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Abstract 6 

The responses of neurons in mouse primary visual cortex (V1) to visual stimuli depend on 7 

behavioral states. Specifically, surround suppression is reduced during locomotion. Although 8 

locomotion-induced vasoactive intestinal polypeptide positive (VIP) interneuron depolarization 9 

can account for the reduction of surround suppression, the functions of VIP cell depolarization 10 

are not fully understood. Here we utilize a firing rate model and a computational model to 11 

elucidate the potential functions of VIP cell depolarization during locomotion. Our analyses 12 

suggest 1) that surround suppression sharpens the visual responses in V1 to a stationary scene, 2) 13 

that depolarized VIP cells enhance V1 responses to moving objects by reducing self-induced 14 

surround suppression and 3) that during locomotion V1 neuron responses to some features of the 15 

moving objects can be selectively enhanced. Thus, VIP cells regulate surround suppression to 16 

allow pyramidal neurons to optimally encode visual information independent of behavioral state.   17 
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Introduction 1 

Visual perception, an internal model of external environment, does not merely reflect exogenous 2 

stimuli. Instead, it depends on various endogenous contexts. Consider a number of striking 3 

studies in mouse visual cortex that suggest that contextual information originating from other 4 

cortical areas modulates primary visual cortex (V1) neuron responses by way of vasoactive 5 

intestinal polypeptide positive (VIP) interneurons1–4. For instance, the cingulate area (Cg), which 6 

modulates the gain of V1 neurons, induces excitatory postsynaptic potentials in VIP cells1 as it 7 

occurs during locomotion2. Thus, it is imperative to comprehend how VIP cells contribute to 8 

contextual modulation of V1 neuron responses.  9 

VIP cells, one of the major inhibitory cell types in neocortex5,6, are commonly found in 10 

superficial layers7. They preferentially inhibit somatostatin positive (SST) cells that mediate 11 

surround suppression8,9. That is, depolarized VIP cells disinhibit pyramidal (Pyr) cells by 12 

lowering surrounding suppression. This disinhibition, in fact, accounts for the reduction of 13 

surround suppression during locomotion2,10. However, it remains unclear why surround 14 

suppression is reduced during locomotion. When an animal moves forward, the entire scene, 15 

including all objects, appears to move backward (optical flow). When the image of an object 16 

moves over the retina, it stimulates multiple receptive fields. As the center of one receptive field 17 

constitutes the surround of nearby receptive fields, this motion can induce surround suppression 18 

among these cells, a phenomenon we refer to as self-induced surround suppression. Thus, the 19 

responses of visual-selective neurons to object motion will depend on the strength of self-20 

induced surround suppression.  21 

During locomotion, surround suppression in V1 can become too strong for V1 neurons to 22 

respond properly to visual stimuli, as all objects are in relative motion. Thus, we hypothesize that 23 

VIP cells are depolarized to reduce such surround suppression which may be undesirable during 24 

locomotion. To address this hypothesis, we utilize a simple neuronal circuit model of V1, in 25 

which the three major inhibitory cell types, parvalbumin (PV), SST and VIP positive inhibitory 26 

interneurons, interact with one another and with pyramidal (Pyr) cells via cell-type specific 27 

connections8,9. We estimate the strength of self-induced surround suppression in V1 and 28 

demonstrate how VIP cell depolarization enhances visual responses during locomotion by 29 

suppressing it. Furthermore, our firing rate and computational models predict that V1 neuron 30 

responses to behaviorally relevant features are selectively enhanced during locomotion. 31 

Results 32 

To address our hypothesis, we first use a firing rate model to study the function of surround 33 

suppression and investigate how VIP cell depolarization during locomotion modulates visual 34 

neuron responses. Then, we use a computational model of V1 to further validate the findings of 35 

firing rate model pertinent to the functions of locomotion-induced VIP cell depolarization. The 36 

first subsection describes the numerical analyses of the firing rate model, and the second 37 

subsection discusses the computational model simulations.  38 

Firing rate model and 1-dimensional visual scene 39 

The firing rate model considers a 1-dimensional chain of populations which is connected to 1-40 

dimensional retina (Fig. 1a). In each population, the four cell types are connected via cell type 41 

specific connections (Fig. 1b and Supplementary Table 1). All cell types receive tonic external 42 

background inputs, which controls their excitability. That is, the strengths are dependent on the 43 
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cell types (Supplementary Table 2) and are independent of the populations. The firing rate of cell 1 

types obey the simple dynamics (Equation 1). The gain function of the firing rate model captures 2 

the characteristics of the F-I curve of a leaky and integrate fire neuron model (Supplementary 3 

Fig. 1a). This gain function is an approximation rather than the exact F-I curve, but it is less 4 

computationally intensive than the exact F-I curve and one of the commonly used gain 5 

functions11. The synaptic inputs (Equation 2) are the products of weights and gating variables 6 

that evolve over time (Equation 3). 7 

In each population, the four cell types interact with one another, and this “local” circuit in a 8 

single population generates rich dynamics12. With synaptic events evolving over time (Equation 9 

3), the decay time constants can also modulate the behaviors of this local circuit. To better 10 

understand their effects on Pyr cell responses, we performed bifurcation analyses with 11 

XPPAUT13. Interestingly, we note that the decay time constants of connections from SST to VIP 12 

cells (SST-VIP) and from VIP to SST cells (VIP-SST) modulate the Pyr cell response and its 13 

stability. As the decay time constant of SST-VIP connection increases, Pyr cell response 14 

decreases (Supplementary Fig. 1b). In contrast, as the decay time constant of VIP-SST 15 

connections increases, Pyr cell response increases (Supplementary Fig. 1c). This local circuit is 16 

stable (red line) in the vicinity of default values of decay time constants, but otherwise they 17 

become unstable (black line). At the transition of stability, Pyr cell responses become oscillatory; 18 

this oscillatory behavior is induced when SST cell activity is enhanced (see insets of 19 

Supplementary Figs. 1b and c).   20 

In the model, 7 populations interact with one another via short-range Pyr-Pyr and long-range 21 

Pyr-SST connections known to mediate surround suppression8. As seen in Fig. 1a, we establish 22 

reciprocal inter-population Pyr-Pyr connections between the two nearest neighboring populations 23 

only and inter-population Pyr-SST connections among all populations, as in the earlier 24 

computational models14,15; in those earlier models, only generic inhibitory cells were considered. 25 

The periodic boundary condition is used to ensure all populations are identical in terms of inter-26 

population synaptic inputs. For simplicity, we assume each population is connected to non-27 

overlapping spatial receptive field (RF) which maps onto 1-dimensional visual scene. (Fig. 1a).  28 

Surround suppression can sharpen responses to a static visual scene 29 

To examine the effects of surround suppression on visual responses, we investigate how it 30 

modulates neural responses to an object covering the RF of population 4. This visual object is 31 

simulated by providing an additional input (0.5 pA) to Pyr cells in population 4, and it is turned 32 

on at 500 ms (Fig. 1c). Due to the background input to Pyr cells, Pyr cells in population 4 receive 33 

3.5 pA input, whereas all other Pyr cells receive 3.0 pA input. In this numerical analysis, we 34 

gradually increase the strength of inter-population Pyr-SST connections (IPPS) from 0 pA. When 35 

the IPPS strength is set to 0, the firing rates of all cell types reach their steady states after 36 

transient responses lasting ~100 ms (Figs. 1d and e). As expected, Pyr cell activity in population 37 

4 is enhanced at 500 ms, and its elevation is bigger than that of the input, as the recurrent 38 

connections among Pyr cells provide positive feedback inputs (Supplementary Table 1). All 39 

other populations do not show conspicuous changes in response to the stimulus input as shown in 40 

Fig. 1e.  41 

More importantly, the IPPS strength has a strong impact on visual responses in the model. When 42 

its strength is increased to 15 pA, Pyr cell activity in population 4 is only transiently increased by 43 
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the stimulus input and then reduced even below its baseline 200-500 ms (Fig. 2a). SST cell 1 

activity in population 4 is also enhanced by the stimulus input (Fig. 3a), but this enhancement is 2 

not observed in other populations (Fig. 2b); all populations except population 4 show identical 3 

responses. In population 4, at the onset of the stimulus input, Pyr cell activity is enhanced, 4 

increasing the synaptic excitation to SST cells. Although population 4 of Pyr cells send 5 

excitation onto all SST cells, it drives population 4 of SST cells most strongly (see 6 

Supplementary Table 1). With this strong local drive within population 4, SST cell activity is 7 

elevated (Fig. 2a), but in all other populations except population 4, SST cell activity remains 8 

unmodulated by the stimulus input (Fig. 2b); that is, IPPS is not strong enough to excite SST 9 

cells in other populations but population 4. As SST cell activity increases, the firing rates of all 10 

other cell types decrease. Even though Pyr cell activity is below its baseline, the elevated SST 11 

cell activity is sustained because of the reduction of inhibition from VIP to SST cells (Fig. 2a).  12 

When the IPPS strength is further enhanced to 25 pA, the model shows strikingly different 13 

behaviors. First, the responses become oscillatory (Figs. 2c and d), which reflects the intense 14 

interactions among populations. The frequency of this oscillation is ~22 Hz (Supplementary Fig. 15 

2a), and this oscillatory behavior is abolished when we hyperpolarize SST cells by introducing 16 

inhibitory currents. (Supplementary Figs. 2b and c); the inhibitory currents are introduced to SST 17 

cells between 700 and 800 ms, which are marked with a black arrow. Thus, this oscillation is 18 

generated by the interplay between SST and Pyr cells, which is consistent with our bifurcation 19 

analysis (Supplementary Fig. 1b and c) and the earlier experimental/computational study16. 20 

Second, as seen in Fig. 2c, Pyr cell activity in population 4 is sustained during the stimulus 21 

period (500-1000 ms), and we note a slight decline in Pyr cell activity and a slight surge in SST 22 

cell activity in all other populations (see Fig. 2d for an example). As surround suppression is 23 

mediated by SST cells, the background input to SST cells can also modulate surround 24 

suppression. Its effects are indeed consistent with those of IPPS. When the background input to 25 

SST cells is reduced to 0.4 pA, Pyr cell activity in population 4 is reduced during the stimulus 26 

period (Fig. 2e), as Fig. 2a shows Pyr cell activity with the weaker IPPS. For comparison, we 27 

display population 6 responses in Fig. 2f. 28 

Interestingly, Pyr cell responses induced by the sensory input (i.e., Pyr cell response in 29 

population 4) can be either stronger or weaker than those in other populations depending on the 30 

IPPS strength. With IPPS=25 pA (Figs. 2c and d), Pyr cell activity during the stimulus period 31 

(500-1000 ms) is much stronger in population 4 than in other populations. In contrast, with 32 

IPPS=15 pA (Figs. 2a and b), Pyr cell activity in population 4 is weaker than that in other 33 

populations. These results suggest that the stimulus input to population 4 exerts inhibition to 34 

other populations via SST cells only when IPPS is strong enough. To address this further, we 35 

quantify how strongly the stimulus input drives Pyr cells in population 4, compared with others. 36 

Specifically, we calculate the signal-to-noise ratio (SNR) by normalizing Pyr cell activity in 37 

population 4 to the mean value of Pyr cell activity in other 6 populations; that is, we estimate the 38 

stimulus-evoked Pyr cell activity relative to the background input-driven Pyr cell activity.  39 

The blue and red lines in Fig. 3a show the dependency of SNR on the background input to SST 40 

cells and the strength of IPPS, respectively. When IPPS strength is less than 10 pA, IPPS has 41 

little impact on model responses. However, when the strength of IPPS is 15 or 20 pA, Pyr cell 42 

responses in population 4 are weaker than those in other populations. This is due to the 43 

selectively enhanced SST cell activity (Figs. 2a and b); that is, in these regimes, the feedback 44 
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inhibition from SST to Pyr cells is prominent in population 4 only, and thus SNR is smaller than 1 

1. When IPPS is further strengthened, SST cells in other populations start firing and mediate 2 

lateral inhibition (i.e., surround suppression), and Pyr cell responses in population 4 are stronger 3 

than those in other populations (Figs. 2c and d); that is, the visual response are sharper. As the 4 

strength of IPPS grows, SNR increases (Fig. 3a). We also normalize the stimulus-evoked 5 

response (500-1000 ms) to the baseline-period activity (200-500 ms) for each population. 6 

Specifically, we calculate the mean Pyr cell activity in both periods and estimate the relative 7 

changes (Equation 4). As seen in Supplementary Figs. 3a and b, the stimulus evoked activity 8 

relative to the baseline activity is consistently modulated in the way SNR is modulated (Fig. 3a). 9 

These results indicate that surround suppression mediated by SST cells makes visual responses 10 

to the object sharper only when IPPS is strong enough.  11 

Next, we study how surround suppression is dependent on the decay time constants of 12 

connections from SST to Pyr cells (SST-Pyr) and from SST to VIP cells (SST-VIP). SNR values 13 

in Supplementary Fig. 3c show that surround suppression become more effective when SST-Pyr 14 

inhibition is prolonged. When the decay time constant of SST-Pyr inhibition is shorter than 6.5 15 

ms and longer than 5 ms, SST-Pyr inhibition becomes effective only in population 4, in which 16 

SST cells are sufficiently active. That is, Pyr cells in population 4 receive additional inhibition, 17 

making SNR below 1 in this regime. When SST-VIP inhibition is prolonged, SST cell activity 18 

increases (Supplementary Fig.1b), and thus the inhibition of SST impinging onto Pyr cells is 19 

enhanced. This enhanced inhibition onto Pyr cells suppresses stimulus evoked responses, which 20 

accounts for the negative correlations between SNR and the decay time constant of SST-VIP 21 

inhibition.  22 

We also examine whether VIP cell depolarization could reduce surround suppression. To do so, 23 

we measure how the firing rate model of Pyr cells in population 4 is modulated by the size of 24 

visual object. In the four experiments, 1 RF-, 3 RF-, 5 RF- and 7 RF-long objects are presented, 25 

respectively. In each experiment, the center of the object always stimulates population 4, and Pyr 26 

cell responses in population 4 are measured between 500-1000 ms. That is, we simulate the 27 

standard estimation of surround suppression strength. As seen in Fig. 3b, in the model, VIP cell 28 

depolarization can reduce surround suppression. When the input to VIP cells is weak, Pyr cell 29 

response to the center (Pyr cell response in population 4) declines, as the size of the object 30 

grows. In contrast, Pyr cell response to the center becomes stronger when the input to VIP cells 31 

is increased to 0.9 pA and higher. That is, when VIP cells are depolarized, surround facilitation 32 

emerges instead of surround suppression.   33 

VIP cell depolarization can enhance visual responses during locomotion 34 

Next, we ask: how does VIP cell depolarization modulate visual neuron responses during 35 

locomotion? When a mouse is running, we expect some objects to move towards the mouse and 36 

others to move away. Below, we examine both possibilities.  37 

First, we consider an object moving away. In this condition, a 3 RF-long object is assumed to 38 

move to the right (Fig. 4a), and we examine Pyr cells’ response to it depending on the input to 39 

VIP cells. At every 50 ms we update the object’s location by 25% of receptive field size. The 40 

stimulus input is proportional to the area of receptive field covered by the object. That is, 41 

population 1 receives the full sensory input (0.5 pA) during 300-350 ms, but this input decreases 42 

gradually by 25% at every 50 ms (Figs. 4b). In contrast, population 4 receives gradually 43 
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increasing sensory inputs, as the object is approaching the RF of population 4. At 500 ms, 1 

population 4 receives the full sensory input. We remove the object from the scene at 550 ms. As 2 

a control experiment, we examine Pyr cell responses to the moving object without surround 3 

suppression (i.e., no IPPS). As seen in Fig. 4c, Pyr cell responses faithfully reflect the stimulus 4 

input. To assess the effects of surround suppression, we restore surround suppression and 5 

estimate Pyr cell responses depending on VIP cell depolarizations (Figs. 4d and e). In those 6 

figures, the Pyr cell responses are normalized to the maximum response during simulations and 7 

are indicated in color; the red represents the maximum response. The surround suppression 8 

globally reduces Pyr cell responses (Fig. 4d). Specifically, Pyr cells responses are prominent 9 

only between 300-350 ms yet decrease afterwards, supporting our hypothesis that self-induced 10 

surround suppression reduces Pyr cells’ sensitivity to moving objects. When the input to VIP 11 

cells is increased to 1.2 pA, population 4 responses are stronger than other populations during the 12 

stimulus period of the entire movement (Fig. 4e). That is, VIP cell depolarization almost 13 

exclusively enhances responses to RF 4, toward which the object moves.  14 

To better understand the effects of VIP cell depolarization on visual responses, we quantify how 15 

reliably Pyr cell outputs reflect the stimulus inputs by calculating Pearson’s correlation between 16 

inputs to Pyr cells and their outputs in each population. If Pyr cell outputs depend on the inputs 17 

completely, the correlation should be 1. There are three different regimes (Fig. 4f); populations 2 18 

and 3 show identical responses, and thus population 2 is not visible in the figure. In the first 19 

regime, in which the input to VIP cells is lower than 0.6 pA, Pyr cells are quiescent. While their 20 

firing rates and the covariance between the inputs to and outputs from Pyr cells are both below 21 

10-7, we observe noticeable correlations, which are ~ -0.1, in this regime. To avoid any possible 22 

artifacts from this tiny yet non-zero Pyr cell activity, we display the covariance instead of the 23 

correlation (Fig. 4f) when the covariance is below 10-7. In the second regime, in which the input 24 

to VIP cells is between 0.6 and 1.1 pA, the population output becomes less dependent on the 25 

input, as the input to VIP cells increases. As populations 1 and 4 receive the same amount of 26 

total inputs during the simulation period, we can directly compare the correlation between them. 27 

As seen in Fig. 4f, population 4 output reflects its input more faithfully than population 1 when 28 

the input to VIP cells is between 0.6 and 1.1 pA. Additionally, the correlation of population 4 is 29 

the highest, when the input to VIP cells is 0.9 or 1.0 pA. In the third regime, in which the input to 30 

VIP cells is bigger than 1.5 pA, all correlations increase and converge to 1. The most intriguing 31 

observation is that the correlations are dissimilar among populations in the second parameter 32 

regime, suggesting that VIP cell depolarization can selectively enhance visual responses rather 33 

than uniformly.  34 

Second, we consider an object approaching the mouse. The approaching object is simulated by 35 

increasing its size over time (Fig. 5a). Specifically, the number of populations stimulated by this 36 

object increases over time. Population 3 receives the stimulus input (0.5 pA) between 300 and 37 

600 ms, populations 2 and 4 receive it between 400-600 ms, and populations 1 and 5 receive it 38 

between 500-600 ms. As seen in Fig. 5b, we note that Pyr cell activity depends on the input to 39 

VIP cells; populations 1 and 5 show identical responses with each other, and populations 2 and 4 40 

also show identical responses, and thus populations 1 and 2 are not visible in Fig. 5b. When the 41 

input to VIP cell is low (0.6 pA), Pyr cell activity in population 3 is elevated at 300 ms, which 42 

reduces over time (Fig. 5B), even though population 3 receives constant stimulus inputs between 43 

300 and 600 ms. This reduction disappears when the input to VIP cells is increased to 1.8 pA 44 

(Fig. 5b). Interestingly, the reduction seems more pronounced when the input to VIP cells is at 45 
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an intermediate level (1.2 pA). We again calculate the correlations between inputs to and outputs 1 

from Pyr cells depending on the input to VIP cells. As in Fig. 4, we show the covariance instead 2 

of the correlation when it is smaller than 10-7. As seen in Fig. 5c, the correlations are modulated 3 

by the input to VIP cells. The correlations of populations 1 and 5 almost monotonically 4 

increases, as the input to VIP cells increases. In contrast, the correlations of other populations 5 

increase in the beginning until the input to VIP reaches a certain threshold value, and they start 6 

decreasing (Fig. 5c). When the input is close to 2 pA, the correlations of all populations approach 7 

1.0.  8 

In brief, we note 1) that surround suppression leads to sharper visual responses to stationary 9 

visual scene, 2) that VIP cell depolarization may help V1 cells respond to objects in motion and 10 

3) that the benefit of VIP cell depolarization may not be homogenous. Instead, VIP cell 11 

depolarization selectively enhances visual responses to some features (Figs. 4f and 5c) when the 12 

input to VIP cells is intermediate.   13 

Computational model with 2-D visual scene 14 

The numerical analyses of the firing rate model indicate that locomotion-induced VIP cell 15 

depolarization effect is feature-specific. However, we cannot exclude the possibility that these 16 

results are artifacts attributable to either 1) the firing rate model that provides a qualitative 17 

approximation of neural dynamics rather than exact description, or 2) the abstract 1-dimensional 18 

visual scene. Thus, to further validate these findings, we use a computational model of V1 19 

responding to a more realistic 2-dimensional visual scene. The computational model used here is 20 

an extension of our earlier model12, in which, PV, SST and VIP cells in the superficial layers of 21 

13 columns interact with one another and with Pyr cells via cell-type specific connections within 22 

and across columns. The earlier model12 also includes long-range and short-range inhibitions 23 

across columns mediated by SST and PV cells, respectively. Maintaining the inhibitory cell 24 

types and cell-type connectivity of the earlier model, we extend it into a 2-dimensional array of 25 

192 cortical columns, each of which has ~2000 cells, as shown in Fig. 6a, to test V1 responses to 26 

a more realistic 2-dimensional visual scene (Methods).  27 

In this study we consider a simple experimental set up, in which a mouse faces a fronto-parallel 28 

plane and translates at a constant speed toward this plane (Fig. 6b). This gives rise to a linear 29 

flow field with a central focus-of-expansion. We simulate this setup using an image of five 30 

spheres (Fig. 6b) and use POV-Ray17 to render how they appear to the mouse when the animal 31 

runs toward the screen. Images are rendered for 1 sec at 20 frames/sec. In order to focus on the 32 

essential nature of the cortical circuit processing, we use highly simplified non-temporal 33 

receptive field for both lateral geniculate nucleus (LGN) and cortical neurons. That is, each 50 34 

ms-long frame is spilt into 16-by-12 non-overlapping spatial patches which are mapped 35 

topographically onto a population of 100 LGN cells per patch (Fig. 6a). LGN cells in turn send 36 

Poisson spike trains to cortical columns in a topographic manner; the connection probabilities for 37 

such thalamo-cortical connections are taken from an earlier model15. The firing rates of each 38 

LGN population of 100 cells are proportional to the sum of light intensities in the corresponding 39 

image patch (Equation 5 in Methods) and are updated every 50 ms. We run simulations for 1 sec 40 

and record spikes from 10% of layer 2/3 pyramidal cells.  41 
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Depolarized VIP cells modulate V1 neurons to the moving objects in inhomogeneous 1 

ways 2 

We assume that a mouse moves at a constant speed toward the central sphere to which is referred 3 

as target sphere hereafter (Supplementary Fig. 4); the target sphere is 50% bigger than others. 4 

That is, the target sphere grows in terms of size, and all others move outward (the left column of 5 

Supplementary Fig. 4). LGN outputs faithfully reflect the location of the spheres in motion as 6 

shown in the right column of Supplementary Fig. 4. Locomotion-induced VIP cell depolarization 7 

is simulated by increasing the background external inputs from 16 Hz to 20 Hz carried by a 8 

single external fiber (Supplementary Table 3). Figure 7 compares the responses averaged over 10 9 

independent simulations between high and low VIP cell depolarization conditions. During the 10 

early periods, when all five spheres are presented within the visual field, the column responses to 11 

the non-target spheres are sharper in the high depolarization condition (Figs. 7a and b). During 12 

the later periods, when the target sphere dominates the visual field, we note strikingly different 13 

responses to the target sphere between the high and low depolarization conditions (Figs. 7c and 14 

d). The responses of columns connected to the target sphere’s edge are stronger than those 15 

connected to the target sphere’s surface in the high depolarization condition. In contrast, the 16 

responses to the center are stronger than those to the edges in the low depolarization condition. 17 

That is, locomotion-induced VIP cell depolarization suppresses V1 neurons responding to the 18 

surface of target sphere, which is consistent with the numerical analysis in Fig. 5. We also 19 

display the spikes generated by Pyr, PV, SST and VIP cells in response to the two image patches 20 

illustrated in Supplementary Fig. 5a. The left and right columns in Supplemental Fig. 5 show the 21 

spikes in the low and high depolarization conditions, respectively. Even in the high 22 

depolarization condition, VIP cells are active only when they are responding to the patch 2. 23 

To quantify how reliably V1 neurons respond to LGN outputs, we again calculate the correlation 24 

between LGN outputs and column responses (recorded spikes from 10 % layer 2/3 Pyr cells); see 25 

Methods. As images to LGN cells are updated at every 50 ms, we split column responses to 26 

correspond 50 ms-time bins. Then, the correlation is calculated using LGN outputs and column 27 

responses in the same time window (Equation 6). The effects of VIP cell depolarization on 28 

columns responding to the four spheres moving outward in the visual field seem homogeneous, 29 

and thus we do not differentiate them when calculating the correlation. In contrast, the effect of 30 

VIP cells on columns responding to the target sphere is clearly distinct from those on columns 31 

responding to other spheres. Thus, we split LGN outputs and column responses depending on 32 

whether they are induced by the target sphere or not. Specifically, we identify the spatial extent 33 

of the target sphere in each frame using thalamic outputs and split the columns and thalamic 34 

populations into two distributions (inside- and outside-target distributions). When we analyze the 35 

responses induced by the four spheres, we calculate the correlations (COT) between column 36 

responses and LGN outputs using the outside-target distribution. For the responses induced by 37 

the target sphere, we calculate the correlations (CIT) using the responses in the inside-target 38 

distribution. COT is calculated from the first 8 frames, as the four spheres start disappearing 39 

from the visual field at 400 ms. In contrast, CIT is calculated from all 20 frames.  40 

CIT would be 1 if Pyr cell activity in the columns connected to the target sphere entirely depends 41 

on LGN outputs induced by the target sphere. Otherwise, CIT would be close to 0 if the target 42 

sphere cannot drive columns at all. Similarly, COT estimate the capacity of the four spheres to 43 

drive V1 neurons via LGN. Fig. 8a shows the estimated correlations (COT and CIT) from 10 44 

independent simulations. As seen in the figure, VIP cell depolarization enhances the COT but 45 
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reduces CIT, and the induced changes are significant (t-test, p<10-10). COT enhancement is 1 

consistent with the stronger responses to the four spheres in the high depolarization condition 2 

(Fig. 8). CIT reduction is also expected, as the responses to the surface is suppressed in the high 3 

depolarization condition. That is, CIT and COT successfully represent the distinct effects 4 

between the target and other spheres. Lastly, we estimate how surround suppression modulate 5 

CIT and COT to confirm that surround suppression reduction is indeed responsible for the 6 

stronger responses to moving objects. In the simulations, we strengthen surround suppression by 7 

increasing the connection probability for inter-columnar Pyr-SST connections. If the stronger 8 

surround suppression reduces COT, it would support that surround suppression is harmful to 9 

visual responses during locomotion. As expected, COT is reduced (Fig. 8b). On the other hand, 10 

we note that CIT is increased, suggesting that surface responses are restored when surround 11 

suppression is enhanced.  12 

The effects of VIP cell depolarization also modulate SST and PV cell activities 13 

The simulation results exhibit the effects of VIP cell depolarization on Pyr cell responses. Does it 14 

modulate other inhibitory cell types? During locomotion, PV cell activity was also reported to be 15 

enhanced2. In the model, we find a consistent behavior (Fig. 8c) which can be explained by 16 

reduced inhibition from SST cells. Interestingly, we note that the enhanced PV cell activity 17 

appears necessary to make V1 neurons respond more strongly to the edge of the target sphere 18 

than to its surface. When we reduce the background inputs to PV cells, column responses to the 19 

surface become stronger, and edge-dominant responses disappear (Supplementary Fig. 6a). We 20 

also note that SST cell activity is modulated in a location specific manner despite its reduction in 21 

general (Fig. 8c). In the last frame (950 ms-1000 ms), in which only the target sphere exists to 22 

dominate the visual field, SST cells responding to the center of the target sphere fire more 23 

strongly when VIP cells are depolarized (Supplementary Fig. 6b). Specifically, SST cell activity 24 

in the columns connected to the center of the target spheres is increased by ~30%. This can 25 

accounts for the recent experimental finding that SST cell activity can also be enhanced during 26 

locomotion18.   27 

Discussion 28 

Both firing rate and computational models support our hypothesis that VIP cell depolarization 29 

leads to stronger responses to visual objects in relative motion by suppressing self-induced 30 

surround suppression during a mouse’s locomotion. The surround suppression promotes sharper 31 

responses to stationary visual scene (Fig. 3a). However, it can disrupt visual neuron responses to 32 

objects in motion (Figs. 4, 5, 7 and 8b), and VIP cell depolarization is the potential mechanism, 33 

by which surround suppression is regulated (Figs. 4, 5 and 7). We note that low-threshold 34 

spiking interneurons that express SST are known to burst16, which we did not consider in both 35 

models. That is, the effects of self-induced surround suppression may be even bigger than those 36 

estimated in the models. Below we discuss the implications of our analyses in details.  37 

We emphasize that simulation results of the computational model constrained by experimental 38 

data are consistent with the firing rate model responses in the intermediate VIP cell 39 

depolarization condition, raising the possibility that visual cortex can indeed work in the regime, 40 

in which VIP cell depolarization makes feature-specific enhancement of visual responses. While 41 

this suggestion should be examined by future experiments, we propose that such selective 42 

enhancement of visual responses may have direct functional advantages. First, the firing rate 43 

model suggests that VIP cell depolarization enhances the responses to the RF of population 4 but 44 
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reduces the responses to the RF of population 1 (Fig. 4). It should be noted that the object moves 1 

away from the RF of population 1 and approaches that of population 4. When the object is in 2 

motion, its current location may be more crucial than its previous one. The biased enhancement 3 

of the RF that receives increasing stimulus inputs makes V1 neurons focus on the current 4 

location of the object in motion rather than the previous one.  5 

Second, VIP cell depolarization suppresses the responses to the center of the object growing in 6 

size (Fig. 5). The same phenomenon is also observed in the computational model simulations: 7 

the responses to the surface of the target sphere growing in size are suppressed, whereas those to 8 

the edges are enhanced (Figs. 7 and 8). Importantly, the target sphere in the computational model 9 

has a clear behavioral importance as it can collide with a mouse. Thus, the mouse must heed the 10 

distance between itself and the sphere. The sphere’s size and its growth rate will be valuable 11 

when estimating the distance. It means that the surface of the approaching object could merely be 12 

a distraction which can be ignored. In the model, the depolarized VIP cells automatically make 13 

V1 neurons ignore the target sphere’s surface (Fig. 7d). 14 

How do V1 neurons become sensitive to some features such as edges/boarders, which represent 15 

discontinuity of images? The firing rate model suggests that the interplay between SST and VIP 16 

can be a main factor, as selective enhancement of visual responses appears only when the input 17 

to VIP cells is neither too strong nor too weak (Figs. 4 and 5). When it is too weak, SST cells are 18 

active in all populations, and all Pyr cells become quiescent. When it is too strong, SST cells do 19 

not fire, and Pyr cells faithfully respond to stimulus inputs. In the intermediate regime, SST cell 20 

activity depends on stimulus inputs, not just to the same population but also to neighboring 21 

populations, due to the Pyr-SST connections across populations. Then, it should be noted that 22 

SST cells responding to the center of the visual objects will receive the strongest stimulus inputs, 23 

as many neighboring populations receive stimulus inputs. That is, Pyr cells responding to the 24 

center will be under the strongest inhibition of SST cells, which can account for the suppression 25 

of responses to the center of the object (Fig. 5). Also, the location specific modulation of SST 26 

cell activity observed in the computational model (Supplementary Fig. 6b) supports this 27 

assertion.  28 

We also note that computational model simulation suggests another mechanism underlying 29 

selective enhancement. In the computational model, as seen in Supplementary Fig. 6A, the 30 

suppression of responses to the surface of the target sphere are dependent on the background 31 

input to PV cells which mediate the short-range inter-columnar (inter-receptive field) inhibition 32 

(Supplementary Table 3). As this short-range inhibition impinges onto neighboring columns, it is 33 

spatially inhomogeneous. For instance, columns responding to the edge will receive short-range 34 

inhibition from one side only, whereas columns responding to the center will receive it from all 35 

directions. This disparity in lateral inhibition makes column responses to the edge stronger than 36 

those to the surface.   37 

The feedback signals from higher visual areas such as V2 and MT (medial temporal visual areas) 38 

in primates can also modulate V1 responses19,20. V2 reduces V1 responses by enhancing 39 

surround suppression20, whereas MT enhances V1 responses to moving bars and facilitates 40 

figure-ground segregation19. That is, V2 and MT regulate V1 responses elicited by moving 41 

objects in a similar way VIP cells in V1 do. For instance, the moving objects will elicit stronger 42 

responses either when the feedbacks from MT to V1 are stronger or when V1 VIP cell activity is 43 

stronger.  44 
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Why does the brain use two independent mechanisms to control V1 responses in the same way? 1 

Although the feedbacks from MT and VIP cell depolarization lead to higher V1 responses, their 2 

influences present different spatial extent. MT may modulate a subset of V1 neurons selectively 3 

via cortico-cortical connections, whereas VIP depolarization influences V1 response globally. 4 

When it is necessary to track a specific moving object occupying a subset of visual field, MT, 5 

not VIP cells, can enhance V1 responses to it. That is, VIP cells are activated during locomotion 6 

but MT may be activated when objects are actually moving inside the visual field. It would be 7 

interesting to investigate these two distinct pathways regulating V1 responses to explain the 8 

recent observation that V1 neurons respond differently to self-motion and moving objects21.  9 

Notably, VIP cells’ depolarization has been also observed in other contextual modulation of 10 

sensory cortices. Specifically, VIP cells are nonspecifically activated during conditioning with 11 

negative feedbacks22, and top-down signals from Cg to V1 target VIP cells mainly1, suggesting 12 

that VIP cells serve as a unifying mediator for endogenous contextual information originating 13 

from other cortices to sensory cortices. However, the exact mechanisms, by which VIP cells 14 

contribute to contextual information processing, remain unclear. For instance, SST cells activity 15 

increases during Cg activation1, whereas it is suppressed during fear conditioning22, which 16 

remains unexplained.  17 

These two different observations can map onto the high and low intermediate VIP cell 18 

depolarization states of the firing rate model. First, in the intermediate VIP cell depolarization 19 

condition, SST cells can also be active. As Cg activation depolarizes SST cells as well as VIP 20 

cells1, the intermediate VIP cell depolarization may cause consistent effects as Cg activation. 21 

Indeed, VIP and SST cells may be optimized to promote the competition between them; they 22 

mutually inhibit yet promote the identical type to fire more23. Second, in the high VIP cell 23 

depolarization condition, SST cell activity is uniformly suppressed, which is similar to the 24 

observation during fear conditioning22. Based on the analyses (Figs. 4 and 5), we propose that 25 

sensory cortices may work in two distinct modes. During Cg-activation, sensory neurons become 26 

selectively sensitive to some features, which allows V1 neurons to extract behaviorally important 27 

information effectively. During fear-conditioning, sensory neurons reliably relay the stimulus 28 

inputs, which may help high-order cognitive areas assess the external environments related to the 29 

fear conditioning without any biases.   30 

In conclusion, as cognitive functions may depend on interactions among multiple cortical areas24, 31 

VIP cells’ functional roles could advance our understanding of neural basis of cognitive 32 

functions, and we believe that computational models are effective tools to pursue this direction, 33 

as we show in this study.  34 

Methods 35 

Firing rate model  36 

As seen in Fig. 1A, each population consists of 4 different cell types. For simplicity, we assume 37 

all cell types are identical in terms of dynamics of membrane potentials, and their time courses 38 

are described by the simple rule.  39 

𝜏𝑚
𝑑𝑓(𝑡)

𝑑𝑡
= −𝑓(𝑡) + 𝑔(𝐼𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 + 𝐼𝑠𝑦𝑛 + 𝐼𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠),  40 

𝑔(𝑥) = 5.33√𝑥,                                                                                                                           (1)                                                                                            41 
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, where τm (the time constant of membrane)=10 ms  (the time constant of membrane); where f and 1 

g are the firing rate and gain functions, respectively; where Iintrinsic, Isys and Istinulus are inputs to the 2 

cells. The gain function g is obtained by computing the F-I curve of the leaky integrate and the 3 

fire neuron implemented by “iaf_psc_exp” included in the peer-reviewed simulator NEST25. The 4 

square-root is an approximation of the exact analytical solution, but we select this function for 5 

two reasons. First, it provides a good approximation as shown in supplementary Fig. 1a and is 6 

less computationally intensive than an exact analytical form. Second, it is commonly used as a 7 

gain function11 Iinstrinsic is the sum of spiking threshold and background input, which are cell-type 8 

specific, as listed in Supplementary Table 2. Istimulus (0.5 pA) is the input representing stimulus 9 

presentation, and it is given to Pyr cells only. Isyn are synaptic inputs within population and 10 

across populations.  11 

𝐼𝑠𝑦𝑛 = ∑ 𝑤𝑖𝑆𝑖𝑖                                                                                                                               (2) 12 

, where i runs over all pre-synaptic cells. They are regulated by gating variables S and scaled by 13 

wi. The gating variables S evolve according to the activity of presynaptic cell populations26, as 14 

follows: 15 

 16 
𝑑𝑆(𝑡)

𝑑𝑡
= −

𝑆(𝑡)

𝜏
+ 𝑓𝑝𝑟𝑒(𝑡)                                                                                                                 (3) 17 

, where τ and fpre are the decaying time constant and the firing rate of pre-synaptic cells, 18 

respectively. The decay time constants are estimated based on physiological data reported in 19 

Pfeffer et al. 9; this process is discussed elsewhere 12. All parameters for synaptic connections are 20 

shown in Supplementary Table 1. We solved these equations using the “odeint”, a scipy module 21 

included in python. 22 

Estimates of stimulus-evoked activity 23 

We calculated the stimulus-evoked responses by computing Pyr cell activity during the stimulus 24 

period (500-1000 ms). This is normalized in two different ways. First, the signal-to-noise ratio 25 

(SNR) is determined by calculating the ratio of population 4 activity to the mean activity of all 26 

other populations. Second, the stimulus-period activity is compared to the baseline-period 27 

activity by calculating the relative changes in Pyr cell activity (Equation 4): 28 

(𝑅𝑠𝑡𝑖𝑚−𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
                                                                                                                               (4) 29 

where Rstim and Rbaseline indicate the mean activity of Pyr cells in the stimulus and baseline 30 

periods, respectively. 31 

The spiking neural network model of V1 32 

We extended our earlier V1 model12 into 192 column models distributed over 16-by-12 grids by 33 

reducing the size of individual columns by a factor of 10 (Fig. 6A). All connections are 34 

established randomly12,15,27 using the proposed connection probabilities from earlier models15. 35 

Synaptic strengths used in the model are listed in Supplementary Table 3. The details of cortical 36 

column models are discussed elsewhere12. Each column receives sensory inputs from 100 37 

thalamic cells, whose firing rate is proportional to the strength of visual inputs within the 38 

receptive fields.  39 
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For simplicity, we assumed that all thalamic cells are ON cells, and that all thalamic cell 1 

populations have non-overlapping receptive fields. Also, thalamic cell populations are distributed 2 

over 16-by-12 grids so that they could connect to cortical columns via topographic connections. 3 

Each lateral geniculate nucleus (LGN) population consists of 100 thalamic cells, and individual 4 

cells induce Poisson spike trains at the fixed rate proportional to the sum of signals (I) in the 5 

corresponding image patch: 6 

𝑅 = 20 + 60
𝐼

𝐼𝑚𝑎𝑥
 𝐻𝑧                                                                                                                    (5) 7 

, where Imax is the maximal value of the sums of intensity of the 192 image patches.  8 

Visual scene generation 9 

We used POV-Ray to create a simple experimental setup shown in Fig. 6B. The mouse has not 10 

been explicitly modelled. Instead, the camera device assumes the role of a mouse’s retina.  POV-11 

Ray produces 640-by-480 pixel images in 20 frames during 1 sec in two different conditions, 12 

with the width of the image set to 80o. The animal translates at constant speed towards the image 13 

plane that is perpendicular to the animal’s motion. The five spheres in Fig. 6B are the depicted 14 

scene. The center sphere is 50% bigger than all others (Fig. 7A). In both conditions, each frame 15 

is 50 ms long and is converted to LGN outputs in 50 ms windows. The size of the receptive field 16 

of LGN populations is 40-by-40 pixels of the image so that each frame could be split to 16-by-12 17 

non-overlapping patches. 18 

Correlations between stimulus inputs and Pyr cell responses 19 

For both firing and computational models, we calculated Pearson’s correlations coefficients 20 

between stimulus inputs and Pyr cell responses. In the firing rate model, we record the inputs to 21 

and outputs from Pyr cells over time. That is, for each population, the two-time series were 22 

collected, from which the correlation was estimated. In the computational model, the correlations 23 

were calculated using thalamic outputs (𝑇𝑂⃗⃗⃗⃗  ⃗) and column responses (𝐶𝑅⃗⃗⃗⃗  ⃗). After recording the 24 

column responses depending on 50-ms temporal windows, we converted them into a 1-25 

dimensional vector. Since the center (target) sphere behaves differently from others, we split this 26 

1 dimensional vector into 2 distributions (inside and outside the target sphere). Then, we 27 

calculated the correlation coefficients using these two distributions, respectively. 28 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ (𝐶𝑅𝑖−𝜇𝐶𝑅)×(𝑇𝑂𝑖−𝜇𝑇𝑂)𝑖

𝜎𝐶𝑅𝜎𝑇𝑂
                                                                                           (6)                 29 

, where µ and σ are the mean and standard deviation of vector components; where i=pixels inside 30 

or outside the center sphere. We instantiated 10 independent networks using the same 31 

connectivity, and each network was simulated independently. The correlation was estimated in 32 

each simulation. 33 

Code availability 34 

The simulation codes are available upon request (contact to J.L. at jungl@alleninstitute.org) and 35 

will be publicly available in the near future. 36 

 37 
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Legends 32 

Fig. 1: The model structure of firing rate model and its response. (a), 7 populations are 33 

implemented in the firing rate model, and each population consists of Pyr, SST, PV and VIP 34 

cells. They interact with one another via cell type specific connectivity displayed in (b). Pyr, PV, 35 
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SST and VIP are shown in red, green, blue and gray, respectively. (c), The time course of input 1 

to Pyr cell in population 4. The onset of stimulus presentation is 500 ms marked by the red 2 

arrow. (d) and (e), Cell type specific activity in populations 4 and 6, respectively, when all inter-3 

population Pyr-SST connections (IPPS) are removed. All other populations, which are not shown 4 

explicitly, have identical responses to those of populations 6.  5 

Fig.2: The effects of surround suppression on model responses. (a) and (b), Cell-type specific 6 

activity in populations 4 and 6, respectively, when the strength of IPPS is 15 pA. (c) and (d), The 7 

same but with enhanced IPPS strength (25 pA). (e) and (f), The same when the background input 8 

to SST cells and IPSS strength are 0.4 and 25 pA, respectively.  9 

Fig. 3: The functions of surround suppression and its modulation.  (a), Pyr cell responses in 10 

population 4, compared with other Pyr cell responses elicited by background input only. SNR is 11 

the normalized population 4 responses to the mean activity of all other populations. The 12 

dependency of SNR on the input to SST cells and the IPPS strength are shown in blue and red, 13 

respectively. The dashed line represents the SNR of inputs to Pyr cells. (b), The modulation of 14 

surround suppression via VIP cell depolarization. y-axis represents Pyr cell responses to the 15 

center of the object depending on its size. For a fixed input to VIP cells, we set the Pyr cell 16 

responses to the narrow object, whose width is 1-RF long, as reference values, which we use to 17 

normalize Pyr cell responses. The background inputs to VIP cells are 0.6, 0.75, 0.9 and 1.05 pA, 18 

which are shown in red, green, blue and black, respectively.   19 

Fig. 4:  The effects of VIP cell depolarization on model responses to the object in motion. 20 
(a), Method by which we simulate the object moving over time. (b), Stimulus input introduced to 21 

the populations in color codes. The red indicates the maximum stimulus input 0.5 pA. The x- and 22 

y-axes represent the identity of population and time bins. (c), The normalized Pyr cell responses 23 

to the stimulus input shown in (b) when all inter-population Pyr-SST cell connections are 24 

removed. (d) and (e), The normalized Pyr cell responses with surround suppression depending 25 

on the input to VIP cells. In (c)-(e), Pyr cell responses are divided by the maximum Pyr cell 26 

responses (over all populations) during simulations. The strength of the input to VIP cells is 27 

shown above each panel. (f), Population specific correlations between stimulus inputs and the 28 

Pyr cell responses. As the population 2 and 3 show identical responses, only population 3 is 29 

visible in (f).   30 

Fig. 5: The effects of VIP cell depolarization on responses to the object growing in size. (a), 31 

Method by which we simulate the object growing in size. (b), Pyr cell activity in population 4 32 

between low (0.6 pA) and high (1.8 pA) input to VIP cells. For comparison, Pyr cell activity 33 

with the intermediate input (1.2 pA) to VIP cells is also displayed. (c), Dependency of population 34 

specific correlations between the stimulus inputs and Pyr cell responses on the input to VIP cells. 35 

Populations are distinguished using different colors. As populations 2 and 4 (1 and 5) show 36 

identical responses, only three lines are visible in (c) 37 

Fig. 6: The model structure of computational model of V1. (a), Structure of the computational 38 

model. In the computational model, we consider more connections among the four cell types12 39 

than those used in the firing rate model. The model consists of 192 columns distributed over a 40 

16-by-12 grid. The receptive field of each column covers non-overlapping image patches 41 

consisting of 40-by-40 pixels; the rendered images consist of 640-by-480 pixels. All inter-42 
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columnar connections are established using a periodic boundary condition; see Supplementary 1 

Table 3.  (b), Virtual experiment-setup. 2 

Fig. 7: Column responses in the computational model. (a)-(d), Column responses averaged 3 

over 10 independent simulations in four different 50 ms time windows, respectively. The left and 4 

right columns show them with low and high external inputs to VIP cells. The color bars show the 5 

firing rate of Pyr cells in Hz.  6 

Fig. 8: Correlations for the target and other spheres. (a), Correlations between high and low 7 

VIP cell depolarization conditions compared. (b), Dependency of correlations on the surround 8 

suppression strength regulated by connection probability for Pyr-SST connections across 9 

columns. (c), PV and SST cell activity between high and low VIP cell depolarization conditions. 10 

All error bars represent standard errors. 11 
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Figure 1 2 
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Figure 2 1 
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