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Abstract. Family-based designs, from twin studies to isolated popula-
tions with their complex genealogical data, are a valuable resource for
genetic studies of heritable molecular biomarkers. Existing software for
family-based studies have mainly focused on facilitating association be-
tween response phenotypes and genetic markers, and no user-friendly
tools are at present available to straightforwardly extend association
studies in related samples to large datasets of generic quantitative data,
as those generated by current -omics technologies.

We developed PopPAnTe, a user-friendly Java program, which evaluates
the association of quantitative data in related samples. Additionally, Pop-
PAnTe implements data pre and post processing, region based testing,
and empirical assessment of associations.

PopPAnTe is an integrated and flexible framework for pairwise associ-
ation testing in related samples with a large number of predictors and
response variables. It works either with family data of any size and com-
plexity, or, when the genealogical information is unknown, it uses ge-
netic similarity information between individuals as those inferred from
genome-wide genetic data. It can therefore be particularly useful in facil-
itating usage of biobank data collections from population isolates when
extensive genealogical information is missing.

1 Introduction

Family-based designs, from complex genealogical structure to twin studies, are
a valuable resource for genetic studies. The primary aim of currently-available
software accounting for population substructure and/or relatedness in the statis-
tical model (e.g., EMMA [1], Merlin [2], GenABEL [3], QTDT [4]) is to evaluate
the association between genetic SNP markers and response phenotypes and, to
date, very few tools are available to test the association of large quantitative
datasets generated by high-throughput -omics technologies (e.g., epigenomic
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versus metabolomic data, or transcriptomic versus metagenomic data) in fa-
milial samples. For instance, although modelling of genealogical data can be
performed by the cozme [5] and kinship2 [6] R packages, R is not a particularly
efficient environment to carry out hundred of thousands or millions tests.

We have implemented a user-friendly Java program, PopPAnTe, to perform
exact association tests between large quantitative datasets in family-based stud-
ies. Relationships between individuals can be described either by known pedi-
grees of any size and complexity or by genetic similarity matrices (GSMs) in-
ferred from genome-wide genetic data [7]. Pedigree-based and pedigree-free re-
latedness can show some discordance, especially when some degree of hidden
relatedness or population substructure is observed in the data and extensive
genealogical information is missing or incomplete. For instance, genealogical in-
formation going back more than three or four generations may be difficult to
be retrieved for individuals recruited in large-scale biobank started in genetic
isolates such as those from the Middle East.

Implementation

PopPAnTe assesses the relationship between quantitative dependent variables
(responses) and quantitative independent variables (predictors) within a variance
components framework in order to model the resemblance among relatives.

The association of a single predictor with a single response variable is de-
scribed as

T :N+Bpi+zj¢ijcij +9i te; (1)

where r; represents the response value for the i-th individual, x4 the response
mean, (3 the estimate of the predictor value p;, 1; the estimate of the j-th
covariate C, and g; and e; the polygenic and environmental effect, respectively.

The total response variance is partitioned into polygenic and environmen-
tal variances (the latter including also measurement errors), and the variance-
covariance matrix is calculated as

w=2P02 + Io?

where @ is the relatedness matrix between each pair of individuals, I is the iden-
tity matrix, and o2 and o2 are the additive genetic and environmental variance,
respectively.

Within the same framework, PopPAnTe allows the evaluation of the narrow
heritability of any quantitative response variable included in the analysis.

The significance of the association is calculated using a formal likelihood-ratio
test comparing the likelihood of the alternative model described in equation (1)
to the likelihood of a null model where the effect of the predictor is constrained
to zero.

PopPAnTe implements an exact linear mixed model equivalent to that im-
plemented in the QTDT software [4].
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To speed-up the evaluation, PopPAnTe clusters variables having the same
pattern of missingness (i.e., the same missing values in a subset of individu-
als), then evaluates the likelihood of the null model once, and reuses the value
to assess every variable included in the same cluster. PopPAnTe also allows
the evaluation of empirical p-values by randomly permuting the predictor values
among subjects and re-assessing the association under the null hypothesis. When
genealogical information is provided as input, predictor values are randomly per-
muted within families in order to preserve the phenotypic correlation between
family members. To speed up performance, PopPAnTe implements an adaptive
permutation approach [8], stopping the generation of randomly permuted sam-
ples earlier when there is little or no evidence of significance.

Pedigree versus Population analysis

When genealogical information is available, PopPAnTe evaluates the relatedness
matrix from the known pedigree relationships using a recursive procedure and
assuming pedigree founders as unrelated [9]. This results in a variance-covariance
matrix that is usually both symmetric and semi-positive definite. Therefore,
the maximum likelihood estimates of the variance components can be assessed
through efficient Cholesky decomposition.

When the genealogical information is not available, a GSM can be estimated
from genome-wide genetic data with any of several well-established tools, such
as PLINK [10], GCTA [11], or LDAK [12], and given as input to PopPAnTe.
The property of positive-definiteness does not always hold for GSMs. A bending
procedure [13] is used by default to transform the matrix when it is not positive
semi-definite —but the user has the option to use a LU decomposition instead.
Additionally, PopPAnTe implements the QR decomposition to solve the rare
cases where the variance-covariance matrix is not invertible and neither the
Cholesky nor the LU decompositions can be used.

To speed-up the evaluation of the variance components, PopPAnTe allows
the user to set an arbitrary threshold below which individuals can be considered
as unrelated. Otherwise, the user has the options of using the value of expected
kinship between second or third cousins [14, 15].

Region-based testing

When predictors can be ordered in space, as it is for instance for gene expres-
sion or epigenetic markers, PopPAnTe allows the computation of region-based
association tests by gathering information from flanking predictors included in
a sliding window of user-defined size, whose values are replaced by their first
principal component. By definition the first principal component accounts for as
much of the variability in the data as possible, and can thus be used to sum-
marise the joint distribution of all variables included in a given region for gene-
or region-based association studies (e.g., [16,17]).
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Data pre- and post-processing

Quantile normalisation [18] can be automatically applied to improve normality
of both response variables and predictors. Moreover, PopPAnTe implements two
approaches to correct the association test for unwanted biological and technical
variability (e.g., batch effects). When the source of the confounders is known,
it can be directly included in the association model. To deal with unknown
sources of biological and technical co-variation, PopPAnTe can integrate into
the association model the principal components that are required to explain a
user-specified percentage of variation.

PopPAnTe implements the Benjamini-Hochberg procedure (BH step-up pro-
cedure) to control the false discovery rate [19], and, to aid in results interpreta-
tion and further analyses, it generates basic Quantile-Quantile and Manhattan
plots — the latter only when genomic data that can be ordered in space (e.g.,
CpG loci) are used as predictors.

Finally, when the genealogical information is available, to determine whether
an association has been generated by a uniform contribution of all the families
within the sample, or by a strong contribution of a small number of families,
PopPAnTe reports, for each test, the percentage of families showing a positive
contribution and the Gini coefficient [20] assessed on family contribution to the
x? statistics.

Results and Discussion

We carried out a simulation study to estimate PopPAnTe’s computational re-
quirements. Moreover, we also present two real-world case studies (an outbred
and an inbred sample), showing the results obtained through both pedigree-
based kinship matrix and GSM (evaluated using different software).

Simulation study

We simulated quantitative response and predictor variables in three-generation
families (maternal and paternal grandparents, parents, and two offspring).

In the first simulated scenario, we aimed to test the relationship between
running time and number of subjects included in the analysis. Therefore, we
simulated 11 independent datasets including an increasing number of three-
generation families (from 10 to 1,000, thus comprising 80 to 8,000 individuals)
and one response and one predictor variable for all simulated subjects.

In the second simulated scenario, we aimed to test the relationship between
running time and number of variables included in the analysis. Consequently, we
fixed the number of families included in each dataset (125 families, corresponding
to 1,000 individuals) and generated 7 independent datasets with one response
and an increasing number of predictors ranging from one to 10,000.

Both scenarios were simulated 100 times and the median time necessary
for the testing step recorded. Simulations were performed on a Mac BookPro
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2.3GHz, Intel Core i7, 16GB RAM; Java version 1.7. Default parameters were
used for the Java Virtual Machine (1GB of memory, 1 thread).

Tables 1 and 2 show the median running time for each simulated scenario.
We observed a linear relationship between running time and both samples size
and number of tests. As expected, when multiple tests were performed (second
scenario), the per-test running time decreased, due to the fact that PopPAnTe
clusters variables having the same pattern of missingness and evaluates the like-
lihood of the null model only once.

Table 1. Results of the first simulated scenario. One response and one predictor vari-
able were simulated for each subject. Each dataset was simulated 100 times and the

median time necessary for the testing step reported.

Family Population Time

number  size (ms)
10 80 58
20 160 78
30 240 100
40 320 132
50 400 141
100 800 200
125 1000 240

250 2000 366
500 4000 692
750 6000 988
1000 8000 1287

Table 2. Results of the second simulated scenario. The number of families included in
each dataset was fixed (125 families, corresponding to 1,000 individuals). Each dataset
was simulated 100 times and the median time necessary for the testing step reported.

Number of Time
Predictors  (s)

1 0.24
10 0.94
100 7.74
500 37.67
1000 47.00

2500  119.00
5000  238.50

10000  479.00
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Case study 1: Epigenome-wide Association Study in a Qatari Family
Study

We carried out an epigenome-wide association study of body mass index (BMI)
using extended families from Qatar. The Qatari population is an isolated inbred
population characterised by a large number of consanguineous families [21]. A
detailed description of the subjects and methylation data included in this study
has been previously reported in Zaghlool et al. [22]. Briefly, we used genome-
wide methylation and SNP data generated from whole blood on the Infinium
HumanMethylation450 Bead-Chip (Illumina Inc, San Diego, CA) and the Illu-
mina HumanOmni2.5-8M BeadChip, respectively. DNA methylation Beta-values
were measured for 123 individuals, 88 with both genotype and BMI data in 13
multigenerational families. We used GCTA to calculate a GSM between pairs of
individuals using all autosomal SNP markers with minor allele frequency > 0.01.
We compared heritability estimates of the methylation values at CpG loci and
their association with BMI in the Qatari family study using either the family
information or the inferred GSM. Age, sex, and cell-type proportions as esti-
mated using the Houseman method [23] were included in the model as fixed
effects. We observed a very high concordance correlation coefficient [24] of the
effect size estimates for the association between CpG methylation states and
BMI (rg = 0.99; Figure 1, left), as well as of the CpG-specific component of
genetic and environmental variances (ro2 = 0.99 and ro? = 0.90, respectively;
Figure 1, right).

Effect size estimates Genetic and environmental variances

Genetic similarity matrix
Genetic similarity matrix

Pedigree-based kinship Pedigree-based kinship

Fig. 1. Epigenome-wide Association Study in a Qatari Family Study. Com-
parison of the results obtained in the Epigenome-wide association studies when the
relatedness between subjects was evaluated using the family structures and when it
was inferred from genome-wide SNPs by means of GCTA [11]. Left panel: effect size
estimates for the association between CpG methylation status and BMI. Right panel:
estimated genetic (o2, in blue) and environmental (2, in red) variances.
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Case study 2: Transcriptome-wide Association Study in UK Twins

In the second case study, we carried out a transcriptome-wide association study
with BMI in a cohort of healthy female Caucasians twins. The TwinsUK adult
twin registry includes about 12,000 subjects, predominately females [25]. Geno-
typing of the TwinsUK dataset was performed with a combination of Illumina
HumanHap300, HumanHap610Q, 1M-Duo and 1.2MDuo 1M chips and impu-
tation was performed using the IMPUTE software package (v2), as previously
described [26]. Expression profiling in subcutaneous adipose tissue was measured
using Hlumina Human HT-12 V3 BeadChips for 825 female individuals [27], 778
of whom had both genotype data and BMI information. We used LDAK to cal-
culate a GSM based on allelic correlation across autosomes. Before calculation,
we excluded SNPs with minor allele frequency < 0.01. We compared effect size
estimates of the gene expression profiles versus BMI, using either the family in-
formation or the inferred GSM. Age was included in the model as a fixed effect.
We observed a very high concordance correlation coefficient of the effect size es-
timates for the association between gene expression levels and BMI (r8 = 0.99;
Figure 2, left)), as well as of the gene-specific genetic component of genetic and
environmental variances (ro2 = 0.99 and 702 = 0.99, respectively; Figure 2,
right).

Effect size estimates Genetic and environmental variances

Genetic similarity matrix
Genetic similarity matrix

Pedigree-based kinship Pedigree-based kinship

Fig. 2. Trascriptome-wide Association Study in UK Twins. Comparison of the
results obtained in the transcriptome-wide association when the relatedness between
subjects was evaluated using the family structures and when it was inferred from
genome-wide SNPs by means of LDAK [12]. Left panel: effect size estimates for the
association between gene expression levels and BMI. Right panel: estimated genetic
(02, in blue) and environmental (¢2, in red) variances.
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2 Conclusions

PopPAnTe is a user-friendly platform-independent Java program that enables
pairwise association testing of large numbers of predictor and response variables
in related samples. PopPAnTe uses either known pedigree structures or GSMs
inferred from genome-wide genetic data, allowing the user to select the best
approach according to the available data. When genome-wide genetic data are
available, it may be advisable to use the GSM instead of the expected kinship
matrix calculated using the genealogical information [28,29]. PopPAnTe can
thus also facilitate the usage of biobank collections from population isolates
when extensive genealogical information is missing.
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Availability and requirements

Project name: PopPAnTe

Project home page: https://sites.google.com/site/populationgenomics/poppante
Operating system(s): Platform independent

Programming language: Java

Other requirements: Java 1.7 or higher

License: GNU GPL 3 or higher

Any restrictions to use by non-academics: None
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