, the "reflux" parameter is modified. The new
data set is combined with the original data by the "+" operator.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

19
A B x
12.80 1 X X]
converged x
© value
® TRUE = 27
12.75 4 g X 12,58
-
iterations g % X X 12.61
< g 0- X
B 12.70 1 100 2 I X % X 12.66
5 g X X X 12.81
x 80
. 24 % %
12.65 - 60 X ¥ X
o, T ;% : % °
. —_— - 8 § 8 £ § £
12.60 < £ 7 =
[§ L fq e &) E 35 5 §
T T T T T T F s_’:.‘ ;<-x
0 10 20 30 40 50 3 <
index
C buffer cellular TCA_ buffer TCA_ cell TCA_cana
o 20 20
o 500 9
-2 200 i))
g 61 154 15
= 400 - i i
§ 100 - 10 10
Q 300 - ¢ 3 5 5
o
U ; .+. SRS B . | S U
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

time

Figure 6: Result of multi-start fitting procedure. (A) Fits have been sorted by increasing
objective value. Four optima were found with almost identical objective value. (B) The
parameter values for different optima are shown in different colors. (C) Each local optimum
corresponds to a different model prediction, shown in different colors. The observed states
are pracitically undistinguishable although the internal states show different behavior.

pars["reflux"] <- 1le3
out <- (g*x)(times, pars, conditions = "open")

datasheet <- subset(wide2long(out),

time Jinj, timesD & name 7,inj, names (observables))
datasheet$sigma <- sqrt(datasheet$value + 1)
datasheet$value <- rnorm(nrow(datasheet), datasheet$value, datasheet$sigma)

data <- data + as.datalist(datasheet)

To add a condition to the parameter transformation function, we use the equations of the stan-
dard condition as a template for the "open” condition. Parameter transformation functions
for different conditions are combined by the "+" operator.

trafo <- summary(p)$standard$equations
trafo["reflux"] <- "exp(reflux_open)"
p <- p + P(trafo, condition = "open")

Both transformations “standard” and ”"open” now possess the outer parameters reflux and
reflux_open. However, the value of reflux is mapped to an inner parameter only by trans-

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

20 Dynamic Modeling and Parameter Estimation in R

formation “standard”. Accordingly, transformation "open” only uses reflux_open. Thus,
both transformations return the same values for all but the reflux parameter. The predic-
tion function g*x is generic in the sense that condition = NULL whereas the concatenation
gxx*p has the conditions "standard” and ”open”, evaluating the identical function g*x on two
parameter vectors.

We define an updated objective function:

outerpars <- getParameters(p)
pouter <- structure(rep(-1, length(outerpars)), names = outerpars)

obj <- normL2(data, g#*x*p) + constraintL2(pouter, sigma = 10)

Then we start 50 fits around pouter. The list of fits is simplified to a parframe and by the
as.parvec() function, the parameter vector (of the best fit) is extracted from the parframe.
The best fit is used to make a prediction which is plotted together with the simulated data.
All results are shown in Figure 7.

out_mstrust <- mstrust(obj, pouter, rinit = 1, rmax = 10, iterlim = 500,
sd = 4, cores = 4, fits = 50)

myframe <- as.parframe(out_mstrust)

plotValues (myframe, value < 100)

plotPars (myframe, value < 100)

bestfit <- as.parvec(myframe)
plot ((g*x*p) (times, bestfit), data)

Interestingly, with the new experiment the best optimum becomes unique. The log-likelihood
difference, i.e. half the difference between the objective values, is more than 20 between the
lowest and the second plateau, which is highly significant. The uniqueness of the lowest
plateau is confirmed by Figure 7C which shows no scattering of the black circles.

4.6. Parameter uncertainty and identifiability

One might wonder why the optimum is unique as for any choice of the scaling parameter
s we find appropriate values of the TCA initial value parameters that give rise to exactly
the same prediction of the observables. The reason for the uniqueness is the parameter Lo-
constraint that we have added to the objective function. Nonetheless, we will see, that the
non-identifiability is still visible in the profile likelihood.

The profile likelihood is computed by the profile() command. There are several options to
control the step-size and accuracy. For convenience the method option can be used to select
between the presets "integrate" and "optimize".

The code

profiles <- profile(obj, bestfit, names(bestfit),
limits = ¢(-5, 5), cores = 4)

plotProfile(profiles)

plotPaths(profiles, whichPar = "s")

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

21
A buffer cellular TCA_ buffer TCA_ cell TCA__cana
g ¢
= 4- condition
<
ag —®— standard
] 2 -
g -©- open
S H
——— 20 t—F———— O b———7——+—+ L Oipmsgmmgmanmmeren,
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
time
B C
converged 4 X oy X
[}
60 - ® TRUE = x X value
£ 24 x X %
= X X 24.12
iterations g
& 50- g 0- X 66.85
I I ® i ap
B X .
N 60 ‘E , X x X 66.86
=R 40 - X
¥
40 T T T T T T T T
20 < k= =
o= £ 2 %
— . . CERS g g &
0 10 20 30 40 5] 8 =
index

Figure 7: Result of multi-start fitting procedure with two experimental conditions. (A) Model
prediction of the best fit and the simulated data are shown in different colors. (B) Fits have
been sorted by increasing objective value. The lowest value clearly separates from the second
plateau. (C) Plotting the parameter values for each of the fits reveals that the second plateau
consists of two optima. The lowest plateau however corresponds to a unique optimum.

gives us the result shown in Figure 8. Computing the profile likelihood, the sum of data con-
tribution, normL2, and prior contribution, constraintL2, are optimized under the constraint
of a given parameter value for the profiled parameter. In the optimum, data and prior contri-
bution are evaluated separately giving rise to the dashed and dotted lines in Figure 8A. As we
had expected, the data contribution to the initial value parameters TCA_cell, TCA_cana and
the scaling parameter s is constantly zero. The parameters are structurally non-identifiable.

Each profile corresponds to a certain path in parameter space. The path for the profile of
the non-identifiable scaling parameter s is shown in Figure 8B. It shows a clear coupling
of the scaling parameter s and the initial value parameters TCA_cell and TCA_cana: both
initial value parameters have to be decreased by the same extent as the scaling parameter is
increased to keep the prediction unchanged.

The profiles of the parameters export_sinus and reflux_open exceed the 95% confidence
threshold only to one side. Given the data, the export_sinus parameter could equally be
—oo (corresponding to an export rate of 0) without changing the likelihood significantly for
the worse. A similar statement holds for the reflux_open parameter which could equally
be co meaning that we could assume instantaneous draining of the canaliculi for the "open"
condition. The two parameters are practically non-identifiable.

Finally, the parameters import, export_cana and reflux exceed the 95% confidence thresh-
old in both directions meaning that the parameters have finite confidence intervals. However,
the confidence intervals are rather large and we might ask if there is further information that

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

22 Dynamic Modeling and Parameter Estimation in R
A
mode — total ==-* data ==+ prior
TCA_cell TCA_cana import export_sinus

95% / 3.84
90% / 2.71 -

68% /1 A

export__cana reflux s

CL /Ay?

reflux_open

95% / 3.84 3

90% / 2.71
68% /1 A
-3 -2 -1 00 25 50 75
parameter value
S - S - S - S - S - s - s -
TCA_cell TCA_cana import export_sinus export_ cana reflux reflux_open
[a\]
-
g 37
<]
g 04
g
< -3
[N
< —— —— —— —— —— —— ——
30 03 30 03 30 03 30 03 30 03 30 03 30 3

Aparameter 1

Figure 8: Profile likelihood. (A) Profiles of all parameters. Data- and prior contribution to

the total objective value are distinguished by line-type. (B) Parameter paths for the scaling
parameter s.

we could use to improve parameter identifiability without generating new data.

4.7. Steady-state constraints and implicit transformations

So far we have estimated both initial concentrations, TCA_cell and TCA_cana, independently.
However, we know that the eflux experiment was just started after completion of the uptake
process. Our system runs into a steady state, the buffer is exchanged and the measurement

begins. Hence, we can use the steady-state condition as an additional information for the
modeling process.

The steady-state relation between TCA_cana and TCA_cell can be derived analytically from
the ODE, Figure 1A, by setting the right-hand side of %TCA_cana to zero. It reads

TCA_cana = export_cana * TCA_cell / reflux (15)

This relation can be explicitly used in a parameter transformation to express TCA_cana in
terms of other parameters. The dimension of the parameter space is thereby reduced by one.
The following implementation shows how we would use the existing transformation function

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

23

p to generate an alternative transformation function pSS which includes the steady-state
condition and replaces p in the prediction function g*x*p.

pSS <- NULL
trafos <- summary(p)
conditions <- names (trafos)

for (n in conditions) {
equations <- trafos[[n]]$equations
equations["TCA_cana"] <- "exp(export_cana)*exp(TCA_cell)/exp(reflux)"
pSS <- pSS + P(equations, condition = n)

}

We get all the information about the transformations from the summary() command. The
equation for TCA_cana is substituted by our steady-state constraint. By the "+" operator, a
new parameter transformation function pSS is iteratively constructed for all conditions.

Alternatively, we want to implement the steady-state constraint by an implicit parameter
transformation, as opposed to the explicit transformation shown above. Let & = f(z,p)
be our dynamic system. Then, under certain conditions, we find a function g(p) such that
f(g(p),p) = 0 for all p, i.e. xg = g(p) is a steady state of f. The parameter transformation
we want to generate is the function p +— (p, g(p)). Here, the set of outer parameters is the
set of the reaction rates p whereas the set of inner parameters contains these rates and the
corresponding steady states as initial value parameters. The root of f must be determined
numerically to which end multiroot () from the rootSolve package is used.

The following code is a reimplementation of the example above. The condition "open” is
special in the sense that the reflux rate is modified compared to the reflux rate by which the
steady state is computed. This is solved by an event, flipping a switch variable from 0 to 1
and thereby replacing the rate reflux by reflux_open.

Add reactions
reactions <- NULL
reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
rate = "import*TCA_buffer",
description = "Uptake")
reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",
rate = "export_sinus*TCA_cell",
description = "Sinusoidal export")
reactions <- addReaction(reactions, "TCA_cell", "TCA_cana',
rate = "export_cana*TCA_cell",
description = "Canalicular export")
reactions <- addReaction(reactions, "TCA_cana'", "TCA_buffer",
rate = "(reflux*(l-switch) + reflux_open*switch)*TCA_cana",
description = "Reflux into the buffer")
reactions <- addReaction(reactions, "0", "switch',
rate = "0",
description = "Create a switch")

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

24 Dynamic Modeling and Parameter Estimation in R

Translate into ODE model
mymodel <- odemodel(reactions, modelname = "bamodel")

For the implicit parameter transformation we need the ODE which is obtained by the com-
mand as.eqnvec () from the reactions. The Jacobian of f is rank-deficient because the system
has a conserved quantity ¢ = TCA_buffer + TCA_cana + TCA_cell which is the total TCA
amount. Replacing one element of f by ¢ — TCA_tot, the rank of the Jacobian is completed,
the condition for the local existence of the implicit function g(p) is satisfied and the steady
state is parameterized by p and the additional parameter TCA_tot.

Set up implicit parameter transformation
f <- as.eqnvec(reactions) [c("TCA_buffer", "TCA_cana", "TCA_cell")]
f["TCA_cell"] <- "TCA_buffer + TCA_cana + TCA_cell - TCA_tot"
pSS <- P(f, "TCA_tot", method = "implicit",
compile = TRUE, modelname = "pfn")

For the optimization, all outer parameters should still be log-parameters, implemented by an
explicit parameter transformation. Outer parameters for the initial values are not necessary
any more. They can be replaced by 0 since the initial values are computed by the implicit
transformation. The final transformation will be a concatenation of the implicit and explicit
transformations, pSS*p.

Set up explicit parameter transformation
innerpars <- unique(c(getParameters (mymodel),
getSymbols (observables),
getSymbols(f)))
trafo <- as.eqnvec(innerpars, names = innerpars)
trafo[reactions$states] <- "0"
trafo <- replaceSymbols(innerpars,
paste0("exp(", innerpars, ")"),
trafo)
p <- P(trafo)

Both, the exchange of buffer and the opening of bile canaliculi by a Ca?*/Mg?*-free buffer
are implemented as events. We therefore have different prediction functions for the two
conditions.

Set up prediction function with events
event.buffer <- data.frame(var = "TCA_buffer",

time = O,

value = 0,

method = "replace")
event.open <- data.frame(var = "switch",

time = O,

value = 1,

method = "replace")

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

25

x <- Xs(mymodel,
events = event.buffer,

condition = "standard") +

Xs (mymodel,
events = rbind(event.buffer, event.open),
condition = "open")

Although the observables have not changed compared to the set-up with purely explicit trans-
formations, the observation function must be generated again because the new parameter
TCA_tot has appeared. This parameter was not contained in the original reactions. There-
fore, we use the states and parameters arguments to explicitly inform the observation
function about the states and parameters involved. Otherwise, parameter sensitivities are
not propagated correctly.

Generate observation function with modified states/parameters
g <- Y(observables,
states = reactions$states,
parameters = setdiff (innerpars, reactions$states),
compile = TRUE, modelname = "obsfn")

Finally, the objective function is defined. The prediction function is now a concatenation of
four functions.

Generate objective function
outerpars <- getParameters(p)
pouter <- structure(rep(-1, length(outerpars)), names = outerpars)
obj <- normL2(data, g*x*pSS*p) + constraintL2(pouter, sigma = 10)

The same simulated data set has been fitted by the fully explicit and the implicit/explicit
model implementations. In both cases the global optimum is unique. Parameter profiles
have been computed with both model implementations, shown in Figure 9. In addition, the
original profiles without steady-state constraints are plotted. The optima found by all three
approaches, no steady-state, analytic steady-state and numeric steady-state, are statistically
compatible. The two implementations using the steady-state information show exactly the
same profiles. Since one formulation is parameterized by TCA_cell whereas the other is
parameterized by TCA_tot, the plot highlights one of the fundamental properties of the profile
likelihood: invariance under reparameterization. In comparison to the profiles without steady-
state information, the new profiles are narrower, meaning that the parameters have smaller
confidence intervals. This was to be expected because we have reduced the dimension of the
parameter space by one.

4.8. Prediction uncertainty and validation profiles

Combining the steady-state constraint and two efflux experiments, one with closed canali-
culi and the other with open canaliculi, we could fully identify the rate parameters import,
export_cana and reflux. The amount parameter TCA_tot is fully coupled with the scaling

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

26 Dynamic Modeling and Parameter Estimation in R
TCA_ cell TCA_cana import export_sinus export__cana
95% / 3.84
90% / 2.71 1
68% /1
N T T T T T T T T T T T T T T T T
2{ 0 5 -25 00 25 50 -20-19-1.8-1.7-1.6-1.5 -6 -4 -2 5 -4 3 2
N
= reflux s reflux_open TCA_tot
O
95% / 3.84 ‘ ‘ implementation
90% / 2.71 — noS8
+- SS__explicit
68% /1 A f f >~ SS_implicit
e e X X< X
-3 -2 -1 -25 00 25 50 7.5 4 6 8 0 3 6 9

parameter value

Figure 9: Parameter profiles for three different model implementations. The profile likeli-
hood around the global optimum for the models without steady-state constraints, explicit
steady-state constraints and implicit implementation of steady states is visualized by differ-
ent colors. To illustrate that explicit (red) and implicit (blue) steady-state implementations
yield the same result, the corresponding profiles are highlighted by red plus and blue cross
signs, respectively.

parameter s such that both are structurally non-identifiable. The parameters export_sinus
and reflux_open are practically non-identifiable since both parameters cannot be constrained
to a finite interval with 95% confidence.

Next, we investigate the possibility to predict cellular amounts of TCA, TCA_cell, despite
the non-identifiability of parameters. The amount of TCA_cell certainly depends on the total
amount of TCA in the system. This total amount must be fixed in which case the parameters
TCA_cell, TCA_cana and s become identifiable. The prediction uncertainty is assessed by a
prediction profile which is computed based on a virtual data point for cellular TCA, measured
at time point ¢ = 41 under the "standard” condition. The dMod formulation reads as:

obj.validation <- datapointL2(name = "TCA_cell",

time = 41,

value = "d1",

sigma = .002,

condition = "standard")

The uncertainty o = 0.002 is set to a small value, i.e. below 1% of the prediction value. The
datapointL2() command returns an objective function which evaluates the model prediction®
and computes the least-squares function of the virtual datapoint, returning derivatives for
the data-point parameter di. Its value ’d1” is yet to be determined. By fitting the objective

1Several objective functions combined by the "+" operator share the same environment. Thus, the prediction
computed by the first objective function can be evaluated by all other functions to come.

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

27

function obj together with obj.validation, "d1” equals the value of the TCA_cell at ¢t = 41,
as only then its contribution to the objective value is zero.

myfit <- trust(obj + obj.validation,
parinit = c(dl = 1, bestfit[-7]),
fixed = c(TCA_tot = log(1)),
rinit = 1, rmax = 10)

Using the derivative information provided by datapointL2, a prediction profile around d1 is
calculated.

profile_prediction <- profile(obj + obj.validation,
myfit$argument, "d1", limits = c(-5, 5),
fixed = c(TCA_tot = log(1)))

The result is shown in Figure 10A. The interpretation of such a prediction profile is, that a
measurement yielding a value for the cellular TCA level at time point ¢ = 41 outside of the
interval [0.19, 0.21] does not conform to our model with 95% confidence.

A dl B buffer cellular TCA_ buffer
400 . 0.4
00 -
95% / 3.84 °
™ \ i 9
é \ 300 00 0.3
90% / 2.71 1\ 400 -
~
R 200 .2
8 0.2
300 -
100 4 1
68% /1 0-1
013 . . 200 . +. 0.0+ : :
T T T g 0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0
0.19 0.20 0.21 b=
parameter value > TCA_ cell TCA_ cana switch
1.00 A
mode 0.35 0.15
0.75 .
— total an ° condition
0.30 \ 0.10 -
-=-- data W\ 0.50 —&— standard
X 0.25 \
==+ prior 5 -
prior \ \\ N 0.05 0.25 - —8— open
- - validation 0.20 N
| e | 00, : : 0.00 : :
0.1 1.0 10.0 0.1 1.0 10.0 0.1 1.0 10.0

time (logarithmically)

Figure 10: Validation profile and confidence bands for the model prediction. (A) The profile
likelihood for the data point parameter d1 describing TCA_cell at time point ¢ = 41 is shown.
(B) Computing the data parameter profile for different time points yields 95% confidence
bands on the prediction of TCA_cell.

More precisely, changing the data-point parameter d1, the model is quickly forced to follow
the new data point. This is apparent from the "validation” contribution to the total objective
value, Figure 10A, since it remains small with respect to the "data” contribution originating
from all other data points. Forcing the model prediction to deviate more than 0.01 from the
original one, the profile exceeds the 95% confidence threshold providing a confidence interval
for the prediction itself. By calculating prediction profiles for several time points, a confidence

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

28 Dynamic Modeling and Parameter Estimation in R

band for the course of TCA_cell is constructed as shown in Figure 10B. The 95% confidence
band is closed towards small and large amounts.

In summary, we find that the prediction of cellular TCA amounts is highly precise despite
the non-identifiability of the export_sinus and reflux_open parameters.

5. Extensions of dMod

Computer algebra and symbolic tools are not part of R’s core functionality. In this sec-
tion we illustrate two symbolic tools that are shiped with dMod, dealing with structural
non-identifiability and steady-state constraints. They are implemented in Python and are
interfaced via the rPython package.

5.1. Lie-group symmetry detection

In Section 4.6, profile likelihood computation showed the existence of both practically and
structurally non-identifiable parameters. While practical non-identifiability arises from insuf-
ficient information in the data, structural non-identifiabilty is connected to Lie-group sym-
metries, i.e. transformations of the states and parameters

U (z,0) — (*,0%)
that preserve the model prediction of the observables:

g(z*,0") = g(x,0) .

Based on (Merkt et al. 2015), the symmetryDetection() command outputs a list of available
symmetry transformations. For example, the code

reactions <- NULL

reactions <- addReaction(reactions, "TCA_buffer", "TCA_cell",
rate = "import_baso*TCA_buffer")

reactions <- addReaction(reactions, "TCA_cell", "TCA_buffer",

rate = "export_sinus*TCA_cell")
reactions <- addReaction(reactions, "TCA_cell", "TCA_cana',
rate = "export_cana*TCA_cell")
reactions <- addReaction(reactions, "TCA_cana", "TCA_buffer",
rate = "reflux*TCA_cana")

observables <- eqnvec(
buffer = "s*TCA_buffer",
cellular = "s*(TCA_cana + TCA_cell)"

symmetryDetection(as.eqnvec(reactions), observables)

returns the following output:

https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

29

1 transformation(s) found:
variable : infinitesimal : transformation

#1: Type: scaling

TCA_buffer : -TCA_buffer : TCA_buffer*exp(-epsilon)
TCA_cana : -TCA_cana : TCA_cana*exp(-epsilon)
TCA_cell : -TCA_cell : TCA_cell*exp(-epsilon)
s : s : s*exp(epsilon)

In agreement with the identifiability analysis by the profile-likelihood method, the parame-
ters s, TCA_buffer, TCA_cana and TCA_cell are found to be non-identifiable due to a scaling
symmetry. The corresponding scaling transformation, last column, leaves the observation in-
variant for any choice of epsilon. The parameter non-identifiability can be resolved choosing
one representative from the orbit of the transformation. In our case, the scaling parameter
could e.g. be fixed to 1.

5.2. Analytical steady-state constraints

While for the the present model, the steady-state could be explicitly calculated by hand, this
might be much more challenging for models with a large number of states and parameters.
For many of these models, the steadyStates() command outputs an analytical steady-state
solution that can be incorporated in the model as an additional parameter transformation.
Based on (Rosenblatt et al. 2016), the steady-state constraint is solved for a combination
of state variables and kinetic parameters while positivity of the solution is ensured. As the
paper states, the approach outperforms common methods of steady-state implementation
with respect to reliability and performance of the optimization process. For our example, the
code reads

steadyStates(reactions, file = "SS.Rds)

yielding the output

TCA_cana = TCA_buffer*export_cana*import_baso/(reflux*(export_cana +
export_sinus))

TCA_cell = TCA_buffer*import_baso/(export_cana + export_sinus)

TCA_buffer = TCA_buffer

The solution is stored in an Rds file. After loading the file by readRDS(), the equations can
be used when defining the parameter transformation.

References

Azzalini A (1996). Statistical Inference Based on the Likelihood, volume 68. CRC Press.

Bihorel S (2014). scaRabee: Optimization Toolkit for Pharmacokinetic-Pharmacodynamic
Models. R package version 1.1-3, URL http://CRAN.R-project.org/package=scaRabee.

http://CRAN.R-project.org/package=scaRabee
https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

30 Dynamic Modeling and Parameter Estimation in R

Hass H, Kreutz C, Timmer J, Kaschek D (2016). “Fast Integration-Based Prediction Bands
for Ordinary Differential Equation Models.” Bioinformatics, 32(8), 1204-1210.

Kreutz C, Raue A, Kaschek D, Timmer J (2013). “Profile Likelihood in Systems Biology.”
FEBS Journal, 280(11), 2564-2571.

Kreutz C, Raue A, Timmer J (2012). “Likelihood Based Observability Analysis and Confi-
dence Intervals for Predictions of Dynamic Models.” BMC' Systems Biology, 6(1), 120.

Maiwald T, Hass H, Steiert B, Vanlier J, Engesser R, Raue A, Kipkeew F, Bock HH, Kaschek
D, Kreutz C, Timmer J (2016). “Driving the Model to Its Limit: Profile Likelihood Based
Model Reduction.” PloS ONE, 11(9), e0162366.

Merkt B, Timmer J, Kaschek D (2015). “Higher-Order Lie Symmetries in Identifiability and
Predictability Analysis of Dynamic Models.” Physical Review E, 92(1), 012920.

Murphy SA, Van der Vaart AW (2000). “On Profile Likelihood.” Journal of the American
Statistical Association, 95(450), 449-465.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996). Numerical Recipes in C,
volume 2. Cambridge University Press Cambridge.

Ranke J, Lindenberger K, Lehmann R (2016). mkin: Kinetic Evaluation of Chemical Degra-
dation Data. R package version 0.9.44, URL http://CRAN.R-project.org/package=mkin.

Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmiiller U, Timmer J (2009).
“Structural and Practical Identifiability Analysis of Partially Observed Dynamical Models
by Exploiting the Profile Likelihood.” Bioinformatics, 25(15), 1923-1929.

Raue A, Kreutz C, Maiwald T, Klingmiiller U, Timmer J (2011). “Addressing Parameter
Identifiability by Model-Based Experimentation.” IET Systems Biology, 5(2), 120-130.

Raue A, Kreutz C, Theis FJ, Timmer J (2013a). “Joining Forces of Bayesian and Frequentist
Methodology: A Study for Inference in the Presence of Non-Identifiability.” Phil. Trans.
R. Soc. A, 371(1984), 20110544.

Raue A, Schilling M, Bachmann J, Matteson A, Schelker M, Kaschek D, Hug S, Kreutz C,
Harms BD, Theis FJ, Klingmiiller U, Timmer J (2013b). “Lessons Learned from Quanti-
tative Dynamical Modeling in Systems Biology.” PloS ONE, 8(9), e74335.

Rosenblatt M, Timmer J, Kaschek D (2016). “Customized Steady-State Constraints for Pa-
rameter Estimation in Non-Linear Ordinary Differential Equation Models.” Frontiers in
Cell and Developmental Biology, 4.

Soetaert K, Petzoldt T (2010). “Inverse Modelling, Sensitivity and Monte Carlo Analysis
in R Using Package FME.” Journal of Statistical Software, 33(3), 1-28. URL http:
//www.jstatsoft.org/v33/103/.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1-25. ISSN 1548-7660. URL http://wuw.
jstatsoft.org/v33/109.

http://CRAN.R-project.org/package=mkin
http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i03/
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09
https://doi.org/10.1101/085001

bioRxiv preprint doi: https://doi.org/10.1101/085001; this version posted November 2, 2016. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

31

Squire W, Trapp G (1998). “Using Complex Variables to Estimate Derivatives of Real Func-
tions.” SIAM Review, 40(1), 110-112.

Tornoe CW (2012). nlmeODE: Non-Linear Mized-Effects Modelling in nlme Using Dif-
ferential Equations. R package version 1.1, URL http://CRAN.R-project.org/package=
nlmeQODE.

Wright S, Nocedal J (1999). “Numerical Optimization.” Springer Science, 35, 67-68.

http://CRAN.R-project.org/package=nlmeODE
http://CRAN.R-project.org/package=nlmeODE
https://doi.org/10.1101/085001

	Introduction
	Theoretical background
	Dynamic models and model sensitivities
	Maximum-likelihood method
	Non-linear optimization
	Uncertainty analysis

	Implementation and design principles
	Model formulation
	Prediction functions
	Observation functions
	Parameter transformations
	Multi-conditional prediction
	The data structure
	Objective function

	Three-compartment model of bile acid transport
	Simulation and prediction
	Observation function and simulated data
	Parameter transformation
	Objective function and model fitting
	Working with several conditions
	Parameter uncertainty and identifiability
	Steady-state constraints and implicit transformations
	Prediction uncertainty and validation profiles

	Extensions of dMod
	Lie-group symmetry detection
	Analytical steady-state constraints

