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Abstract Inter-specific body mass allometries can evolve
from the natural selection of mass, with ±1/4 and ±3/4
exponents following from the geometry of intra-specific in-
teractions when density dependent foraging occurs in two
spatial dimensions (2D, Witting 1995). The corresponding
values for three dimensional interactions (3D) are ±1/6 and
±5/6.

But the allometric exponents in mobile organisms are
more diverse than the prediction. The exponent for mass
specific metabolism tends to cluster around -1/4 and -1/6
in terrestrial and pelagic vertebrates, but it is strongly posi-
tive in prokaryotes with an apparent value around 5/6 (De-
Long et al. 2010). And a value around zero has been re-
ported in protozoa, and on the macro evolutionary scale
from prokaryotes over larger unicells to multicellular verte-
brates (Makarieva et al. 2005, 2008).

I show that mass specific metabolism can be selected as
the pace of the resource handling that generates net en-
ergy for self-replication and the selection of mass, and that
this selection of metabolism and mass is sufficient to ex-
plain metabolic exponents that decline from 5/6 over zero
to -1/6 in 3D, and from 3/4 over zero to -1/4 in 2D. The
decline follows from a decline in the importance of mass spe-
cific metabolism for the selection of mass, and it suggests i)
that the body mass variation in prokaryotes is selected from
primary variation in mass specific metabolism, ii) that the
variation in multicellular animals are selected from primary
variation in the handling and/or densities of the underlying
resources, iii) that protozoa are selected as an intermediate
lifeform between prokaryotes and multicellular animals, and
iv) that macro evolution proceeds along an upper bound on
mass specific metabolism.
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allometry

1 Introduction

It is difficult to overestimate the importance of body
mass allometries in evolutionary biology as they reveal
the joint evolution of the life history with mass across
the tree of life.

The most well-known allometry is Kleiber (1932)
scaling in multicellular animals with a negative 1/4 ex-

ponents for the dependence of mass specific metabolism
on mass. Yet, the real value, or rather values, of the
exponent is still being debated (see e.g., McNab 2008;
White et al. 2009; Isaac and Carbone 2010), and it is
also questioned whether the functional relationship be-
tween the two traits is a straight allometric line or a
convexly bend curve (Kolokotrones et al. 2010; Deeds
2011; Ehnes et al. 2011; MacKay 2011).

A value about −1/4 is though in general agreement
with the average exponent for the basal (BMR) and
field (FMR) metabolic rates across a wide range of ver-
tebrates (e.g., Peters 1983; Savage et al. 2004; Glazier
2005; Duncan et al. 2007; Kabat et al. 2008; Capellini
et al. 2010), and the exponents for BMR and FMR are
statistically indistinguishable in most lineages of mam-
mals (Capellini et al. 2010). It is therefore reasonable
to assume that at a value that is relatively close to -1/4
is acting as a common attractor for the natural selection
of allometric relationships, and that this value can vary
with variation in the underlying mechanism of natural
selection.

It is also essential to recall that the metabolic allom-
etry is only one of several essential allometries, with
the empirical exponents in many studies approximat-
ing 1/4 for lifespan and reproductive periods, −1/4 for
the rate of exponential population growth, −3/4 for the
density of populations, and 1 for the area of the home
range (Bonner 1965; Schoener 1968; Turner et al. 1969;
Fenchel 1974; Damuth 1981, 1987; Peters 1983; Calder
1984).

The correlation between mass and metabolism is not
only the most studied allometry empirically; it is also
the relationship that has received most theoretical in-
terest (reviewed by e.g. Glazier 2005; White and Kear-
ney 2013). The widespread view has seen the metabolic
allometry as a consequence of the physiological re-
source transportation systems in organisms (e.g. West
et al. 1997, 1999a,b; Banavar et al. 1999; Dodds et al.
2001; Dreyer and Puzio 2001; Rau 2002; Santillán 2003;
Glazier 2010). Yet, this hypothesis is so far inferior in
the sense that it is not integrated with the natural selec-
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tion of the metabolism and mass that is a pre-condition
for the evolution of large organisms with metabolic al-
lometries. The most parsimonious evolutionary expla-
nation is instead the density dependent foraging model
of Witting (1995, 1997), where the values of the allo-
metric exponents are selected directly by the natural se-
lection that is necessary for the evolution of large body
masses.

The latter model explains all of the above-mentioned
exponents from the geometrical constraints of an eco-
logical foraging process that is optimized for a trade-off
between the local resource exploitation of the individual
and the density dependent interactive competition be-
tween the individuals in the population. This interfer-
ence competition is also the essential factor that selects
net assimilated energy into non-negligible body masses
in species where the individuals have a sufficiently high
net assimilation of resources from the environment (see
review by Witting 2008).

With the predicted exponents following from the eco-
logical geometry of foraging, their values are dependent
on the spatial dimensionality (d) of the foraging pro-
cess, with 1/4 being the two dimensional case of the
more general 1/2d. The 1/4 value is therefore predicted
to be replaced by 1/6 across species that forage in three
spatial dimensions, with a 1/4→ 1/6 like transition be-
ing observed quite commonly between terrestrial and
pelagic animals (Witting 1995, 1997).

The observed metabolic exponent is though more di-
verse than the predictions of the ecological model. The
empirical exponent varies at least to some degree with
mass (Kolokotrones et al. 2010), among major taxa and
phylogenetic lineages (Peters 1983; Glazier 2005; Dun-
can et al. 2007; White et al. 2007, 2009; Sieg et al.
2009; Capellini et al. 2010), and it is also dependent on
the activity level of individuals (Darveau et al. 2002;
Weibel et al. 2004; Glazier 2005, 2008, 2009; Niven and
Scharlemann 2005; White et al. 2007).

More recent studies have also found that the expo-
nent tends to change across the tree of life. Instead
of being negative, it is strongly positive in prokary-
otes with an apparent value around 5/6 (DeLong et
al. 2010), and it has been reported to be zero in pro-
tozoa (Makarieva et al. 2008; DeLong et al. 2010) and
on the macro evolutionary scale across all non-sessile
organisms (Makarieva et al. 2005, 2008; Kiørboe and
Hirst 2014).

This variation is not explained by Witting’s (1995,
1997) model, where the selection of mass is indepen-
dent of the selection on mass specific metabolism. I
do therefore in this paper extend the ecological model
with primary selection on mass specific metabolism, in

order to examine if the joint selection of metabolism
and mass will explain the wider set of allometries that
is observed across the three of life.

2 Basic selection relations

The proposed model is developed to explain average ex-
ponents as the evolutionary consequence of a base-case
type of interactive ecology between the individuals in
a population. Deviations in the ecology from the base-
case may result in the evolution of alternative allome-
tries, but this is not studied directly in this paper.

The major difference from my original allometric
model (Witting 1995, 1997) is the inclusion of primary
selection on metabolism. This implies a mass specific
metabolism that is selected as the pace of the resource
handling that generates net energy for self-replication,
with the selection of mass and allometries following
from a predicted increase in net energy. This evolu-
tion of metabolism, mass and allometries follows from
three basic principles: i) the conservation of energy, ii)
the demography of age-structure, and iii) the unfolding
of density dependent interactive competition from the
population growth of self-replication.

Life history traits within and between natural species
tend to correlate in allometric relations, and I use the
interactive selection that unfolds from the population
growth of self-replication to explain the evolved corre-
lations from uncorrelated traits. This is done by a de-
terministic model with no contingency (Witting 1997,
2008), which implies that I will explain the evolution
of all the life history traits of my model organism.
And with a model that is based on the population dy-
namic feed-back selection of interactive competition, I
will also explain ecological traits like home range and
abundance.

I will though not attempt to explain absolute trait
values, but only the selection response of the life history
and the ecology to primary selection on mass specific
metabolism and mass. This is done by two processes
that I refer to as the metabolic-rescaling and mass-
rescaling selection of the life history; with metabolic-
rescaling being associated with the pre-mass selection
of metabolism that generates net energy for the selec-
tion of mass, and mass-rescaling being the selection re-
sponse of the life history to evolutionary changes in
mass. These selection responses are described by the
first partial derivatives of the evolving life history with
respect to the selected changes in metabolism and mass;
with the integrals over mass being the inter-specific
body mass allometries.

This level of explanation resembles the Newtonian
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tradition in physics, where we can explain the acceler-
ation of an object, but not its absolute speed, from the
action of a force. In order to use the proposed model
to “predict” e.g. an absolute rate of reproduction, I will
have to include an observed survival rate as an assump-
tion. The explanation is then no longer deterministic,
but contingent upon the observed life history.

To show that the allometric exponents follow from
the most basic constraints of the primary selection of
metabolism and mass, I will formulate the essential con-
straints mathematically and solve the resulting selec-
tion equations for the unknown exponents. This re-
quires a detailed and consistent description of the es-
sential life history energetics, and of the ecological ge-
ometry of density regulation, i.e., of the density depen-
dent foraging and interactive behaviour in one, two and
three spatial dimensions.

These descriptions are generally straight forward and
they do not include new concepts. But they are never-
theless required to be formulated in a consistent way.
For this I will not only refer to my earlier work, but
formulate a complete model in the present paper and
its appendices, with the essential model parameters be-
ing explained in Table 5. I start in Section 2.1 with
the new component that is included in the theory, i.e.,
mass specific metabolism as a primary life history trait.
The life history demography and density regulation are
described in detail in Appendix A and B, with the rela-
tions that are necessary for the allometric deduction be-
ing included in Sections 2.2 and 2.3 of the main paper.
A short section on the overall relationship between the
primary selection of metabolism, net energy and mass
is then following, before the deduction of the exponents
of body mass allometries in Section 3.

2.1 Metabolism, net energy, and time

The metabolic rate is often seen as a proxy for the
rate, or pace, at which organisms assimilate, trans-
form and expend energy (reviewed by e.g. Calder 1984;
Brown et al. 2004; Humphries and McCann 2014). As
such a measure of joint biological activity, metabolism
is highly dynamic; being dependent among others on
chemistry, temperature, physiology, tissue maintenance
and behaviour, with these components being controlled
in part by ecological interactions and the age, sexual
and informational state of the organism. Yet, for the
selection model developed in this paper, all of this vari-
ation is integrated into a single measure of the aver-
age field metabolic rate per unit body mass (β, SI unit
J/gs).

Metabolism is transformed into pace by the biochem-

ical, physiological and ecological work that is carried
out by mass specific metabolism. Let us therefore de-
fine metabolic pace

β̇ = β/Ẇ (1)

as the frequency (SI unit 1/s) of the mass specific work
(Ẇ = 1 J/g) that is carried out by metabolizing one
joule per gram of tissue. It is not an absolute given
that this work is essential for the organism. If organism
metabolism, contrary to our expectations, would evolve
by neutral drift instead of by natural selection, the ma-
jority of the metabolism would be irrelevant for the eco-
logical and physiological functioning of the organism.
But it is fitness costly to burn energy in metabolism.
We do therefore expect that the metabolic rate is evolv-
ing by a natural selection where metabolic work is used
to enhance the fitness of the organism.

To aim for a natural selection explanation, consider
the net energy of the organism to be the energy that
is available for self-replication. This energy (ε, SI unit
J/s) is the net energy that is assimilated from a resource
per unit time, defined in physical time as a product
(ε = αα̇) between an ecological/physiological mechan-
ical/biochemical handling of resource assimilation (α,
resource handling in short, SI unit J), and the pace (α̇,
SI unit 1/s) of this process.

Let us, for a given handling (α), assume that the
pace of handling α̇ = εα/Ẇ is proportional to the
mass specific energy that is used for handling per unit
time (εα, SI unit J/gs) divided by the mass specific
work (Ẇ ) that is carried out by one joule per gram.
This energy is provided by metabolism, and we may
thus define handling speed by the metabolic fraction
c (α̇ = cβ/Ẇ = cβ̇, with 0 ≤ c ≤ 1) that is used
for the handling of net resource assimilation. One,
maybe unrealistic, but nevertheless potential example
is invariance between handling speed and mass specific
metabolism (c = c0/β, with α̇ = c0/Ẇ and c0 being
a constant). This can be expected if a fixed amount
of energy is used per unit mass on the handling of the
resource while the metabolic rate is evolving by other
means.

To examine the natural selection of the relationship
between metabolism and handling speed, consider net
energy as the difference between gross energy (εg) and
the total energetic cost of the metabolism of the indi-
vidual (wβ):

ε = εg − wβ (2)

= αgα̇− wβ
= αgcβ/Ẇ − wβ
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As natural selection favours an increase in ε (eqn 20),
we find from the positive partial derivative ∂ε/∂c =
αgβ/Ẇ that there is selection for a handling speed that
is as large as possible, with the evolutionary equilibrium
being c∗∗ = 1 where α̇ = β̇. This suggests that mass
specific metabolism is selected as a proxy for the pace
of resource handling

ε = αgβ̇ − wβ = αβ̇ (3)

with α = αg − wẆ and εα = β.
The energetic difference (wβ) between gross and net

is then the energy that drives the gross assimilation of
energy from the resource. Increasing the speed of han-
dling requires more energy, and this energy is selected
to be paid back by a proportional increase in the net
energy that is assimilated from the resource. As formu-
lated here, the total metabolic cost (wβ) includes not
only the energy that is used directly in resource han-
dling, but also the indirect energy of the catabolism and
anabolism that goes into the tissue maintenance that is
required to keep the organism running.

The net energy

ε = αβ̇ = α̈β̇ρ∗∗ (4)

is defined for an implicit resource (ρ) at the equilib-
rium population density (n∗∗) of the relevant selection
attractor on mass, with α̈ being the intrinsic component
of resource handling. Resource handling (α = α̈ρ∗∗) is
then specifying the net energy obtained per metabolic
pace at the density dependent equilibrium of the selec-
tion attractor on mass.

With mass specific metabolism being selected as the
pace of the biochemical, physiological and ecological
processes of resource assimilation, we can follow Pearl
(1928) and others like Brody (1945), Hill (1950), Stahl
(1962) and Calder (1984), and consider biological time
as inversely related to mass specific metabolism,

τ = tg = t̃g/β̇ (5)

with τ being the per generation time-scale of natu-
ral selection, tg the generation time in physical time,
and t̃g an invariant scaling between generation time
and metabolic pace (with SI unit generations/s). The
inverse relationship represents an expected invariance
when biotic time is defined from metabolic pace; but it
is also, as we will see later in Section 3.1, a relationship
that is selected directly by the mass-rescaling of the life
history.

2.2 Life history

The age-structured life history with complete parental
investment is described in Appendix A, with the es-

sential energetics that is necessary for the allometric
deduction being summarized below.

The first essential component is the total energetic
investment in each offspring

εjtj = w + wjtjβ = w(1 + w̃jτjτβ) = β̃w (6)

This is the final adult mass w of the offspring at the
time of independence, plus the energy wjtjβ that is
metabolized by the offspring during the juvenile period
(tj in physical time; τj = tj/τ in biotic time), with wj
being the average juvenile mass during tj with w̃j =
wj/w, εj the energetic investment in the offspring per
unit time, and

β̃ = 1 + w̃jτj (7)

an invariant scaling that accounts for the energy that
is metabolized by the offspring. The total investment
in each offspring is then reducing to a quantity that is
proportional to mass and independent of mass specific
metabolism.

This investment implies an energetic quality-quantity
trade-off (Smith and Fretwell 1974; Stearns 1992),
where the reproductive rate

m = ε/β̃w (8)

is inversely related to the energetic investment in each
offspring. Total lifetime reproduction can then as a
consequence (eqn 64) of this be approximated

R =
tr
tj

ε

εj
(9)

by the product between the ratio of the reproductive
period over the juvenile period (tr/tr) and the ratio
of net energy over the energy that is allocated to an
offspring (ε/εj).

The last life history constraint to be considered is the
probability that a newborn individual will survive and
reproduce

p =
R0

R
=

1

tr

∫ tl

tm

lt dt (10)

When the lt function is invariant in biotic time, i.e.,
when lt/tr is invariant, it follows that the

∫ tl
tm
lt dt in-

tegral reduces to cltr where cl, and thus also p, are
invariant. This is our base-case expectation if survival
is determined entirely by intrinsic processes. On top of
this there is extrinsic mortality, and if this is about con-
stant in physical time we might expect p to be more or
less inversely related to tr with more individuals dying
before they reach a given age in biotic time.
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2.3 Optimal density regulation

The first density regulation constraint that is necessary
for the allometric deduction is the adjustment of the life
history to an equilibrium (∗), where the per generation
replication (λ = pR) of the average reproducing unit in
the population is one

λ∗ = p trε/β̃w = 1 (11)

A more essential constraint for the numerical values
of the allometric exponents is the ecological geometry
of a density regulation that is optimized by natural se-
lection. This was first shown by Witting (1995), and a
more general version of his model is described in Ap-
pendix B. The essential geometry is that of the den-
sity regulated foraging optimum, as it is defined by the
spatial dimensions (d) of the interactive behaviour and
traits like metabolism (β), mass (w), abundance (n),
and home range (h).

To describe this optimum, I split the overall regula-
tion (f) into the three subcomponents

f = fefιfs (12)

of regulation by exploitative (fe) and interference (fι)
competition, and the local exploitation of the resource
by foraging self-inhibition (fs). The latter is not den-
sity regulation in itself, but it is needed for the natural
selection of a realistic density regulation.

Following the details in Appendix B, in the surround-
ings of the equilibrium abundance (n∗), the exploitative
component can be expressed as

fe ∝ (nwβ)−γe (13)

and that of local resource exploitation as

fs = fs(βh
1/d/v), (14)

where fs is a downward bend function that increases
monotonically from zero to one as the home range in-
creases from zero to infinity (curve b in Fig. 1), γe is
the regulation parameter of exploitation, and

v = v̄◦ββτw (15)

the foraging speed that is defined by the pre-mass
component (subscript β, see eqn 28) of metabolic
pace (given here by its proportional relation with
metabolism, ββ), and the mass-rescaling component
(subscript w) of biotic time (τw).

In relation to interference competition, regulation
fι = e−ιµ is a declining function of the level of interfer-
ence competition (ι) and the average cost of interference

(µ), with the level of interference

ι ∝ γι ln
(
nvh

d−1
d

)
, (16)

being dependent on the abundance, home range, and
foraging speed. Because of the quality-quantity trade-
off (eqn 8), where the reproductive rate is increasing
with a decline in mass, we can follow eqn 80 and ex-
press the level of interference at the population dynamic
equilibrium as a declining function of the average mass

ι∗ = (γι/γ) ln(ε̃0/w) (17)

The cost of interference is increasing with an increase
in the average home range (Fig. 1, declining curve
a), but the cost of foraging self-inhibition is declining
(Fig. 1, increasing curve b). Hence, there is an optimal
home range, where the joint regulation by interference
and self-inhibition is minimal (Fig. 1, c). This optimum

h∗∗ ∝
(
v

β

)d
(18)

implies that density regulation is body mass invariant
as a whole [f = fefιfs ∝ w0], and this generates natural
selection for a covariance

nvh
d−1
d ∝ βh1/d/v ∝ nwβ ∝ w0 (19)

that will leave the regulation optimum, and the level
of interference competition in the population (eqn 16),
invariant of the life history (see Appendix B.5).

2.4 Metabolism, net energy and mass

The next selection that we need to consider for the al-
lometric deduction is primary selection on metabolism,
net energy and mass. For this we may combine eqns 4
and 11 and find that the selection gradients

∂r/∂ ln ε = ∂r/∂ lnα = ∂r/∂ lnβ = 1 (20)

on the log of net energy (ε), and its subcomponents
α and β, are unity. The secondary theorem of natu-
ral selection (Robertson 1968; Taylor 1996) is therefore
predicting an exponential increase

rx = d lnx/dτ = σ2
ln x∂r/∂ lnx = σ2

ln x (21)

in net energy, resource handling, and mass specific
metabolism (x ∈ {ε, α, ββ}) on the per generation time-
scale (τ) of natural selection, when the additive herita-
ble variance (σ2

ln x) is stable.
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Figure 1: The optimal home range (**) as defined by
the density regulation optimum for interference competition
and local resource exploitation.

While this implies sustained selection for an increase
in ε, the average net energy may decline due to envi-
ronmental variation, or inter-specific interactions when
a smaller species is excluded from essential resources by
larger species. And owing to the competitive exclusion
of species by inter-specific competition, we may expect
a distribution of species with net energetic states that
range from a possible minimum to a maximum, with
the maximum increasing over evolutionary time due to
eqn 21. I will not directly consider the evolution of the
exponential increase in this paper [see Witting (1997,
2003, 2016b,c) instead], but only note that the increase
allows me to consider a distribution of species that dif-
fer in α, ββ and ε.

Independently of the selection cause for the evolu-
tion of mass, the individuals of an evolutionary lineage
cannot be large unless they have evolved the ability to
consume plenty of resources. This implies that an evo-
lutionary change in mass is selected, in one way or the
other, as a consequence of the evolutionary change in
energy

d lnw

dτ
=
∂ lnw

∂ ln ε

d ln ε

dτ
(22)

with
∂ lnw/∂ ln ε = 1/ε̂ (23)

defining the selection dependence of mass on energy
given a log-linear relation. The specific mechanisms of

this selection are not considered here; they are instead
described by Witting (1997, 2008, 2016a). From eqn 23
we may conclude that natural selection creates an evo-
lutionary function

w =

∫
∂ lnw

∂ ln ε
d ln ε = (ε/ε̄◦)

1/ε̂ (24)

that defines mass as an evolutionary consequence of a
selection that is imposed by the net energy of the organ-
ism, where 1/ε̂ is the allometric exponent that is given
by the selection relation of eqn 23, and the intercept
(ε̄◦) is an initial condition.

3 Body mass allometries

The allometries that can be observed across natural
species are post-mass allometries in the sense that they
are the allometric correlations that have evolved by the
complete selection process from the pre-mass selection
of net energy, over metabolic-rescaling and body mass
selection, to rescaling selection from the evolutionary
changes in mass.

The post-mass allometry x = x̄◦w
x̂ for the depen-

dence of a trait x on mass is thus a product

x = xβxw = x̄◦w
x̂βwx̂w = x̄◦w

x̂ (25)

between the post-mass allometry of mass-rescaling

xw = wx̂w (26)

that describes the complete allometric scaling with
mass when there is no pre-mass selection on mass
specific metabolism, and the post-mass allometry of
metabolic-rescaling

xβ = wx̂β (27)

that is the additional allometric scaling that evolves
from metabolic-rescaling and the dependence of body
mass selection on the net energy that is generated by
pre-mass selection on mass specific metabolism (x̄◦ is
an unexplained initial condition, and x̂ = x̂β + x̂w).

Many of the allometries that have been established
empirically across natural species have Kleiber scaling
with exponents around ±1/4 or ±3/4. The life history
covariance that evolves from my selection model iden-
tifies these exponents as the mass-rescaling of eqn 26.
Hence, in some instances we may regard the metabolic-
rescaling allometries of eqn 27 as the evolution of the in-
tercepts of the more traditional mass-rescaling allome-
tries; an evolution that is caused by pre-mass selection
on metabolic pace.
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3.1 Mass-rescaling

The inverse of eqn 24 is the traditional allometry (ε =
ε̄◦w

ε̂) between mass and energy. And with net en-
ergy being a function of handling and pace (eqn 4),
this implies that the allometric exponents of the three
traits ε, α, and β are interrelated. To describe this,
let the ε ∝ αβ relation be rewritten as a product of
sub-components of resource handling and mass specific
metabolism

ε ∝ αβ̄◦βββw (28)

with β = β̄◦βββw being split into a mass-rescaling

(βw = wβ̂w) and a pre-mass (ββ) selection compo-

nent, with w = β
1/β̂β
β being the selected dependence

of mass on the pre-mass component of mass specific
metabolism.

Of the three parameters ε, α and β it is only
metabolism that is split into a pre-mass and a mass-
rescaling component. Resource handling is defined as a
pure pre-mass parameter that is generating net energy
for the selection of mass independently of the changes
in the pace of resource handling. And net energy is
found to be invariant of mass-rescaling on the per gen-
eration time-scale (see Section 3.1.1) that is relevant for
the natural selection of mass.

Relating to the relationship between the allometric
exponents we have ε̂ = α̂ + β̂β + β̂w from eqn 28. To
identify the essential dependence in this expression, re-
call that the selection pressure on mass is reflecting the
exponent of net energy (ε̂), as it is defined by the partial
derivative ∂ lnw/∂ ln ε = 1/ε̂ of eqn 24. This implies
that we define the selection of mass from the changes
in the average net energy invariantly of the underlying
causes (α, ββ & ρ) for the change in energy. We may
thus expect that ε̂ is invariant of the other exponents
α̂, β̂β and β̂w, while the latter three are evolutionarily
interrelated by the following trade-off

α̂ = ε̂− β̂w − β̂β (29)

This invariance of the ε̂ exponent relative to the other
three exponents in eqn 29 is confirmed later in this sec-
tion, together with a similar invariance for the mass-
rescaling exponent of metabolism (β̂w). Hence, in the
end we will find a direct allometric trade-off between the
exponent for resource handling (α̂) and the pre-mass ex-

ponent for mass specific metabolism (β̂β). Please note

that this trade-off between the α̂ and β̂β exponent is not
reflecting a metabolic-rescaling of resource handling. It
is only reflecting the relative importance of resource
handling and the pre-mass component of mass specific
metabolism for the generation of the variation in the

net energy that is responsible for the natural selection
of the variation in the body masses of the species that
are being compared in an allometric study.

Now let us ignore variation in the pre-mass compo-
nent of mass specific metabolism, i.e., let

α̂ = ε̂− β̂w (30)

from eqn 29 with β̂β = 0 and xβ = w0 for all traits x.
This corresponds with the allometric model of Witting
(1995), that determines the rescaling of the life history
in response to the evolving mass. It will give us allome-
tries for the limit case where all the evolutionary varia-
tion in mass is induced by variation in resource handling
and/or resource availability, with metabolism evolving
exclusively by the allometric rescaling with mass.

In this case, for the other life history and ecological
traits (x) we can expect an allometric mass-rescaling

d lnxw
dτ

=
∂ lnxw
∂ lnw

d lnw

dτ
(31)

where traits are selected in response to a selection
change in mass (eqn 22). Given log-linear selection re-
lations

∂ lnxw/∂ lnw = x̂w (32)

this implies the evolution of mass-rescaling allometries

xw ∝
∫
∂ lnxw
∂ lnw

d lnw ∝ wx̂w (33)

where x̂w is the mass-rescaling exponent.

3.1.1 Metabolic trade-off selection

Let this mass-rescaling selection be induced by a
metabolism that trade-offs against the time that is
needed for reproduction, when the parental energy that
is allocated to the offspring has to be used either on the
growing mass or on the metabolism of the offspring.
Less energy will be available per unit time for the mass
of the growing offspring when more energy is metabo-
lized, and this will cause the juvenile period to increase,
and the reproductive rate to decline, with an increase
in the metabolic rate.

The evolutionary linking of the different life history
traits by this metabolic trade-off selection is illustrated
by the following causal relationships

dε/dt>0
selection

⇒
dw/dt>0
selection ⇒

dtj/dt>0
constraint ⇒

dR/dt<0
problem

⇒
dβ/dt<0
selection ⇒

dtj/dt<0
solution ⇒

dε/dt<0
problem

⇒
dtr/dt>0
selection ⇒

dR/dt>0
solution ⇒

R∝ trtj
ε
εj
∝w0

result

(34)
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Initially we have the selection induced increase in net
energy (dε/dt > 0, eqn 21) that allows for a selection
increase in mass (dw/dt > 0, eqn 22). Among the vari-
ants with a similar larger than average body mass that
is favoured by this selection, it is the variant that has
life history traits that are correlated in such a way that
the physiological (frequency independent) replication
rate is invariant of mass, that is selected over variants
where the replication rate is declining with mass. Mass-
rescaling by metabolic trade-off selection is the selection
of these frequency independent trait correlations that
are induced by the more direct selection pressure on
mass.

From the physiological constraint of eqn 6 on net en-
ergy, metabolism and mass we find that the juvenile
period, that defines the time that is needed to grown an
offspring [tj = 1/(εj/w− w̃jβ)], is increasing (dtj/dt >
0) with mass as ∂tj/∂w = εj/w

2(εj/w − w̃jβ)2 > 0.
Then, from the reproductive constraint R = tr

tj
ε
εj

of

eqn 9 we have that the increased juvenile period implies
a lifetime reproduction and fitness decline (dR/dt < 0)
that is avoided by the selection for increased mass if
possible.

This selection conflict is solved in the third line of
eqn 34, by trait correlations for an allometric rescaling
where mass specific metabolism is declining with mass
(dβ/dt < 0). This will shorten (dtj/dt < 0) the juvenile
period [tj = 1/(εj/w − w̃jβ)] because a larger fraction
of the parental energy is then allocated to the growth of
the offspring at the cost of the energy that is burned by
the metabolism of the offspring. From the total energy
invested in an offspring (eqn 6), the expression for life-
time reproduction is R = trε

w(1+w̃jtjβ) . Hence, provided

that trε is constant, the selection conflict on mass is
cancelled when w̃jtjβ is invariant of mass; implying se-
lection for a mass specific metabolism that is inversely
proportional to the juvenile period βw ∝ 1/tj,w.

But as ε = αβ̇, we find that the net energy will
decline (dε/dt < 0) with the decline in mass specific
metabolism, and given R = tr

tj
ε
εj

this implies a decline

in lifetime reproduction and fitness because the parent
will no longer have the required energy available for re-
production. This selection conflict is solved on the last
line of eqn 34, by trait correlations that extend the re-
productive period (dtr/dt > 0) until it is proportional
with the juvenile period and inversely proportional with
mass specific metabolism. This leads to an increase in
lifetime reproduction (dR/dt > 0) that results in phys-
iologically invariant fitness

R ∝ tr
tj

ε

εj
∝ tr

tj
∝ ε

εj
∝ w0 (35)

that is selected by the selection for increased mass.
The evolutionary consequence of eqn 35 is a selec-

tion that trade-offs (dilates) the per generation time-
scale of natural selection in order to maintain net en-
ergy and fitness invariant of a selection increase in
mass. The result is an energetic state that is main-
tained constant in biotic time (ετ ∝ αβ̇β β̇wτβτw ∝ α,

with τβτw ∝ 1/β̇β β̇w) while it is declining in physi-

cal time (ε ∝ αβ̇β β̇w) with a decline in mass specific

metabolism with mass (βw ∝ wβ̂w , with β̂w < 0).
When the R ∝ w0 invariance is combined with the

population dynamic constraint pR = 1, we expect a
mass invariant survival

p ∝ w0 (36)

from a survival curve with age that is invariant in biotic
time, as expected for time scaling of intrinsic survival
(eqn 10). And when the ε/εj ∝ w0 invariance of eqn 35
is combined with the equation for the total energetic
investment in each offspring (eqn 6), we obtain the fol-
lowing energetic constraint

τw ∝ w/ε (37)

that defines the mass-rescaling component of biotic
time from the ratio of the selected mass over the se-
lected net energy.

This mass-rescaling is also including the optimal
density regulation of Section 2.3, because the three

density regulation components fe(nwβ), fι(nvh
d−1
d )

and fs(βh
1/d/v) are dependent on the traits that are

rescaled by the selection increase in mass. The result
is a trait covariance that is selected not only by the
constraints of the metabolic trade-off (eqns 35 and 37),
but also by the constraints of optimal density regula-
tion (eqn 19). And where it is the metabolic trade-off
selection that initiates the selection response to the evo-
lutionary changes in mass it is, as we will see in the next
sub-section, primarily the ecological geometry of opti-
mal density regulation that explains the actual values
of the allometric exponents.

3.1.2 Allometric deduction

In order to deduce the allometric exponents from the
selection conditions that we have already described, let
us use τ as the scaling parameter for all biotic periods
tx = τxτ , and exchange v with τw from eqn 15. Then,
insert power relations wx̂w for the different traits x ∈
{p, τ, ε, β, n, h} into eqns 5, 37, and 19 to obtain

τ̂w = −β̂w (38)
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a) Mass-rescaling as a function of d

ε̂ α̂ β̂w τ̂w p̂w R̂w r̂w ĥw n̂w
2d−1
2d

1 − 1
2d

1
2d

0 0 − 1
2d

1 1−2d
2d

b) Metabolic-rescaling as a function of β̂β

α̂ τ̂β p̂β R̂β r̂β ĥβ n̂β

1− β̂β −β̂β β̂β −β̂β β̂β 0 −β̂β

Table 1: Allometric rescaling. a) The predicted mass-
rescaling exponents (x̂w) of body mass (w) allometries
(x ∝ xβw

x̂w ) as functions of the spatial dimensions (d)
of the interactive behaviour. b) The predicted metabolic-
rescaling exponents (x̂β) of the mass-rescaling intercepts
(xβ = wx̂β ) as a function of the metabolic-rescaling expo-
nent for mass specific metabolism (β̂β). Symbols: ε:net
energy; α:resource handling; β:mass specific metabolism;
τ :biotic periods/time; p:survival; R:lifetime reproduction;
r:population growth rate; h:home range; n:population den-
sity.

τ̂w = 1− ε̂ (39)

τ̂w + n̂w + (d− 1)ĥw/d = 0 (40)

β̂w − τ̂w + ĥw/d = 0 (41)

n̂w + β̂w + 1 = 0 (42)

and the following invariance

R̂w = 0 (43)

p̂w = 0

from eqns 35 and 36.
Now, from eqns 42 and 38 we have n̂w = τ̂w − 1.

Insert this expression into eqn 40 and obtain 2τ̂w − 1 +
(d − 1)ĥw/d = 0, and exchange 2τ̂w with ĥw/d from

eqns 41 and 38 to obtain ĥw = 1. Then, from eqns 41
and 38 we have τ̂w = 1/2d and β̂w = −1/2d; and from
eqns 30, 39, and 42 that ε̂ = (2d − 1)/2d, α̂ = 1 and
n̂w = (1 − 2d)/2d. And with the population dynamic
growth rate in physical time being r = ln(pR)/tg we
have r̂w = −1/2d given pR ∝ w0.

These deduced mass-rescaling exponents are listed in
Table 1a. They are the same as those of the original
deduction in Witting (1995), except that the new de-
duction is more general as it explains also the exponent
for survival (p) and the inverse link between the repro-
ductive period and metabolism (τ ∝ 1/β).

One way to illustrate the evolutionary significance
of the mass-rescaling allometries is to plot the average
replication at the population dynamic equilibrium (pR)
as a function the potentially possible rescaling expo-
nents. This is done in Fig. 2, and it illustrates that it is

-1 -0.5 0 0.5 1

1

2

3

log w

pR

τ = −1/4.

τ = −1/8.

τ = 0.

τ = 1/8.

τ = 1/4.

τ = 3/4.

τ = 5/8.

τ = 1/2.

τ = 3/8.

*

Figure 2: The replication invariance. A theoretical
span (eqn 96) of the average per generation replication rate
(pR∗) in the population as a function of the selected mass
(w) for a range of potentially possible mass-rescaling expo-
nents τ̇ . It is only the exponent of the allometric solution
(τ̇ = 1/4) that maintains the life history in the required
balance where the average per generation replication rate at
the evolutionary optimum is one invariantly of mass. The
model behind the figure is given in Appendix C, and the
plot is for z = 0.1 for eqn 96, given 2D interactions where
ε̂ = 3/4.

only for the actual mass-rescaling of the allometric solu-
tion that natural selection can maintain the life history
in the required balance where the average per gener-
ation replication rate at the evolutionarily determined
population dynamic equilibrium is one invariantly of
mass.

3.2 Metabolic-rescaling

Let us now go beyond the mass-rescaling allometries
and consider the influence of variation in the mass-
rescaling intercepts as it evolves from pre-mass selec-
tion on metabolic pace. With mass specific metabolism
(β) being selected as the pace (β̇) of resource handling
(α), it is providing part of, or the complete, net energy
(ε = αβ̇) that is driving the evolution of mass, and it
is thus influencing the allometric scaling independently
of the mass-rescaling of the previous section.

The evolutionary increase in metabolism is causing a
metabolic-rescaling

d lnxβ
dτ

=
∂ lnxβ
∂ lnββ

d lnββ
dτ

(44)

that exists independently of the evolutionary changes
in mass. This rescaling affects rate related life history
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traits that are scaled by the increase in metabolic pace,
with subscript β denoting components that relate to
this pre-mass selection on metabolic pace. This rescal-
ing will transform log-linear selection relations

∂ lnxβ/∂ lnββ = x̌β (45)

into metabolic allometries

xβ ∝
∫
∂ lnxβ
∂ lnββ

d lnββ ∝ β
x̌β
β (46)

where, among others, increased mass specific
metabolism is shortening biotic time periods like
generation time and increasing the amount of resources
that the individual assimilates per unit physical time.
With the latter determining the selection pressure on
mass, it follows that the ∂ lnw/∂ ln ε relation of eqn 22
has a metabolic component

∂ lnw

∂ ln ε

∂ ln ε

∂ lnββ
(47)

where pre-mass selection on metabolic pace is generat-
ing net energy for the selection of mass. Given the log-
linear selection relation of eqn 23, and ∂ ln ε/∂ lnββ =

1 from ε = αβ̇, we find that primary selection on
metabolic pace selects mass as a partial function of
mass specific metabolism

wβ ∝
∫
∂ lnw

∂ ln ε

∂ ln ε

∂ lnββ
d lnββ ∝ β1/ε̂

β (48)

with the inverse
ββ ∝ wε̂β (49)

of the selection function being the component of the
post-mass allometry for mass specific metabolism that
evolves from pre-mass selection on metabolic pace.

Instead of dealing with mass as a joint parameter of
several sub-components, like w = wαwβ , I will express
the evolutionary dependence of mass on α and ββ , and
the more usual inverse allometric correlations, as func-
tions of total mass w. For this, let the dependence of w
on ββ that is captured by the allometry of eqns 48 and
49, be expressed by the following allometry

ββ ∝ wβ̂β (50)

Note that the relative dependence of total mass on mass
specific metabolism, as described e.g. by the wβ/w-
ratio, is expressed differently by eqns 49 and 50. In
eqn 49 we have an invariant exponent ε̂, with the de-
pendence of mass on mass specific metabolism being
captured by the wβ component that is directly depen-

dent on ββ . In eqn 50 it is instead the β̂β exponent that

will change as a function of the wβ/w ratio (eqn 29),
to make any given dependence of total mass w on ββ
consistent across the range of possible ββ values.

Now, if we insert eqn 50 into eqn 46, we find that
the metabolic-rescaling components of the life history
traits can be expressed by allometric relations of total
mass

xβ ∝ β
x̌β
β ∝ w

x̌β β̂β ∝ wx̂β (51)

with x̂β = x̌β β̂β .

3.2.1 Allometric deduction

To deduce the metabolic-rescaling exponents, from the
inverse relationship between pace and biotic time peri-
ods, we have

τ̂β = −β̂β (52)

And from ε̂ = (2d − 1)/2d, β̂w = 1/2d and the
ε ∝ αβββw constraint of eqn 28 that links net energy,
resource handling, and pace we have

α̂ = 1− β̂β (53)

From the invariant selection optimum of density reg-
ulation h∗∗ ∝ (v/β)d (eqn 18), and a foraging speed v =
v̄◦ββw

τ̂w that is defined by the mass-rescaling for lifes-
pan (wτ̂w) and the metabolism rescaling for metabolism
(ββ , eqn 15) we have [v̄◦ββw

1/2d/ββw
−1/2d]d = hβw

1

given τ̂w = 1/2d, β̂w = 1/2d and ĥw = 1. When solved
for the mass-rescaling intercept for the home range, we
find that it is an invariant intercept

ĥβ = 0 (54)

that maintains the population at the selection opti-
mum.

From the nvh
d−1
d ∝ w0 invariance of interference

competition (eqn 19), with v = v̄◦ββw
τ̂w we have

nβw
1−2d
2d v̄◦w

β̂βw
1
2dw

d−1
d ∝ w0 given n̂w = (1− 2d)/2d,

τ̂w = 1/2d and ĥw = 1. When solved for the mass-
rescaling intercept of abundance, we find that it is
a population density that scales inversely with the
metabolic intercept

n̂β = −β̂β (55)

that maintains a body mass invariant level of interfer-
ence competition in the population. This rescaling will
also maintain an invariant exploitation of the resource
(eqn 13), with an invariant use of energy by the popu-
lation.

If we turn to the population dynamic equilibrium
p trε/β̃w = 1 it implies pβw

p̂wτβw
τ̂w ε̄◦w

ε̂ ∝ w, given
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a) One dimensional interactions (ε̂ = 1/2)

β̂β α̂ β̂ τ̂ p̂ R̂ r̂ ĥ n̂

0 1 − 1
2

1
2

0 0 − 1
2

1 − 1
2

1
2

1
2

0 0 1
2
− 1

2
0 1 −1

1 0 1
2
− 1

2
1 −1 1

2
1 − 3

2

b) Two dimensional interactions (ε̂ = 3/4)

β̂β α̂ β̂ τ̂ p̂ R̂ r̂ ĥ n̂

0 1 − 1
4

1
4

0 0 − 1
4

1 − 3
4

1
4

3
4

0 0 1
4
− 1

4
0 1 −1

1
2

1
2

1
4
− 1

4
1
2
− 1

2
1
4

1 − 5
4

1 0 3
4
− 3

4
1 1 3

4
1 − 7

4

c) Three dimensional interactions (ε̂ = 5/6)

β̂β α̂ β̂ τ̂ p̂ R̂ r̂ ĥ n̂

0 1 − 1
6

1
6

0 0 − 1
6

1 − 5
6

1
6

5
6

0 0 1
6
− 1

6
0 1 −1

1
2

1
2

1
3
− 1

3
1
2
− 1

2
1
3

1 − 4
3

1 0 5
6
− 5

6
1 −1 5

6
1 − 11

6

Table 2: Theoretical allometries. Allometric exponents
(x̂) as they evolve from allometric rescaling given primary
selection on metabolism and mass. The exponents depend
on the dimensionality of the interactive behaviour (1D, 2D
or 3D), and on the β̂β exponent that describes the relative
importance of mass specific metabolism for the net energy
of the organism.

β̃ ∝ w0. With p̂w = 0, τ̂w = 1/2d, ε̂ = (2d− 1)/2d and
τβ ∝ 1/ββ we find that it is a survival mass-rescaling
intercept that is proportional to the metabolic intercept

p̂β = β̂β (56)

that maintains the balance of the population dynamic
equilibrium. This increased probability of surviving
to reproduce with a pre-mass increase in mass specific
metabolism reflects a decline in the mortality rate in bi-
otic time; a decline that may reflect a shortening of the
physical time period where the individual is exposed to
extrinsic mortality factors.

With R∗ = 1/p∗ it follows that the mass-rescaling
intercept of lifetime reproduction is inversely related
to the intercept of the metabolic rate per unit body
mass (R̂β = −β̂β), and from r = ln(pR)/tg we have

r̂β = β̂β . These changes in the mass-rescaling intercepts
from metabolic-rescaling are listed in Table 1b.

3.3 Final allometries

Given the deduced exponents in Table 1 for the allo-
metric rescaling with mass and metabolism we can cal-
culate the x̂ exponents of the final post-mass scaling of
the life history with mass for a variety of situations. I
list these exponents in Table 2 for interactive behaviour
in one, two and three spatial dimensions.

Apart from the home range exponent that is always
one, the exponents depend on the β̂β exponent that de-
scribes the relative importance of metabolic pace for net
resource assimilation and, thus, also for the selection of
mass. This implies a post mass exponent for mass spe-
cific metabolism (β̂) that increases with the relative im-
portance of metabolism for the evolution of mass. This
is illustrated in Table 2, where β̂ is 3/4 for 2D, 5/6 for
3D, interactions in the extreme cases where all of the
variation in ε, and thus also body mass, is caused by
variation in the pre-mass component of mass specific
metabolism (β̂β = 1). At the other extreme where all
the body mass variation is caused by variation in re-
source handling and/or resource availability (β̂β = 0),
the metabolic exponent takes the more well-known val-
ues of −1/4 (2D) and −1/6 (3D). For an intermediate
case with a similar importance of handling and pace
(β̂β = 1/2) we have 1/4 for 2D and 1/3 for 3D. The
cases where mass specific metabolism is independent of
mass (β̂ = 0) is also shown. The latter depends on
the spatial dimensionality of the interactive behaviour,
with β̂ = 0 for β̂β = 1/2d.

The majority of post-mass exponents are given as
fractions, where 2d is the common denominator, with
the most well-known set of allometric exponents for
large bodied species, i.e., the set with β̂ = −1/4, evolv-
ing for two dimensional interactions when all the vari-
ation in body mass is caused by variation in resource
handling/availability. This case has net energy that
scales to the 3/4 power of mass, biotic periods that
scales to the 1/4 power, population densities that scale
to the −3/4 power, and population growth that scales
to the −1/4 power of mass. The corresponding expo-
nents for one dimensional interactions are ±1/2, while
the ±1/4, and ±3/4, exponents are exchanged with
±1/6, and ±5/6, exponents for interactive behaviour
in three spatial dimensions.

4 Allometric evidence

In the evaluation of evidence in favour of my model I
will focus on the average and commonly observed em-
pirical exponents across the tree of life. With an un-
derlying mechanism that is based on ecological inter-
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actions, we can expect deviations from the predicted
exponents in some phylogenetic lineages and competi-
tive guilds. The model is however not currently devel-
oped to explain these deviations, and I will therefore
not consider deviating exponents in detail. The point
to make here is not that all empirical exponents resem-
ble the predicted; because this is expected not to be the
case. The point is instead whether the predicted expo-
nents and their transitions are commonly observed and
in general agreement with empirical data.

4.1 Prokaryotes

DeLong et al. (2010) estimated an allometric exponent
for mass specific metabolism of 0.96±0.18 across active
prokaryotes, and 0.72± 0.07 across inactive. Given the
theoretical allometries in Table 2, this indicates three
dimensional ecology with an average exponent of 0.84,
and body mass variation that evolves from primary
variation in mass specific metabolism.

4.2 Protozoa

Based on the data from Makarieva et al. 2008, DeLong
et al. (2010) estimated the average exponent across
the complete range of inactive protozoa to be −0.03
(±0.05), and that of active protists to be 0.06 (±0.07).
These exponents are smaller than the exponent for
prokaryotes and larger than the typical −1/4 and −1/6
exponents for multicellular animals.

By excluding the four smallest protozoa with ex-
ceptionally high metabolic rates from the data of
Makarieva et al. (2008), and by least-squares fitting
a third degree polynomial to the remaining data for
inactive protozoa (n = 48), I obtained point esti-
mates of the body mass exponent for mass specific
metabolism that declined from 0.61 across the small-
est [logw(kg) = −13.5], over zero across intermediate
[logw(kg) = −11], to a minimum of −0.20 among the
largest protozoa [logw(kg) = −8.0].

4.3 Multicellular animals

The often reported −1/4 exponent for mass specific
metabolism in multicellular animals indicates that a
major component of the body mass in this group is
selected from primary variation in the handling and/or
density of the underlying energetic resources.

4.3.1 Life history and ecological traits

For any group of organisms, it is the terrestrial ver-
tebrates that have been subjected to most allometric

x̂ 2D Reptiles Birds Mammals

β̂ -0.25 -0.24 -0.26 -0.26

τ̂ 0.25 0.23 0.18 0.25

p̂ 0.00 - 0.01 -

R̂ 0.00 - 0.00 -0.03

ĥ 1.00 0.95 1.16 0.99

n̂ -0.75 -0.77 -0.75 -0.78

Table 3: Empirical exponents for different traits. The
theoretical 2D exponents compared with empirical expo-
nents for reptiles, birds and mammals. From Witting (1997),

except τ̂ for reptiles from Calder (1984).

studies, and in Table 3 I show the predicted 2D ex-
ponents for the case of Kleiber scaling, together with
some of the commonly observed exponents in mam-
mals, reptiles and birds. It can be concluded that
a reasonable resemblance exists between the theoreti-
cal and empirical exponents across traits ranging from
metabolism, lifespan, survival and reproduction over
population growth to ecological traits like the home
range of individuals and the densities of populations.

4.3.2 2D versus 3D

Another essential prediction is the transitions in the
allometric exponents across species that differ in the
spatial dimensionality of their interactive behaviour.

To examine the evidence for these transitions, I have
in Table 4a listed allometric exponents for mass specific
metabolism (β̂) across the species of major taxonomic

groups, with the empirical β̂ estimates being used to
classify the taxa as having behavioural interactions in
2D or 3D (assuming that β̂β = 0). Most of these expo-
nents are either the average exponent, or the exponent
based on the largest sample size, from the tables in Pe-
ters (1983). I found no convincing 1D cases, but the
exponents for mass specific metabolism are in general
agreement with the hypothesis that they evolve from
the underlying spatial dimensionality of intra-specific
interactions.

The interactions of most terrestrial and benthic taxa
are classified as 2D, and those of pelagic and tree liv-
ing taxa as 3D. This overall separation is likely to re-
flect that most terrestrial and benthic animals are con-
strained to behavioural interaction in the two horizontal
dimensions, while pelagic and tree living species have
an extra vertical dimension in which to forage and in-
teract.

With the available data the differentiation in the
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a) β̂ exponent classification

Group 2D 3D

Mammals (all)a,1 −0.26± 0.01

Pelagic mammalsb −0.16± 0.02

Primatesc −0.19± 0.03

Batsa −0.26

Birdsa,1 −0.26± 0.01

Reptilesa,2 −0.24± 0.02

Snakesa,3 −0.26± 0.04

Lizardsa,2 −0.18± 0.02

Turtlesa,2 −0.14± 0.03

Frogsa,2 −0.29

Salamandersa,1 −0.18± 0.02

Fishesa,3 −0.20± 0.01

Molluscsa −0.25

Jellyfishesa −0.15

b) 2D - 3D transitions

d β̂ τ̂ n̂

2D −0.26± 0.02 0.25± 0.04 −0.79± 0.09

3D −0.17± 0.02 0.16± 0.02 −0.86± 0.08

Table 4: Empirical 2D and 3D allometries. a): Taxa
classified as 2D or 3D from estimates of the β̂ exponent
(±SD). b): Exponents for 2D - 3D transitions: β̂, as defined
by the average exponents of Table a; τ̂ , terrestrial versus
pelagic mammals (Nowak, 1991); n̂, 2D-3D classification
and exponents from Pawar et al. (2012). a:Peters (1983)

[1:estimate with largest sample size; 2:average estimate; 3:average

estimate, but −1 outlier]; b:β̂ = −τ̂ , Nowak (1991); c:Genoud

(2002).

allometric exponents is maybe clearest in mammals,
that are dominated by ground living 2D species and an
overall exponent for field mass specific metabolism of
−0.25± 0.03 (Savage et al. 2004). Yet pelagic taxa like
Cetacea, Pinnipedia and Sirenia have a 3D exponent of
0.16 ± 0.02 for lifespan (Witting 1995), and primates,
where the majority of species are tree-living, are also
classified as 3D with an exponent of −0.19 ± 0.03 for
mass specific metabolism (Genoud 2002).

Other plausible 2D-3D classifications of interactions
from the exponent of mass specific metabolism include
reptiles, snakes, frogs and mollusks as 2D, and fishes,
jellyfishes and salamanders as 3D (Table 4a). However,
there are also a few less evident cases. Why, e.g., do
birds and bats group as 2D? Although birds and bats
move freely in 3D, it is most likely the packing of their
breeding and/or feeding territories that are essential

for the evolution of the allometric exponents, and this
packing is 2D in many, if not most, cases. A splitting
of birds and bats into those that compete for territo-
ries and food in 2D and 3D would be desirable, but
beyond this study that is based on empirical literature
estimates of allometric exponents.

The dimensionality estimates of the intra-specific in-
teractions from metabolic exponents in lizards, snakes,
reptiles and turtles might also benefit from a split into
2D (e.g., ground) and 3D (e.g., tree or pelagic) living
species, with the reported exponents reflecting 3D for
lizards and turtles, and 2D for reptiles and snakes.

The split between 2D and 3D interactions has been
observed not only in the exponent for mass specific
metabolism, but also in exponents for lifespan and pop-
ulation density (Table 4b), and it seems to relate also to
allometries of community ecology (Pawar et al. 2012).

4.3.3 Invariant interference

Interaction levels have hardly been reported for any
species, but evidence for or against the existence of
invariant interference competition among large bodied
species may be examined by a comparison of empirical
allometries. From eqn 16 we expect a level of interfer-

ence that is proportional to nvh
d−1
d , with v = v̄◦ββw

τ̂w

(eqn 15). Concentrating on two dimensional foraging

with β̂β = 0 we find a level of interactive competition
that scales as

ι∗ ∝ wn̂+τ̂+ĥ/2 (57)

Across 2D species in major taxonomic groups ĥ is
usually approximately 1, τ̂ approximately 1/4, and
n̂ around -3/4 (Table 4c; Peters 1983; Calder 1984;
Damuth 1987; Nee et al. 1991; Witting 1995). From
the exponents in Table 4c we find that ι∗ ∝ w−0.035

for mammals, ι∗ ∝ w0.01 for birds, and ι∗ ∝ w−0.065

for reptiles. The theoretically deduced invariance with
respect to body mass is not contradicted by data.

4.3.4 Mass-rescaling intercepts

Evidence on the scaling of the intercepts of the tradi-
tional mass-rescaling allometries with Kleiber scaling is
not as clear as for the mass-rescaling exponents. But
with ectotherms having field metabolic rates that are
12 to 20 times smaller than in similar sized endotherms
(Nagy 2005), from Table 1b we expect ectotherms to
have longer lifespans and to be more abundant than
similar sized endotherms, and this is generally the case
(Peters 1983; Currie and Fritz 1993; de Magalhães et
al. 2007). The predicted inverse relationship between
lifetime reproduction and the mass-rescaling intercept
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for mass specific metabolism is also in agreement with
fecundity estimates that are about ten times higher in
reptiles than in mammals (Peters 1983) reflecting, as
predicted, a higher probability to survive to reproduce
in mammals.

5 Discussion

In this paper I added primary selection on metabolism
to the ecological selection model of Witting (1995), and
showed that the joint selection of metabolism and mass
can explain a wide range of allometric exponents that
are observed across the three of life.

5.1 Mass specific metabolism

For this I separated the resource assimilation param-
eter of the original model into resource handling and
the pace of handling. This pace generates gross energy,
and by defining net energy as the difference between
gross energy and the total metabolism of the organism,
I found the mass specific work of handling to be selected
as mass specific metabolism. This implies primary se-
lection for an increase in mass specific metabolism, and
this generates the net energy that is a pre-condition for
the selection of mass and body mass allometries.

Given the importance of metabolism for animals
(e.g., Lotka 1922; Pearl 1928; Maynard Smith and Sza-
thmáry 1995; Brown et al. 2004) it is somewhat sur-
prising that the metabolic rate has been the forgotten
life history character, with not even a single model on
its selection in seven review books on life history evolu-
tion (Charlesworth 1980, 1994; Roff 1992, 2002; Stearns
1992; Bulmer 1994; Stearns and Hoekstra 2000; but see
Witting 2003; Barve et al. 2014; Artacho and Nespolo
2009; Boratyński et al. 2010; Versteegh et al. 2012).

The evolution of metabolism has instead been stud-
ied as a molecular process in relation to the origin of life
(Horowitz 1945; Miller 1953; Haldane 1954; Oparin and
Clark 1959; Ponnamperuma and Chela-Flores 1993;
Chela-Flores et al. 1995; Baltscheffsky 1996; Cunchillos
and Lecointre 2003; Ferry and House 2006; Melendez-
Hevia et al. 2008; Fernando and Rowe 2007, 2008; Fry
2011; Marakushev and Belonogova 2013). And it has
been examined empirically, where metabolism in nat-
ural species is linked to a range of extrinsic factors
like temperature (e.g., McNab and Morrison 1963 Love-
grove 2003; Wikelski et al. 2003; Careau et al. 2007;
Jetz et al. 2007; White et al. 2007), primary produc-
tion (Mueller and Diamond 2001; Bozinovic et al. 2007,
2009), rainfall (Lovegrove 2003; Withers et al. 2006;
White et al. 2007), and diet (McNab 2003; Anderson

and Jetz 2005; Muñoz-Garcia and Williams 2005). Fit-
ness components like survival and reproduction have
also been found to correlate with metabolism in a wide
range of species (see e.g. Table 4 in White and Kearney
2013), and these correlations tend to indicate a stabi-
lizing selection (Artacho and Nespolo 2009; White and
Kearney 2013). This suggests that natural species are
optimized towards some central metabolic value that is
given by the current evolutionary state of the species in
a given environment. Yet, the study of empirical fitness
correlations with metabolism is insufficient in itself as it
does not reveal the underlying selection of the attract-
ing metabolic rate.

Another widespread view is that of metabolic ecology
(Brown et al. 2004; Sibly et al. 2012; Humphries and
McCann 2014; Padfield et al. 2016), where metabolism
is seen to determine the rate at which the organism
assimilates, transforms and expends energy. Instead of
formulating this as a life history trait that is selected by
natural selection, metabolic ecology treats metabolism
as a passive physical parameter (Glazier 2015) that
is determined by temperature and the geometry and
physics of resource transportation networks (West et
al. 1997, 1999; Gillooly et al. 2001). While metabolism
is indeed essential for the pace of physiological and eco-
logical processes, and while physical factors may con-
strain the metabolic rate, metabolic ecology is insuffi-
cient in itself because there are no physical laws that
will explain the elevated rates of metabolism in mo-
bile organisms in general, and in birds and mammals in
particular.

In this paper, I showed theoretically that mass spe-
cific metabolism is likely to be selected as the life his-
tory character that determines the pace of the net re-
source assimilation that generates net energy for self-
replication and the selection of mass. This provides
an overall direction where unconstrained selection is
generating an exponential increase in mass specific
metabolism and the net energy of the organism. Asso-
ciated with this increase there is a metabolic rescaling
of the rate dependent life history characters, and this
rescaling is affecting the body mass allometries because
the selected mass is dependent on the energy that is
generated from the selected increase in mass specific
metabolism.

5.2 Mass-rescaling selection

The well-known 1/4 exponents of Kleiber scaling, how-
ever, was found to be selected by a mass-rescaling re-
sponse to the evolutionary changes in mass. While im-
plicit in my original allometric model (Witting 1995),
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the first formal description of mass-rescaling selection is
presented in the current paper. This selection emerges
from the energetic trade-off between mass, metabolism
and the time that it takes to grow a full-sized offspring,
and it selects for a secondary decline in mass specific
metabolism as a response to an increasing mass.

With an increasing mass, reproduction will decline
as it takes longer to grow larger offspring when the rate
of mass specific metabolism is the same. But the re-
productive rate can be maintained if metabolism is re-
duced so that more of the parental energy is allocated
into the mass of the offspring. This selection, however,
goes not only contrary to the pre-mass selection for in-
creased pace, but the selection is also dependent upon
the organism energy that is generated by the pre-mass
selection and, thus, it cannot just reduce the metabolic
pace as this would eliminate the net energy that gen-
erates the selection. The evolutionary solution is an
inverse scaling between mass specific metabolism and
biotic time periods, as this will maintain organism en-
ergy, reproduction and metabolic pace constant on the
per generation time-scale of natural selection, while the
three traits are declining in physical time with an evo-
lutionary increase in mass.

While it is the energetic trade-off between mass,
metabolism and time that makes metabolism and bi-
otic time periods respond to the evolutionary changes
in mass, it is primarily the ecological geometry of op-
timal density regulation that was found to determine
the actual values of the response as defined by allomet-
ric exponents. The mass induced changes in metabolic
pace and biotic time is affecting the foraging process,
and consequently the selection for a home range that
satisfies the conditions of optimal density regulation.
The dependence of interactive competition and local
resource exploitation on the spatial dimensionality (d)
of organism behaviour is then transferred by the se-
lected density regulation optimum to the values of the
allometric exponents, with the 1/4 exponent being the
2D case of the more general 1/2d.

5.3 Diverse allometries

While mass-rescaling selection was found to be respon-
sible for the evolution of the often observed Kleiber
scaling, it was also found that a broader understanding
of allometries is dependent on the inclusion on primary
selection of metabolic pace.

The −1/4 exponent of Kleiber scaling was found to
be restricted mainly to the taxa of multicellular ani-
mals that evolve masses from intra-specific interactions
in two spatial dimensions, when these taxa diversity by

species that evolve into a multitude of ecological niches.
Such a diversification will allow the pre-mass variation
in resource handling and resource availability to dom-
inate pre-mass variation in metabolic pace, with the
result that post-mass allometries evolve primarily from
mass-rescaling with a −1/4 exponent. The correspond-
ing 3D exponent is −1/6, and the −1/4 ↔ −1/6 tran-
sition is observed quite commonly between terrestrial
and pelagic taxa (Table 4a).

A body mass invariance of mass specific metabolism
across major taxa from prokaryotes to mammals
(Makarieva et al. 2005, 2008; Kiørboe and Hirst 2014)
was instead explained by a macro evolution where nat-
ural selection has taken mass specific metabolism to an
upper bound of the evolved metabolic pathways.

An average exponent around 0.84 for mass specific
metabolism across the masses of prokaryotes (DeLong
et al. 2010) is consistent with 3D selection and body
mass variation that is selected primarily from variation
in the pre-mass component of mass specific metabolism.

And an observed decline in the exponent for mass
specific metabolism from 0.61 over zero to −0.20 in pro-
tozoa (Section 4.2) is predicted by a gradual change in
the natural selection of mass; suggesting that the mass
of the smallest protozoa is selected from primary varia-
tion in mass specific metabolism, while the mass of the
largest is selected from primary variation in the han-
dling and/or density of the underlying resource.

These results indicate that unicellular protozoa may
evolve as a continuum that spring from the selection
mechanism in prokaryotes (where mass is selected from
primary variation in mass specific metabolism), and un-
dergoes a gradual change with an increase in mass to-
wards the selection mechanism in multicellular animals
(where mass is selected from primary variation in the
handling and/or density the underlying resource). This
apparent shift in the natural selection of mass across the
tree of life is studied by Witting (2016a), who shows
that lifeforms from virus over prokaryotes and larger
unicells to multicellular animals follow as a unidirec-
tional unfolding of the allometric model that I have
proposed here.

Inter-specific exponents that are observed across nat-
ural species may nevertheless differ from the predic-
tions. As the predicted exponents evolve from the
spatial dependence of density regulation on traits like
metabolism, foraging speed, home range, population
density and mass, it is only natural to expect some vari-
ation in the exponents. While the base-case description
in Section 2.3 of this spatial density dependence appears
to be representative for the average exponents across a
broad range of mobile organisms, we would expect some
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variation in the density dependent ecology and this may
result in deviating allometric exponents.

Reasons for exponents that deviate from the predic-
tions in this paper may include inter-specific interac-
tions that bias the resource distribution with mass in
local communities (Brown and Maurer 1986; Nee et al.
1991) away from the invariance that applies at scales
where the competitive effects from inter-specific inter-
actions are minimal. Inter-specific interactions may
also alter the optimum of the density dependent for-
aging behaviour, with possible deviations in the allo-
metric exponents. Small islands, let it be real islands
or habitat islands on a mainland, may limit the size
of home ranges causing deviations in allometric expo-
nents. Finally, the deduction in this paper assumes
some invariance in the life history, and is therefore not
strictly valid across gradients where, e.g., the age of ma-
turity is correlated with mass when measured in biotic
time. Empirical examples of inter-specific exponents
that deviate from the expected can be found in the ta-
bles of Peters (1983), and they are discussed by McNab
(1988, 2008), Lovegrove (2000), Glazier (2010, 2015),
Kolokotrones et al. (2010) and others.

5.4 Parsimonious evolution

The proposed selection was elaborated from the forag-
ing ecology in one of the earliest deductions of allo-
metric exponents (Witting 1995), and it explains allo-
metric exponents from primary selection on metabolism
and mass. Yet, the more widespread view has seen
the metabolic exponent as a mechanical or evolution-
ary consequence of physiological constraints. Let it be
from a surface rule in four spatial dimensions (Blum
1977), resource uptake and use at cell or body sur-
faces (Davison 1955; Patterson 1992; Makarieva et al.
2003), tissue demands for resources (McMahon 1973;
Darveau et al. 2002), resource demand with cellular
and demographic constraints (Kozlowski and Weiner
1997; Kozlowski et al. 2003a,b), resource demand and
exchange (Sibly and Calow 1986; Kooijman 2000; Ba-
navar et al. 2002a,b), geometric constraints on resource
transportation systems (West et al. 1997, 1999a,b; Ba-
navar et al. 1999; Dodds et al. 2001; Dreyer and Puzio
2001; Rau 2002; Santillán 2003), thermodynamic con-
straints at the molecular level (Fujiwara 2003), quan-
tum mechanical constraints on proton and electron flow
in metabolic pathways (Demetrius 2003, 2006), eco-
logical metabolism constrained by physical limits on
metabolic fluxes across surface-areas in relation to vol-
ume dependent resource demands (Glazier 2005, 2010),
or from scaling in the four dimensions of space and time

(Ginzburg and Damuth 2008).
As none of these alternative models explain how nat-

ural selection generates the evolution of the required
co-existence of mass and metabolism, they fail to ex-
plain the span of organisms that are a pre-condition for
the existence of allometries. Several of the studies have
though identified empirical 1/4 exponents for diverse
physiological processes, and this may illustrate just how
deep into the physiology the ecological constraints of
optimal density regulation is selected. Resource trans-
portation networks, e.g., are selected to supply the or-
ganism with energy. One potential solution is a fractal
network of branching tubes (West et al. 1997) that can
easily be adjusted to comply with a -1/4 exponent that
is selected by the ecological geometry of foraging (Wit-
ting 1998).

Appendix

A Life history

The conservation of energy is constraining the possible
trait space of the life history (e.g., Charlesworth 1980;
Roff 1992, 2002; Stearns 1992; Bulmer 1994; Stearns
and Hoekstra 2000), with some of the more essential
constraints and trade-offs being described in this sec-
tion.

A.1 Biological time

To include time in this conservation, let the age of
maturity (tm, age of first reproductive event in phys-
ical time) divide the potential lifespan (tl) into a ju-
venile period (tj from age 0 to tm) and a reproduc-
tive period (tr from tm to tl). The generation time
may then be seen as the average age of reproduc-
tion tg =

∫ tl
tm
tm lt dt/

∫ tl
tm
mlt dt =

∫ tl
tm
t lt dt/

∫ tl
tm
lt dt,

given a constant reproductive rate m over the repro-
ductive period, and the probability lt =

∏t−1
0 pt that

an individual will survive to age t, with pt being the
probability to survive from age t to age t+ 1.

As mass specific metabolism is selected as the pace of
the biochemical, physiological and ecological processes
of resource assimilation, we can follow Pearl (1928) and
others like Brody (1945), Hill (1950), Stahl (1962) and
Calder (1984), and consider biological time as inversely
related to mass specific metabolism,

τ = tg = t̃g/β̇ (58)

with τ being the per generation time-scale of natural
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S Basic relations Description

β β = βββw Mass specific metabolism; SI unit J/gs

β̇ β̇ = β/Ẇ Metabolic pace in physical time; SI unit 1/s

Ẇ Mass specific work from one joule used per gram; SI unit J/g

w ∂ lnw
∂ ln ε

= 1/ε̂ Body mass. w:minimum; wβ :β-dependent minimum; SI unit g or J

x x = x̄◦wx̂, x̂ = x̂β + x̂w Allometry for trait x. x̄◦:intercept; x̂:exponent.

xβ xβ = wx̂β Metabolic-rescaling allometry.

xw xw = wx̂w Mass-rescaling allometry.

d Spatial dimensions of interactive behaviour. 1D, 2D & 3D.

t Physical time, SI unit s

τ τ = tg = t̃g/β̇ Biotic time in generations

tx tx = τxτ, x : l, g,m, j, r l:lifespan, g:generation, m:maturity, j:juvenile & r:reproductive period in t.

τx τx = tx/τ, x : l, g,m, j, r l:lifespan, g:generation, m:maturity, j:juvenile & r:reproductive period in τ .

ψ Fitness cost gradient per unit interference across body mass variants.

∗ Superscript for population dynamic equilibrium.

∗∗ Selection attractor superscript; see Table 2 for details.

σ2
lnw Additive heritable variance of a trait, here w on log scale.

ρ ρ = fρu Realised resource availability. ρu:unexploited resource.

f f = fefιfs Density regulation by exploitation (fe), interference (fι) & self-inhibition (fs).

ι ι∗∗ = 4d−1
2d−1

1
ψ
, ι∗∗ = 1

ψ
Log intra-specific interference, ι = ln I. ι∗(wβ):β-dependent maximum.

ε ε = αβ̇ Net assimilated energy (energetic state), per unit t.

εg εg = ε+ βw Gross assimilated energy.

α α = α̈ρ∗∗ Handling of net resource assimilation. α̈:intrinsic handling.

rx rx = d ln x
dτ

, x :α, ββ , ε, w Per generation exponential increase in α, ββ , ε & w. rε=rα+rββ ; rw=rε/ε̂.

wj wj = τ−1
j

∫
τj
wτdτ Average mass of an offspring during the juvenile period. w̃j = wj/w.

p p = R0/R Probability to survive to reproduce.

m m = ε/β̃w Reproductive rate in physical time.

R R = trm, R∗ = 1/p∗ Lifetime reproduction.

R0 R0 = pR Expected lifetime reproduction.

λ λ = pR, λ∗ = 1 Per generation population dynamic growth rate.

r r = lnλ, r∗ = 0 Per generation exponential increase in population.

β̃ β̃ = 1 + w̃j τ̃j Invariant scaling of reproduction for offspring metabolism.

n Population density in d dimensions.

h Home range in d dimensions.

v v = v̄◦ββw
v̂ , v̂ = τ̂ Foraging speed in physical time.

Table 5: Symbols (S) with basic relationships.

selection, and t̃g an invariant scaling between genera-

tion time and metabolic pace (β̇). The relation between
a period x, or age, of an organism in physical (t) and
biotic time (τ) is thus

tx = τxτ (59)

with τg = tg/τ = 1.

A.2 Energy, metabolism and mass

To formulate the energetic trade-off between
metabolism and mass, let the body mass (w) be

defined by all the biochemical energy that it takes
to build the mass. That is, let it be the biochemical
energy of the matter that forms the mass, plus the
energy that is used by anabolic metabolism to build
the organism from smaller molecules.

Given complete parental investment, we have that
the average mass of an offspring (wj) during the juvenile
period (tj) where it is reared by the parents is

wj =
1

tj

∫ tm

0

wt dt (60)

The total energetic investment in each offspring is then
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the final adult mass w of the offspring at the time of in-
dependence, plus the energy wjtjβ that is metabolized
by the offspring during the juvenile period

εjtj = w + wjtjβ = w(1 + w̃jτjτβ) = β̃w (61)

where εj is the energetic investment in the offspring per
unit time, and

β̃ = 1 + w̃jτj (62)

is invariant for invariant τj and w̃j = wj/w. The to-
tal investment in each offspring is then reducing to a
quantity that is proportional to mass and independent
of mass specific metabolism.

The anabolic energy that is used to build the off-
spring is supplied by the net energy (ε) of the parent,
and it is defined here to be part of the mass (w) of the
offspring, instead of being part of the metabolism (β)
of the offspring.

A.3 Reproduction

The energetic constraint on reproduction is described
by a quality-quantity trade-off where the parent is con-
strained to produce many small, or a few large, off-
spring. With ε being the energy available for repro-
duction, the reproductive rate on the time-scale of the
juvenile period is mtr = ε/εj . Yet, with the total en-
ergetic investment in each offspring being defined by
eqn 61, the reproductive rate in physical time

m = ε/εjtj = ε/β̃w (63)

is proportional to the net energy and inversely propor-
tional with mass, with total lifetime reproduction

R = trm =
tr
tj

ε

εj
=
τr
τj

ε

εj
(64)

being constrained by the τr/τj and ε/εj ratios.

A.4 Survival

As the expected lifetime reproduction of a new-born is

R0 = m

∫ tl

tm

lt dt (65)

we find that the probability that a new-born individual
will survive the complete reproductive period is

p =
R0

R
=

1

tr

∫ tl

tm

lt dt (66)

For this relation we note that when the lt function is
invariant in biotic time, i.e., when lt/tr is invariant, it

follows that the
∫ tl
tm
lt dt integral reduces to cltr where

cl, and thus also p, are invariant. This is our base-
case expectation if survival is determined entirely by
intrinsic processes. On top of this there is extrinsic
mortality, and if this is about constant in physical time
we might expect p to be more or less inversely related
to tr with more individuals dying before they reach a
given age in biotic time.

B density regulation

Some of the most essential constraints for the evolution
of the allometric exponents are imposed by the ecolog-
ical geometry of the density dependent foraging and
interactive competition that is regulating the dynamics
of the population. This was first described by Witting
(1995), and his model is given here in a more general
version.

The potential importance of density dependence for
life history evolution has been realized since MacArthur
(1962); first with the verbal formulation of r and
K selection (Pianka 1970; Stearns 1976, 1977; Parry
1981), and then with its more formal mathematical the-
ory (Anderson 1971; Roughgarden 1971; Charlesworth
1971; Clarke 1972), with frequency independent selec-
tion for an increase in r or K, as noted by Fisher (1930)
when he formulated his fundamental theorem of natural
selection (Witting 2000a, 2002b).

It was found later that the incorporation of the fre-
quency dependent interactive behaviour is essential for
a general understanding of density dependent selection
(e.g. Abrams and Matsuda 1994; Mylius and Diekmann
1995; Metz et al. 1996; Witting 1997; Heino et al. 1998;
Gyllenberg and Parvinen 2001; Dercole et al. 2002;
Dieckmann and Metz 2006).

B.1 The overall regulation

To formulate this regulation, let net energy ε = αβ̇ =
α̈β̇ρ∗∗ be defined for the realized resource density (ρ) in
a population that has evolved to the relevant selection
attractor for mass (e.g., ∗∗). The density regulation of
net resource assimilation may thus be given by ερ/ρ∗∗,
with ρ being the density (n) regulated f(n) resource

ρ = ρuf(n) (67)

that declines monotonically from ρu to zero as n in-
creases from zero to infinity, with ρu being ρ at the
lower limit n ≈ 0, assuming no depensation. The equi-
librium abundance

n∗ = n∗(ru) = f−1 (1/λu) (68)
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is constrained by the λ∗ = ptrε/β̃w = 1 relation of
eqn 11 where ε = εuf(n), and it increases monoton-
ically with the maximal growth rate ru = lnλu =
ln(p trεu/β̃w), with εu = ερu/ρ

∗∗.
As an approximation of density regulation in the sur-

roundings of the equilibrium I assume log-linearity

f(n) = f̄n−γ , (69)

where f̄ is a constant, and

n∗ =
(
ε̃uf̄/w

)1/γ
= c λ1/γ

u (70)

the equilibrium with ε̃u = ptrεu/β̃ and c = f̄1/γ .
Let the regulation function f be a joint function of

three sub-components

f = fefιfs (71)

where fe is regulation by exploitative competition, fι is
regulation by interference competition, and fs is local
resource exploitation by self-inhibition. Self-inhibition
is not density regulation in itself, but it is needed for the
evolution of a realistic density regulation (Section B.5).

B.2 Exploitative competition

Density regulation by exploitative competition occurs
through the reduction in resource density caused by the
consumption of resources by the population. And with
the energy that is used by the juvenile component (nj)
being supplied by the parental generation (na = n −
nj), it is a function of the gross resource consumption
(eqn 2) of the adult component

naεg = nawβ + naε (72)

= nawβ + nj(wβw̃j + w/tj)

= nawβ + nj(wβ − wβ + wβw̃j + wβ/τj)

= nwβ[1 + ñj(w̃j − 1 + 1/τj)]

where the net energy of the adult component (naε) is
used by the juvenile component (eqn 61) for metabolism
(njwβw̃j) and mass (njw/tj), with ñj = nj/n.

As it is reasonable to assume that ñj , w̃j and τj are
invariant of mass, we obtain

ρe = ρufe(nwβ) (73)

as a general expression of the exploitation function,
with fe declining monotonically from one to zero as
nwβ increases from zero to infinity, and ρe being the
density of the exploited resource. The resource density
ρe is different from the realized resource ρ = ρuf =

ρefιfs, as the latter refers to the resource component
that can effectively be exploited after the cost of inter-
ference and local exploitation.

As an approximation in the surroundings of n∗ I use

fe ∝ (nwβ)−γe (74)

with γe being the density regulation parameter of ex-
ploitative competition.

B.3 Interactive competition

Density regulation by interactive competition reflects
the costs of interference, with the cost to an individ-
ual including both the cost of losing access to resources
that are controlled by competitively superior individu-
als, and the cost of using time and energy on competi-
tive interactions with other individuals.

Where it is the bias in the cost of interference across
the individuals in the population that is essential for
interactive selection, it is the average cost that is essen-
tial for density regulation. This regulation is broken up
into two components, the density dependence function

eι = I = gι

(
nvh

d−1
d

)
(75)

that determines the level of interactive competition, on
ordinary (I) and log (ι = ln I) scale, from, among oth-
ers, the density of the population, and the regulation
function

fι(I) (76)

that declines monotonically from one to zero as I in-
creases from zero to infinity.

To identify the nvh
d−1
d component of eqn 75 we note

that the frequency of competitive encounters per in-
dividual is expected to be proportional to the degree
of overlap between the home ranges of the individuals
in the population, times the frequency by which the
individuals reuse the foraging tracks within the home
range. It is this frequency that defines how often the
individuals will meet in overlapping areas.

Home range overlap may be defined as the average
home range (h) divided by the per capita availability
of space, which is proportional to 1/n; the inverse of
population density. Hence, overlap is proportional to
nh.

The time between reuse of foraging tracks is the
length of the tracks divided by the foraging speed (v).
Given d-dimensional foraging, the length of the forag-
ing tracks is expected to be proportional to the dth root
of the home range, as empirically confirmed for mam-
mals (Garland 1983; Calder 1984). Hence, the interval
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between track reuse scale as h1/d/v. Multiplying the
frequency of track reuse (v/h1/d) with home range over-
lap (nh) we find the level of interference competition
(eqn 75) to increase monotonically from zero towards

infinity as nvh
d−1
d increases from zero to infinity.

The interference of eqn 75 applies when the in-
teractive behaviour of the individuals in the popula-
tion is unaffected by the resource density ρe. While
this may be expected for low energy organisms with
a passive interactive behaviour, the level of interfer-
ence in populations of high energy organisms might
be inversely related to the underlying resource density

[I = gι

(
nvh

d−1
d /ρe

)
] given that the individuals fight

more often over resources when these are limited.
Foraging speed has been found to be proportional to

lifespan and other organism periods on the body mass
axis across species (Garland 1983; Calder 1984), with
mechanistic explanations provided by Calder (1984).
We expect also that foraging speed reflects metabolic
pace, suggesting that the allometric intercept of for-
aging speed is proportional to the intercept of mass
specific metabolism. Given these relations, we defined
foraging speed as

v = v̄◦ββτw (77)

As an approximation in the surroundings of n∗, I use

ι ∝ γι ln
(
nvh

d−1
d

)
, (78)

and

fι ∝ I−µ ∝ e−ιµ ∝
(
nvh

d−1
d

)−γιµ
(79)

where γι is the density dependence of interference, and
µ the average cost. Then, by inserting eqn 70 into
eqn 78 we find the level of interference competition at
the population dynamic equilibrium

ι∗ = (γι/γ) ln(ε̃0/w), (80)

with ε̃0 = ε̃uf̄
(
vh

d−1
d

)γ
. This level declines monoton-

ically with w, with ι∗ = (γι/γ) ln(ε̃0/w) defining the
maximum from an average minimum mass w.

B.4 Local resource exploitation

The resource assimilation of an individual is also influ-
enced by the local resource exploitation of the individ-
ual itself. The availability of food along the foraging
tracks of the individual is expected to be proportional
to the time interval between the individuals reuse of for-
aging tracks, with longer intervals allowing more time

for resource re-growth and/or dispersal into the area.
Above we expressed this interval as h1/d/v.

But foraging self-inhibition by local resource ex-
ploitation is a relative term, relative to the frequency
of re-harvesting when foraging tracks are infinitely long
and never reused by the individual itself. In this case,
re-harvesting is occurring because of the overall re-
source exploitation from all the individuals in the pop-
ulation, with a frequency that is expected proportional
with biotic pace (β). When scaled accordingly we find
self-inhibition expressed as

fs = fs(βh
1/d/v), (81)

where fs is a downward bend function that increases
monotonically from zero to one as the home range in-
creases from zero to infinity.

As an approximation in the surroundings of an evo-
lutionary equilibrium (Section B.5) I use

fs ∝ cs − (βh1/d/v)−γs (82)

where cs is a scaling constant and γs the strength of
self-inhibition. And for the density regulation approx-
imation f(n) = f̄(n)−γ , from eqns 74, 79, and 81 we
have

γ = γe + γιµ (83)

and

f̄ = (wβ)
−γe

(
vh

d−1
d

)−γιµ
zfs (84)

where z is a scaling parameter.

B.5 Selection of density regulation

Natural selection on the exploitative component of den-
sity regulation occurs through selection on the net as-
similation of energy. This represents the ability of the
organism to exploit resources, and it is covered by Sec-
tion 2.3.

Relating to regulation by interactive competition

[fι(nvh
d−1
d )] we note that, when this component is

considered in isolation, we expect selection for home
ranges that are so small that there are no interactions
between individuals and no cost of interference. This
does not coincide with natural conditions where inter-
actions between individuals are common. Interactions,
however, are expected because local resource exploita-
tion [fs(βh

1/d/v)] is counteracting interference, as it
increases with a decline in home range. In fact, if we
were only considering local resource exploitation, we
would expect selection for infinitely large home ranges
with no self-inhibition.
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When the joint regulation fι(nvh
d−1
d )fs(βh

1/d/v) of
the two functions are considered together, we have that
fιfs is increasing initially around h ≈ 0 where fι is
flat around zero, and declining as h → ∞ where fs
is flat around zero. The home range will thus evolve
to an intermediate size where foraging is optimal and
the joint regulation by self-inhibition and interference
is minimal, i.e., the value of fιfs is at a maximum.

This equilibrium home range is defined by the opti-
mum

∂f∗∗ι
∂h

f∗∗s +
∂f∗∗s
∂h

f∗∗ι = 0. (85)

To solve, apply

fι ∝
(
Y h(d−1)/d

)−γi
(86)

with Y = nv, γi = γιµ, and

fs ∝ cs − (Sh1/d)−γs (87)

with S = β/v, as local approximations. Then,

∂fι/∂h = Y −γih
γi(1−d)

d h−1 γi(1− d)

d
(88)

and
∂fs/∂h = S−γsh

−γs
d h−1 γs

d
(89)

Hence, from eqn 85

X

[
γi(1− d)

d

(
cs − S−γsh

−γs
d

)
+ S−γsh

−γs
d
γs
d

]
= 0

(90)
with

X = Y −γih
γi(1−d)

d h−1 (91)

Then, divide eqn 90 with X on both sides, rearrange,
and substitute γi = γιµ and S = β/v to find the opti-
mal home range

h∗∗ =

(
v

β

)d(
γs + γιµ(d− 1)

γιµ(d− 1)cs

)d/γs
(92)

For the four traits (v, β, n, h) in the density regulation
functions of interference and local resource exploitation,
we find the home range (h) of the density regulation op-
timum to be density (n) independent, being dependent
only on foraging speed (v) and mass specific metabolism
(β).

If we inset eqn 92 into eqn 81 we find that the local
resource exploitation at the foraging optimum (f∗∗s ) is
independent of β, h and v, being dependent only on
the other parameters of eqn 92. These are not part of
the phenotype and are therefore not modified by natu-
ral selection (at least not directly), and self-inhibition

at the foraging optimum is therefore expected to be in-
variant of the life history. The invariant local resource
exploitation of optimal regulation will have an invariant
derivative (∂f∗∗s /∂h∗∗), implying that eqn 85 reduces to

∂f∗∗ι /∂h∗∗ = −cof∗∗ι (93)

where co = ∂f∗∗s /∂h∗∗f∗∗s is invariant. Hence, for a
given functional relation fι(ι), we have invariant inter-
ference, and with interference in at least high-energy
organisms being likely to reflect the exploitation level of
the resource (ρe), we may expect exploitation fe(nwβ)
and density regulation as a whole f = fefιfs to be body
mass invariant; generating natural selection for a trait
covariance

nvh
d−1
d ∝ βh1/d/v ∝ nwβ ∝ w0 (94)

that will leave the regulation optimum invariant of the
life history.

C Replication invariance

One way of illustrating the evolutionary importance of
the mass-rescaling allometries, it to focus on the av-
erage replication in a population as a function of the
average mass [pR∗ = f(w)] for a range of potential

mass-rescaling options (variation in τ̂w = −β̂w). Of
these it is only those with an equilibrium per genera-
tion replication rate of one (pR∗ = 1) that may actually
be selected by natural selection.

To construct this function let τ̂w be the mass-
rescaling exponent of the allometric solution (Sec-
tion 3.1), let τ̇ be the chosen rescaling exponent, and
let the mass dependence of the juvenile period in bi-
otic time be τj = τj,◦w

τ̇j , noting that this dependence
in positive (τ̇j = z > 0, eqn 34) in the absence of
mass-rescaling (τ̇ = 0), and invariant (τ̇j = 0) at the
allometric solution (τ̇ = τ̂w, eqn 35). Hence, assum-
ing local linearity, we find the exponent of the juve-
nile period τ̇j = z(1 − τ̇ /τ̂w) as a function of the cho-
sen mass-rescaling exponent τ̇ . And with net energy
(ε = αβ̇) being a function of resource handling (α) and
metabolic pace (β̇ ∝ 1/τ), the resource handling ex-
ponent (eqn 29) is also a function of the chosen mass-
rescaling with α̂ = ε̂ + τ̇ . Hence, given physiological
invariant survival (eqn 36), the per generation replica-
tion rate

pR =
ptrαβ̇

w(1− w̃jτj)
=

pα(τl − τj)
w(1− w̃jτj)

(95)

is a function of w given τ̇ and z, with

pR =
pα◦w

ε̂−τ̇ [τl − τj,◦wz(1−τ̇/τ̂w)
]

w
[
1 + w̃jτj,◦wz(1−τ̇/τ̂w)

] (96)
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This rate is either declining or increasing with the
average mass for all possible mass-rescaling options
(τ̇ 6= τ̂w) except for the allometric solution, where the
per generation replication is invariant of mass (Fig. 2).

References

Abrams P. A. Matsuda H. (1994). The evolution of traits
that determine ability in competitive contests. Evol.
Ecol. 8:667–686.

Anderson K. J. Jetz W. (2005). The broad-scale ecology of
energy expenditure of endotherms. Ecol. Lett. 8:310–
318.

Anderson W. W. (1971). Genetic equilibrium and popu-
lation growth under density-regulated selection. Am.
Nat. 105:489–498.

Artacho P. Nespolo R. F. (2009). Natural selection reduces
energy metabolism in the garden snail, helix aspersa
(cornu aspersum). Evolution 63:1044–1050.

Baltscheffsky, H., ed (1996). Origin and Evolution of Biolog-
ical Energy Conversion. VCH Publishers, New York.

Banavar J. R., Damuth J., Maritan A., Rinaldo A. (2002a).
Modelling universality and scaling. Nature 420:626.

Banavar J. R., Damuth J., Maritan A., Rinaldo A. (2002b).
Supply-demand balance and metabolic scaling. Proc.
Nat. Acad. Sci. USA 99:10506–10509.

Banavar J. R., Maritan A., Rinaldo A. (1999). Size and form
in efficient transportation networks. Nature 399:130–
132.

Barve A., Hosseini S. R., Martin O. C., Wagner A. (2014).
Historical contingency and the gradual evolution of
metabolic properties in central carbon and genome-
scale metabolisms. BMC Syst. Biol. 8:48.

Blum J. J. (1977). On the geometry of four-dimensions and
the relationship between metabolism and body mass.
J. theor. Biol. 64:599–601.

Bonner J. T. (1965). Size and cycle. Princeton University
Press, Princeton.

Boratynski Z., Koskela E., Mappes T., Oksanen T. A.
(2010). Sex-specific selection on energy metabolism
selection coefficients for winter survival. J. Evol. Biol.
23:1969–1978.
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