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Abstract17

That biodiversity declines with latitude is well known, but whether a metacommunity process is behind18

this gradient has received limited attention. We tested the hypothesis of a shift from dispersal limitation19

to mass effects with increasing latitude, along with a series of related hypotheses. We explored these20

hypotheses by examining metacommunity structuring in stream invertebrate metacommunities spanning21

the length of New Zealand (~1300 km), further disentangling the role of dispersal by deconstructing22

assemblages into strong and weak dispersers. Given the highly dynamic nature of New Zealand streams,23

our alternative hypothesis was that these systems are so unpredictable (at different stages of post-flood suc-24

cession) that metacommunity structuring is highly context dependent from region to region. We rejected25

all of our primary hypotheses, pinning this lack of fit on the strong unpredictability of New Zealand’s26

dynamic stream ecosystems and unique fauna that has evolved to cope with these conditions. While local27

community structure turned over predictably along this latitudinal gradient, metacommunity structure28

was highly context dependent and dispersal traits did not elucidate patterns. Moreover, the emergent29

metacommunity types exhibited no trends, nor did the important environmental variables. These results30

provide a cautionary tale for examining singular metacommunities. The considerable level of unexplained31

context dependency suggests that any inferences drawn from one-off snapshot sampling may be mis-32

leading and further points to the need for more studies on temporal dynamics of metacommunity processes.33

34

Keywords: Metacommunity structure; metacommunity types; latitudinal gradient; environmen-35

tal stochasticity; stream community36
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Introduction37

Latitude is a key factor regulating biodiversity globally (Hillebrand 2004, Jocque et al. 2010),38

but other factors such as seasonality and predictability of local environments can strongly39

influence this relationship. As a key mechanism behind the latitudinal diversity gradient,40

climate increases in harshness with increasing latitude (Stevens 1989). However, many41

other factors influence local climate including island size and the level of isolation. Isolated42

oceanic islands, for instance, have lower seasonality and predictability than similarly placed43

continental locations (Tonkin et al. Under review; Fig. 1). Jocque et al. (2010) argue that44

shifts in climatic stability with latitude drives a dispersal–ecological specialisation trade-off45

at the metacommunity level, producing gradients in dispersal ability, ecological specialisation,46

range size, speciation and species richness.47

Community differences attributable to latitude are therefore likely to be driven by48

underlying metacommunity processes. Four metacommunity paradigms have been synthesised49

to summarise the relative roles of local (niche) and regional (dispersal) processes in community50

assembly (Leibold et al. 2004, Holyoak et al. 2005): neutral, patch dynamics, species sorting,51

mass effects (in order of increasing importance of dispersal). The importance of dispersal, in52

particular, will depend on many factors including the spatial extent of a metacommunity and53

amount of environmental heterogeneity present between sites (Mykrä et al. 2007, Heino et al.54

2015a). Spatial extent can regulate the role of species sorting (i.e. environmental filtering),55

ranging from mass effects (i.e. dispersal overriding local niche sorting) in highly connected56

systems to dispersal limitation at large spatial extents (Heino et al. 2015b). What remains to57

be tested, however, is the influence that latitude has on the roles of different metacommunity58

processes (Jocque et al. 2010). In a testable hypothesis, Jocque et al. (2010) predicted a59

stronger role of dispersal limitation in the tropics with a shift to more species sorting and60

mass effects with increasing latitude.61

Situated at mid-latitudes, New Zealand comprises a series of oceanic islands spanning a62

large latitudinal gradient. With a climate reflecting its oceanic position, rainfall (Fig. 1) and63

river flow regimes are typically unpredictable (Winterbourn et al. 1981). Coupled with their64
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flashy flow regimes comes a lack of seasonality in some food resources because the vegetation65

is dominated by an evergreen flora (Winterbourn et al. 1981, Thompson and Townsend 2000).66

These factors ultimately lead to a unique, largely generalist and seasonally asynchronous67

stream fauna adapted to coping with these harsh conditions and climatic unpredictability68

(Winterbourn et al. 1981, Thompson and Townsend 2000). Consequently, New Zealand69

stream communities provide an interesting test case for investigating latitudinal controls on70

community structure.71

To test a series of hypotheses related to metacommunity structuring across a broad72

latitudinal gradient, we explored gradients of stream invertebrate metacommunity structure73

(spatial structuring and environmental filtering) spanning the length of New Zealand (~130074

km). As a secondary exploration, we examined the best-fit idealised ‘metacommunity types’75

assigned through the Elements of Metacommunity Structure framework (EMS; Leibold and76

Mikkelson 2002). To further disentangle the role of dispersal, we deconstructed assemblages77

into strong and weak dispersers. Doing so can be fruitful for exploring processes behind78

latitudinal diversity gradients (Kneitel 2016). Taking this multi-faceted approach across79

this latitudinal gradient allows for identifying complementary patterns in factors shaping80

metacommunities, compared to local community structure, advancing our understanding of81

how communities assemble in such dynamic landscapes.82

We tested the following primary hypothesis based on the predictions of Jocque et al.83

(2010): Species sorting and mass effects are the main metacommunity dynamics structuring84

these assemblages (H1a) and the role of mass effects will increase progressively from north to85

south (H1b). However, the gradient length of environmental conditions and the spatial extent86

of metacommunities will interact with latitude to govern metacommunity structuring. The87

alternative to this hypothesis (H1A) is that, given the highly dynamic nature of New Zealand88

streams (Winterbourn et al. 1981), these systems are so unpredictable (at different stages89

of post-flood succession) that metacommunity structuring is highly context dependent from90

region to region.91

We also tested the following secondary hypotheses: (H2) In metacommunities with the92

largest spatial extents, dispersal limitation will be evident, weakening the contribution of93

3

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2016. ; https://doi.org/10.1101/084673doi: bioRxiv preprint 

https://doi.org/10.1101/084673
http://creativecommons.org/licenses/by/4.0/


environmental variables and increasing spatial structuring on local assemblages, particularly94

for weak dispersers (Heino et al. 2015b). Alternatively, (H2A) in metacommunities with the95

smallest spatial extents, mass effects will also increase the amount of variation explained by96

space through spatial autocorrelation, particularly for strong dispersers (Heino et al. 2015b).97

If spatial extent and dispersal limitation are interacting, deconstructing the full assemblage98

into dispersal groups, should elucidate the patterns. H3: Based on the predictions of Jocque99

et al. (2010), strong dispersers will increase from north to south. As it was a secondary100

exploratory analysis, we did not form any specific hypotheses about the gradients of EMS.101

Methods102

Study sites103

We used data previously collected (Astorga et al. 2014) from 120 streams in eight regions (15104

sites in each region), spanning a latitudinal gradient of 12 degrees (Fig. 2). Site selection105

followed a series of criteria to minimize differences between regions. Streams were sampled106

primarily in protected areas (National or State Forest Parks) and were restricted to those107

with maximum of 14% exotic forestry and 30% pasture in the upstream catchment. All108

sites had a minimum intact riparian buffer of 50 m (Freshwater Ecosystems of New Zealand;109

FENZ) (Leathwick et al. 2010) and were selected in proportion to FENZ classes in regions.110

Sites were restricted to < 7 m wide headwater streams (order 1-3), with similar aspect and111

with a rocky substrate, and sampling was confined to the riffle zone. All sites had permanent112

flow and the large majority of streams were runoff fed.113

Benthic macroinvertebrate sampling114

Sampling was performed between February and April 2006 (Austral summer/autumn) and115

benthic macroinvertebrates were sampled using two-minute kick-net (0.3-mm mesh) samples.116

These were performed with the goal of covering most of the microhabitats present in a ca.117

100 m2 riffle section. This approach captures ca. 75% of the benthic invertebrate species118

at a site, covering 1.3 m2 of the benthos (Mykra et al. 2006). Samples were stored in 70%119
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ethanol and later sorted and identified to the lowest possible taxonomic level (usually genus120

or species, but certain difficult-to-identify species, such as chironomid midges were left at121

higher taxonomic levels), following Winterbourn et al. (2000).122

To help understand the role of dispersal (inherent in all of our hypotheses), we focused123

our analysis on three data matrices: All species combined, species with high dispersal ability,124

and species with low dispersal ability. These dispersal ability groups were assigned based on125

pre-defined trait categories established for New Zealand aquatic invertebrates (Doledec et al.126

2006, 2011).127

Environmental variables128

While a plethora of variables can influence the structure of stream communities, we included129

several previously-identified important local habitat variables, as well as stream order and130

elevation in our analyses (Table 1). Local habitat variables were as follows: water temperature,131

electrical conductivity, pH, wetted width, reach slope, water depth, overhead canopy cover,132

periphyton biomass (chlorophyll a), bryophyte percent cover, Pfankuch index (bottom133

component), and substrate size index (SI).134

Depth was measured at 40 random locations in transects across the channel. Canopy135

cover was measured at 20 evenly-spaced cross-channel transects with a densiometer. Channel136

slope was measured with an Abney level over 10–20 m. Percentage of bryophytes was visually137

estimated for each reach. Substrate composition was measured by taking 100 randomly-138

selected particles at 1-m intervals along a path 45° to the stream bank in a zig-zag manner.139

Particles were assigned to each of 13 size classes: bedrock, >300, 300–128, 128–90.5, 90.5–64,140

64–45.3, 45.3–32, 32–22.6, 22.6–16, 16–11.3, 11.3–8 8–5, and <5 mm. These were then141

converted to a single substrate size index (SI) by summing the mid-point values of each size142

class weighted by the number of stones in each class (bedrock was assigned a nominal size of143

400 mm).144

Stream bed stability was assessed with the bottom component of the Pfankuch Stability145

Index (Pfankuch 1975). The Pfankuch Index is a visual assessment method designed to give146
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an index of channel stability. The index can be broken down into three individual components:147

upper banks, lower banks and stream bed (bottom). We used the bottom component as it is148

the most relevant to stream invertebrates (Schwendel et al. 2012). The bottom component149

consists of six wetted channel attributes (substrate brightness, angularity, consolidation,150

percentage of stable materials, scouring, and amount of clinging aquatic vegetation), which151

can be assigned to predetermined categories with weighted scores. The sum of these scores152

represents the stability of the substrate, where high values represent low stability.153

As an assessment of periphyton biomass (measured as chlorophyll a: µg cm2) at each154

site, five stones were randomly selected from the sample riffle and frozen for later analysis.155

Pigments were extracted in the laboratory by soaking the stones in 90% acetone for 24 h at 5°C156

in the dark. Absorbances were read using a Cary 50TM Conc UV-Visible spectrophotometer,157

and chlorophyll a was calculated using the method of Steinman and Lamberti (1996). Stone158

surface area was corrected using the method of Graham et al. (1988), assuming only the top159

half of the stone was available for periphyton growth.160

Statistical analyses161

All analyses were performed in R version 3.1.1 (R Core Team 2014).162

Summarising patterns across regions163

To visualise patterns in the environmental conditions of sites, we used Principal Components164

Analysis (PCA), performed with the princomp function, on the full suite of normalised165

environmental variables. Similarly, to examine patterns in macroinvertebrate communities166

across all 120 sites, we performed ordination with non-metric multidimensional scaling167

(nMDS), on log(x) + 1 abundance data. We ran this using the metaMDS function, based168

on Bray-Curtis distances, in the vegan package (Oksanen et al. 2013). To test whether169

communities differed across the eight regions, we used PERMANOVA, based on the adonis170

function and 999 permutations in vegan. To compare the properties of diversity in each of171

our eight regions, and gain insight into the completeness of sampling for each region, we172

calculated species accumulation curves (SAC). We did this using the specaccum function in173
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vegan, based on the exact method developed by Ugland et al. (2003).174

Given the importance of spatial extent and environmental heterogeneity on metacom-175

munity structuring, we calculated these for each metacommunity. For the spatial extent,176

we calculated the convex hull of points making up each metacommunity using the chull177

function, followed by calculating the area of the polygon using the Polygon function. For178

environmental heterogeneity, we calculated the homogeneity of group dispersions using the179

betadisper function in vegan, following the methods of Anderson (2006).180

Metacommunity structuring and role of dispersal (H1-3)181

H1 and H2 were tested using a variance partitioning approach (Borcard et al. 1992, Peres-182

Neto et al. 2006), where we disentangled the relative influence of spatial and environmental183

variables on metacommunity structure of the eight metacommunities (n = 15) using Hellinger-184

transformed macroinvertebrate community data. This method uses partial redundancy185

analysis (pRDA), a constrained ordination technique, to partition the variation into the186

pure components of space, environment and their shared contribution to the explanation of187

community structure. This allows isolation of the pure effects of environmental gradients188

from spatial structure (i.e. environmental filtering) and the pure effects of spatial structure189

from environmental gradients (i.e. dispersal effects). Shared remaining variation may result190

from interactive effects such as spatially structured environmental gradients or dispersal that191

is dependent on topography, for instance. The environmental component in our analysis192

represents the set of pre-selected local habitat variables, and we represented the spatial193

structuring through Principal Coordinates of Neighbour Matrices (PCNM).194

We created a set of spatial eigenvectors to represent the distribution of sites in space using195

PCNM (Borcard and Legendre 2002, Dray et al. 2006) with the pcnm function in the vegan196

package. This method transforms spatial distances between all sites in a metacommunity197

based on a distance matrix into rectangular data for use in constrained ordination methods.198

To do this, we used geographic coordinates to create a distance matrix using Euclidean199

distances. PCNM vectors represent a gradient of organisation of sites at different spatial200

scales, ranging from large-scale to small. That is, PCNM1 represents the broadest-scale201
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arrangement of sites, through to the last vector representing much finer arrangement. Only202

eigenvectors with positive eigenvalues were used in the analysis.203

Prior to variance partitioning, we first ran global RDA models individually for environment204

(normalised local habitat, stream order and elevation) and space (PCNM vectors), and tested205

for significance. We checked for collinearity in the models and excluded variables with a206

variance inflation factor (VIF) of greater than 10. We removed the variable with the highest207

VIF first and followed each model sequentially until no variables had a VIF > 10. After this,208

if the global model was significant, we then performed forward selection to select the most209

important variables.210

For forward selection, we used the ordiR2step function in the vegan package (Oksanen211

et al. 2013), which employs the approach outlined by (Blanchet et al. 2008). This method212

selects variables that maximise the adjusted R2 (adj. R2) at each step, and stops when the213

adj. R2 begins to decline, exceeds the scope (i.e. full model adj. R2), or the P value, which214

we set to be 0.05, is exceeded. If the global model was non-significant, we regarded that215

dataset to have an R2 of 0.216

Only if both spatial and environmental models were significant, was variance partitioning217

performed between the two groups. We partitioned the variation between forward-selected218

environmental variables and forward-selected spatial vectors using pRDA with the varpart219

function in vegan, and tested significance of the pure effects of environment and space using220

the RDA function.221

Identifying mass effects (high dispersal overrides species sorting) and dispersal limitation222

is central to testing our hypotheses (H1 and H2). These can both be identified by strong223

spatial control (i.e. spatial variables explain community structure) on metacommunities224

(Heino et al. 2015b) in the variance partitioning results. However mass effects will be more225

likely in spatially confined regions and dispersal limitation at large spatial extents. In contrast,226

species sorting is present where environmental control is strongest.227

To test H3, whether strong dispersers increase from north to south, we calculated the228

ratio of strong to weak dispersers in each metacommunity in full.229
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Elements of Metacommunity Structure (EMS)230

In addition to our core hypothesis testing, we employed the EMS framework (Leibold and231

Mikkelson 2002) as an exploratory examination of metacommunity types along the latitudinal232

gradient. EMS is an approach used to explore and characterise emergent properties in a233

site-by-species matrix, using three metrics: (1) coherence, or the degree to which different234

species respond to the same environmental gradient; (2) turnover (range turnover), or the235

degree to which species replace each other along the environmental gradient; and (3) boundary236

clumping, or the amount of (dis)similarity (i.e. clumping) in species range boundaries. EMS237

differs from the variance partitioning approach in that it concurrently examines multiple238

idealised types of metacommunities, by comparing observed patterns against null expectation.239

Prior to extracting these elements, the site-by-species matrix is organised in the most240

coherent manner using reciprocal averaging (Gauch et al. 1977). This method arranges sites241

so that the species with the most similar distributions and sites with similar composition242

are closest in the matrix (Gauch et al. 1977). This, in essence, arranges sites along a243

latent environmental gradient which is likely important in structuring species distributions.244

This ordered site-by-species matrix is then compared with random distributions through245

permutation of a null matrix.246

EMS takes a three-step approach in that only if a matrix has significantly positive247

coherence, can turnover and clumping be examined. Coherence, the first step, can be248

differentiated into non-significant (i.e. random: species assemble independent of each other),249

significantly negative (i.e. checkerboard), or significantly positive (i.e. coherent). Checkerboard250

patterns represent distributions where species are found in avoidance of each other more often251

than chance. This was originally thought to reflect competitive exclusion (Diamond 1975),252

but can also represent a host of other causes such as environmental heterogeneity (Gotelli253

and McCabe 2002, Boschilia et al. 2008).254

At each of the steps, the observed ordinated site-by-species matrix is compared with a255

null distribution. The matrix is reshuffled based on a predefined algorithm and constraints256

and permuted a set number of times. The observed value is then compared with the null.257
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Coherence is calculated through the number of embedded absences in the ordinated258

matrix. Embedded absences are gaps in the species range (Leibold and Mikkelson 2002). If259

there are more embedded absences than expected by chance (i.e. through the null matrix), a260

metacommunity is considered checkerboarded, and vice versa (i.e. fewer embedded absences261

than chance). If there is no difference in the observed matrix from chance (null), random262

assembly is expected. For comparability, both coherence and turnover are tested using263

the standardised z-test. Coherent distributions suggest communities are structured along264

an environmental gradient, either individualistically or in groups. Turnover and boundary265

clumping are then examined on the positively coherent distributions.266

The turnover step enables differentiation into the set of gradient models that best fit the267

data structure. This is measured as the number of times a species replaces another between268

two sites in the ordinated matrix. Significantly negative turnover points to nestedness in269

distributions (further described below), whereas significantly positive can be differentiated into270

Clementsian, Gleasonian or evenly-spaced gradients. These latter three can be distinguished271

based on the level of boundary clumping in species distributions, using Morista’s Index272

(Morista 1971) and an associated Chi2 test comparing observed and null distributions. Values273

significantly greater than 1 point to clumped range boundaries (i.e. Clementsian gradients),274

less than one point to hyperdispersed range boundaries (i.e. evenly-spaced gradients), and no275

difference from one points to random range boundaries (i.e. Gleasonian gradients). Nested276

subsets are also broken down based on their boundary clumping into clumped, hyperdispersed277

and random range boundaries.278

Rather than adopt the approach of Presley et al. (2010), where non-significant turnover279

is further examined into quasi-turnover and quasi-nestedness, we treated non-significant280

turnover as a non-structure given that it indicates no difference from the null expectation.281

This results in eight possible metacommunity types. Detailed explanation and diagrammatic282

representations of these structures are available in several sources (e.g. Leibold and Mikkelson283

2002, Presley et al. 2010, Tonkin et al. 2016a).284

We constrained our null models using the fixed-proportional “R1” method (Gotelli 2000).285

This null model maintains site richness, but fills species ranges based on their marginal286
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probabilities. This is a realistic null model from an ecological perspective, given that richness287

of a site varies along ecological gradients (Presley et al. 2009). Consequently, this model288

is recommended in the EMS analysis as it is relatively insensitive to type I and II errors289

(Presley et al. 2009). Other methods can incorporate too much or too little biology into the290

null model and can be thus prone to type I and II errors (Gotelli 2000, Presley et al. 2009).291

Using the R1 null model, generated in the vegan package (Oksanen et al. 2013), we produced292

1000 simulated null matrices for each test. We evaluated EMS on presence-absence data,293

using the R package Metacom (Dallas 2014), across the eight metacommunities individually294

and restricted our examination to the primary axis of the RA ordination as this represent295

the best arrangement of matrices. Prior to running the analysis, we removed all species that296

were present in less than two sites, as rare species can bias the EMS results, particularly297

coherence and boundary clumping (Presley et al. 2009).298

Results299

The Fiordland and Northland metacommunities had the greatest spatial extents (Fig. 2E),300

but there was little difference in environmental heterogeneity between the regions (Fig.301

2F). The gradient in environmental conditions was weak across the eight regions, with a302

low percentage of variance explained (37%) by the first two principal components (Fig.303

2B). Invertebrate communities differed significantly between the eight regions, with a clear304

latitudinal trend in assemblage structure (PERMANOVA: F 7,112 = 7.30, R2 = 0.313, P =305

0.001; Fig. 2C). Regional richness tended to be highest at the North of each island and306

decline towards the southern zones (Fig. 2D). The regional pool of most regions were well307

sampled. However, Kahurangi did not reach a clear asymptote and had the steepest species308

accumulation curve. Moreover, the North Island regions’ curves tended to reach a much309

clearer asymptote compared to those in the South Island.310

Metacommunity structuring and the role of dispersal (H1-3)311

There was no gradient with latitude in the relative importance of environmental or spatial312

control for all species combined and for individual dispersal groups (Fig. 3) suggesting H1313

11

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2016. ; https://doi.org/10.1101/084673doi: bioRxiv preprint 

https://doi.org/10.1101/084673
http://creativecommons.org/licenses/by/4.0/


can be rejected. Similarly, there was no relationship between spatial extent, dispersal ability314

and relative role of spatial or environmental components in the variance partitioning models,315

thus H2 can also be rejected. Finally, contrary to H3, the ratio of strong to weak dispersers316

decreased from north to south (Fig. 4).317

When considering all species together, only three of the eight regions had significant318

environmental and spatial components together, and thus could be considered for variance319

partitioning (Fig. 3). In the dispersal group datasets, only one of the eight regions had320

combined significant environmental and spatial components. Environmental control was321

more commonly important than spatial in structuring these metacommunities. Northland322

exhibited no spatial or environmental structure for any of the datasets.323

Considering all models (including those assigned 0% explained), environmental variables324

explained more of the variation when the whole community was considered (mean Adj. R2
325

= 0.134; 13.4% variance explained) compared to breaking into high (7.1%) and low (4.8%)326

dispersal ability groups. This was particularly evident for certain regions, such as Westland,327

which could be explained well when considering the full community (strongest model), but328

not for the dispersal groups. However, strong dispersers had on average higher adjusted R2
329

values (Adj. R2 = 0.191; 19.1% explained) when only considering the significant models,330

than all combined (18.0%) or weak dispersers (9.6%). Spatial variables explained less of331

the variation in community structure than environmental, when non-significant models were332

included (Adj. R2 - All: 0.047; High: 0.049; Low: 0.054) but not when only considering333

significant models (Adj. R2 - All: 0.126; High: 0.200; Low: 0.143).334

Forward-selected environmental variables were highly variable in the RDA models, with335

no particular variable consistently important across the eight metacommunities (Table 2;336

Table S1).337

Metacommunity types (EMS)338

There was no latitudinal trend in metacommunity type for all organisms combined and for339

each of the dispersal ability groups (Table 3). For the full community dataset, Gleasonian340

gradients were the most common pattern (five regions), indicating positive coherence and341
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turnover, but no boundary clumping. The remaining regions’ metacommunity types consisted342

of two regions with random structures and one with no structure (non-signficant turnover).343

Clementsian gradients were more common for strong dispersers, with the remaining regions344

having either random (two regions), Gleasonian or no structure (non-signficant turnover;345

Table 3). Weak dispersers were much more variable between the regions, often with weaker346

coherence. In fact, four regions exhibited random distributions represented by non-signficant347

coherence. The remaining regions had either Gleasonian (two regions), Clementsian and no348

structure. Egmont (Clementsian) and Westland (random) had the same pattern between high349

and low dispersal ability groups. Tararua consistently exhibited weak patterns with either350

random or no structure, and Westland metacommunities were always randomly distributed.351

Discussion352

As a result of the relatively high latitude of New Zealand and based on the hypotheses of353

Jocque et al. (2010), we hypothesised (H1) a dominant role of species sorting and mass effects354

in structuring these assemblages (H1a) and an increasing role of mass effects from north to355

south (H1b). However, despite a clear latitudinal gradient in assemblages at the community356

level, what emerged at the metacommunity level was more idiosyncratic. In particular, there357

was no latitudinal trend in either environmental vs. spatial control (rejecting H1b) or the358

idealised metacommunity types tested through the EMS analysis at both the full community359

level and for dispersal groups. This lack of fit to the hypothesis of Jocque et al. (2010) likely360

reflects the unique characteristics of New Zealand streams (partially supporting H1A).361

New Zealand comprises a series of mid-latitude oceanic islands, with a typically unpre-362

dictable climate (Fig. 1) and flashy river flow regimes (Winterbourn et al. 1981) reflecting363

its oceanic position. At a single time-point, communities are therefore most likely at different364

stages of post-flood recolonisation (H1A). This represents a fundamentally important factor365

controlling metacommunity dynamics, as the relative role of local and regional processes366

will depend on the amount of time that has passed for dispersal and colonisation to play367

out (Brendonck et al. 2014), with preceding flow conditions shaping the metacommunity368

structure in streams (Campbell et al. 2015).369
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The lack of seasonality and predictability in New Zealand’s climate likely plays a strong370

role in the low predictability in metacommunity structuring. The hypothesis of Jocque et371

al. (2010) does not take into account differences in island size and isolation, fundamental372

aspects controlling biodiversity (MacArthur and Wilson 1967). Yet, island and mainland373

locations at similar latitudes do not comprise the same climatic patterns (Tonkin et al. Under374

review). Continental locations have much greater predictability in their seasonality compared375

to islands. To demonstrate this point, we compared a 30-y sequence of monthly rainfall totals376

from central North Island New Zealand with Western Australia, a Mediterranean climate,377

using wavelet analysis (Fig. 1) (Torrence and Compo 1998). This figure demonstrates clearly378

the strongly seasonal and predictable pattern apparent in Western Australia, with a significant379

and repeatable cycle at the 1-y time period over the full sequence. In contrast, New Zealand’s380

climate exhibits no repeatability in the rainfall, with very few time points in the sequence381

indicating any power at the 1-y period.382

New Zealand streams are also unique for a variety of other reasons, including: rivers383

tend to be short, swift and steep due to the narrow landmass and tectonically active nature;384

evergreen vegetation dominates the flora; and riparian vegetation is scarce for much of their385

length leading to a predominance of autochthonous rather than allochthonous control of386

river food webs (Winterbourn et al. 1981, Thompson and Townsend 2000). As such, New387

Zealand streams are considered as being physically, rather than biologically, dominated388

systems (Winterbourn et al. 1981). These factors, in turn, have led to the evolution of a389

unique stream invertebrate fauna with flexible and poorly synchronised life histories, and390

generalist feeding behaviour (browsers predominate) (Winterbourn et al. 1981, Scarsbrook391

2000, Thompson and Townsend 2000). Under these circumstances, it is not surprising that392

metacommunity dynamics can be difficult to predict, as we clearly demonstrate, without a393

strong temporal resolution in the data.394

Results were highly idiosyncratic between different regions, with considerable variability in395

the relative roles of environmental and spatial structuring, the forward-selected environmental396

variables, and the idealised metacommunity types, with no real match between the two397

approaches. Contrary to our hypothesis (H2), this context dependence did not reflect an398
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interaction between spatial extent and dispersal ability. While much of this unpredictability399

may be related to the unique characteristics of New Zealand streams, it is pertinent to400

recognise that this is a challenge facing many stream metacommunity studies globally, where401

patterns differ considerably between different catchments (Heino et al. 2012, 2015a, Tonkin402

et al. 2016b). Lawton (1999) pinpointed this problem of contingency in ecology over a403

decade ago suggesting that community ecology is rife with contingency, so much so that404

generality is unlikely. Lawton goes on to highlight that the problem is indeed most severe at405

the intermediate organisational level of communities, compared to more predictable lower406

(e.g. populations) or higher levels (e.g. macroecology). Metacommunities are indeed difficult407

systems to predict, with processes affecting different subsets of organisms and operating408

at specific times (Driscoll and Lindenmayer 2009). One source of context dependence in409

metacommunity structuring is differences between different trait modalities, such as dispersal410

modes (Thompson and Townsend 2006, Canedo-Arguelles et al. 2015, Tonkin et al. 2016c).411

Thus, if spatial extent and dispersal limitation were interacting, deconstructing the full412

assemblage into dispersal groups should have elucidated the pattern. Yet, contrary to413

expectation, examining strong and weak dispersers separately, did not help in explaining414

discrepancies in our predictions.415

Finally, contrary to the expectation of Jocque et al. (2010) that dispersal ability increases416

moving away from the equator (H3), we found a decrease in the ratio of strong to weak417

dispersers moving from north to south. Theoretically, temporal variability in environmental418

conditions promotes increased dispersal ability of organisms (Jocque et al. 2010); an hypothesis419

strongly tied with Rapoport’s rule of increasing range size with increasing latitude (Stevens420

1989). The result we observed may reflect several causes: 1. Lack of time for dispersal and421

colonisation to play out post-disturbance (Brendonck et al. 2014, Campbell et al. 2015). 2.422

The requirement of a longer latitudinal gradient for these mechanisms to play out. Over423

the length of New Zealand, the continuity of habitat availability in space and time, a key424

mechanism behind Jocque et al. (2010), likely differs very little. 3. Climatic idiosyncrasies425

not reflecting a north-south gradient and thus not selecting for a gradually increased dispersal426

ability at higher latitudes.427
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Conclusions428

Jocque et al. (2010) highlighted the fundamental role of dispersal in driving the latitudinal429

diversity gradient, suggesting a climate-mediated dispersal–ecological specialisation trade-off430

as a key factor regulating this pattern. We tested several hypotheses based on those of Jocque431

et al. (2010) relating to how New Zealand stream invertebrate metacommunity structure432

changed along a broad latitudinal gradient, and examining the mediating role of dispersal. We433

rejected all of our primary hypotheses, pinning this lack of fit on the strong unpredictability434

of New Zealand’s dynamic stream ecosystems and unique fauna that has evolved to cope435

with these conditions. While local community structure turned over predictably along this436

latitudinal gradient, metacommunity structure was highly context dependent and dispersal437

traits did not elucidate patterns.438

These results, along with other recent findings (Heino et al. 2012, 2015a, Tonkin439

et al. 2016b), provide a cautionary tale for examining singular metacommunities. The440

considerable level of unexplained context dependency suggests that any inferences drawn441

from one-off snapshot sampling may be misleading. Given the importance of understanding442

metacommunity processes for the successful management of river ecosystems (Heino 2013,443

Tonkin et al. 2014, Stoll et al. 2016), this level of unpredictability is a major cause for444

concern. While spatial replication of multiple metacommunities may elucidate some of this445

uncertainty, studies on temporal dynamics of metacommunity processes are clearly needed.446

We therefore urge researchers to consider the temporal dynamic, particularly in relation to447

seasonal cycles and their predictability.448
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Tables579

Table 1: Environmental variables used in the analysis.580

Variable Units Explanation
Temp °C Water temperature
Cond µS cm-1 Conductivity
pH - pH
Width cm Wetted width
Elev m a.s.l. Elevation
Slope cm m-1 Slope of the stream reach
Depth cm Depth
OHCov % Percent overhead canopy cover
Chla µg cm-2 Chlorophyll a (periphyton biomass)
Bryophytes % Percent moss cover
Pfankuch_bottom - Stream bed stability
SI - Substrate size index
Order - Stream order
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Table 2: Forward-selected environmental variables used in the variance partitioning analysis581

when a global RDA model was significant. Only if a global model was significant, was forward582

selection performed. Forward-selected variables are given in the “Variables” column. Subset583

= subset of species (All species, and strong and weak dispersers). Full results of both global584

and forward-selected models, including spatial variables can be found in Table S1.585

Subset Region F P Variables
All U 2.57 0.00 Temp, pH
All E 2.96 0.00 OHCov, Elev, SI, Depth
All K 2.25 0.00 Cond, OHCov
All A 2.64 0.03 Temp
All W 4.55 0.00 Cond, pH, Slope
All F 2.13 0.01 Order
Strong E 3.83 0.00 OHCov, Elev, SI
Strong K 2.64 0.01 Cond, Chla
Strong A 3.20 0.04 Temp
Weak U 3.32 0.00 Temp, pH
Weak T 2.57 0.00 OHCov, Pfankuch_bottom, Chla, Depth
Weak K 2.20 0.02 Cond
Weak F 2.13 0.02 Order
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Table 3: Results of Elements of Metacommunity Structure analysis examining the best-fit idealised metacommunity structure586

for each metacommunity, including for all species combined, and strong and weak disperser groups. Results are given for the first587

axis of reciprocal averaging ordination on the species by site matrices testing for coherence, species range turnover and boundary588

clumping in each metacommunity of 15 sites across eight regions of New Zealand.589

Coherence Turnover Boundary Clumping
Subset Region df Abs Mean SD z P Re Mean SD z P MI P Structure
All N 58 305 321.1 15.0 1.07 0.2835 2148 1649.8 580.7 -0.86 0.3909 1.17 0.3468 Random
All U 68 277 386.6 17.7 6.18 < 0.0001 9768 2659.4 823.4 -8.63 < 0.0001 0.85 0.3928 Gleasonian
All E 62 248 367.8 19.1 6.26 < 0.0001 10931 2978.5 980.3 -8.11 < 0.0001 0.68 0.2683 Gleasonian
All T 42 168 197.6 12.8 2.32 0.0204 1334 1095.8 388.2 -0.61 0.5394 2.12 0.0044 -
All K 66 325 384.8 19.5 3.06 0.0022 6293 3145.3 950.0 -3.31 0.0009 1.44 0.1655 Gleasonian
All A 53 233 340.4 19.3 5.56 < 0.0001 6387 3127.8 1032.9 -3.16 0.0016 1.66 0.0633 Gleasonian
All W 63 400 425.7 22.7 1.13 0.2591 6969 4705.3 1372.5 -1.65 0.0991 1.18 0.3249 Random
All F 56 293 354.6 18.3 3.37 0.0008 5885 2942.4 977.6 -3.01 0.0026 1.05 0.4264 Gleasonian
Strong N 31 117 149.2 9.9 3.24 0.0012 1428 595.7 228.9 -3.64 0.0003 1.74 0.0263 Clementsian
Strong U 32 127 160.4 11.2 2.99 0.0028 1892 787.7 271.7 -4.06 < 0.0001 2.51 0.0003 Clementsian
Strong E 31 109 168.7 12.6 4.74 < 0.0001 3552 1283.7 420.1 -5.40 < 0.0001 2.20 0.0019 Clementsian
Strong T 21 66 83.4 8.1 2.14 0.0322 192 411.9 159.7 1.38 0.1685 1.62 0.0756 -
Strong K 32 132 167.1 12.6 2.79 0.0053 1712 1303.0 392.7 -1.04 0.2976 1.83 0.0121 -
Strong A 24 93 134.6 10.7 3.89 < 0.0001 1974 1060.4 352.9 -2.59 0.0096 0.49 0.0894 Gleasonian
Strong W 30 159 184.3 14.4 1.76 0.0784 2341 2052.6 592.4 -0.49 0.6263 0.52 0.0483 Random
Strong F 22 112 117.5 9.9 0.56 0.5755 1036 810.8 280.1 -0.80 0.4213 2.29 0.0008 Random
Weak N 24 119 137.8 10.8 1.75 0.0804 1319 910.3 301.9 -1.35 0.1759 0.92 0.4207 Random
Weak U 33 128 187.3 13.3 4.45 < 0.0001 3483 1462.2 410.0 -4.93 < 0.0001 0.63 0.1168 Gleasonian
Weak E 28 111 156.8 11.9 3.83 0.0001 3469 1239.6 385.7 -5.78 < 0.0001 1.96 0.0038 Clementsian
Weak T 18 87 89.5 8.1 0.31 0.7599 609 513.1 167.7 -0.57 0.5673 1.72 0.0107 Random
Weak K 31 156 175.7 12.3 1.60 0.109 2108 1282.5 382.4 -2.16 0.0309 1.14 0.3232 Random
Weak A 26 113 158.0 13.3 3.39 0.0007 2408 1627.6 490.9 -1.59 0.1119 1.50 0.0558 -
Weak W 30 164 190.1 13.9 1.87 0.0611 2775 1840.7 560.3 -1.67 0.0954 0.74 0.2359 Random
Weak F 31 147 192.4 13.3 3.42 0.0006 3861 1806.9 557.5 -3.68 0.0002 1.18 0.2630 Gleasonian

Notes: Subset = subset of species (All, and strong and weak dispersers), df = degrees of freedom, Abs = number of embedded absences, Re = number of590

replacements, MI = Morista’s Index, SD = standard deviation. Mean and SD values are those calculated from the 1000 generated null matrices, based on the "R1"591

null model. Refer to Figure 1 for region names. ’-’ represents structures with non-significant turnover.592
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Figure captions593

Figure 1: Wavelet diagram comparing 30-year monthly rainfall values between central North594

Island New Zealand and Mediterranean-climate Western Australia. Wavelet power increases595

from blue (low power) to red (high power). Higher power represents greater strength of the596

periodicity. The figure illustrates clear annual rainfall cycles in Western Australia (i.e. strong597

and consistent power at the 12-month period over the full 30-year cycle) representative of598

its Mediterranean climate. This contrasts to the highly unpredictable rainfall cycles in New599

Zealand. Wavelet analysis was performed using the R package ‘WaveletComp’ (Roesch and600

Schmidbauer 2014).601

Figure 2: Overview of sites and regional invertebrate assemblages across New Zealand. All602

plots are colour-coded in the same manner, from North to South. A. Distribution of 120 sites603

across eight regions of New Zealand. B. First two components of principal component analysis604

on environmental variables used in the study. Proportion of variation explained: PCA1605

= 0.21; PCA2 = 0.17. C. Non-metric multidimensional scaling ordination of invertebrate606

communities from all 120 sites. 2D stress = 0.21. D. Species accumulation curves for all607

species for the eight regions. Regions are ordered from North (left) to South (right). E.608

Spatial extent of each metacommunity (normalised area). F. Environmental heterogeneity of609

each metacommunity, measured through homogeneity of dispersions.610

Figure 3: Results of variance partitioning of spatial and environmental variables on macroin-611

vertebrate communities in eight regions spanning the length of New Zealand. Regions are612

ordered from North (left) to South (right). Variance partitioning was performed only where613

global RDA models were significant. Certain regions had non-significant global models for614

either spatial, environmental or both. Where either spatial or environmental was significant,615

we plot the results of the global model (and its significance). Significance of the pure effects of616

space or environment are shown with asterisks. All = all species, Strong = strong dispersers,617

Weak = weak dispersers.618

Figure 4: Ratio of strong to weak dispersers in each metacommunity. 0 = 1:1 ratio of strong619

to weak dispersers. Above the line represents a higher strong to weak disperser ratio.620
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Figure 1: Wavelet diagram comparing 30-year monthly rainfall values between central North Island New
Zealand and Mediterranean-climate Western Australia. Wavelet power increases from blue (low power) to
red (high power). Higher power represents greater strength of the periodicity. The figure illustrates clear
annual rainfall cycles in Western Australia (i.e. strong and consistent power at the 12-month period over the
full 30-year cycle) representative of its Mediterranean climate. This contrasts to the highly unpredictable
rainfall cycles in New Zealand. Wavelet analysis was performed using the R package ’WaveletComp’ (Roesch
and Schmidbauer 2014).
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Figure 2: Overview of sites and regional invertebrate assemblages across New Zealand. All plots are colour-
coded in the same manner, from North to South. A. Distribution of 120 sites across eight regions of New
Zealand. B. First two components of principal component analysis on environmental variables used in the
study. Proportion of variation explained: PCA1 = 0.21; PCA2 = 0.17. C. Non-metric multidimensional
scaling ordination of invertebrate communities from all 120 sites. 2D stress = 0.21. D. Species accumulation
curves for all species for the eight regions. Regions are ordered from North (left) to South (right). E. Spatial
extent of each metacommunity (normalised area). F. Environmental heterogeneity of each metacommunity,
measured through homogeneity of dispersions. 27
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Figure 3: Results of variance partitioning of spatial and environmental variables on macroinvertebrate
communities in eight regions spanning the length of New Zealand. Regions are ordered from North (left) to
South (right). Variance partitioning was performed only where global RDA models were significant. Certain
regions had non-significant global models for either spatial, environmental or both. Where either spatial or
environmental was significant, we plot the results of the global model (and its significance). Significance
of the pure effects of space or environment are shown with asterisks. All = all species, Strong = strong
dispersers, Weak = weak dispersers.
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Figure 4: Ratio of strong to weak dispersers in each metacommunity. 0 = 1:1 ratio of strong to weak dispersers.
Above the line represents a higher strong to weak disperser ratio.

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 31, 2016. ; https://doi.org/10.1101/084673doi: bioRxiv preprint 

https://doi.org/10.1101/084673
http://creativecommons.org/licenses/by/4.0/


Supplementary material621

Table S1: Results of forward selection on both spatial and environmental variables for the622

eight metacommunities. If a global model was significant, forward selection was performed.623

Forward-selected variables are given in the “Variables” column. Subset = subset of species624

(All, and strong and weak dispersers). Global model sig. = Global model significant or not625

(N: no; Y: yes).626

Subset Region Data F P Model Sig. Variables
All N Environmental 1.02 0.50 Global N
All N Spatial 0.90 0.69 Global N
All U Environmental 1.46 0.03 Global Y
All U Environmental 2.57 0.00 Fwd. sel. Temp, pH
All U Spatial 1.60 0.02 Global Y
All U Spatial 2.39 0.00 Fwd. sel. PCNM1, PCNM3
All E Environmental 1.72 0.03 Global Y
All E Environmental 2.96 0.00 Fwd. sel. OHCov, Elev, SI, Depth
All E Spatial 0.84 0.73 Global N
All T Environmental 1.19 0.28 Global N
All T Spatial 0.76 0.86 Global N
All K Environmental 1.66 0.02 Global Y
All K Environmental 2.25 0.00 Fwd. sel. Cond, OHCov
All K Spatial 0.81 0.85 Global N
All A Environmental 1.80 0.02 Global Y
All A Environmental 2.64 0.03 Fwd. sel. Temp
All A Spatial 1.97 0.00 Global Y
All A Spatial 3.29 0.00 Fwd. sel. PCNM1, PCNM2, PCNM3
All W Environmental 2.08 0.03 Global Y
All W Environmental 4.55 0.00 Fwd. sel. Cond, pH, Slope
All W Spatial 1.80 0.05 Global Y
All W Spatial 2.70 0.03 Fwd. sel. PCNM9
All F Environmental 1.78 0.01 Global Y
All F Environmental 2.13 0.01 Fwd. sel. Order
All F Spatial 1.33 0.12 Global N
Strong N Environmental 1.07 0.42 Global N
Strong N Spatial 0.96 0.58 Global N
Strong U Environmental 1.47 0.07 Global N
Strong U Spatial 1.71 0.02 Global Y
Strong U Spatial 2.64 0.00 Fwd. sel. PCNM1, PCNM3
Strong E Environmental 2.07 0.03 Global Y
Strong E Environmental 3.83 0.00 Fwd. sel. OHCov, Elev, SI
Strong E Spatial 0.81 0.74 Global N
Strong T Environmental 1.02 0.45 Global N
Strong T Spatial 0.66 0.92 Global N
Strong K Environmental 1.84 0.02 Global Y
Strong K Environmental 2.64 0.01 Fwd. sel. Cond, Chla
Strong K Spatial 0.59 0.96 Global N
Strong A Environmental 2.18 0.02 Global Y
Strong A Environmental 3.20 0.04 Fwd. sel. Temp
Strong A Spatial 2.27 0.01 Global Y
Strong A Spatial 4.48 0.00 Fwd. sel. PCNM1, PCNM2
Strong W Environmental 1.82 0.09 Global N
Strong W Spatial 1.62 0.12 Global N
Strong F Environmental 1.78 0.08 Global N
Strong F Spatial 1.20 0.35 Global N
Weak N Environmental 1.16 0.28 Global N
Weak N Spatial 0.82 0.82 Global N
Weak U Environmental 1.64 0.02 Global Y
Weak U Environmental 3.32 0.00 Fwd. sel. Temp, pH
Weak U Spatial 1.63 0.02 Global Y
Weak U Spatial 2.50 0.00 Fwd. sel. PCNM1, PCNM5, PCNM2
Weak E Environmental 1.37 0.18 Global N
Weak E Spatial 0.78 0.81 Global N
Continued on next page
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Subset Region Data F P Model Sig. Variables
Weak T Environmental 1.71 0.04 Global Y
Weak T Environmental 2.57 0.00 Fwd. sel. OHCov, Pfankuch_bottom, Chla, Depth
Weak T Spatial 0.82 0.77 Global N
Weak K Environmental 1.54 0.05 Global Y
Weak K Environmental 2.20 0.02 Fwd. sel. Cond
Weak K Spatial 1.31 0.10 Global N
Weak A Environmental 1.05 0.42 Global N
Weak A Spatial 1.60 0.02 Global Y
Weak A Spatial 2.49 0.00 Fwd. sel. PCNM1, PCNM5, PCNM2
Weak W Environmental 1.17 0.24 Global N
Weak W Spatial 1.44 0.03 Global Y
Weak W Spatial 1.67 0.02 Fwd. sel. PCNM6
Weak F Environmental 1.71 0.02 Global Y
Weak F Environmental 2.13 0.02 Fwd. sel. Order
Weak F Spatial 1.44 0.07 Global N
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