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Abstract 28	

Background 29	

Chromatin conformation capture techniques have evolved rapidly over the last few years 30	

and have provided new insights into genome organization at an unprecedented 31	

resolution. Analysis of Hi-C data is complex and computationally intensive involving 32	

multiple tasks and requiring robust quality assessment. This has led to the development 33	

of several tools and methods for processing Hi-C data. However, most of the existing 34	

tools do not cover all aspects of the analysis and only offer few quality assessment 35	
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options. Additionally, availability of a multitude of tools makes scientists wonder how 36	

these tools and associated parameters can be optimally used, and how potential 37	

discrepancies can be interpreted and resolved. Most importantly, investigators need to 38	

be ensured that slight changes in parameters and/or methods do not affect the 39	

conclusions of their studies.  40	

Results 41	

To address these issues (compare, explore and reproduce), we introduce HiC-bench, a 42	

configurable computational platform for comprehensive and reproducible analysis of Hi-43	

C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as 44	

alignment, filtering, contact matrix generation and normalization, identification of 45	

topological domains, scoring and annotation of specific interactions using both published 46	

tools and our own. We have also embedded various tasks that perform quality 47	

assessment and visualization. HiC-bench is implemented as a data flow platform with an 48	

emphasis on analysis reproducibility. Additionally, the user can readily perform parameter 49	

exploration and comparison of different tools in a combinatorial manner that takes into 50	

account all desired parameter settings in each pipeline task. This unique feature facilitates 51	

the design and execution of complex benchmark studies that may involve combinations 52	

of multiple tool/parameter choices in each step of the analysis. To demonstrate the 53	

usefulness of our platform, we performed a comprehensive benchmark of existing and 54	

new TAD callers exploring different matrix correction methods, parameter settings and 55	

sequencing depths. Users can extend our pipeline by adding more tools as they become 56	

available.  57	

Conclusions 58	
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HiC-bench consists an easy-to-use and extensible platform for comprehensive analysis 59	

of Hi-C datasets. We expect that it will facilitate current analyses and help scientists 60	

formulate and test new hypotheses in the field of three-dimensional genome organization. 61	

 62	
Keywords 63	

Hi-C, Chromosome Conformation, Computational pipeline, Data provenance, Parameter 64	

exploration, Benchmarking 65	

 66	

Background 67	

Nuclear organization is of fundamental importance to gene regulation. Recently, proximity 68	

ligation assays have greatly enhanced our understanding of chromatin organization and 69	

its relationship to gene expression [1]. Here we focus on Hi-C, a powerful genome-wide 70	

chromosome conformation capture variant, which detects genome-wide chromatin 71	

interactions [2,3]. In Hi-C, chromatin is cross-linked and DNA is fragmented using 72	

restriction enzymes, the interacting fragments are ligated forming hybrids that are then 73	

sequenced and mapped back to the genome. Hi-C is a very powerful technique that has 74	

led to important discoveries regarding the organizational principles of the genome. More 75	

specifically, Hi-C has revealed that the mammalian genome is organized in active and 76	

repressed areas (A and B compartments) [2] that are further divided in “meta-TADs” [4], 77	

TADs [5] and sub-TADs [6]. TADs consist evolutionarily conserved, megabase-scale, 78	

non-overlapping areas with increased frequency of intra-domain compared to inter-79	

domain chromatin interactions [5,7]. Despite the fact that Hi-C is very powerful, it is known 80	

to be prone to systematic biases [8-10]. Moreover, as the sequencing costs plummet 81	
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allowing for increased Hi-C resolution, Hi-C poses formidable challenges to computational 82	

analysis in terms of data storage, memory usage and processing speed. Thus, various 83	

tools have been recently developed to mitigate biases in Hi-C data and make Hi-C 84	

analysis faster and more efficient in terms of resource usage. HiC-Box [11], hiclib [9] and 85	

HiC-Pro [12] perform various Hi-C analysis tasks, such as alignment and binning of Hi-C 86	

sequencing reads into Hi-C contact matrices, noise reduction and detection of specific 87	

DNA-DNA interactions. Hi-Corrector [13] has been developed for noise reduction of Hi-C 88	

data, allowing parallelization and effective memory management, whereas Hi-Cpipe [14] 89	

offers parallelization options and includes steps for alignment, filtering, quality control, 90	

detection of specific interactions and visualization of contact matrices. Other tools that 91	

allow parallelization are HiFive [15], HOMER [16] and HiC-Pro [12]. Allele-specific Hi-C 92	

contact maps can be generated using HiC-Pro and HiCUP [17] (with SNPsplit [18]). 93	

TADbit can be used to map raw reads, create interaction matrices, normalize and correct 94	

the matrices, call topological domains and build three-dimensional (3D) models based on 95	

the Hi-C matrices [19]. HiCdat performs binning, matrix normalization, integration of other 96	

data (e.g. ChIP-seq) and visualization [20]. HIPPIE offers similar functionality with HiCdat 97	

and allows detection of specific enhancer-promoter interactions [21]. Other tools mainly 98	

focus on visualization of Hi-C data (e.g. Sushi [22] and HiCPlotter [23]). Despite the recent 99	

boom in the development of computational methods for Hi-C analysis, most of these tools 100	

only focus on certain aspects of the analysis, thus failing to encompass the entire Hi-C 101	

data analysis workflow. More importantly, these tools or pipelines are not easily 102	

extensible, and, for any given Hi-C task, they do not allow the integration of multiple 103	

alternative tools (use of alternative TAD calling methods for example) whose performance 104	
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could then be qualitatively or quantitatively compared. Available tools do not support 105	

comprehensive reporting of the parameters used for each task and they do not enable 106	

reproducible computational analysis which is an imperative requirement in the era of big 107	

data [24], especially given the complexity of Hi-C analyses. The recently released HiFive 108	

is an exception as it offers a Galaxy interface [15]. However, use of Galaxy [25] can 109	

become problematic for data-heavy analyses, especially when the remote Galaxy server 110	

is used.  111	

To facilitate comprehensive processing, reproducibility, parameter exploration and 112	

benchmarking of Hi-C data analyses, we introduce HiC-bench, a data flow platform which 113	

is extensible and allows the integration of different task-specific tools. Current and future 114	

tools related to Hi-C analysis can be easily incorporated into HiC-bench by implementing 115	

simple wrapper scripts. HiC-bench covers all current aspects of a standard Hi-C analysis 116	

workflow, including read mapping, filtering, quality control, binning, noise correction and 117	

identification of specific interactions (Table 1). Moreover, it integrates multiple alternative 118	

tools for performing each task (such as matrix correction tools and TAD-calling 119	

algorithms), while at the same time allowing simultaneous exploration of different 120	

parameter settings that are propagated from one task to all subsequent tasks in the 121	

pipeline. HiC-bench also generates a variety of quality assessment plots and offers other 122	

visualization options, such as generating genome browser tracks as well as snapshots 123	

using HiCPlotter. We have built this platform with reproducibility in mind, as all tools, 124	

versions and parameter settings are recorded throughout the analysis. HiC-bench is 125	

released as open-source software and the source code is available on GitHub and 126	
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Zenodo (for details please refer to “Availability of data and material” section). Our team 127	

provides installation and usage support.  128	

 129	

Implementation 130	

The HiC-bench workflow 131	

HiC-bench is a comprehensive computational pipeline for Hi-C sequencing data analysis. 132	

It covers all aspects of Hi-C data analysis, ranging from alignment of raw reads to 133	

boundary-score calculation, TAD calling, boundary detection, annotation of specific 134	

interactions and enrichment analysis. Thus, HiC-bench consists the most complete 135	

computational Hi-C analysis pipeline to date (Table 1). Importantly, every step of the 136	

pipeline includes summary statistics (when applicable) and direct comparative 137	

visualization of the results. This feature is essential for quality control and facilitates 138	

troubleshooting. The HiC-bench workflow (Figure 1) starts with the alignment of Hi-C 139	

sequencing reads and ends with the annotation and enrichment of specific interactions. 140	

More specifically, in the first step, the raw reads (fastq files) are aligned to the reference 141	

genome using Bowtie2 [26] (align). The aligned reads are further filtered in order to 142	

determine those Hi-C read pairs that will be used for downstream analysis (filter). A 143	

detailed statistics report showing the numbers and percentages of reads assigned to the 144	

different categories is automatically generated in the next step (filter-stats). The reads 145	

that satisfy the filtering criteria are used for the creation of Hi-C contact matrices (matrix-146	

filtered). These contact matrices can either be directly visualized in the WashU 147	

Epigenome Browser [27] as Hi-C tracks (tracks), or further processed using three 148	

alternative matrix correction methods: (a) matrix scaling (matrix-prep), (b) iterative 149	
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correction (matrix-ic) [9] and (c) HiCNorm (matrix-hicnorm) [28].  As quality control, plots 150	

of the average number of Hi-C interactions as a function of the distance between the 151	

interacting loci are automatically generated in the next step (matrix-stats). The Hi-C 152	

matrices, before and after matrix correction, are used as inputs in various subsequent 153	

pipeline tasks. First, they are directly compared in terms of Pearson or Spearman 154	

correlation (compare-matrices and compare-matrices-stats) in order to estimate the 155	

similarity between Hi-C samples. Second, they are used for the calculation of boundary 156	

scores (boundary-scores and boundary-scores-pca), identification of topological domains 157	

(domains) and comparison of boundaries (compare-boundaries and compare-158	

boundaries-stats). Third, high-resolution Hi-C matrices are used for detection and 159	

annotation of specific chromatin interactions (interactions and annotations), enrichment 160	

analysis in transcription factors, chromatin marks or other segmented data (annotation-161	

stats) and visualization of chromatin interactions in certain genomic loci of interest 162	

(hicplotter). We should note here that HiC-bench is totally extensible and customizable 163	

as new tools can be easily integrated into the HiC-bench workflow (see User Manual for 164	

more details). In addition to the multiple alternative tools that can be used to perform 165	

certain tasks, HiC-bench allows simultaneous exploration of different parameter settings 166	

that are propagated from one task to all subsequent tasks in the pipeline (for details 167	

please refer to “Main concepts and pipeline architecture” section). For example, after 168	

contact matrices are generated and corrected using alternative methods, HiC-bench 169	

proceeds with TAD calling using all computed matrices as inputs (Figure 1 and Figure 170	

2A). This unique feature enables the design and execution of complex benchmark studies 171	

that may include combinations of multiple tool/parameter choices in each step. HiC-bench 172	
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focuses on the reproducibility of the analysis by keeping records of the source code, tool 173	

versions and parameter settings, and it is the only HiC-analysis pipeline that allows 174	

combinatorial parameter exploration facilitating benchmarking of Hi-C analyses.  175	

 176	
Table 1. Comparison of HiC-bench with published Hi-C analysis or visualization tools.  177	
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alignment x   x   x       x x x x   x     
filtering x x x   x       x x x x   x     
genome browser 
tracks x                               

quality 
assessment plots x x x     x     x   x   x x     

contact matrices x x x   x   x   x     x x       
matrix correction x x  x x x x x x x   x x       
matrix 
comparison x                       x       

boundary scores x                               

domains x                 x             
boundary 
comparison x                               

specific 
interactions x   x   x   x   x   x x x x     

annotations x         x             x       
allele-specific 
interactions                 x   x           

visualization x x x     x x           x   x x 
integration with 
ChIP-seq data x                       x x     

parallelization x x x       x x x x              
integration of 
alternative tools x                               

parameter 
exploration x                               

reproducibility x x                             
 178	

The HiC-bench toolkit 179	
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HiC-bench performs various tasks of Hi-C analysis ranging from read alignment to 180	

annotation of specific interactions and visualization. We have developed two new tools, 181	

gtools-hic and hic-matrix, to execute the multiple tasks in the HiC-bench pipeline, but we 182	

have also integrated existing tools to allow comparative and complementary analyses and 183	

facilitate benchmarking. More specifically, the alignment task is performed either with 184	

Bowtie2 [26] or with the “align” function of gtools-hic, our newest addition to 185	

GenomicTools [29]. Likewise, filtering, creation of Hi-C tracks and generation of Hi-C 186	

contact matrices are performed using the functions “filter”, “bin/convert” and “matrix” of 187	

gtools-hic respectively. For advanced users, we have implemented a series of novel 188	

features for these common Hi-C analysis tasks. For example, the operation “matrix” of 189	

gtools-hic allows generation of arbitrary chimeric Hi-C contact matrices, a feature 190	

particularly useful for the study of the effect of chromosomal translocations on chromatin 191	

interactions. Another example is the generation of distance-restricted matrices (up to 192	

some maximum distance off the diagonal) in order to save storage space and reduce 193	

memory usage at fine resolutions. For matrix correction we use either published 194	

algorithms (iterative correction (IC/ICE) [9], HiCNorm [28]) or our “naïve scaling” method 195	

where we divide the Hi-C counts by (a) the total number of (usable) reads, and (b) the 196	

“effective length” [8,28] of each genomic bin. We also integrated published TAD callers 197	

like DI [5], Armatus [30], TopDom [31], insulation index (Crane) [32] and our own TAD 198	

calling method (similar but not identical to contrast index [33,34]) implemented as the 199	

“domains” operation in hic-matrix. Additionally, the “domains” operation produces 200	

genome-wide boundary scores using multiple methods and allowing flexibility in choosing 201	

parameters. Boundaries are simply defined as local maxima of the boundary scores. For 202	
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the detection of specific interactions, we introduce the “loops” function of hic-matrix, while 203	

GenomicTools is used for annotation of these interactions with gene names, ChIP-seq 204	

and other user-defined data. Finally, we implemented a wrapper for HiCPlotter, taking 205	

advantage of its advanced visualization features in order to allow the user to quickly 206	

generate snapshots of areas of interest in batch. The HiC-bench toolkit is summarized in 207	

Table 2. All the tools we developed appear in bold. Further information on the toolkit is 208	

provided in the User Manual found online and in the Supplemental Information section.   209	

 210	
Table 2. The HiC-bench toolkit. The HiC-bench toolkit consists mostly of newly-developed tools 211	
(shown in bold) but we have also incorporated existing tools to allow comparisons and 212	
benchmarking.  213	

Hi-C tasks HiC-bench toolkit 
alignment bowtie2, gtools-hic[align] 
filtering gtools-hic[filter] 
genome browser tracks gtools-hic[bin/convert] 
matrix generation gtools-hic[matrix] 
matrix correction IC, HiCNorm, hic-matrix[preprocess/normalize] 
boundary scores hic-matrix[domains] 
domain calling DI, Armatus, TopDom, hic-matrix[domains] 
interactions hic-matrix[loops] 
annotations genomic-tools 
visualization HiCPlotter 

 214	
Main concepts and pipeline architecture 215	

We built our platform based on principles outlined in scientific workflow systems such as 216	

Kepler [35], Taverna [36] and VisTrails [37]. The main idea behind our platform is the 217	

ability to track data provenance [37,38], the origin of the data, computational tasks, tool 218	

versions and parameter settings used in order to generate a certain output (or collection 219	

of outputs) from a given input (or collection of inputs). Thus, our pipeline ensures 220	

reproducibility which is a particularly important feature for such a complex computational 221	
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task. In addition, HiC-bench enables combinatorial analysis and parameter exploration by 222	

implementing the idea of computational “trails”: a unique combination of inputs, tools and 223	

parameter values can be imagined as a unique (computational) trail that is followed 224	

simultaneously with all the other possible trails in order to generate a collection of output 225	

objects (Figure 2A). Our platform consists of three main components: (a) data, (b) code 226	

and (c) pipelines. These components are organized in respective directories in our local 227	

repository, and synchronized with a remote GitHub repository for public access. The data 228	

directory is used to store data that would be used by any analysis, for example genome-229	

related data, such as DNA sequences and indices (e.g. Bowtie2), gene annotations and, 230	

in general, any type of data that is required for the analysis. The code directory is used to 231	

store scripts, source code and executables. More details about the directory structure can 232	

be found in the User Manual. Finally, the “pipelines” directory is used to store the structure 233	

of each pipeline. Here, we will focus on our Hi-C pipeline, but we have also implemented 234	

a ChIP-seq pipeline, which is very useful for integrating CTCF and histone modification 235	

ChIP-seq data with Hi-C data. The structure of the pipeline is presented to the user as a 236	

numbered list of directories, each one corresponding to one operation (or task) of the 237	

pipeline. As shown in Figure 1, our Hi-C pipeline currently consists of several tasks 238	

starting with alignment and reaching completion with the identification and annotation of 239	

specific DNA-DNA interactions and annotations with ChIP-seq and other genome-wide 240	

data (see also Table 2 and Supplemental Table 1). We will examine these tasks in detail 241	

in the Results section of this manuscript.  242	

 243	
Parameter exploration, input and output objects 244	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 17, 2016. ; https://doi.org/10.1101/084954doi: bioRxiv preprint 

https://doi.org/10.1101/084954


In conventional computational pipelines, several computational tasks (operations) are 245	

executed on their required inputs. However, in existing genomics pipelines, each task 246	

generates a single result object (e.g. TAD calling using one method with fixed parameter 247	

settings) which is then used by downstream tasks. To allow full parameter (and 248	

method/tool) exploration, we introduce instead a data flow model, where every task may 249	

accommodate an arbitrary number of output objects. Downstream tasks will then operate 250	

on all computed objects generated by the tasks they depend on. Pipeline tasks are 251	

implemented as shown in the diagram of Figure 2B. First, input objects are filtered 252	

according to user-specified criteria (e.g. TAD calling is only done for Hi-C contact matrices 253	

at 40kb resolution). Then, pipeline-master-explorer (implemented as an R script; see User 254	

Manual for usage and input arguments) generates the commands that create all desired 255	

output objects. In principle, all combinations of input objects with all parameter settings 256	

will be created, subject to user-defined filtering criteria. In the interest of extensibility, new 257	

pipeline tasks can be conveniently implemented using a single-line pipeline-master-258	

explorer command (see Supplemental Table 2), provided that wrapper scripts for each 259	

task (e.g. TAD calling using TopDom) have been properly set up. In the simplest scenario, 260	

any task in our pipeline will generate computational objects for each combination of 261	

parameter file and input objects obtained from upstream tasks. For example, suppose the 262	

aligned reads from 12 Hi-C datasets are filtered using three different parameter settings, 263	

and that we need to create contact matrices at four resolutions (1Mb, 100kb, 40kb and 264	

10kb). Then, the number of output objects (contact matrices in this case) will be 144 (i.e. 265	

12 x 3 x 4). Although many computational scenarios can be realized by this simple one-266	
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to-one mapping of input-output objects, more complex scenarios are frequently 267	

encountered, as described in the next section.  268	

 269	
Filtering, splitting and grouping input objects into new output objects 270	

Oftentimes, a simple one-to-one mapping of input objects to output objects is not 271	

desirable. For this reason, we introduce the concepts of filtering, splitting and grouping of 272	

input objects which are used to modify the behavior of pipeline-master-explorer (see 273	

Figure 2B). Filtering is required when some input objects are not relevant for a given 274	

task, e.g. TAD calling is not performed on 1Mb-resolution contact matrices, and specific 275	

DNA-DNA interactions are not meaningful for resolutions greater than 10-20kb. Splitting 276	

is necessary in some cases: for example, we split the input objects by genome assembly 277	

(hg19, mm10) when comparing contact matrices or domains across samples, since only 278	

matrices or domains from the same genome assembly can be compared directly. In our 279	

platform, the user is allowed to split a collection of input objects by any variable contained 280	

in the sample sheet (except fastq files), thus allowing user-defined splits of the data, such 281	

as by cell type or treatment. Complementary to the splitting concept, grouping permits the 282	

aggregation of a collection of input objects (sharing the same value of a variable defined 283	

in the sample sheet) into a single output object. For example, the user may want to create 284	

genome browser tracks or contact matrices of combined technical and/or biological 285	

replicates, or group all input objects (samples) together in tasks such as Principal 286	

Component Analysis (PCA) or alignment/filtering statistics.  287	

 288	
Combinatorial objects 289	
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Even after introducing the concepts described above, more complex scenarios are 290	

possible as some tasks require the input of pairs (or triplets etc.) of objects. This feature 291	

has also been implemented in our pipeline (tuples in Figure 2B) and is currently used in 292	

the compare-matrices and compare-boundaries tasks. However, it should be utilized 293	

wisely (for example in conjunction with filtering, splitting and grouping) because it may 294	

lead to a combinatorial “explosion” of output objects.  295	

 296	
Parameter scripts 297	

The design of our platform is motivated by the need to facilitate the use of different 298	

parameter settings for each pipeline task. For this reason, we have implemented wrapper 299	

scripts for each tool/method used in each task. For example, we have implemented a 300	

wrapper script for alignment, filtering, correcting contact matrices using IC or HiCNorm 301	

(separate wrappers), TAD calling using Armatus [30], TopDom [31], DI [5] and insulation 302	

index (Crane) [32] (separate wrappers). The main motivation is to hide most of the 303	

complexity inside the wrapper script and allow the user to modify the parameters using a 304	

simple but flexible parameter script. Unlike static parameter files, parameter scripts allow 305	

for dynamic calculation of parameters based on certain input variables (e.g. enzyme 306	

name, group name etc.). Within this framework, by adding and/or modifying simple 307	

parameter scripts, the user can explore the effect of different parameters (a) on the task 308	

directly affected by these parameters, and (b) on all dependent downstream tasks. 309	

Additionally, these parameter scripts serve as a record of parameters and tool versions 310	

that were used to produce the results, facilitating analysis reproducibility as well as 311	

documentation in scientific reports and manuscripts.  312	

 313	
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Results stored as computational trails 314	

All the concepts described above have been implemented in a single R script named 315	

pipeline-master-explorer. This script maintains a database of input-output objects for each 316	

task, stored in a hidden directory under results (results/.db). It also creates a “run” script 317	

which is executed in order to generate all the desired results. All results are stored in the 318	

results directory in a tree structure that reveals the computational trail for each object (see 319	

examples shown in Figure 2B and Supplementary Table 2). Therefore, the user can 320	

easily infer how each object was created, including what inputs and what parameters 321	

were used.  322	

 323	
Initiating a new reproducible analysis 324	

In the interest of data analysis reproducibility, any new analysis requires creating a copy 325	

of the code and pipeline structure into a desired location, effectively creating a branch. 326	

This way, any changes in the code repository will not affect the analysis and conversely, 327	

the user can customize the code according to the requirements of each project without 328	

modifying the code repository. Copying of the code and initiating a new analysis is done 329	

simply by invoking the script “pipeline-new-analysis.tcsh” as described in the User 330	

Manual.  331	

 332	
Pipeline tasks 333	

A pipeline consists of a number of (partially) ordered tasks that can be described by a 334	

directed acyclic graph which defines all dependencies. HiC-bench implements a total of 335	

20 tasks as shown in the workflow of Figure 1. In the analysis directory structure, each 336	

task is assigned its own subdirectory found inside the pipeline directory starting from the 337	
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top level. This directory includes a symbolic link to the inputs of the analysis (fastq files, 338	

sample sheet, etc.), a link to the code, a directory (inpdirs) containing links to all 339	

dependencies, a directory containing parameter scripts (see below) and a “run” script 340	

which can be used to generate all the results of this task. The “run” scripts of each task 341	

are executed in the specified order by the master “run” script located at the top level (see 342	

User Manual for details on pipeline directory structure).  343	

 344	

Input data and the sample sheet 345	

Before performing any analysis, a computational pipeline needs input data. All input data 346	

for our pipeline tasks are stored in their own “inputs” directory accessible at the top level 347	

(along with the numbered pipeline tasks) and via symbolic links from within the directories 348	

assigned to each task to allow easy access to the corresponding input data. A “readme” 349	

file explains how to organize the input data inside the inputs directory (see User Manual 350	

for details). Briefly, the fastq subdirectory is used to store all fastq files, organized into 351	

one subdirectory per sample. Then, the sample sheet needs to be generated. This can 352	

be done automatically using the “create-sample-sheet.tcsh” script, but the user can also 353	

manually modify and expand the sample sheet with features beyond what is required. 354	

Currently required features are the sample name (to be used in all downstream analyses), 355	

fastq files (R1 and R2 in separate columns), genome assembly version (e.g. hg19, mm10) 356	

and restriction enzyme name (e.g. HindIII, NcoI). Adding more features, such as different 357	

group names (e.g. sample, cell type, treatment), allows the user to perform more 358	

sophisticated downstream analyses, such as grouping replicates for generating genome 359	
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browser tracks, or splitting samples by genome assembly to compare boundaries (see 360	

previous section on grouping and splitting).   361	

 362	
Executing the pipeline 363	

The entire pipeline can be executed automatically by the “pipeline-execute.tcsh” script, 364	

as shown below: 365	

code/code.main/pipeline-execute <project name> <user e-mail address> 366	

where <project name> will be substituted by the name of the project and <user e-mail 367	

address> by the preferred e-mail address of the person who runs the analysis in order to 368	

be notified upon completion. The “pipeline-execute.tcsh” script essentially executes the 369	

“run” script for each task (following the specified order). At the completion of every task, 370	

the log files of all finished jobs are inspected for error messages. If error messages are 371	

found, the pipeline aborts with an error message. 372	

 373	

Timestamping 374	

Besides creating the “run” script used to generate all results, the “pipeline-master-375	

explorer.r” script, also checks whether existing output objects are up-to-date when 376	

compared to their dependencies (i.e. input objects and parameter scripts; can be 377	

expanded to include code dependencies as well). Currently, the pipelines are set up so 378	

that out-of-date objects are not deleted and recomputed automatically, but only presented 379	

to the user as a warning. The user can then choose to delete them manually and re-380	

compute. The reason for this is to protect the user against accidentally repeating 381	

computationally demanding tasks (e.g. alignments) without given first the chance to 382	

review why certain objects may be out-of-date. From a more philosophical point of view, 383	
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and in the interest of keeping a record of all computations (when possible), the user may 384	

never want to modify parameter files or the code for a given project, but instead only add 385	

new parameter files. Then, no object will be out-of-date, and only new objects will need 386	

to be recomputed every time.  387	

 388	
Alignment and filtering 389	

Paired-end reads were mapped to the reference genome (hg19 or mm10) using Bowtie2 390	

[26]. Reads with low mapping quality (MAPQ<30) were discarded. Local alignments of 391	

input read pairs were performed as they consist of chimeric reads between two (non-392	

consecutive) interacting fragments. This approach yielded a high percentage of mappable 393	

reads (> 95%) for all datasets (Supplementary Figure 1). Mapped read pairs were 394	

subsequently filtered for known artifacts of the Hi-C protocol such as self-ligation, 395	

mapping too far from the enzyme’s known cutting sites etc. More specifically, reads 396	

mapping in multiple locations on the reference genome (multihit), double-sided reads that 397	

mapped to the same enzyme fragment (ds-same-fragment), reads whose 5’-end mapped 398	

too far (ds-too-far) from the enzyme cutting site, reads with only one mappable end 399	

(single-sided) and unmapped reads (unmapped), were discarded. Read pairs that 400	

corresponded to regions that were very close (less than 25 kilobases, ds-too-close) in 401	

linear distance on the genome as well as duplicate read pairs (ds-duplicate-intra and ds-402	

duplicate-inter) were also discarded. In Supplementary Figure 1, we show detailed 403	

paired-end read statistics for the Hi-C datasets used in this study. We include the read 404	

numbers (Supplementary Figure 1A) and their corresponding percentages 405	

(Supplementary Figure 1B). Eventually, approximately 10-50% of paired-reads passed 406	

all filtering criteria and were used for downstream analysis (Supplementary Figure 1B). 407	
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The statistics report is automatically generated for all input samples. The tools and 408	

parameter settings used for the alignment and filtering tasks are fully customizable and 409	

can be defined in the corresponding parameter files. 410	

 411	
Contact matrix generation, normalization and correction 412	

The read-pairs that passed the filtering task were used to create Hi-C contact matrices 413	

for all samples. The elements of each contact matrix correspond to pairs of genomic 414	

“bins”. The value in each matrix element is the number of read pairs aligning to the 415	

corresponding genomic regions. In this study, we used various resolutions, ranging from 416	

fine (10kb) to coarse (1Mb). The resulting matrices either remained unprocessed 417	

(filtered), or they were processed using different correction methods including HiCNorm 418	

[28], iterative correction (IC or ICE) [9] as well as “naïve scaling”. In Supplementary 419	

Figure 2, we present the average Hi-C count as a function of the distance between the 420	

interacting fragments, separately for each Hi-C matrix for not corrected (filtered) and IC-421	

corrected matrices. 422	

 423	
Comparison of contact matrices 424	

Our pipeline allows direct comparison and visualization of the generated Hi-C contact 425	

matrices. More specifically, using our hic-matrix tool, all pairwise Pearson and Spearman 426	

correlations were automatically calculated for each (a) input sample, (b) resolution, and 427	

(c) matrix correction method. The corresponding correlograms were automatically 428	

generated using the corrgram R package [39]. A representative example is shown in 429	

Supplementary Figure 3. The correlograms summarizing the pairwise Pearson 430	

correlations for all samples used in this study are presented before and after matrix 431	
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correction using the iterative correction algorithm. These plots are very useful because 432	

the user can quickly assess the similarity between technical and biological replicates as 433	

well as differences between various cell types. As shown before (Supplementary Figure 434	

3 in [5]), iterative correction improves the correlation between enzymes at the expense of 435	

a decreased correlation between samples prepared using the same enzyme.   436	

 437	
Boundary scores 438	

Topological domains (TADs) are defined as genomic neighborhoods of highly interacting 439	

chromatin, with relatively more infrequent inter-domain interactions [5,40,41]. Topological 440	

domains are demarcated by boundaries, i.e. genomic regions bound by insulators thus 441	

hampering DNA contacts across adjacent domains. For each genomic position, in a given 442	

resolution (typically 40kb or less), we define a “boundary score” to quantify the insulation 443	

strength of this position. The higher the boundary score, the higher the insulation strength 444	

and the probability that this region actually acts as a boundary between adjacent domains. 445	

The idea of boundary scores is further illustrated in Supplementary Figure 4, where two 446	

adjacent TADs are shown. The upstream TAD on the left (L) is separated from the 447	

downstream TAD on the right (R) by a boundary (black circle). We define two parameters, 448	

the distance from the diagonal of the Hi-C contact matrix to be excluded from the 449	

boundary score calculation (δ) (not shown) and the maximum distance from the diagonal 450	

to be considered (d). The corresponding parameter values can be selected by the user. 451	

For this analysis, we used δ=0 and d=2Mb as suggested before [5]. In addition to the 452	

published directionality index [5], we defined and computed the “inter”, “intra-max” and 453	

“ratio” scores, defined as follows: 454	

inter = mean(X) 455	
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intramax = max(mean(L), mean(R)) 456	
ratio = intramax/inter 457	

 458	
Principal component analysis (PCA) of boundary scores across samples in this study, 459	

before and after matrix correction, shows that biological replicates tend to cluster 460	

together, either in the case of filtered or corrected (IC) matrices (Supplementary Figure 461	

5).  462	

 463	
Topological domains 464	

Topologically-associated domains (TADs) are increasingly recognized as an important 465	

feature of genome organization [5]. Despite the importance of TADs in genome 466	

organization, very few Hi-C pipelines have integrated TAD calling (e.g. TADbit [19]). In 467	

HiC-bench, we have integrated TAD calling as a pipeline task and we demonstrate this 468	

integration using different TAD callers: (a) Armatus [30], (b) TopDom [31], (c) DI [5], (d) 469	

insulation index (Crane) [32] and (e) our own hic-matrix (domains). Our pipeline makes it 470	

straightforward to plug in additional TAD callers, by installing these tools and setting up 471	

the corresponding wrapper scripts. HiC-bench also facilitates the direct comparison of 472	

TADs across samples by automatically calculating the number of TAD boundaries and all 473	

the pairwise overlaps of TAD boundaries across all inputs, generating the corresponding 474	

graphs (as in the case of matrix correlations described in a previous section). We define 475	

boundary overlap as the ratio of the intersection of boundaries between two replicates (A 476	

and B) over the union of boundaries in these two replicates, as shown in the equation 477	

below: 478	

   boundary_overlap = (A∩B)/(A∪B)  479	
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For the boundary overlap calculation, we extended each boundary by 40kb on both sides 480	

(+/-40kb flanking region, i.e. the size of one bin). The fact that HiC-bench allows 481	

simultaneous exploration of all parameter settings for all installed TAD-calling algorithms, 482	

greatly facilitates parameter exploration, optimization as well as assessment of algorithm 483	

effectiveness. Pairwise comparison of boundaries (boundary overlaps) across samples is 484	

shown in Figure 3 and Supplementary Figure 6.  485	

 486	

Visualization 487	

In our pipeline, we also take advantage of the great visualization capabilities offered by 488	

the recently released HiCPlotter [23], in order to allow the user to visualize Hi-C contact 489	

matrices along with TADs (in triangle format) for multiple genomic regions of interest. The 490	

user can also add binding profiles in BedGraph format for factors (e.g. CTCF), boundary 491	

scores, histone marks of interest (e.g. H3K4me3, H3K27ac) etc. An example is shown in 492	

Supplementary Figure 7, where an area of the contact matrix of human embryonic stem 493	

cells (H1) (HindIII) is presented along with the corresponding TADs (triangles), various 494	

boundary scores, the CTCF binding profile and annotations of selected genomic 495	

elements, before and after matrix correction (IC). The integration of HiCPlotter in our 496	

pipeline, allows the user to easily create publication-quality figures for multiple areas of 497	

interest simultaneously.  498	

 499	
Specific interactions, annotations and enrichments 500	

The plummeting costs of next-generation sequencing have resulted in a dramatic 501	

increase in the resolution achieved in Hi-C experiments. While the original Hi-C study 502	

reported interaction matrices of 1Mb resolution [2], recently 1kb resolution was reported 503	
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[42]. Thus, the characterization and annotation of specific genomic interactions from Hi-504	

C data is an important feature of a modern Hi-C analysis pipeline. HiC-bench generates 505	

a table of the interacting loci based on parameters defined by the user. These parameters 506	

include the resolution, the lowest number of read pairs required per interacting area as 507	

well as the minimum distance between the interacting partners. The resulting table 508	

contains the coordinates of the interacting loci, the raw count of interactions between 509	

them, the number of interactions after “scaling” and the number of interactions between 510	

the partners after distance normalization (observed Hi-C counts normalized by expected 511	

counts as a function of distance). This table is further annotated with the gene names or 512	

the factors (e.g. CTCF) and histone modification marks (e.g. H3K4me1, H3K27ac, 513	

H3K4me3) that overlap with the interacting loci. The user can provide bed files with the 514	

features of interest to be used for annotation. As an example, the enrichment of chromatin 515	

marks in the top 50000 chromatin interactions in the H1 and IMR90 samples is presented 516	

in Supplementary Figure 8. 517	

 518	

Software requirements 519	

The main software requirements are: Bowtie2 aligner [26], Python (2.7 or later) (along 520	

with Numpy, Scipy and Matplotlib libraries), R (3.0.2) [43] and various R packages (lattice, 521	

RColorBrewer, corrplot, reshape, gplots, preprocessCore, zoo, reshape2, plotrix, 522	

pastecs, boot, optparse, ggplot2, igraph, Matrix, MASS, flsa, VennDiagram, futile.logger 523	

and plyr). More details on the versions of the packages can be found in the User Manual 524	

(sessionInfo()). In addition, installation of mirnylib Python library [44] is required for matrix 525	

balancing based on IC (ICE). The pipeline has been tested on a high-performance 526	
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computing cluster based on Sun Grid Engine (SGE). The operating system used was 527	

Redhat Linux GNU (64 bit). 528	

Results 529	

We used HiC-bench to analyze several published Hi-C datasets and the results of our 530	

analysis are presented below. Additionally, we performed a comprehensive benchmark 531	

of existing and new TAD callers exploring different matrix correction methods, parameter 532	

settings and sequencing depths. Our results can be reproduced by re-running the 533	

corresponding pipeline snapshot available upon request as a single compressed archive 534	

file (too big to include as a Supplemental file). 535	

 536	

Comprehensive reanalysis of available Hi-C datasets using HiC-bench 537	

Our platform is designed to facilitate and streamline the analysis of a large number of 538	

available Hi-C datasets in batch. Thus, we collected and comprehensively analyzed 539	

multiple Hi-C samples from three large studies [5,42,45]. From the first study we analyzed 540	

IMR90 (HindIII) samples, from the second we analyzed Hi-C samples from 541	

lymphoblastoid cells (GM12878), human lung fibroblasts (IMR90 (MboI)), 542	

erythroleukemia cells (K562), chronic myelogenous leukemia (CML) cells (KBM-7) and 543	

keratinocytes (NHEK), and from the third one, we analyzed samples from human 544	

embryonic stem cells (H1) and all the embryonic stem-cell derived lineages mentioned, 545	

including mesendoderm, mesenchymal stem cells, neural progenitor cells and 546	

trophectoderm cells. All datasets yielded at least 40 million usable intra-chromosomal 547	

read pairs in at least two biological replicates. We performed extensive quality control on 548	

all datasets, calculating the read counts and percentages per classification category 549	
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(Supplementary Figure 1), the attenuation of Hi-C signal over genomic distance 550	

(Supplementary Figure 2), the correlation of Hi-C matrices before and after matrix 551	

correction (Supplementary Figure 3), the similarity of boundary scores (Supplementary 552	

Figure 5) and all pairwise boundary overlaps across samples (Supplementary Figure 553	

6). In addition, we performed a comprehensive benchmarking of our own and published 554	

TAD callers, across all reanalyzed Hi-C datasets. The results of our benchmark are 555	

presented in the following sections.  556	

 557	

Iterative correction of Hi-C contact matrices improves reproducibility of TAD 558	
boundaries 559	
 560	
Iterative correction has been shown to correct for known biases in Hi-C [9]. Thus, we 561	

hypothesized that IC may increase the reproducibility of TAD calling. We performed a 562	

comprehensive analysis calculating the TAD boundary overlaps for biological replicates 563	

of the same sample (as described in Methods section), using different TAD callers and 564	

different main parameter values for each TAD caller (Figure 3A). After comparing TAD 565	

boundary overlaps between filtered (uncorrected) and IC-corrected matrices, we 566	

observed an improvement in the boundary overlap when corrected matrices were used, 567	

irrespective of TAD caller and parameter settings (Figure 3B). The only exception was 568	

DI. Careful examination of the overlaps per sample revealed that IC introduced outliers 569	

only in the case of DI (in general, the opposite was true for the other callers). We 570	

hypothesize that IC may occasionally negatively affect the computation of the 571	

directionality index, especially because its calculation depends on a smaller number of 572	

bins (1-dimensional line) compared to the rest of the methods (2-dimensional triangles). 573	

In addition to the increase in the mean value of boundary overlap upon correction, we 574	
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observed that the standard deviation of boundary overlaps among replicates decreased 575	

(again, with the exception of DI) (Figure 3C). While this seems to be the trend for almost 576	

all TAD caller/parameter value combinations, the effect of correction in variance is more 577	

profound in certain cases (e.g. hicintra-max) than others. It is also worth mentioning that 578	

increased size of the insulation window (in the case of Crane), the resolution parameter 579	

γ (Armatus) or the distance d (hicinter, hicintra-max, hicratio) may result in certain cases 580	

in increased boundary overlap (e.g. Armatus), but this is not generalizable (e.g. hicintra-581	

max). Interestingly, increased TAD boundary overlap does not necessarily mean 582	

increased consistency in the number of predicted TADs across sample types, as would 583	

be expected since TADs are largely invariant across cell types [5]. For example, the TAD 584	

calling algorithm which is based on insulation score (Crane), predicted similar TAD 585	

overlaps and similar TAD numbers for different insulation windows (ranging from 0.5Mb 586	

to 2Mb), whereas Armatus performed well in terms of TAD boundary reproducibility 587	

(Figure 3A) but the corresponding predicted TAD numbers varied considerably (Figure 588	

3D). This may be partly due to the nature of the Armatus algorithm, as it has been built to 589	

reveal multiple levels of chromatin organization (TADs, sub-TADs etc.). We conclude that 590	

while iterative correction improves the reproducibility of TAD boundary detection across 591	

replicates, the number of predicted TADs should be also taken into account when 592	

selecting TAD calling method for downstream analysis. The method of choice should be 593	

the one that is robust in terms of both reproducibility and number of predicted TADs. 594	

 595	
Increased sequencing depth improves the reproducibility of TAD boundaries 596	
 597	
After selecting the parameter setting that optimized TAD boundary overlap between 598	

biological replicates of the same sample per TAD caller, we also investigated the effect 599	
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of sequencing depth on the reproducibility of TAD boundary detection. Since some of the 600	

input samples were limited to only 40 million usable intra-chromosomal Hi-C read pairs, 601	

we resampled 10 million, 20 million and 40 million read pairs from each sample and 602	

evaluated the effect of increasing sequencing depth on TAD boundary reproducibility. The 603	

results are depicted in Figure 4A. We noticed that increased sequencing depth resulted 604	

in increased TAD boundary overlap, regardless of the TAD calling algorithm used (Figure 605	

4A,C). As far as the TAD numbers are concerned, increased sequencing depth 606	

decreased TAD number variability for certain callers (e.g. hicratio) but not in all cases 607	

(e.g. Armatus) (Figure 4B). In many cases, increased sequencing depth, decreased the 608	

variance of TAD boundary overlap among replicates (Figure 4C). In summary, based on 609	

this benchmark, we recommend that Hi-C samples should be sufficiently sequenced as 610	

sequencing depth seems to affect TAD calling reproducibility.  611	

 612	
Conclusions 613	

Recently, several computational tools and pipelines have been developed for Hi-C 614	

analysis. Some focus on matrix correction, others on detection of specific chromatin 615	

interactions and their differences across conditions and others on visualization of these 616	

interactions. However, very few of these tools offer a complete Hi-C analysis (e.g. HiC-617	

Pro), addressing tasks which range from alignment to interaction annotation. HiC-bench 618	

is a comprehensive Hi-C analysis pipeline with the ability to process many samples in 619	

parallel, record and visualize the results in each task, thus facilitating troubleshooting and 620	

further analyses. It integrates both existing tools but also new tools that we developed to 621	

perform certain Hi-C analysis tasks. In addition, HiC-bench focuses on parameter 622	

exploration, reproducibility and extensibility. All parameter settings used in each pipeline 623	
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task are automatically recorded, while future tools can be easily added using the supplied 624	

wrapper template. More importantly, HiC-bench is the only Hi-C pipeline so far that allows 625	

extensive parameter exploration, thus facilitating direct comparison of the results obtained 626	

by different tools, methods and parameters. This unique feature helps users test the 627	

robustness of the analysis, optimize the parameter settings and eventually obtain reliable 628	

and biologically meaningful results. To demonstrate the usefulness of HiC-bench, we 629	

performed a comprehensive benchmark of popular and newly-introduced TAD callers, 630	

varying the matrix preprocessing (filtered or corrected matrices with IC method), the 631	

sequencing depth, and the value of the main parameter of each TAD caller, which is 632	

usually the window used for the calculation of directionality index or insulation score. We 633	

found that the matrix correction has a positive effect on the boundary overlap between 634	

replicates and that increased sequencing depth leads to higher boundary overlap. 	635	

In conclusion, HiC-bench is an easy-to-use framework for systematic, comprehensive, 636	

integrative and reproducible analysis of Hi-C datasets. We expect that use of our platform 637	

will facilitate current analyses and enable scientists to further develop and test interesting 638	

hypotheses in the field of chromatin organization and epigenetics.  639	

 640	
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 690	
Figure legends 691	

Figure 1. HiC-bench workflow. Raw reads (input fastq files) are aligned and then filtered 692	

(align and filter tasks). Filtered reads are used for the creation of Hi-C track files (tracks) 693	
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that can be directly uploaded to the WashU Epigenome Browser [27]. A report with a 694	

statistics summary of filtered Hi-C reads, is also automatically generated (filter-stats). 695	

Raw Hi-C matrices (matrix-filtered) are normalized using (a) scaling, (b) iterative 696	

correction [9] or (c) HiCNorm [28]. A report with the plots of the normalized Hi-C counts 697	

as function of the distance between the interacting partners (matrix-stats) is automatically 698	

generated for all methods. The resulting matrices are compared across all samples in 699	

terms of Pearson and Spearman correlation (compare-matrices and compare-matrices-700	

stats). Boundary scores are calculated and the corresponding report with the Principal 701	

Component Analysis (PCA) is automatically generated (boundary-scores and boundary-702	

scores-pca). Domains are identified using various TAD calling algorithms (domains) 703	

followed by comparison of TAD boundaries (compare-boundaries and compare-704	

boundaries-stats). A report with the statistics of boundary comparison is also 705	

automatically generated. Hi-C visualization of user-defined genomic regions is performed 706	

using HiCPlotter (hicplotter) [23]. Specific chromatin interactions (interactions) are 707	

detected and annotated (annotations). Finally, enrichment of top interactions in certain 708	

chromatin marks, transcription factors etc. provided by the user, is automatically 709	

calculated (annotations-stats). 710	

Figure 2. (A) Computational trails. Each combination of tools and parameter settings 711	

can be imagined as a unique computational “trail” that is executed simultaneously with all 712	

the other possible trails to create a collection of output objects. As an example, one of 713	

these possible trails is presented in red. The raw reads were aligned, filtered and then 714	

binned in 40kb resolution matrices. Our own naïve matrix scaling method was then used 715	

for matrix correction and domains were called using TopDom [31]. (B) HiC-bench 716	
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pipeline task architecture. All pipeline tasks are performed by a single R script, 717	

“pipeline-master-explorer.r”. This script generates output objects based on all 718	

combinations of input objects and parameter scripts while taking into account the split 719	

variable, group variable and tuple settings. The output objects are stored in the 720	

corresponding “results” directory. As an example, domain calling for IMR90 is presented. 721	

The filtered reads of the IMR90 Hi-C sample (digested with HindIII) are used as input. 722	

The pipeline-master-explorer script tests if TAD calling with these settings has been 723	

performed and if not it calls the domain calling wrapper script (code/hicseq-domains.tcsh) 724	

with the corresponding parameters (e.g. params/params.armatus.gamma_0.5.tcsh). 725	

After the task is complete, the output is stored in the corresponding “results” directory. 726	

Figure 3. Comparison of topological domain calling methods subject to Hi-C 727	

contact matrix preprocessing by simple filtering or iterative correction (IC). The 728	

methods were assessed in terms of boundary overlap between replicates (A), change 729	

(%) in mean boundary overlap after matrix correction (B), change (%) in standard 730	

deviation of mean overlap across replicates after matrix correction (C) and number of 731	

identified topological domains per cell type (D). The different colors correspond to the 732	

different callers. Gradients of the same color are used for the different values of the same 733	

parameter, ranging from low (light color) to high (dark color) values. The TAD callers 734	

along with the corresponding parameter settings are presented in the legend. For this 735	

analysis all available read pairs were used. 736	

Figure 4. Comparison of topological domain calling methods for different 737	

preprocessing method and sequencing depth. TAD calling methods were assessed 738	

in terms of boundary overlap between replicates (A), number of identified topological 739	
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domains (B) and boundary overlap across replicates upon increasing sequencing depth 740	

(C) for different matrix preprocessing (filtered and IC corrected) and different sequencing 741	

depths (10 million, 20 million and 40 million reads). For TAD calling, only the optimal 742	

caller/parameter value pairs are shown (defined as the ones achieving the maximum 743	

boundary overlap for IC and 40 million reads). The boxplot and line colors correspond to 744	

the different TAD callers. 745	

 746	

Supplementary Figure 1. Hi-C reads filtering statistics. Number (A) and percentage 747	

(B) of the various read categories identified during filtering for all datasets used in the 748	

study. Mappable reads were over 95% in all samples. Duplicate (ds-duplicate-intra and 749	

ds-duplicate-inter; red and pink), non-uniquely mappable (multihit; light blue) and single-750	

end mappable (single-sided; dark blue) reads were discarded. Self-ligation products (ds-751	

same-fragment) and reads mapping too far (ds-too-far; light purple) from restriction sites 752	

or too close to one another (ds-too-close; orange) were also discarded. Only double-sided 753	

uniquely mappable cis (ds-accepted-intra; dark green) and trans (ds-accepted-inter; light 754	

green) read pairs were used for downstream analysis. The x axis represents either the 755	

raw read number (A) or the percentage of reads (B) falling within each of the categories 756	

described in the legend. The y axis represents the samples. 757	

Supplementary Figure 2. Matrix statistics. Normalized Hi-C counts are presented as a 758	

function of the distance between the interacting partners for all samples and correction 759	

methods.  The Hi-C samples analyzed were GM12878 (light blue), hESCs (H1) (blue), 760	

mesenchymal cells (light green), mesendoderm (dark green), neural progenitors (pink), 761	

trophectoderm (red), IMR90 (light and dark orange), K562 (light purple), KBM7 (dark 762	
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purple) and NHEK (yellow). The matrices were either unprocessed (filtered) (top) or 763	

corrected using IC (bottom). The y axis represents the normalized count of Hi-C 764	

interactions and the x axis the distance between the interacting partners in kilobases.  765	

Supplementary Figure 3. Pairwise Pearson correlation of Hi-C matrices. 766	

Correlograms summarizing all pairwise Pearson correlations for all Hi-C samples used in 767	

this study: raw (filtered) matrices (left panel) and matrices after iterative correction (right 768	

panel). Dark red indicates strong positive correlation and dark blue strong negative. The 769	

resolution of the matrices is 40kb. 770	

Supplementary Figure 4. Boundary score calculation. Two adjacent topological 771	

domains (red triangles) are depicted. The left domain (L) is separated from the right 772	

domain (R) by a boundary (black circle). The areas of more-frequent intra-domain 773	

interactions are in red. The area of less-frequent cross-domain (or inter-domain) 774	

interactions is X. We also introduce parameter d which is the maximum distance from the 775	

diagonal to be considered for the calculation of boundary scores (default value: d=2Mb). 776	

Supplementary Figure 5. Principal component analysis of boundary scores. 777	

Boundary scores were calculated using ratio score, for all samples either before (filtered) 778	

(left panel) or after iterative correction (IC) (right panel).  779	

Supplementary Figure 6. Pairwise overlaps of TAD boundaries. The pairwise 780	

overlaps of TAD boundaries are shown for all samples of this study, after calling 781	

boundaries using hicratio (all reads, d=0500).  Before TAD calling, the Hi-C matrices were 782	

either unprocessed (filtered) or corrected using iterative correction (IC) (resolution = 783	

40kb). 784	
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Supplementary Figure 7. Visualization of TADs and certain areas of interest. HiC-785	

bench integrates HiCPlotter [23] and it offers the ability to easily prepare publication-786	

quality figures. We present the area surrounding NANOG, a gene of particular importance 787	

for the maintenance of pluripotency. The Hi-C matrix corresponding to the 788	

chr12:3940389-11948655 genomic region is presented for H1 cells, before and after 789	

matrix correction. The matrix is also rotated 45o to facilitate TAD visualization. Various 790	

boundary scores (intra-max, DI, ratio) are shown as individual tracks along with CTCF 791	

binding. The location of NANOG is presented as a blue line. 792	

Supplementary Figure 8. Enrichment of chromatin interactions in human 793	

fibroblasts (IMR90) and embryonic stem cells (H1). The enrichment of certain 794	

chromatin marks and CTCF in the top 50000 chromatin interactions in the IMR90 and H1 795	

samples is shown. Deep blue and larger circle size indicate higher enrichment.  796	

 797	
 798	

Table legends 799	

Table 1. Comparison of HiC-bench with published Hi-C analysis or visualization 800	

tools. HiC-bench is a comprehensive and feature-rich Hi-C analysis pipeline that 801	

performs various Hi-C tasks by combining our newly-developed tools with existing tools. 802	

Table 2. The HiC-bench toolkit. The HiC-bench toolkit consists mostly of newly-803	

developed tools (shown in bold) but we have also incorporated existing tools to allow 804	

comparisons and benchmarking. 805	

Supplementary Table 1. HiC-bench task implementation. The table summarizes how 806	

the pipeline tasks are implemented, which are the requirements for their execution and 807	
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how they are handled by the pipeline-master-explorer script. The first column lists all the 808	

tasks performed by pipeline ranging from alignment to annotation. The second column 809	

lists the input directory required for each task while the third one lists the parameter files. 810	

Certain tasks depend on the reference genome (human or mouse), thus the genome 811	

assembly acts as split variable (column 4). In some tasks, replicates can be grouped 812	

using the group variable (column 5). Pairwise comparisons between replicates or samples 813	

are also allowed using tuples (column 6). The last column lists the full pipeline-master-814	

explorer command for each pipeline task.  815	

Supplementary Table 2. HiC-bench input-output objects. The table summarizes the 816	

inputs and outputs of the TAD-calling task using three different methods with parameter 817	

values stored in the params files (column 2). The first column describes the tree structure 818	

of the input directories that are essentially the different Hi-C matrices for each sample, 819	

before (filtered) and after matrix correction using different methods (e.g. IC). The second 820	

column lists all the different parameter scripts and the third column corresponds to the 821	

tree structure of the generated output objects. 822	

 823	
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