
Title 1	
HiC-bench: comprehensive and reproducible Hi-C data analysis designed for 2	
parameter exploration and benchmarking 3	

Authors 4	
Charalampos Lazaris1,2,3, Stephen Kelly4,5, Panagiotis Ntziachristos6, Iannis Aifantis1,2* and 5	
Aristotelis Tsirigos1,2,3,4,5* 6	
 7	
1. Department of Pathology, NYU School of Medicine, New York, NY 10016, USA 8	
2. Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for 9	

Stem Cell Biology, NYU School of Medicine, New York, NY 10016, USA 10	
3. Center for Health Informatics & Bioinformatics, NYU School of Medicine, NY 10016, USA 11	
4. Applied Bioinformatics Center, Office of Science & Research, NYU School of Medicine, NY 12	

10016, USA 13	
5. Genome Technology Center, Office of Science & Research, NYU School of Medicine, NY 14	

10016, USA 15	
6. Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, 16	

Northwestern University, Chicago, IL 60611, USA 17	
 18	
E-mail addresses 19	
charalampos.lazaris@med.nyu.edu 20	
stephen.kelly@nyumc.org 21	
panos.ntz@northwestern.edu 22	
ioannis.aifantis@nyumc.org 23	
aristotelis.tsirigos@nyumc.org 24	
 25	
* Address correspondence to: Aristotelis Tsirigos (AT) (aristotelis.tsirigos@nyumc.org) or 26	
Iannis Aifantis (IA) (ioannis.aifantis@nyumc.org)  27	
 28	

Abstract 29	

Chromatin conformation capture techniques have evolved rapidly over the last few years 30	

and have provided new insights into genome organization at an unprecedented 31	

resolution. Analysis of Hi-C data is complex and computationally intensive involving 32	

multiple tasks and requiring robust quality assessment at each step of the analysis. This 33	

has led to the development of several tools and methods for processing Hi-C data. 34	

However, most of the existing tools do not cover all aspects of the analysis and only offer 35	

few quality assessment options. Additionally, availability of a multitude of tools makes 36	
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scientists wonder how these tools and associated parameters can be optimally used, and 37	

how potential discrepancies can be interpreted and resolved. Most importantly, 38	

investigators need to be ensured that slight changes in parameters and/or methods do 39	

not affect the conclusions of their studies. Finally, any analysis, no matter how complex, 40	

should be reproducible by keeping track of the tool versions, parameters and input data. 41	

To address these issues (compare, explore and reproduce), we introduce HiC-bench, a 42	

configurable computational platform for comprehensive and reproducible analysis of Hi-43	

C sequencing data. HiC-bench performs all common Hi-C analysis tasks, such as 44	

alignment, filtering, contact matrix generation and normalization, identification of 45	

topological domains, scoring and annotation of specific interactions using both published 46	

tools and our own. We have also embedded various tasks that perform quality 47	

assessment and visualization. HiC-bench is implemented as a data flow platform with an 48	

emphasis on analysis reproducibility. Additionally, the user can readily perform parameter 49	

exploration and comparison of different tools in a combinatorial manner that takes into 50	

account all desired parameter settings in each pipeline task. This unique feature facilitates 51	

the design and execution of complex benchmark studies that may involve combinations 52	

of multiple tool/parameter choices in each step of the analysis. To demonstrate the 53	

usefulness of our platform, we performed a comprehensive benchmark of existing and 54	

new TAD callers exploring different matrix correction methods, parameter settings and 55	

sequencing depths. Users can extend our pipeline by adding more tools as they become 56	

available. HiC-bench is distributed as free open-source software on GitHub and Zenodo, 57	

and our bioinformatics team offers installation and usage support.  58	

 59	
Keywords 60	
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Hi-C, Chromosome Conformation, Computational pipeline, Data provenance, Parameter 61	

exploration, Benchmarking 62	

 63	

Background 64	

Nuclear organization is of fundamental importance to gene regulation. Over the last 65	

decade, proximity ligation assays have greatly enhanced our understanding of chromatin 66	

organization and its relationship to gene expression [1]. Here we focus on Hi-C, a powerful 67	

genome-wide chromosome conformation capture variant, which detects genome-wide 68	

chromatin interactions [2,3]. In Hi-C, chromatin is cross-linked and DNA is fragmented 69	

using restriction enzymes, the interacting fragments are ligated forming hybrids that are 70	

then sequenced and mapped back to the genome. Hi-C is a very powerful technique that 71	

has led to important discoveries regarding the organizational principles of the genome. 72	

More specifically, Hi-C has revealed that the mammalian genome is organized in active 73	

and repressed areas (A and B compartments) [2] that are further divided in “meta-TADs” 74	

[4], TADs [5] and sub-TADs [6]. TADs consist evolutionarily conserved, megabase-scale, 75	

non-overlapping areas with increased frequency of intra-domain compared to inter-76	

domain chromatin interactions [5,7]. Despite the fact that Hi-C is very powerful, it is known 77	

to be prone to systematic biases [8-10]. Moreover, as the sequencing costs plummet 78	

allowing for increased Hi-C resolution, Hi-C poses formidable challenges to computational 79	

analysis in terms of data storage, memory usage and processing speed. Thus, various 80	

tools have been recently developed to mitigate biases in Hi-C data and make Hi-C 81	

analysis faster and more efficient in terms of resource usage. HiC-Box [11], hiclib [9] and 82	

HiC-Pro [12] perform various Hi-C analysis tasks, such as alignment and binning of Hi-C 83	
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sequencing reads into Hi-C contact matrices, noise reduction and detection of specific 84	

DNA-DNA interactions. Hi-Corrector [13] has been developed for noise reduction of Hi-C 85	

data, allowing parallelization and effective memory management, whereas Hi-Cpipe [14] 86	

offers parallelization options and includes steps for alignment, filtering, quality control, 87	

detection of specific interactions and visualization of contact matrices. Other tools that 88	

allow parallelization are HiFive [15], HOMER [16] and HiC-Pro [12]. Allele-specific Hi-C 89	

contact maps can be generated using HiC-Pro and HiCUP [17] (with SNPsplit [18]). 90	

TADbit can be used to map raw reads, create interaction matrices, normalize and correct 91	

the matrices, call topological domains and build three-dimensional (3D) models based on 92	

the Hi-C matrices [19]. HiCdat performs binning, matrix normalization, integration of other 93	

data (e.g. ChIP-seq) and visualization [20]. HIPPIE offers similar functionality with HiCdat 94	

and allows detection of specific enhancer-promoter interactions [21]. Other tools mainly 95	

focus on visualization of Hi-C data (e.g. Sushi [22] and HiCPlotter [23]). Despite the recent 96	

boom in the development of computational methods for Hi-C analysis, most of these tools 97	

only focus on certain aspects of the analysis, thus failing to encompass the entire Hi-C 98	

data analysis workflow. More importantly, these tools or pipelines are not extensible, and, 99	

for any given Hi-C task, they do not allow the integration of multiple alternative tools (use 100	

of alternative TAD calling methods for example) whose performance could then be 101	

qualitatively or quantitatively compared. Available tools do not support comprehensive 102	

reporting of the parameters used for each task and they do not enable reproducible 103	

computational analysis which is an imperative requirement in the era of big data [24], 104	

especially given the complexity of Hi-C analyses. The recently released HiFive is an 105	
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exception as it offers a Galaxy interface [15]. However, use of Galaxy [25] can become 106	

problematic for data-heavy analyses, especially when the remote Galaxy server is used.  107	

To facilitate comprehensive processing, reproducibility, parameter exploration and 108	

benchmarking of Hi-C data analyses, we introduce HiC-bench, a data flow platform which 109	

is extensible and allows the integration of different task-specific tools. Current and future 110	

tools related to Hi-C analysis can be easily incorporated into HiC-bench by implementing 111	

simple wrapper scripts. HiC-bench covers all current aspects of a standard Hi-C analysis 112	

workflow, including read mapping, filtering, quality control, binning, noise correction and 113	

identification of specific interactions (Table 1). Moreover, it integrates multiple alternative 114	

tools for performing each task (such as matrix correction tools and TAD-calling 115	

algorithms), while at the same time allowing simultaneous exploration of different 116	

parameter settings that are propagated from one task to all subsequent tasks in the 117	

pipeline. HiC-bench also generates a variety of quality assessment plots and offers other 118	

visualization options, such as generating genome browser tracks as well as snapshots 119	

using HiCPlotter. We have built this platform with reproducibility in mind, as all tools, 120	

versions and parameter settings are recorded throughout the analysis. HiC-bench is 121	

released as open-source software and the source code is available on GitHub and 122	

Zenodo (for details please refer to “Availability of data and material” section). Our team 123	

provides installation and usage support.  124	

 125	

Methods 126	

The HiC-bench workflow 127	
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HiC-bench is a comprehensive computational pipeline for Hi-C sequencing data analysis. 128	

It covers all aspects of Hi-C data analysis, ranging from alignment of raw reads to 129	

boundary-score calculation, TAD calling, boundary detection, annotation of specific 130	

interactions and enrichment analysis. Thus, HiC-bench consists the most complete 131	

computational Hi-C analysis pipeline to date (Table 1). Importantly, every step of the 132	

pipeline includes summary statistics (when applicable) and direct comparative 133	

visualization of the results. This feature is essential for quality control and facilitates 134	

troubleshooting. The HiC-bench workflow (Figure 1) starts with the alignment of Hi-C 135	

sequencing reads and ends with the annotation and enrichment of specific interactions. 136	

More specifically, in the first step, the raw reads (fastq files) are aligned to the reference 137	

genome using Bowtie2 [26] (align). The aligned reads are further filtered in order to 138	

determine those Hi-C read pairs that will be used for downstream analysis (filter). A 139	

detailed statistics report showing the numbers and percentages of reads assigned to the 140	

different categories is automatically generated in the next step (filter-stats). The reads 141	

that satisfy the filtering criteria are used for the creation of Hi-C contact matrices (matrix-142	

filtered). These contact matrices can either be directly visualized in the WashU 143	

Epigenome Browser [27] as Hi-C tracks (tracks), or further processed using three 144	

alternative matrix correction methods: (a) matrix scaling (matrix-prep), (b) iterative 145	

correction (matrix-ic) [9] and (c) HiCNorm (matrix-hicnorm) [28].  As quality control, plots 146	

of the average number of Hi-C interactions as a function of the distance between the 147	

interacting loci are automatically generated in the next step (matrix-stats). The Hi-C 148	

matrices, before and after matrix correction, are used as inputs in various subsequent 149	

pipeline tasks. First, they are directly compared in terms of Pearson or Spearman 150	
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correlation (compare-matrices and compare-matrices-stats) in order to estimate the 151	

similarity between Hi-C samples. Second, they are used for the calculation of boundary 152	

scores (boundary-scores and boundary-scores-pca), identification of topological domains 153	

(domains) and comparison of boundaries (compare-boundaries and compare-154	

boundaries-stats). Third, high-resolution Hi-C matrices are used for detection and 155	

annotation of specific chromatin interactions (interactions and annotations), enrichment 156	

analysis in transcription factors, chromatin marks or other segmented data (annotation-157	

stats) and visualization of chromatin interactions in certain genomic loci of interest 158	

(hicplotter). We should note here that HiC-bench is totally extensible and customizable 159	

as new tools can be easily integrated into the HiC-bench workflow (see User Manual for 160	

more details). In addition to the multiple alternative tools that can be used to perform 161	

certain tasks, HiC-bench allows simultaneous exploration of different parameter settings 162	

that are propagated from one task to all subsequent tasks in the pipeline (for details 163	

please refer to “Main concepts and pipeline architecture” section). For example, after 164	

contact matrices are generated and corrected using alternative methods, HiC-bench 165	

proceeds with TAD calling using all computed matrices as inputs (Figure 1 and Figure 166	

2A). This unique feature enables the design and execution of complex benchmark studies 167	

that may include combinations of multiple tool/parameter choices in each step. HiC-bench 168	

focuses on the reproducibility of the analysis by keeping records of the source code, tool 169	

versions and parameter settings, and it is the only HiC-analysis pipeline that allows 170	

combinatorial parameter exploration facilitating benchmarking of Hi-C analyses.  171	

 172	
Table 1. Comparison of HiC-bench with published Hi-C analysis or visualization tools.  173	
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alignment x   x   x       x x x x   x     
filtering x x x   x       x x x x   x     
genome browser 
tracks x                               

quality 
assessment plots x x x     x     x   x   x x     

contact matrices x x x   x   x   x     x x       

matrix correction x x  x x x x x x x   x x       
matrix 
comparison x                       x       

boundary scores x                               

domains x                 x             
boundary 
comparison x                               

specific 
interactions x   x   x   x   x   x x x x     

annotations x         x             x       
allele-specific 
interactions                 x   x           

visualization x x x     x x           x   x x 
integration with 
ChIP-seq data x                       x x     

parallelization x x x       x x x x              
integration of 
alternative tools x                               

parameter 
exploration x                               

reproducibility x x                             
 174	

The HiC-bench toolkit 175	

HiC-bench performs various tasks of Hi-C analysis ranging from read alignment to 176	

annotation of specific interactions and visualization. We have developed two new tools, 177	

gtools-hic and hic-matrix, to execute the multiple tasks in the HiC-bench pipeline, but we 178	

have also integrated existing tools to allow comparative and complementary analyses and 179	
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facilitate benchmarking. More specifically, the alignment task is performed either with 180	

Bowtie2 [26] or with the “align” function of gtools-hic, our newest addition to 181	

GenomicTools [29]. Likewise, filtering, creation of Hi-C tracks and generation of Hi-C 182	

contact matrices are performed using the functions “filter”, “bin/convert” and “matrix” of 183	

gtools-hic respectively. For advanced users, we have implemented a series of novel 184	

features for these common Hi-C analysis tasks. For example, the operation “matrix” of 185	

gtools-hic allows generation of arbitrary chimeric Hi-C contact matrices, a feature 186	

particularly useful for the study of the effect of chromosomal translocations on chromatin 187	

interactions. Another example is the generation of distance-restricted matrices (up to 188	

some maximum distance off the diagonal) in order to save storage space and reduce 189	

memory usage at fine resolutions. For matrix correction we use either published 190	

algorithms (iterative correction (IC/ICE) [9], HiCNorm [28]) or our “naïve scaling” method 191	

where we divide the Hi-C counts by (a) the total number of (usable) reads, and (b) the 192	

“effective length” [8,28] of each genomic bin. We also integrated published TAD callers 193	

like DI [5], Armatus [30], TopDom [31], insulation index (Crane) [32] and our own TAD 194	

calling method (similar but not identical to contrast index [33,34]) implemented as the 195	

“domains” operation in hic-matrix. Additionally, the “domains” operation produces 196	

genome-wide boundary scores using multiple methods and allowing flexibility in choosing 197	

parameters. Boundaries are simply defined as local maxima of the boundary scores. For 198	

the detection of specific interactions, we introduce the “loops” function of hic-matrix, while 199	

GenomicTools is used for annotation of these interactions with gene names, ChIP-seq 200	

and other user-defined data. Finally, we implemented a wrapper for HiCPlotter, taking 201	

advantage of its advanced visualization features in order to allow the user to quickly 202	
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generate snapshots of areas of interest in batch. The HiC-bench toolkit is summarized in 203	

Table 2. All the tools we developed appear in bold. Further information on the toolkit is 204	

provided in the User Manual found online and in the Supplemental Information section.   205	

 206	
Table 2. The HiC-bench toolkit. The HiC-bench toolkit consists mostly of newly-developed tools 207	
(shown in bold) but we have also incorporated existing tools to allow comparisons and 208	
benchmarking.  209	

Hi-C tasks HiC-bench toolkit 
alignment bowtie2, gtools-hic[align] 
filtering gtools-hic[filter] 
genome browser tracks gtools-hic[bin/convert] 
matrix generation gtools-hic[matrix] 
matrix correction IC, HiCNorm, hic-matrix[preprocess/normalize] 
boundary scores hic-matrix[domains] 
domain calling DI, Armatus, TopDom, hic-matrix[domains] 
interactions hic-matrix[loops] 
annotations genomic-tools 
visualization HiCPlotter 

 210	
Main concepts and pipeline architecture 211	

We built our platform based on principles outlined in scientific workflow systems such as 212	

Kepler [35], Taverna [36] and VisTrails [37]. The main idea behind our platform is the 213	

ability to track data provenance [37,38], the origin of the data, computational tasks, tool 214	

versions and parameter settings used in order to generate a certain output (or collection 215	

of outputs) from a given input (or collection of inputs). Thus, our pipeline ensures 216	

reproducibility which is a particularly important feature for such a complex computational 217	

task. In addition, HiC-bench enables combinatorial analysis and parameter exploration by 218	

implementing the idea of computational “trails”: a unique combination of inputs, tools and 219	

parameter values can be imagined as a unique (computational) trail that is followed 220	

simultaneously with all the other possible trails in order to generate a collection of output 221	
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objects (Figure 2A). Our platform consists of three main components: (a) data, (b) code 222	

and (c) pipelines. These components are organized in respective directories in our local 223	

repository, and synchronized with a remote GitHub repository for public access. The data 224	

directory is used to store data that would be used by any analysis, for example genome-225	

related data, such as DNA sequences and indices (e.g. Bowtie2), gene annotations and, 226	

in general, any type of data that is required for the analysis. The code directory is used to 227	

store scripts, source code and executables. More details about the directory structure can 228	

be found in the User Manual. Finally, the “pipelines” directory is used to store the structure 229	

of each pipeline. Here, we will focus on our Hi-C pipeline, but we have also implemented 230	

a ChIP-seq pipeline, which is very useful for integrating CTCF and histone modification 231	

ChIP-seq data with Hi-C data. The structure of the pipeline is presented to the user as a 232	

numbered list of directories, each one corresponding to one operation (or task) of the 233	

pipeline. As shown in Figure 1, our Hi-C pipeline currently consists of several tasks 234	

starting with alignment and reaching completion with the identification and annotation of 235	

specific DNA-DNA interactions and annotations with ChIP-seq and other genome-wide 236	

data (see also Table 2 and Supplemental Table 1). We will examine these tasks in detail 237	

in the Results section of this manuscript.  238	

 239	
Parameter exploration, input and output objects 240	

In conventional computational pipelines, several computational tasks (operations) are 241	

executed on their required inputs. However, in existing genomics pipelines, each task 242	

generates a single result object (e.g. TAD calling using one method with fixed parameter 243	

settings) which is then used by downstream tasks. To allow full parameter (and 244	

method/tool) exploration, we introduce instead a data flow model, where every task may 245	
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accommodate an arbitrary number of output objects. Downstream tasks will then operate 246	

on all computed objects generated by the tasks they depend on. Pipeline tasks are 247	

implemented as shown in the diagram of Figure 2B. First, input objects are filtered 248	

according to user-specified criteria (e.g. TAD calling is only done for Hi-C contact matrices 249	

at 40kb resolution). Then, pipeline-master-explorer (implemented as an R script; see User 250	

Manual for usage and input arguments) generates the commands that create all desired 251	

output objects. In principle, all combinations of input objects with all parameter settings 252	

will be created, subject to user-defined filtering criteria. In the interest of extensibility, new 253	

pipeline tasks can be conveniently implemented using a single-line pipeline-master-254	

explorer command (see Supplemental Table 2), provided that wrapper scripts for each 255	

task (e.g. TAD calling using TopDom) have been properly set up. In the simplest scenario, 256	

any task in our pipeline will generate computational objects for each combination of 257	

parameter file and input objects obtained from upstream tasks. For example, suppose the 258	

aligned reads from 12 Hi-C datasets are filtered using three different parameter settings, 259	

and that we need to create contact matrices at four resolutions (1Mb, 100kb, 40kb and 260	

10kb). Then, the number of output objects (contact matrices in this case) will be 144 (i.e. 261	

12 x 3 x 4). Although many computational scenarios can be realized by this simple one-262	

to-one mapping of input-output objects, more complex scenarios are frequently 263	

encountered, as described in the next section.  264	

 265	
Filtering, splitting and grouping input objects into new output objects 266	

Oftentimes, a simple one-to-one mapping of input objects to output objects is not 267	

desirable. For this reason, we introduce the concepts of filtering, splitting and grouping of 268	

input objects which are used to modify the behavior of pipeline-master-explorer (see 269	
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Figure 2B). Filtering is required when some input objects are not relevant for a given 270	

task, e.g. TAD calling is not performed on 1Mb-resolution contact matrices, and specific 271	

DNA-DNA interactions are not meaningful for resolutions greater than 10-20kb. Splitting 272	

is necessary in some cases: for example, we split the input objects by genome assembly 273	

(hg19, mm10) when comparing contact matrices or domains across samples, since only 274	

matrices or domains from the same genome assembly can be compared directly. In our 275	

platform, the user is allowed to split a collection of input objects by any variable contained 276	

in the sample sheet (except fastq files), thus allowing user-defined splits of the data, such 277	

as by cell type or treatment. Complementary to the splitting concept, grouping permits the 278	

aggregation of a collection of input objects (sharing the same value of a variable defined 279	

in the sample sheet) into a single output object. For example, the user may want to create 280	

genome browser tracks or contact matrices of combined technical and/or biological 281	

replicates, or group all input objects (samples) together in tasks such as Principal 282	

Components Analysis (PCA) or alignment/filtering statistics.  283	

 284	
Combinatorial objects 285	

Even after introducing the concepts described above, more complex scenarios are 286	

possible as some tasks require the input of pairs (or triplets etc.) of objects. This feature 287	

has also been implemented in our pipeline (tuples in Figure 2B) and is currently used in 288	

the compare-matrices and compare-boundaries tasks. However, it should be utilized 289	

wisely (for example in conjunction with filtering, splitting and grouping) because it may 290	

lead to a combinatorial “explosion” of output objects.  291	

 292	
Parameter scripts 293	
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The design of our platform is motivated by the need to facilitate the use of different 294	

parameter settings for each pipeline task. For this reason, we have implemented wrapper 295	

scripts for each tool/method used in each task. For example, we have implemented a 296	

wrapper script for alignment, filtering, correcting contact matrices using IC or HiCNorm 297	

(separate wrappers), TAD calling using Armatus [30], TopDom [31], DI [5] and insulation 298	

index (Crane) [32] (separate wrappers). The main motivation is to hide most of the 299	

complexity inside the wrapper script and allow the user to modify the parameters using a 300	

simple but flexible parameter script. Unlike static parameter files, parameter scripts allow 301	

for dynamic calculation of parameters based on certain input variables (e.g. enzyme 302	

name, group name etc.). Within this framework, by adding and/or modifying simple 303	

parameter scripts, the user can explore the effect of different parameters (a) on the task 304	

directly affected by these parameters, and (b) on all dependent downstream tasks. 305	

Additionally, these parameter scripts serve as a record of parameters and tool versions 306	

that were used to produce the results, facilitating analysis reproducibility as well as 307	

documentation in scientific reports and manuscripts.  308	

 309	
Results stored as computational trails 310	

All the concepts described above have been implemented in a single R script named 311	

pipeline-master-explorer. This script maintains a database of input-output objects for each 312	

task, stored in a hidden directory under results (results/.db). It also creates a “run” script 313	

which is executed in order to generate all the desired results. All results are stored in the 314	

results directory in a tree structure that reveals the computational trail for each object (see 315	

examples shown in Figure 2B and Supplementary Table 2). Therefore, the user can 316	
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easily infer how each object was created, including what inputs and what parameters 317	

were used.  318	

 319	
Initiating a new reproducible analysis 320	

In the interest of data analysis reproducibility, any new analysis requires creating a copy 321	

of the code and pipeline structure into a desired location, effectively creating a branch. 322	

This way, any changes in the code repository will not affect the analysis and conversely, 323	

the user can customize the code according to the requirements of each project without 324	

modifying the code repository. Copying of the code and initiating a new analysis is done 325	

simply by invoking the script “pipeline-new-analysis.tcsh” as described in the User 326	

Manual.  327	

 328	
Pipeline tasks 329	

A pipeline consists of a number of (partially) ordered tasks that can be described by a 330	

directed acyclic graph which defines all dependencies. HiC-bench implements a total of 331	

20 tasks as shown in the workflow of Figure 1. In the analysis directory structure, each 332	

task is assigned its own subdirectory found inside the pipeline directory starting from the 333	

top level. This directory includes a symbolic link to the inputs of the analysis (fastq files, 334	

sample sheet, etc.), a link to the code, a directory (inpdirs) containing links to all 335	

dependencies, a directory containing parameter scripts (see below) and a “run” script 336	

which can be used to generate all the results of this task. The “run” scripts of each task 337	

are executed in the specified order by the master “run” script located at the top level (see 338	

User Manual for details on pipeline directory structure).  339	

 340	
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Input data and the sample sheet 341	

Before performing any analysis, a computational pipeline needs input data. All input data 342	

for our pipeline tasks are stored in their own “inputs” directory accessible at the top level 343	

(along with the numbered pipeline tasks) and via symbolic links from within the directories 344	

assigned to each task to allow easy access to the corresponding input data. A “readme” 345	

file explains how to organize the input data inside the inputs directory (see User Manual 346	

for details). Briefly, the fastq subdirectory is used to store all fastq files, organized into 347	

one subdirectory per sample. Then, the sample sheet needs to be generated. This can 348	

be done automatically using the “create-sample-sheet.tcsh” script, but the user can also 349	

manually modify and expand the sample sheet with features beyond what is required. 350	

Currently required features are the sample name (to be used in all downstream analyses), 351	

fastq files (R1 and R2 in separate columns), genome assembly version (e.g. hg19, mm10) 352	

and restriction enzyme name (e.g. HindIII, NcoI). Adding more features, such as different 353	

group names (e.g. sample, cell type, treatment), allows the user to perform more 354	

sophisticated downstream analyses, such as grouping replicates for generating genome 355	

browser tracks, or splitting samples by genome assembly to compare boundaries (see 356	

previous section on grouping and splitting).   357	

 358	
Executing the pipeline 359	

The entire pipeline can be executed automatically by the “pipeline-execute.tcsh” script, 360	

as shown below: 361	

code/code.main/pipeline-execute <project name> <user e-mail address> 362	

where <project name> will be substituted by the name of the project and <user e-mail 363	

address> by the preferred e-mail address of the person who runs the analysis in order to 364	
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be notified upon completion. The “pipeline-execute.tcsh” script essentially executes the 365	

“run” script for each task (following the specified order). At the completion of every task, 366	

the log files of all finished jobs are inspected for error messages. If error messages are 367	

found, the pipeline aborts with an error message. 368	

 369	

Timestamping 370	

Besides creating the “run” script used to generate all results, the “pipeline-master-371	

explorer.r” script, also checks whether existing output objects are up-to-date when 372	

compared to their dependencies (i.e. input objects and parameter scripts; can be 373	

expanded to include code dependencies as well). Currently, the pipelines are setup so 374	

that out-of-date objects are not deleted and recomputed automatically, but only presented 375	

to the user as a warning. The user can then choose to delete them manually and re-376	

compute. The reason for this is to protect the user against accidentally repeating 377	

computationally demanding tasks (e.g. alignments) without given first the chance to 378	

review why certain objects may be out-of-date. From a more philosophical point of view, 379	

and in the interest of keeping a record of all computations (when possible), the user may 380	

never want to modify parameter files or the code for a given project, but instead only add 381	

new parameter files. Then, no object will be out-of-date, and only new objects will need 382	

to be recomputed every time.  383	

 384	
Alignment and filtering 385	

Paired-end reads were mapped to the reference genome (hg19 or mm10) using Bowtie2 386	

[26]. Reads with low mapping quality (MAPQ<30) were discarded. Local alignments of 387	

input read pairs were performed as they consist of chimeric reads between two (non-388	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2016. ; https://doi.org/10.1101/084954doi: bioRxiv preprint 

https://doi.org/10.1101/084954


consecutive) interacting fragments. This approach yielded a high percentage of mappable 389	

reads (> 95%) for all datasets (Supplementary Figure 1). Mapped read pairs were 390	

subsequently filtered for known artifacts of the Hi-C protocol such as self-ligation, 391	

mapping too far from the enzyme’s known cutting sites etc. More specifically, reads 392	

mapping in multiple locations on the reference genome (multihit), double-sided reads that 393	

mapped to the same enzyme fragment (ds-same-fragment), reads whose 5’-end mapped 394	

too far (ds-too-far) from the enzyme cutting site, reads with only one mappable end 395	

(single-sided) and unmapped reads (unmapped), were discarded. Read pairs that 396	

corresponded to regions that were very close (less than 25 kilobases, ds-too-close) in 397	

linear distance on the genome as well as duplicate read pairs (ds-duplicate-intra and ds-398	

duplicate-inter) were also discarded. In Supplementary Figure 1, we show detailed 399	

paired-end read statistics for the Hi-C datasets used in this study. We include the read 400	

numbers (Supplementary Figure 1A) and their corresponding percentages 401	

(Supplementary Figure 1B). Eventually, approximately 10-50% of paired-reads passed 402	

all filtering criteria and were used for downstream analysis (Supplementary Figure 1B). 403	

The statistics report is automatically generated for all input samples. The tools and 404	

parameter settings used for the alignment and filtering tasks are fully customizable and 405	

can be defined in the corresponding parameter files. 406	

 407	
Contact matrix generation, normalization and correction 408	

The read-pairs that passed the filtering task were used to create Hi-C contact matrices 409	

for all samples. The elements of each contact matrix correspond to pairs of genomic 410	

“bins”. The value in each matrix element is the number of read pairs aligning to the 411	

corresponding genomic regions. In this study, we used various resolutions, ranging from 412	
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fine (10kb) to coarse (1Mb). The resulting matrices either remained unprocessed 413	

(filtered), or they were processed using different correction methods including HiCNorm 414	

[28], iterative correction (IC or ICE) [9] as well as “naïve scaling”. In Supplementary 415	

Figure 2, we present the average Hi-C count as a function of the distance between the 416	

interacting fragments, separately for each Hi-C matrix for not corrected (filtered) and IC-417	

corrected matrices. 418	

 419	
Comparison of contact matrices 420	

Our pipeline allows direct comparison and visualization of the generated Hi-C contact 421	

matrices. More specifically, using our hic-matrix tool, all pairwise Pearson and Spearman 422	

correlations were automatically calculated for each (a) input sample, (b) resolution, and 423	

(c) matrix correction method. The corresponding correlograms were automatically 424	

generated using the corrgram R package [39]. A representative example is shown in 425	

Supplementary Figure 3. The correlograms summarizing the pairwise Pearson 426	

correlations for all samples used in this study are presented before and after matrix 427	

correction using the iterative correction algorithm. These plots are very useful because 428	

the user can quickly assess the similarity between technical and biological replicates as 429	

well as differences between various cell types. As shown before (Supplementary Figure 430	

3 in [5]), iterative correction improves the correlation between enzymes at the expense of 431	

a decreased correlation between samples prepared using the same enzyme.   432	

 433	
Boundary scores 434	

Topological domains (TADs) are defined as genomic neighborhoods of highly interacting 435	

chromatin, with relatively more infrequent inter-domain interactions [5,40,41]. Topological 436	
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domains are demarcated by boundaries, i.e. genomic regions bound by insulators thus 437	

hampering DNA contacts across adjacent domains. For each genomic position, in a given 438	

resolution (typically 40kb or less), we define a “boundary score” to quantify the insulation 439	

strength of this position. The higher the boundary score, the higher the insulation strength 440	

and the probability that this region actually acts as a boundary between adjacent domains. 441	

The idea of boundary scores is further illustrated in Supplementary Figure 4, where two 442	

adjacent TADs are shown. The upstream TAD on the left (L) is separated from the 443	

downstream TAD on the right (R) by a boundary (black circle). We define two parameters, 444	

the distance from the diagonal of the Hi-C contact matrix to be excluded from the 445	

boundary score calculation (δ) (not shown) and the maximum distance from the diagonal 446	

to be considered (d). The corresponding parameter values can be selected by the user. 447	

For this analysis, we used δ=0 and d=2Mb as suggested before [5]. In addition to the 448	

published directionality index [5], we defined and computed the “inter”, “intra-max” and 449	

“ratio” scores, defined as follows: 450	

inter = mean(X) 451	
intramax = max(mean(L), mean(R)) 452	

ratio = intramax/inter 453	
 454	

Principal component analysis (PCA) of boundary scores across samples in this study, 455	

before and after matrix correction, shows that biological replicates tend to cluster 456	

together, either in the case of filtered or corrected (IC) matrices (Supplementary Figure 457	

5).  458	

 459	
Topological domains 460	

Topologically-associated domains (TADs) are increasingly recognized as an important 461	

feature of genome organization [5]. Despite the importance of TADs in genome 462	
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organization, very few Hi-C pipelines have integrated TAD calling (e.g. TADbit [19]). In 463	

HiC-bench, we have integrated TAD calling as a pipeline task and we demonstrate this 464	

integration using different TAD callers: (a) Armatus [30], (b) TopDom [31], (c) DI [5], (d) 465	

insulation index (Crane) [32] and (c) our own hic-matrix (domains). Our pipeline makes it 466	

straightforward to plug in additional TAD callers, by installing these tools and setting up 467	

the corresponding wrapper scripts. HiC-bench also facilitates the direct comparison of 468	

TADs across samples by automatically calculating the number of TAD boundaries and all 469	

the pairwise overlaps of TAD boundaries across all inputs, generating the corresponding 470	

graphs (as in the case of matrix correlations described in a previous section). We define 471	

boundary overlap as the ratio of the intersection of boundaries between two replicates (A 472	

and B) over the union of boundaries in these two replicates, as shown in the equation 473	

below: 474	

   boundary_overlap = (A∩B)/(A∪B)  475	

For the boundary overlap calculation, we extended each boundary by 40kb on both sides 476	

(+/- 40kb flanking region, i.e. the size of one bin). The fact that HiC-bench allows 477	

simultaneous exploration of all parameter settings for all installed TAD-calling algorithms, 478	

greatly facilitates parameter exploration, optimization as well as assessment of algorithm 479	

effectiveness. Pairwise comparison of boundaries (boundary overlaps) across samples is 480	

shown in Supplementary Figure 6 and Figure 3.  481	

 482	

Visualization 483	

In our pipeline, we also take advantage of the great visualization capabilities offered by 484	

the recently released HiCPlotter [23], in order to allow the user to visualize Hi-C contact 485	
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matrices along with TADs (in triangle format) for multiple genomic regions of interest. The 486	

user can also add binding profiles in BedGraph format for factors (e.g. CTCF), boundary 487	

scores, histone marks of interest (e.g. H3K4me3, H3K27ac) etc. An example is shown in 488	

Supplementary Figure 7, where an area of the contact matrix of human embryonic stem 489	

cells (H1) (HindIII) is presented along with the corresponding TADs (triangles), various 490	

boundary scores, the CTCF binding profile and annotations of selected genomic 491	

elements, before and after matrix correction (IC). The integration of HiCPlotter in our 492	

pipeline, allows the user to easily create publication-quality figures for multiple areas of 493	

interest simultaneously.  494	

 495	
Specific interactions, annotations and enrichments 496	

The plummeting costs of next-generation sequencing have resulted in a dramatic 497	

increase in the resolution achieved in Hi-C experiments. While the original Hi-C study 498	

reported interaction matrices of 1Mb resolution [2], recently 1kb resolution was reported 499	

[42]. Thus, the characterization and annotation of specific genomic interactions from Hi-500	

C data is an important feature of a modern Hi-C analysis pipeline. HiC-bench generates 501	

a table of the interacting loci based on parameters defined by the user. These parameters 502	

include the resolution, the lowest number of read pairs required per interacting area as 503	

well as the minimum distance between the interacting partners. The resulting table 504	

contains the coordinates of the interacting loci, the raw count of interactions between 505	

them, the number of interactions after “scaling” and the number of interactions between 506	

the partners after distance normalization (observed Hi-C counts normalized by expected 507	

counts as a function of distance). This table is further annotated with the gene names or 508	

the factors (e.g. CTCF) and histone modification marks (e.g. H3K4me1, H3K27ac, 509	
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H3K4me3) that overlap with the interacting loci. The user can provide bed files with the 510	

features of interest to be used for annotation. As an example, the enrichment of chromatin 511	

marks in the top 50000 chromatin interactions in the H1 and IMR90 samples is presented 512	

in Supplementary Figure 8. 513	

 514	

Software requirements 515	

The software requirements are: Bowtie2 aligner [26], Python (2.7 or later) (along with 516	

Numpy, Scipy and Matplotlib libraries), R (3.0.2) [43], various R packages (lattice, 517	

RColorBrewer, corrplot, reshape, gplots, preprocessCore, zoo, reshape2, plotrix, 518	

pastecs, boot, optparse, ggplot2, igraph, Matrix, MASS, flsa, VennDiagram, futile.logger 519	

and plyr) and HiCPlotter [23]. More details on the versions of the packages can be found 520	

in the User Manual (sessionInfo()). In addition, installation of mirnylib Python library [44] 521	

is required for matrix balancing based on IC (ICE). The pipeline has been tested on a 522	

high-performance computing cluster based on Sun Grid Engine (SGE). The operating 523	

system used was Redhat Linux GNU (64 bit). 524	

Results 525	

We used HiC-bench to analyze several published Hi-C datasets and the results of our 526	

analysis are presented below. Additionally, we performed a comprehensive benchmark 527	

of existing and new TAD callers exploring different matrix correction methods, parameter 528	

settings and sequencing depths. Our results can be reproduced by re-running the 529	

corresponding pipeline snapshot available upon request as a single compressed archive 530	

file (too big to include as a Supplemental file). 531	

 532	
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Comprehensive reanalysis of available Hi-C datasets using HiC-bench 533	

Our platform is designed to facilitate and streamline the analysis of a large number of 534	

available Hi-C datasets in batch. Thus, we collected and comprehensively analyzed 535	

multiple Hi-C samples from three large studies [5,42,45]. From the first study we analyzed 536	

IMR90 (HindIII) samples, from the second we analyzed Hi-C samples from 537	

lymphoblastoid cells (GM12878), human lung fibroblasts (IMR90 (MboI)), 538	

erythroleukemia cells (K562), chronic myelogenous leukemia (CML) cells (KBM-7) and 539	

keratinocytes (NHEK), and from the third one, we analyzed samples from human 540	

embryonic stem cells (H1) and all the embryonic stem-cell derived lineages mentioned, 541	

including mesendoderm, mesenchymal stem cells, neural progenitor cells and 542	

trophectoderm cells. All datasets yielded at least 40 million usable intra-chromosomal 543	

read pairs in at least two biological replicates. We performed extensive quality control on 544	

all datasets, calculating the read counts and percentages per classification category 545	

(Supplementary Figure 1), the attenuation of Hi-C signal over genomic distance 546	

(Supplementary Figure 2), the correlation of Hi-C matrices before and after matrix 547	

correction (Supplementary Figure 3), the similarity of boundary scores (Supplementary 548	

Figure 5) and all pairwise boundary overlaps across samples (Supplementary Figure 549	

6). In addition, we performed a comprehensive benchmarking of our own and published 550	

TAD callers, across all reanalyzed Hi-C datasets. The results of our benchmark are 551	

presented in the following sections.  552	

 553	

Iterative correction of Hi-C contact matrices improves reproducibility of TAD 554	
boundaries 555	
 556	
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Iterative correction has been shown to correct for known biases in Hi-C [9]. Thus, we 557	

hypothesized that IC may increase the reproducibility of TAD calling. We performed a 558	

comprehensive analysis calculating the TAD boundary overlaps for biological replicates 559	

of the same sample (as described in Methods section), using different TAD callers and 560	

different main parameter values for each TAD caller (Figure 3A). After comparing TAD 561	

boundary overlaps between filtered (uncorrected) and IC-corrected matrices, we 562	

observed an improvement in the boundary overlap when corrected matrices were used, 563	

irrespective of TAD caller and parameter settings (Figure 3B). The only exception was 564	

DI. Careful examination of the overlaps per sample revealed that IC introduced outliers 565	

only in the case of DI (in general, the opposite was true for the other callers). We 566	

hypothesize that IC may occasionally negatively affect the computation of the 567	

directionality index, especially because its calculation depends on a smaller number of 568	

bins (1-dimensional line) compared to the rest of the methods (2-dimensional triangles). 569	

In addition to the increase in the mean value of boundary overlap upon correction, we 570	

observed that the standard deviation of boundary overlaps among replicates decreased 571	

(again, with the exception of DI) (Figure 3C). While this seems to be the trend for almost 572	

all TAD caller/parameter value combinations, the effect of correction in variance is more 573	

profound in certain cases (e.g. hicintra-max) than others. It is also worth mentioning that 574	

increased size of the insulation window (in the case of Crane), the resolution parameter 575	

γ (Armatus) or the distance d (hicinter, hicintra-max, hicratio) may result in certain cases 576	

in increased boundary overlap (e.g. Armatus), but this is not generalizable (e.g. hicintra-577	

max). Interestingly, increased TAD boundary overlap does not necessarily mean 578	

increased consistency in the number of predicted TADs across sample types, as would 579	
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be expected since TADs are largely invariant across cell types [5]. For example, the TAD 580	

calling algorithm which is based on insulation score (Crane), predicted similar TAD 581	

overlaps and similar TAD numbers for different insulation windows (ranging from 0.5Mb 582	

to 2Mb), whereas Armatus performed particularly well in terms of TAD boundary 583	

reproducibility for a wide range of settings (Figure 3A) but the corresponding predicted 584	

TAD numbers varied considerably (Figure 3D). This may be partly due to the nature of 585	

the Armatus algorithm, as it has been built to reveal multiple levels of chromatin 586	

organization (TADs, sub-TADs etc.). We conclude that while iterative correction improves 587	

the reproducibility of TAD boundary detection across replicates, the number of predicted 588	

TADs should be also taken into account when selecting TAD calling method for 589	

downstream analysis. The method of choice should be the one that is robust in terms of 590	

both reproducibility and number of predicted TADs. 591	

 592	
Increased sequencing depth improves the reproducibility of TAD boundaries 593	
 594	
After selecting the parameter setting that optimized TAD boundary overlap between 595	

biological replicates of the same sample per TAD caller, we also investigated the effect 596	

of sequencing depth on the reproducibility of TAD boundary detection. Since some of the 597	

input samples were limited to only 40 million usable intra-chromosomal Hi-C read pairs, 598	

we resampled 10 million, 20 million and 40 million read pairs from each sample and 599	

evaluated the effect of increasing sequencing depth on TAD boundary reproducibility. The 600	

results are depicted in Figure 4A. We noticed that increased sequencing depth resulted 601	

in increased TAD boundary overlap, regardless of the TAD calling algorithm used (Figure 602	

4A,C). As far as the TAD numbers are concerned, increased sequencing depth 603	

decreased TAD number variability for certain callers (e.g. hicratio) but not in all cases 604	
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(e.g. DI) (Figure 4B). In many cases, increased sequencing depth, decreased the 605	

variance of TAD boundary overlap among replicates (Figure 4C). In summary, based on 606	

this benchmark, we recommend that Hi-C samples should be sufficiently sequenced as 607	

sequencing depth seems to affect TAD calling reproducibility.  608	

 609	
Conclusions 610	

Recently, several computational tools and pipelines have been developed for Hi-C 611	

analysis. Some focus on matrix correction, others on detection of specific chromatin 612	

interactions and their differences across conditions and others on visualization of these 613	

interactions. However, very few of these tools offer a complete Hi-C analysis (e.g. HiFive, 614	

HiCUP or HiC-Pro), addressed all tasks ranging from alignment to interaction annotation, 615	

enrichment analysis and visualization. HiC-bench is a comprehensive Hi-C analysis 616	

pipeline with the ability to process many samples in parallel, record and visualize the 617	

results in each task, thus facilitating troubleshooting and further analyses. It integrates 618	

both existing tools but also new tools that we developed to perform certain Hi-C analysis 619	

tasks. In addition, HiC-bench focuses on parameter exploration, reproducibility and 620	

extensibility. All parameter settings used in each pipeline task are automatically recorded, 621	

while future tools can be easily added using the supplied wrapper template. More 622	

importantly, HiC-bench is the only Hi-C pipeline so far that allows extensive parameter 623	

exploration, thus facilitating direct comparison of the results obtained by different tools, 624	

methods and parameters. This unique feature helps users test the robustness of the 625	

analysis, optimize the parameter settings and eventually obtain reliable and biologically 626	

meaningful results. To demonstrate the usefulness of HiC-bench, we performed a 627	

comprehensive benchmark of popular and newly-introduced TAD callers, varying the 628	
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matrix preprocessing (filtered or corrected matrices with ICE method), the sequencing 629	

depth, and the value of the main parameter of each TAD caller, which is usually the 630	

window used for the calculation of directionality index or insulation score. We found that 631	

the matrix correction has a positive effect on the boundary overlap between replicates 632	

and that increased sequencing depth leads to higher boundary overlap. 	633	

In conclusion, HiC-bench is an easy-to-use framework for systematic, comprehensive, 634	

integrative and reproducible analysis of Hi-C datasets. We expect that use of our platform 635	

will facilitate current analyses and enable scientists to further develop and test interesting 636	

hypotheses in the field of chromatin organization and epigenetics.  637	

 638	
List of abbreviations 639	

DI: directionality index 640	

IC or ICE: iterative correction 641	

PCA: Principal Component Analysis 642	

TAD: Topological Domain or Topologically Associating Domain 643	
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Published Hi-C data were downloaded from Gene Expression Omnibus, using the 651	

corresponding accession numbers: GSE35156 [5], GSE63525 [42] and GSE52457 [45].  652	
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 692	
Figure legends 693	

Figure 1. HiC-bench workflow. Raw reads (input fastq files) are aligned and then filtered 694	

(align and filter tasks). Filtered reads are used for the creation of Hi-C track files (tracks) 695	

that can be directly uploaded to the WashU Epigenome Browser [27]. A report with a 696	

statistics summary of filtered Hi-C reads, is also automatically generated (filter-stats). 697	
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Raw Hi-C matrices (matrix-filtered) are normalized using (a) scaling, (b) iterative 698	

correction [9] or (c) HiCNorm [28]. A report with the plots of the normalized Hi-C counts 699	

as function of the distance between the interacting partners (matrix-stats) is automatically 700	

generated for all methods. The resulting matrices are compared across all samples in 701	

terms of Pearson and Spearman correlation (compare-matrices and compare-matrices-702	

stats). Boundary scores are calculated and the corresponding report with the Principal 703	

Component Analysis (PCA) is automatically generated (boundary-scores and boundary-704	

scores-pca). Domains are identified using various TAD calling algorithms (domains) 705	

followed by comparison of TAD boundaries (compare-boundaries and compare-706	

boundaries-stats). A report with the statistics of boundary comparison is also 707	

automatically generated. Hi-C visualization of user-defined genomic regions is performed 708	

using HiCPlotter (hicplotter) [23]. Specific chromatin interactions (interactions) are 709	

detected and annotated (annotations). Finally, enrichment of top interactions in certain 710	

chromatin marks, transcription factors etc. provided by the user, is automatically 711	

calculated (annotations-stats). 712	

Figure 2. (A) Computational trails. Each combination of tools and parameter settings 713	

can be imagined as a unique computational “trail” that is executed simultaneously with all 714	

the other possible trails to create a collection of output objects. As an example, one of 715	

these possible trails is presented in red. The raw reads were aligned, filtered and then 716	

binned in 40kb resolution matrices. Our own naïve matrix scaling method was then used 717	

for matrix correction and domains were called using TopDom [31]. (B) HiC-bench 718	

pipeline task architecture. All pipeline tasks are performed by a single R script, 719	

“pipeline-master-explorer.r”. This script generates output objects based on all 720	
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combinations of input objects and parameter scripts while taking into account the split 721	

variable, group variable and tuple settings. The output objects are stored in the 722	

corresponding “results” directory. As an example, domain calling for IMR90 is presented. 723	

The filtered reads of the IMR90 Hi-C sample (digested with HindIII) are used as input. 724	

The pipeline-master-explorer script tests if TAD calling with these settings has been 725	

performed and if not it calls the domain calling wrapper script (code/hicseq-domains.tcsh) 726	

with the corresponding parameters (e.g. params/params.armatus.gamma_0.5.tcsh). 727	

After the task is complete, the output is stored in the corresponding “results” directory. 728	

Figure 3. Comparison of topological domain calling methods subject to Hi-C 729	

contact matrix preprocessing by simple filtering or iterative correction (IC). The 730	

methods were assessed in terms of boundary overlap between replicates (A), change 731	

(%) in mean boundary overlap after matrix correction (B), change (%) in standard 732	

deviation of mean overlap across replicates after matrix correction (C) and number of 733	

identified topological domains per cell type (D). The different colors correspond to the 734	

different callers. Gradients of the same color are used for the different values of the same 735	

parameter, ranging from low (light color) to high (dark color) values. The TAD callers 736	

along with the corresponding parameter settings are presented in the legend. For this 737	

analysis all available read pairs were used. 738	

Figure 4. Comparison of topological domain calling methods for different 739	

preprocessing method and sequencing depth. TAD calling methods were assessed 740	

in terms of boundary overlap between replicates (A), number of identified topological 741	

domains (B) and boundary overlap across replicates upon increasing sequencing depth 742	

(C) for different matrix preprocessing (filtered and IC corrected) and different sequencing 743	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2016. ; https://doi.org/10.1101/084954doi: bioRxiv preprint 

https://doi.org/10.1101/084954


depths (10 million, 20 million and 40 million reads). For TAD calling, only the optimal 744	

caller/parameter value pairs are shown (defined as the ones achieving the maximum 745	

boundary overlap for IC and 40 million reads). The boxplot and line colors correspond to 746	

the different TAD callers. 747	

 748	

Supplementary Figure 1. Hi-C reads filtering statistics. Number (A) and percentage 749	

(B) of the various read categories identified during filtering for all datasets used in the 750	

study. Mappable reads were over 95% in all samples. Duplicate (ds-duplicate-intra and 751	

ds-duplicate-inter; red and pink), non-uniquely mappable (multihit; light blue) and single-752	

end mappable (single-sided; dark blue) reads were discarded. Self-ligation products (ds-753	

same-fragment) and reads mapping too far (ds-too-far; light purple) from restriction sites 754	

or too close to one another (ds-too-close; orange) were also discarded. Only double-sided 755	

uniquely mappable cis (ds-accepted-intra; dark green) and trans (ds-accepted-inter; light 756	

green) read pairs were used for downstream analysis. The x axis represents either the 757	

raw read number (A) or the percentage of reads (B) falling within each of the categories 758	

described in the legend. The y axis represents the samples. 759	

Supplementary Figure 2. Matrix statistics. Normalized Hi-C counts are presented as a 760	

function of the distance between the interacting partners for all samples and correction 761	

methods.  The Hi-C samples analyzed were GM12878 (light blue), hESCs (H1) (blue), 762	

mesenchymal cells (light green), mesendoderm (dark green), neural progenitors (pink), 763	

trophectoderm (red), IMR90 (light and dark orange), K562 (light purple), KBM7 (dark 764	

purple) and NHEK (yellow). The matrices were either unprocessed (filtered) (top) or 765	
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corrected using IC (bottom). The y axis represents the normalized count of Hi-C 766	

interactions and the x axis the distance between the interacting partners in kilobases.  767	

Supplementary Figure 3. Pairwise Pearson correlation of Hi-C matrices. 768	

Correlograms summarizing all pairwise Pearson correlations for all Hi-C samples used in 769	

this study: raw (filtered) matrices (left panel) and matrices after iterative correction (right 770	

panel). Dark red indicates strong positive correlation and dark blue strong negative. The 771	

resolution of the matrices is 40kb. 772	

Supplementary Figure 4. Boundary score calculation. Two adjacent topological 773	

domains (red triangles) are depicted. The left domain (L) is separated from the right 774	

domain (R) by a boundary (black circle). The areas of more-frequent intra-domain 775	

interactions are in red. The area of less-frequent cross-domain (or inter-domain) 776	

interactions is X. We also introduce parameter d which is the maximum distance from the 777	

diagonal to be considered for the calculation of boundary scores (default value: d=2Mb). 778	

Supplementary Figure 5. Principal component analysis of boundary scores. 779	

Boundary scores were calculated using ratio score, for all samples either before (filtered) 780	

(left panel) or after iterative correction (IC) (right panel).  781	

Supplementary Figure 6. Pairwise overlaps of TAD boundaries. The pairwise 782	

overlaps of TAD boundaries are shown for all samples of this study, after calling 783	

boundaries using hicratio (all reads, d=0500).  Before TAD calling, the Hi-C matrices were 784	

either unprocessed (filtered) or corrected using iterative correction (IC) (resolution = 785	

40kb). 786	

Supplementary Figure 7. Visualization of TADs and certain areas of interest. HiC-787	

bench integrates HiCPlotter [23] and it offers the ability to easily prepare publication-788	
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quality figures. We present the area surrounding NANOG, a gene of particular importance 789	

for the maintenance of pluripotency. The Hi-C matrix corresponding to the 790	

chr12:3940389-11948655 genomic region is presented for H1 cells, before and after 791	

matrix correction. The matrix is also rotated 45o to facilitate TAD visualization. Various 792	

boundary scores (intra-max, DI, ratio) are shown as individual tracks along with CTCF 793	

binding. The location of NANOG is presented as a blue line. 794	

Supplementary Figure 8. Enrichment of chromatin interactions in human 795	

fibroblasts (IMR90) and embryonic stem cells (H1). The enrichment of certain 796	

chromatin marks and CTCF in the top 50000 chromatin interactions in the IMR90 and H1 797	

samples is shown. Deep blue and larger circle size indicate higher enrichment.  798	

 799	
 800	

Table legends 801	

Table 1. Comparison of HiC-bench with published Hi-C analysis or visualization 802	

tools. HiC-bench is a comprehensive and feature-rich Hi-C analysis pipeline that 803	

performs various Hi-C tasks by combining our newly-developed tools with existing tools. 804	

Table 2. The HiC-bench toolkit. The HiC-bench toolkit consists mostly of newly-805	

developed tools (shown in bold) but we have also incorporated existing tools to allow 806	

comparisons and benchmarking. 807	

Supplementary Table 1. HiC-bench task implementation. The table summarizes how 808	

the pipeline tasks are implemented, which are the requirements for their execution and 809	

how they are handled by the pipeline-master-explorer script. The first column lists all the 810	

tasks performed by pipeline ranging from alignment to annotation. The second column 811	
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lists the input directory required for each task while the third one lists the parameter files. 812	

Certain tasks depend on the reference genome (human or mouse), thus the genome 813	

assembly acts as split variable (column 4). In some tasks, replicates can be grouped 814	

using the group variable (column 5). Pairwise comparisons between replicates or samples 815	

are also allowed using tuples (column 6). The last column lists the full pipeline-master-816	

explorer command for each pipeline task.  817	

Supplementary Table 2. HiC-bench input-output objects. The table summarizes the 818	

inputs and outputs of the TAD-calling task using three different methods with parameter 819	

values stored in the params files (column 2). The first column describes the tree structure 820	

of the input directories that are essentially the different Hi-C matrices for each sample, 821	

before (filtered) and after matrix correction using different methods (e.g. IC). The second 822	

column lists all the different parameter scripts and the third column corresponds to the 823	

tree structure of the generated output objects. 824	
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