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ABSTRACT 
 
Background: Instrumental variable analysis, for example with physicians’ prescribing preferences as an 
instrument for medications issued in primary care, is an increasingly popular method in the field of 
pharmacoepidemiology. Existing power calculators for studies using instrumental variable analysis, such as 
Mendelian randomisation power calculators, do not allow for the structure of research questions in this 
field. This is because the analysis in pharmacoepidemiology will typically have stronger instruments and 
detect larger causal effects than in other fields. Consequently, there is a need for dedicated power 
calculators for pharmacoepidemiological research.  
 
Methods and results: The formula for calculating the power of a study using instrumental variable analysis 
in the context of pharmacoepidemiology is derived before being validated by a simulation study. The 
formula is applicable for studies using a single binary instrument to analyse the causal effect of a binary 
exposure on a continuous outcome. A web application is provided for the implementation of the formula 
by others.  
 
Conclusions: The statistical power of instrumental variable analysis in pharmacoepidemiological studies to 
detect a clinically meaningful treatment effect is an important consideration. Research questions in this 
field have distinct structures that must be accounted for when calculating power. 
 
Keywords: pharmacoepidemiology, instrumental variable, power, binary exposure, continuous outcome, 
prescribing preference 
 
KEY MESSAGES 
 

 Research questions using instrumental variable analysis in pharmacoepidemiology have distinct 
structures that have previously not been catered for by instrumental variable analysis power 
calculators. 

 Power can be calculated for studies using a single binary instrument to analyse the causal effect of 
a binary exposure on a continuous outcome in the context of pharmacoepidemiology using the 
presented formula and online power calculator. 

 The use of this power calculator will allow investigators to determine whether a 
pharmacoepidemiology study is likely to detect clinically meaningful treatment effects prior to the 
study’s commencement. 
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INTRODUCTION 
 
Pharmacoepidemiological studies risk irrelevance if they are insufficiently powered to detect clinically 
meaningful treatment effects. Prior to starting a study, the statistical power to calculate a given treatment 
effect can be calculated. This type of calculation is becoming increasingly important for grant and data 
request applications, which look to value the contribution of such studies. 
 
The number of pharmacoepidemiology studies using instrumental variable analysis, for example with 
physicians’ prescribing preferences as an instrument for exposure, continues to grow.(1–6) This is partly 
because instrumental variable analyses have the potential to overcome some of the issues associated with 
conventional statistical approaches, such as residual confounding and reverse causation. As the demand to 
provide power calculations to support applications increases, there is a more pressing need to be able to 
provide power calculations for this method.  
 
There are power calculators for instrumental variable analysis in other settings, such as Mendelian 
randomisation, which uses germline genetic variants as proxies for exposures in disease-related 
research.(7,8) However, pharmacoepidemiological research questions have distinct structures that are not 
sufficiently catered for by these existing calculators. Unlike Mendelian randomization studies, which often 
use a case-control study design, pharmacoepidemiology studies typically use a cohort study design. Further 
to this, pharmacoepidemiology studies usually report a risk difference for a binary exposure using a binary 
instrument, while Mendelian randomization studies report on a continuous exposure using a discrete or 
continuous genetic instrument (count of alleles or allele score respectively). As a result of these differences, 
as well as the stronger instruments and larger causal effects seen in pharmacoepidemiology, there is a need 
for a dedicated power calculator for instrumental variable analysis in the context of this field.  
 
This paper will address how to conduct power calculations for pharmacoepidemiological studies using a 
single binary instrument to analyse the causal effect of a binary exposure on a continuous outcome.  The 
formula to calculate power will be derived and then validated by a simulation study. A web application is 
provided for the implementation of the formula by others. 
 
METHODS AND RESULTS 
 
Let us consider physicians’ prescribing preferences for two different treatments - for example a treatment 
of interest and a control treatment – as an instrument for exposure to these treatments. Physicians’ 
preferences are generally not directly observable so each physician’s prescriptions to previous patients are 
used as a proxy for their preferences. This results in a binary instrument that takes a value of one if the 
physician issued a prescription for the treatment of interest to their previous patient and a value of zero if 
they prescribed the control treatment. We will derive the formula for the power of studies that use this 
instrument to measure the causal effect of a drug exposure on a continuous outcome, for example systolic 
blood pressure or low density lipoprotein cholesterol.  
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Formula Derivation 
 
The instrumental variable analysis we consider requires the following three variables; namely a binary 
instrument 𝑍, a binary exposure 𝑋 and a continuous outcome 𝑌. The outcome for patient 𝑖, for 𝑖 = 1, … , 𝑛, 
is modelled as follows: 
 

𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖 + 𝑈𝑖 
 
where 𝑈𝑖 is a zero-mean error term containing unobserved confounders, determining both the outcome 
𝑌𝑖 and the treatment  𝑋𝑖. The instrument 𝑍𝑖  affects treatment 𝑋𝑖, but is not associated with the unobserved 
confounders and has no direct effect on the outcome. 
 

Let �̃�𝑖 = 𝑌𝑖 − �̅�, �̃�𝑖 = 𝑋𝑖 − �̅� and �̃�𝑖 = 𝑍𝑖 − �̅�, where �̅�, �̅� and �̅� are sample averages. Denote by �̃�, �̃� and 

�̃� the 𝑛-vectors of observations on �̃�𝑖, �̃�𝑖 and �̃�𝑖 respectively. The two-stage least squares (2SLS) estimator 
of 𝛽 is then given by: 
 

�̂� = (�̃�′�̃�)−1�̃�′�̃�. 
 
The variance of the 2SLS estimator is: 
 

Var(�̂�) = 𝜎2(�̃�′𝑃𝑧�̃�)−1 

 

where 𝑃𝑧 = �̃�(�̃�′�̃�)−1�̃�′ and 𝜎2 = 𝐸(𝑈𝑖
2) is the residual variance. Note that conditional homoscedasticity 

holds so the variance is constant for all values of the instrument i.e. 𝐸(𝑈𝑖
2) = 𝐸(𝑈𝑖

2|𝑍𝑖) = 𝜎2 for 𝑖 =

1, … , 𝑛. 
 
Consider the term �̃�′𝑃𝑧�̃�: 
 

�̃�′𝑃𝑧�̃� = �̃�′�̃�(�̃�′�̃�)−1�̃�′�̃� = 𝑛 (
�̃�′�̃�

𝑛
) (

�̃�′�̃�

𝑛
)

−1

(
�̃�′�̃�

𝑛
) 

 
Let 𝑝𝑍 = 𝑃(𝑍 = 1), 𝑝𝑋 = 𝑃(𝑋 = 1) and 𝑝𝑋𝑍 = 𝑃(𝑋 = 1|𝑍 = 1). In large samples: 
 

(
�̃�′�̃�

𝑛
) ≈ Var(�̃�) = 𝑝𝑍(1 − 𝑝𝑍) 

 

(
�̃�′�̃�

𝑛
) = (

𝑥′𝑧

𝑛
− 𝑋𝑍̅̅ ̅̅ ) ≈ 𝑝𝑍(𝑝𝑋𝑍 − 𝑝𝑋) 

 
 
Hence �̃�′𝑃𝑧�̃� can be presented in the following way: 
 

�̃�′𝑃𝑧�̃� ≈
𝑛(𝑝𝑍(𝑝𝑋𝑍 − 𝑝𝑋))

2

𝑝𝑍(1 − 𝑝𝑍)
 

 
  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2016. ; https://doi.org/10.1101/084541doi: bioRxiv preprint 

https://doi.org/10.1101/084541
http://creativecommons.org/licenses/by/4.0/


 
 

5 
 

Now consider the instrumental variable estimator of β. Using the asymptotic distribution 

 �̂�~ 𝑁(𝛽, 𝜎2(�̃�′𝑃𝑧�̃�)−1), the distribution of the t-test statistic under the null hypothesis 𝐻0: 𝛽 = 𝛽0 is: 
 

𝑡 =
�̂� − 𝛽0

𝜎√(�̃�′𝑃𝑧�̃�)−1
~𝑁(0,1) 

 
The distribution of the test statistic under the alternative hypothesis 𝐻1: 𝛽 = 𝛽0 + 𝛿 is: 
 

𝑡 =
�̂� − 𝛽0

𝜎√(�̃�′𝑃𝑧�̃�)−1
=

�̂� − 𝛽0 − 𝛿

𝜎√(�̃�′𝑃𝑧�̃�)−1
+

𝛿

𝜎√(�̃�′𝑃𝑧�̃�)−1
~𝑁 (

𝛿

𝜎√(�̃�′𝑃𝑧�̃�)−1
, 1) 

 
The null hypothesis is rejected if |𝑡| > 𝑐𝛼 where 𝑐𝛼 is the critical value at significance level 𝛼. 
 
The power is the probability the test statistic will exceed the critical value, which is: 
 

𝑃(𝑡 > 𝑐𝛼) + 𝑃(𝑡 < −𝑐𝛼) =  Φ (−𝑐𝛼 +
𝛿

𝜎√(�̃�′𝑃𝑧�̃�)−1
) + Φ (−𝑐𝛼 −

𝛿

𝜎√(�̃�′𝑃𝑧�̃�)−1
) 

 
where  Φ(𝑠) is the cumulative standard normal distribution function evaluated at 𝑠. 
 
Power therefore increases as the value of 𝜎 decreases and/or the value of �̃�′𝑃𝑧�̃� increases. By substituting 
�̃�′𝑃𝑧�̃� and simplifying, we obtain the following formula for power: 
 

Power =  Φ (−𝑐𝛼 +
𝛿(𝑝𝑍(𝑝𝑋𝑍 − 𝑝𝑋))√𝑛

𝜎√𝑝𝑍(1 − 𝑝𝑍)
) + Φ (−𝑐𝛼 −

𝛿(𝑝𝑍(𝑝𝑋𝑍 − 𝑝𝑋))√𝑛

𝜎√𝑝𝑍(1 − 𝑝𝑍)
) 

 
The formula requires a total of seven parameters to be specified. These are the significance level 𝛼, the 

size of the causal effect 𝛿, the residual variance 𝜎2 = 𝐸(𝑈𝑖
2), the frequency of the instrument 𝑝𝑍 = 𝑃(𝑍 =

1), the frequency of exposure 𝑝𝑋 = 𝑃(𝑋 = 1), the probability of exposure given the instrument 𝑝𝑋𝑍 =
𝑃(𝑋 = 1|𝑍 = 1) and the sample size 𝑛. Note that the following must hold: 
 

𝑃(𝑋 = 1) = 𝑃(𝑋 = 1|𝑍 = 0)𝑃(𝑍 = 0) + 𝑃(𝑋 = 1|𝑍 = 1)𝑃(𝑍 = 1) 
 
This formula for power is available for use via an online calculator, which can be found 
at https://venexia.shinyapps.io/PharmIV/. 
 
Note that the frequency of exposure in an instrumental variable analysis of this type is likely to be higher 
than a general population study because a drug is compared against one or more other drugs in a 
population of people with the indication for these treatments. General population studies on the other 
hand tend to compare a population who received the drug of interest with a population who did not receive 
it and consequently the frequency of exposure is generally much lower. The effect of varying the 
parameters within the formula on a study’s power is best presented graphically. Figure 1 illustrates an 
example of the effect of the frequency of the exposure 𝑝𝑋 = 𝑃(𝑋 = 1) on the power of a study to detect 
a causal effect of δ = −0.15 using an instrument with a frequency of 𝑝𝑍 = 0.20, a residual variance of 
𝜎2 = 1 and a sample size of up to 30,000 participants. Both increasing the frequency of exposure up to 
50% and increasing the sample size results in increased power for this study.  
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Figure 1: Power curves for several values of the frequency of exposure 𝑝𝑋 = 𝑃(𝑋 = 1) that show the effect 
on the power of a study to detect a causal effect of δ = −0.15 using an instrument with a frequency of 
𝑝𝑍 = 0.20, a residual variance of 𝜎2 = 1 and a sample size of up to 30,000 participants. 

 
 
Formula Validation 
 
To validate the power formula, we conducted a simulation. We simulated the data by defining the three 
variables necessary to conduct instrumental variable analysis with a single instrumental variable as follows: 
 
Instrument: 𝑍𝑖  ~ Binomial(1, 𝑝𝑍)  
 

Exposure: 𝑋𝑖 ~ {
0, if 𝑐0 + 𝑍𝑖(𝑐1 − 𝑐0) +  𝑉𝑖  ≤ 0

1, if 𝑐0 + 𝑍𝑖(𝑐1 − 𝑐0) +  𝑉𝑖 > 0  
    

 
Outcome: 𝑌𝑖 ~ 𝛿𝑋𝑖 + 𝑈𝑖  
 

Where 𝑝𝑍 = 𝑃(𝑍 = 1) is the frequency of the instrument, cj = Ф−1(P(𝑋 = 1|𝑍 = 𝑗)) for 𝑗 = 0,1 are the 

inverse cumulative standard normal distribution, or quantile, functions of the conditional probabilities of 
exposure given the instrument, δ is the causal effect, and 𝑈𝑖 and 𝑉𝑖 are standard normally distributed error 
terms with covariance 𝜌.  
 
The formula uses a binary instrument, binary exposure and continuous outcome and so the above variables 
were simulated to recreate data of this form. The instrument 𝑍 is modelled by a binomial distribution 
parameterised by its frequency 𝑝𝑍 = 𝑃(𝑍 = 1). This ensures a binary variable with the correct probability 
of success. The exposure 𝑋 is also binary but is modelled using a threshold model. The variability in the 
equation for the exposure comes from the normally distributed error term 𝑉𝑖. The use of the model 
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equation allows the exposure 𝑋 to be associated with the instrument 𝑍. The outcome 𝑌 is modelled by its 
model equation 𝑌𝑖 = 𝛿𝑋𝑖 + 𝑈𝑖. In the model, the instrument is valid as the outcome 𝑌 is only associated 
with the exposure 𝑋, as dictated by the causal effect 𝛿, and is not associated with the instrument 𝑍 other 
than through the exposure 𝑋. 
 
Using the generated data, we performed an instrumental variable analysis using the command IVREG2 in 
Stata.(9) From this analysis, we recorded the coefficient of the exposure 𝑋 with the 95% confidence 
interval. We then counted the number of simulations for which the confidence interval excluded the null 
and divided this by the total number of simulations to determine the power. By running the simulation and 
calculating the formula using the same parameters, we are able to validate the formula against the 
simulation. 
 
We present the power calculated from both the simulation and the formula for several parameter 
combinations in Table 1. The table contains 27 different simulations and each was repeated 10,000 times. 
The simulations consider each combination of three values of the frequency of exposure 𝑝𝑋 =
 0.10, 0.25, 0.50, three values of the probability of exposure given the instrument 𝑝𝑋𝑍 = 0.15, 0.30, 0.45, 
and three values of the sample size 𝑁 = 10000, 20000, 30000. We set the frequency of the instrument 
𝑝𝑍 = 0.20, the causal effect 𝛿 = −0.15, the residual variance 𝜎2 = 1 and calculated 𝑃(𝑋 = 1|𝑍 = 0) 
according to the following equation: 
 

𝑃(𝑋 = 1|𝑍 = 0) =
𝑃(𝑋 = 1) − 𝑃(𝑋 = 1|𝑍 = 1)𝑃(𝑍 = 1)

1 − 𝑃(𝑍 = 1)
=

𝑝𝑋 − 𝑝𝑋𝑍𝑝𝑍

1 − 𝑝𝑍
 

 
The Stata code used to create the simulation is available online at https://github.com/venexia/PharmIV. 
The effect of confounding was removed as a parameter because the power was insensitive to its value in 
the simulation setting. Details of the simulations conducted to test this can be found in Supplementary File 
1. 
 
Simulation Results 
 
Table 1: A comparison of the power calculated from the formula and a validation simulation for an 
instrumental variable analysis where the causal effect δ = −0.15, the frequency of the instrument 𝑝𝑍 =
0.20 and the residual variance 𝜎2 = 1. 
 

𝒑𝑿 𝒑𝑿𝒁 
10,000 patients 20,000 patients 30,000 patients 

Formula Simulation Formula Simulation Formula Simulation 

0.10 

0.15 6.6% 6.1% 8.3% 7.9% 10.0% 9.8% 

0.30 32.3% 33.3% 56.4% 55.5% 73.8% 73.9% 

0.45 74.7% 75.6% 96.0% 95.9% 99.5% 99.5% 

0.25 

0.15 11.7% 11.4% 18.6% 18.3% 25.5% 25.5% 

0.30 6.6% 5.4% 8.3% 7.9% 10.0% 9.8% 

0.45 32.3% 32.8% 56.4% 56.1% 73.8% 73.7% 

0.50 

0.15 74.7% 74.2% 96.0% 95.9% 99.5% 99.6% 

0.30 32.3% 32.5% 56.4% 57.1% 73.8% 73.7% 

0.45 6.6% 5.0% 8.3% 7.2% 10.0% 10.1% 

 
The formula and the simulation consistently provide similar results with an absolute mean difference of 
0.4% for the parameter combinations presented in Table 1. There is also no discernible pattern in the 
differences suggesting systematic bias is not present. Further to this, the power is consistent with its 
behaviour in other established power calculations. For example, increasing sample size universally 
improves power for all parameter combinations. 
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DISCUSSION 
 
In this paper, we have derived the formula necessary to calculate power for instrumental variable analysis 
with a single binary instrument, binary exposure and continuous outcome in the context of 
pharmacoepidemiology. The formula has been shown to be valid by comparison against a simulation study, 
which concluded that the formula provided near true values across a range of realistic parameters.  
 
As for any power formula, the formula presented here is limited by its parameters, which simplify the 
dataset being considered. Power calculated from such formulae cannot account for dataset characteristics 
outside of these parameters. For example, the formula makes no allowance for the presence of missing 
data – a known limiting factor on the power of a study. By allowing for missing data in the anticipated 
sample size, conservative estimates for the power of a study can be obtained using the formula presented. 
Further work is needed in order to establish the formula for power in other scenarios that use instrumental 
variable analysis within a pharmacoepidemiology context. This includes analyses with binary outcomes and 
analyses that involve multiple instrumental variables. 
 
As the use of instrumental variable analysis in pharmacoepidemiology becomes more commonplace, there 
is an increasing need to provide power calculations for studies using this type of analysis. To provide such 
information, accessible and accurate power formulae need to be made available. By using the formula 
presented here and the online tool, it is hoped that pharmacoepidemiologists can calculate the power of 
instrumental variable analysis studies with a single binary instrument, binary exposure and continuous 
outcome with ease.  
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