
Bayesian mapping reveals that attention boosts neural responses to predicted and 

unpredicted stimuli 

 

M.I. Garrido1,2,3,4, E.G. Rowe1,2, Veronika Halász1,2,3, J.B. Mattingley1,3,5 

 

1Queensland Brain Institute,2Centre for Advanced Imaging, 3ARC Centre of Excellence for 

Integrative Brain Function, 4School of Mathematics and Physics, 5School of Psychology, 

The University of Queensland, Australia 

 

 

Running title: Modelling attention and prediction 

 

Correspondence: 

Centre for Advanced Imaging, The University of Queensland  

Building 57, Research Road, St Lucia 4072, Brisbane, Australia 

Telephone: (+61) 7 3346 0350 

Email: m.garrido@uq.edu.au  

Keywords: EEG, MMN, novelty, prediction, modelling.  

Conflict of Interest: The authors declare no competing financial interests. 

Acknowledgements: This work was funded by an Australian Research Council (ARC) 

Discovery Early Career Researcher Award (DE130101393) and a University of Queensland 

Fellowship (2016000071) to MIG, an ARC Australian Laureate Fellowship (FL110100103) 

to JBM, the ARC Centre of Excellence for Integrative Brain Function (ARC Centre Grant 

CE140100007) to MIG and JBM, and an ARC Special Research Initiative - Science of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2016. ; https://doi.org/10.1101/084517doi: bioRxiv preprint 

https://doi.org/10.1101/084517
http://creativecommons.org/licenses/by-nc-nd/4.0/


Learning Research Centre (SR120300015) to JBM. We thank the volunteers for participating 

in this study and Maria Joao Rosa for discussions. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2016. ; https://doi.org/10.1101/084517doi: bioRxiv preprint 

https://doi.org/10.1101/084517
http://creativecommons.org/licenses/by-nc-nd/4.0/


ABSTRACT 

 

Predictive coding posits that the human brain continually monitors the environment for 

regularities and detects inconsistencies. It is unclear, however, what effect attention has on 

expectation processes, as there have been relatively few studies and the results of these have 

yielded contradictory findings. Here, we employed Bayesian model comparison to adjudicate 

between two alternative computational models. The Opposition model states that attention 

boosts neural responses equally to predicted and unpredicted stimuli, whereas the Interaction 

model assumes that attentional boosting of neural signals depends on the level of 

predictability. We designed a novel, audiospatial attention task that orthogonally manipulated 

attention and prediction by playing oddball sequences in either the attended or unattended 

ear. We observed sensory prediction error responses, with electroencephalography, across all 

attentional manipulations. Crucially, posterior probability maps revealed that, overall, the 

Opposition model better explained scalp and source data, suggesting that attention boosts 

responses to predicted and unpredicted stimuli equally. Furthermore, Dynamic Causal 

Modelling (DCM) showed that these Opposition effects were expressed in plastic changes 

within the mismatch negativity network. Our findings provide empirical evidence for a 

computational model of the opposing interplay of attention and expectation in the brain. 
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INTRODUCTION  

 

The way in which we perceive the world around us is thought to be an active inferential 

process. Rather than passively registering information that arrives at our senses, the brain 

builds predictive models of what it might encounter next. These theoretical conjectures have 

been formalised in terms of predictive coding (Rao RP and DH Ballard 1999; Friston K 

2005) and are useful in explaining the ubiquitous phenomenon of larger brain responses to 

surprising than predictable events (Montague PR 1999; Garrido MI et al. 2013) (Opitz B et 

al. 1999; Summerfield C and E Koechlin 2008). Selective attention is the process of 

prioritising information by allocating more cognitive resources to the object of focus, while 

suppressing information that is irrelevant. Recent extensions of predictive coding have 

framed attention as the process of enhancing the reliability of prediction errors (Feldman H 

and KJ Friston 2010). This idea has been empirically demonstrated by larger prediction errors 

for attended than unattended visual objects (Jiang J et al. 2013) and sounds (Auksztulewicz R 

and K Friston 2015), with the latter going against the longstanding notion of mismatch 

negativity (MMN) as a pre-attentive process (Naatanen R et al. 2001).  

 

There is a general consensus that expectation dampens neuronal activity and that attention 

boosts neuronal activity (Summerfield C and E Koechlin 2008).  Thus, superficially at least, 

attention and prediction appear to have opposing effects. However, the way in which 

attention interacts with expectation is unclear for two reasons. First, there have been very few 

attempts to manipulate attention and prediction independently, but many instances in which 

the two have been entwined or confounded (Summerfield C and T Egner 2009), as attention 

is often manipulated in a probabilistic manner rather than through stimulus filtering or 

prioritisation. Second, the few studies on prediction and attention have yielded a puzzling 
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depiction of what might be happening in the brain. Kok P et al. (2012) provided fMRI 

evidence that attention and prediction have an interactive or synergetic effect by showing 

greater brain activity in the visual cortex for predicted (than unpredicted) visual stimuli, a 

finding which was conceptually replicated using electroencephalography (EEG) for auditory 

stimuli, and expressed in the N1 evoked potential (Hsu YF et al. 2014). By contrast, 

(Auksztulewicz R and K Friston 2015) found that attention increased the typically observed 

difference between evoked responses to unpredicted versus predicted stimuli, as reflected in 

an enhanced MMN. 

 

In this paper, we first formalise two theoretical models that have been put forward to explain 

the interplay between attention and prediction in the brain: the Opposition model and the 

Interaction model, introduced in Kok P et al. (2012). The Interaction model postulates that 

attention and prediction interact such that neuronal activity is greatest for attended and 

predicted events. This model is inspired by the idea that attention increases the precision of 

predictions by weighting prediction errors (Feldman H and KJ Friston 2010), and assumes 

four levels of precision, or attention, that depend on the level of prediction. By contrast, the 

Opposition model posits that attention and prediction have opposing effects on neural 

activity, such that prediction mitigates and attention boosts neural activity. The predictions of 

this model are that the neuronal responses will be greatest for attended unpredicted stimuli, 

and smallest for unattended predicted stimuli. Computationally, this model assumes that 

neuronal activity is weighted by two (instead of four) levels of attention (attended and 

unattended). This model is agnostic about the relationship between responses to attended 

predicted and unattended unpredicted events. Both the Interaction and the Opposition models 

assume that prediction has two levels, such that unpredicted stimuli evoke a larger neuronal 

response than predicted stimuli. They differ, however, in their treatment of the attention 
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component. Specifically, the Opposition model offers a more parsimonious expression of the 

effects of attention on neuronal responses (see Figure 1).  

 

Here we tested these models empirically using Bayesian model comparison for scalp and 

source EEG data, as well as dynamic causal modelling (DCM). We developed a novel 

auditory task in which participants were presented with independent streams of white noise 

concurrently in each of the two ears, and were instructed to attend to the left channel, the 

right channel or both channels in separate blocks to detect brief gaps in the noise streams. At 

the same time, an irrelevant stream of standard and deviant tones was presented in either ear 

(attended or ignored), providing an orthogonal stimulus set from which to extract neural 

responses to predicted and unpredicted auditory events.  

 
Figure 1 about here   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 31, 2016. ; https://doi.org/10.1101/084517doi: bioRxiv preprint 

https://doi.org/10.1101/084517
http://creativecommons.org/licenses/by-nc-nd/4.0/


METHODS 

 

Participants 

Twenty one healthy adults were recruited for the experiment. Data from two participants 

were excluded from further analysis due to poor performace on the behavioural task 

(accuracy < 50%). The reported analysis was thus performed on data from 19 participants (10 

females, aged 19-43, M = 24.21, SD = 6.11) with no reported history of neurological or 

psychiatric disorder and no previous head trauma resulting in unconsciousness. All 

participants gave written informed consent in accordance with the guidelines of the 

University of Queensland’s ethical committee, and were monetarily compensated for their 

time. 

 

Auditory Stimuli 

The auditory task developed for the study is depicted in Figure 2. An auditory frequency 

oddball sequence was played to one ear at 60 dB and overlayed with Gaussian white noise at 

40 dB. White noise only was played to the other ear at 40 dB. Two pure tones, standards (p = 

0.85) and deviants (p = 0.15), (f = 500 or 550 Hz; counterbalanced between blocks) of 50 ms 

in duration were played with an inter-stimulus interval of 450 ms. Embedded in the white 

noise of either ear were two types of targets: a total of 30 non-overlapping randomised 

periods of no sound (gaps), which could be singular (90 ms gaps only, 15 per block) or 

doubled (two 90 ms breaks separated by a 30ms white noise return, 15 per block). The gaps 

in the white noise of either ear were never within 2.5 seconds of each other and never 

occurred at the same time as a tone. All auditory stimuli were created using in-house Matlab 

scripts, recorded using Audacity Sound Mixer prior to the experiment, and delivered with 

inner-ear buds (Etymotic, ER3). 
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Experimental Design 

The twelve experimental trial blocks (T = 3:32min each) were comprised of a total of 380 

tones (with deviants always falling within four to 10 standard tones). Participants were 

instructed to listen for and report target gaps within the white noise stream in either the left 

channel only, the right channel only, or in either channel (divided attention), and to ignore the 

tones. Each attention condition was repeated four times and the order of the blocks was 

pseudo-randomised such that no participant received the same order. When a target was 

identified in the attended ear(/s) participants responded with a ‘1’ keypress if the gap was 

singular and a ‘2’ keypress if the gap was doubled. In one third of the blocks oddball tones 

were played in the attended ear, in another third the tones were played in the ignored ear, and 

in the remaining third, in which participants divided their attention between ears, the tones 

were presented to either side, counter-balanced between the left and right across separate 

blocks. Participants performed all blocks in one testing session of 60 min (42:24 min total 

task duration plus breaks) with an additional 30 min EEG setup period. 

 

Task 

Participants were seated in front of a computer screen and wore inner-ear buds for the 

duration of the experiment. Prior to recordings, participants listened to an example auditory 

stream of 1-min duration, which demonstrated the single and double gaps in the white noise. 

Each participant then underwent a brief practice session with auditory stimuli consisting of 9 

single and 9 double gaps, and a total of 110 tones. Participants were given feedback about 

their their accuracy in this practice block but not in the experimental blocks. At the beginning 

of each experimental block, the focus of attention was specified verbally and an arrow (left, 

right or both directions) remained on the screen for the duration of the block as a reminder. 
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Participants were asked to make their keypresses in response to target gaps as quickly and as 

accurately as possible, and to ignore any gaps in the uncued ear (in the focused attention 

condition). Task performance was assessed based on the percentage of correctly detected 

target gaps and reaction times. Participants with less than 50% overall accuracy (proportion 

correct) were excluded from further analysis. 

 

Figure 2 about here 

 

EEG Data acquisition and preprocessing 

Continuous EEG data were recorded with a Biosemi Active Two system with 64 Ag/AgCl 

scalp electrodes arranged according to the international 10-10 system for electrode placement 

using a nylon head cap. Data were recorded at a sampling rate of 1024Hz. Pre-processing and 

data analysis were performed with SMP12 (http://www.fil.ion.ucl.ac.uk/spm/). Data were re-

referenced to a common reference, down-sampled to 200Hz and high-pass filtered above 0.5 

Hz. Eyeblinks were detected and marked using the VEOG channel before the data were 

epoched offline with a peri-stimulus window of -100 to 400ms. Artefact removal was 

performed by removing trials marked with an eyeblink and by thresholding all channels at 

100uV. Trial data were robustly averaged before being low-pass filtered below 40 Hz and 

baseline corrected between -100 to 0 ms. We analysed event-related potentials with respect to 

the onsets of standard and oddball tones, separately for conditions in which the tones were 

presented in the attended ear, the unattended ear, or in either ear in the divided attention 

condition. 

 

Spatio-temporal Image Conversion 

Event-related potentials were converted into 3D spatio-temporal volumes per condition and 
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participant. This was achieved by interpolating and dividing the scalp data per time point into 

a two dimensional 32 x 32 matrix. We obtained one 2D image for every time bin (from 0 to 

400 ms in steps of 5ms). These images were then stacked according to their peristimulus 

temporal order, resulting in a 3D spatio-temporal image volume with dimensions of 32 x 32 x 

81 per participant. Data were then smoothed at FWHM 12x12x20 mm3. 

 

Spatio-temporal Statistical Maps 

For each participant, the 3D spatio-temporal image volumes were modelled with a mass 

univariate general linear model (GLM) as implemented in SPM12. We performed between-

subject F-contrasts for (1) the main effect of attention, (2) the main effect of prediction and 

(3) the interaction between attention and prediction. Simple effects were estimated using 

between-subject t-statistic contrasts. The same statistical analyses were performed on the 3D 

spatial image volume obtained after source localisation (see below). All sensor effects are 

reported at a threshold of p<0.05 with family-wise error (FWE) correction for multiple 

comparisons over the whole spatio-temporal volume. For closer inspection of the main 

effects and interactions obtained at channel Fz (at which predictability effects are typically 

strongest, Naatanen R and K Alho (1997)), we implemented a 1-dimensional GLM approach 

using SPM12. We restricted our time window from 0 to 400 ms after stimulus onset and, in a 

separate analysis, between the typical MMN time window of 100 to 250 ms (FWE corrected 

over the time bins considered). 

 

Source Reconstruction 

We obtained source estimates on the cortical mesh by reconstructing scalp activity with a 

single-sphere head model, and inverting a forward model with multiple sparse priors (MSP) 

assumptions for the variance components under group constraints. This allowed for 
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inferences on the most likely cortical regions that generated the sensor-level data. We 

obtained images from these reconstructions for each of the six conditions in every participant. 

These images were smoothed at FWHM 12x12x12 mm3. We then computed the main effects 

of attention and prediction, and the interaction (attention x prediction) using conventional 

SPM analysis. The effect of prediction (t-statistic) is displayed at an uncorrected threshold of 

p<0.001. These weaker significance criteria were used for post-hoc visualisation, once the 

effects had been established under robust criteria at the scalp level, and we only report 

regions significant at p<0.05 FWE corrected at the cluster level. 

 

Statistics 

Significance sensor space maps for prediction effects are displayed at p<0.05 corrected for 

multiple comparisons using family-wise error rate. The interaction map is displayed at 

p<0.01 uncorrected for the purpose of defining a region of interest for follow up Bayesian 

Model Selection. Source maps are displayed at p<0.001 uncorrected, but only significant 

cluster-level pFWE<0.05 are reported. 

 

Bayesian Model Selection 

To compare the two models (Opposition and Interaction; see Introduction) of the effects of 

attention on prediction (standard and deviant tones) we used the Bayesian Model Selection 

(BMS) methodology described in Rosa MJ et al. (2010), and adapted here for EEG. For this 

analysis we discarded trials from the divided attention condition and used only the attended 

and unattended trials from the focused attention conditions (attend left ear only, attend right 

ear only) for both standard and deviant tones. We created posterior probability maps (PPMs) 

from individual participant log-model evidences using a random-effects approach (RFX). 

Here, the winning model was the one with the highest log-evidence (assuming uniform priors 
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over the models) across participants. We performed this analysis at the sensor and source 

levels by modelling the data with regressors describing the hypothesised relationships 

amongst the four different conditions. 

 

Briefly, covariate regressor weights were applied to every participant and trial under the 

Opposition model, which predicts reductions in ERP amplitudes across conditions in the 

following order: (1) attended unpredicted, (2) unattended unpredicted/attended predicted and 

(3) unattended predicted. Next, we specified a second model derived from Kok et al. (2011), 

the Interaction model, which predicts reductions in ERP amplitudes across conditions in the 

following order: (1) attended predicted, (2) attended unpredicted, (3) unattended unpredicted 

and (4) unattended predicted. Voxel-wise whole-brain log-model evidence maps were then 

created for every participant and model, estimated using the Variational Bayes 1st-Level 

Model Specification methodology described in Penny et al. (2005). Source level maps were 

further smoothed with a 1 mm half width Gaussian kernel. We used the RFX approach to 

produce PPMs for both models at the group-level. These maps (displayed at a threshold of 

probability larger than 75% and 50% for scalp and source, respectively) allowed us to 

compare which model had the higher probability at each voxel in the brain (and at each time 

point in the scalp level analysis). Further model comparisons for specific regions at the sensor 

level were undertaken using brain regions selected a priori from the attention by prediction 

interaction contrast. At the source, these comparisons were made at the peak coordinates of 

clusters for each model that exceeded 51%. 

 

Dynamic Causal Modelling 

Source locations were identified based on multiple sparse priors source reconstruction of the 

overall mismatch (p<0.05 uncorrected threshold). These regions were: bilateral primary 
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auditory cortices (A1; MNI coordinates: left [-42, -24, 34] and right [44, -22, 38]), bilateral 

inferior temporal gyri (ITG; MNI coordinates: left [-42, -10, -38] and right [44, 0, -42] and 

left inferior frontal gyrus (LIFG; MNI coordinates: [-50, 32, 0]). First, the basic connectivity 

architecture was optimised using responses to attended and unattended standards and deviants 

with no between-trial effects present. This first step considered six competing model 

structures that differed in the pattern of extrinsic connections and source regions. Next, the 

pattern of changes in extrinsic connectivity was optimised under this architecture using 

responses in all four conditions for the Opposition and Interaction models. The family of 

Opposition models used a between-trial effect of [1, 2, 2, 3] for the attended predicted, 

predicted attended, unpredicted unattended, and attended unpredicted, respectively. The 

family of Interaction models, on the other hand used [1, 2, 3, 4] for predicted unattended, 

unpredicted unattended, unpredicted attended, and attended predicted, respectively. Fifteen 

competing models were tested, each with a different subset of connections – forward, 

backward and recurrent – which also included or excluded intrinsic modulations of A1, and a 

single null model. Finally, the Opposition and Interaction model-dependent changes in 

intrinsic connectivity were then grouped by families, under the optimised connectivity 

architecture. In both DCM estimation steps, models were inverted using a 0 to 400 ms peri-

stimulus time window. 
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RESULTS 

 

Behavioural findings on attentional manipulation 

Behavioural results for the target detection task – discriminating single- and double-gaps in 

concurrent white noise streams in each ear – were grouped into unilateral (focused) or 

bilateral (divided) attention conditions (30 targets over 8 blocks and 60 targets over 4 blocks, 

respectively). We excluded any participants who did not achieve mean response accuracy 

greater than 50%. There was no significant difference in response accuracy (p = 0.14) 

between the unilateral (M = 71.80%, SEM = 5.19%) and the bilateral (M = 68.33%, SEM = 

5.13%) conditions. Participants were significantly faster (p = 0.03) to respond in the bilateral 

(M = 748.16 ms, SEM = 27.67 ms) than the unilateral conditions (M = 779.79 ms, SEM = 

34.13 ms), likely reflecting a strategy of responding immediately to any target gap when 

monitoring both ears under divided attention, as opposed to having to select only relevant 

gaps in the focused attention conditions (filtering out gaps in the ignored ear).  

 

Attention amplifies prediction errors – single channel analysis 

ERPs corresponding to each of the experimental conditions (as well as the MMNs derived 

from subtracting the standards from the deviants within a condition) were extracted from 

electrode Fz and compared over time (Figure 3). The N1 and P2 components were plotted as 

an average across participants and conditions. For this, the lowest time point between 50-150 

ms and highest point between 150-250 ms were determined from the omnibus ERP plot (i.e. 

the mean ERP across all participants and conditions over time). These time indexes +/- 25 ms 

were then used to find the average ERP per condition. Statistical tests of the N1 components 

found only a main effect of surprise (F(1,72) = 4.9583, p = 0.0291). Similarly, at P2, there 

was a main effect of surprise (F(1,72) = 17.5898, p = 7.7001e-05), but no further significant 
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main effects or interactions. In addition, results at Fz from 0 to 400 ms using the 1-

dimensional GLM approach revealed a significant main effect of Attention between 290-340 

ms (pFWE_cluster = 0.006), and a significantly larger prediction error for attended relative to 

unattended conditions at 115-120 ms (pFWE_cluster = 0.020). We then restricted our analysis to 

the MMN time window (100-250 ms) and again found a significant main effect of Attention 

but at an earlier period between 200-230 ms (pFWE_cluster = 0.028). Moreover, there was a 

significantly larger prediction error for attended versus unattended conditions between 100-

130 ms (pFWE_cluster = 0.046). These findings demonstrate that attention amplifies prediction 

errors. 

 

Figure 3 about here 

 

Larger responses to unpredicted than predicted events regardless of attention level – 

sensor and source space 

As shown in Figure 4, the main effect of Prediction, or surprise (standards vs deviants), 

disclosed several significant components comprised of two late effects. The first late effect 

was detected from 200-220 ms (peak-level Tmax = 8.30, cluster-level pFWE < 0.001; at fronto-

central channels). The second late component was observed from 290-295 ms (peak-level 

Tmax = 5.02, cluster-level pFWE = 0.004; at right parieto-occipital channels). We also found 

simple Prediction effects in all of the attention manipulations, that is, attended (peaking at 

185 ms), unattended (peaking at 210 ms), and divided (peaking at 195 ms). While there 

appeared to be qualitatively differences in the strength and extent of the prediction effects 

across Attention conditions, the interaction between Attention and Prediction did not survive 

correction for multiple comparisons. 
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We then used a multiple sparse priors source reconstruction method to investigate the cortical 

regions that generated the effects at the scalp level. Statistical parametric maps for source-

reconstructed images revealed two significant clusters for the main effect of Prediction in the 

left ([-42 -10 -38], peak-level Tmax = 4.14, cluster-level pFWE = 0.019) and right inferior 

temporal gyri ([44 0 -42], peak-level Tmax = 3.77, cluster-level pFWE = 0.023)(Figure 4).  

 

Figure 4 about here 

 

Opposition wins over Interaction – evidence from posterior probability maps 

Scalp level 

Bayesian Model Selection (BMS) was used to compare the two competing models of the 

relationship between Attention and Prediction (the Opposition or Interaction models; see 

Figure 1). Specifically, we were interested in comparing the strength of neural activation 

under the different manipulations of attention and prediction. We used random effects BMS 

to create group-level PPMs for each model, derived from the log-model evidence of each 

participant, that is, the evidence that a given model (Opposition or Interaction) generated the 

data. 

 

As shown in Figure 5, BMS revealed that the Opposition model (‘Attention and Prediction 

oppose’) was the more likely (>75% model probability) explanation for the data across most 

fronto-central channel locations at the majority of time points (70 to 210 and 290 to 375 ms). 

However, the Interaction model (‘Attention and Prediction interact’) had a higher probability 

(>75%) of explaining the data between 170 and 230 ms (i.e. within the MMN time window) 

at central and lateral parietal channel locations. Thus, the relationship between Attention and 

Prediction differed depending on both the time point and scalp location; although more often 
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than not, Attention and Prediction had opposing effects.  

 

Figure 5 about here 

 

The fact that the Interaction model won within the MMN window and yet we did not find a 

significant interaction in the classic GLM analysis could perhaps be explained by a Prediction 

by Attention interaction effect that did not survive correction for multiple corrections. We 

further examined a potential interaction effect, hindered perhaps by a rather conservative 

multiple comparison correction procedure. Firstly, we used more lenient, uncorrected peak-

level statistics to select two small interaction clusters at 175 ms (peak-level Fmax = 5.79, peak-

level puncorr = 0.004; at central channels) and 360 ms (peak-level Fmax = 5.45, peak-level 

puncorr = 0.006; at right parietal channels – see Figure 6). We then took the spatio-temporal 

coordinates of these clusters and extracted the posterior probability of each model at that 

particular location. We constructed a 103 cube around these coordinates and took the average 

posterior probability of each model over that volume. Our reasoning was that if an interaction 

between Attention and Prediction were present in the data, then the Interaction model would 

have a higher posterior probability compared with the Opposition model at these coordinates. 

We found that at 175 ms over fronto-central channels there was a negligible difference 

between the Opposition and Interaction models, with 48% and 52%, respectively (Figure 6). 

However, at 360 ms over the right lateral parietal area, the Opposition model probability far 

exceeded that of the Interaction model, with a value of 80%. Thus, Attention and Prediction 

appear to have opposing effects later in time. 

 

Figure 6 about here 
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Source level 

Finally, we applied the same BMS technique employed at the sensor level to our source 

reconstructed results. BMS revealed that the Opposition model had the higher model 

probability and larger clusters at the source (Figure 7). The Opposition model achieved >50% 

model probability in the left middle temporal gyrus (cluster size; KE = 82) and right inferior 

temporal gyrus (cluster size; KE = 288). Conversely, the Interaction model achieved >50% 

model probability in a smaller cluster in the left middle temporal gyrus (cluster size; KE = 

32). We then compared the model probabilities at the centre of these clusters and showed that 

the Opposition model was more probable than the Interaction model in the left middle 

temporal and right inferior temporal gyri (winning with 82% and 78% probability, 

respectively). Furthermore, model probabilities extracted from the peak of the Interaction 

model cluster showed a slight advantage for the Interaction over the Opposition model (with 

57% probability for the Interaction model). 

 

Figure 7 about here 

 

Dynamic Causal Modelling 

The prior location of the cortical sources included in our DCMs was based on MSP source 

reconstruction of ERPs corresponding to the 4 conditions (attended standards, attended 

deviants, unattended standards, and unattended deviants) of the Overall Mismatch. Statistical 

parametric maps were inspected at a more liberal threshold of p<0.05 (uncorrected) to 

identify candidate neural sources of the effects observed on ERP amplitude (Auksztulewicz R 

and K Friston 2015). Following the selection of candidate sources, model structure was 

optimized by comparing 6 alternative connectivity models using data from each of the 

experimental conditions, with no between trial effects present (i.e. 1 to 3 levels of 
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connectivity, with or without lateral connections between the inferior temporal gyri). Results 

indicated that the best model included recurrent connection amongst all regions, that is, 

inputs to LA1 and RA1, with LA1 connected to LITG, and LITG connected to LIFG, as well 

as connections linking RA1 and RITG, and lateral connections between LITG and RITG. The 

selected model was then used to further optimise condition specific changes in the extrinsic 

connectivity by comparing the types of extrinsic connections present. Here, 15 alternative 

models were compared, with each condition-specific model (Opposition and Interaction) 

modulating a different subset of extrinsic connections (forward only, backward only or 

forward and backward). A null model with no modulations on any connection was also 

tested. These models were fitted to each participant’s data to explain observed differences in 

ERP amplitude. Random-effects Bayesian model selection revealed that the Opposition-

model with modulation of forward connections outperformed all other models.  

 

Figure 8 about here 
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DISCUSSION 

In this study, we adjudicated between two alternative computational models of the effect that 

spatial attention has on expectations. Using Bayesian model comparison of scalp posterior 

probability maps we found that, except for an early time window (within the typical MMN), 

the Opposition model won over the Interaction model. This suggests that, for the most part, 

attention provides an equivalent boost to neuronal responses to predicted and unpredicted 

stimuli. Similarly, at the source level we found stronger evidence for the Opposition model 

underlying a fronto-temporal network. We investigated this further with DCMs that 

employed trial-dependent plastic changes according to either the Opposition or the 

Interaction model. In agreement with the model-based scalp and source analysis, we found 

that the family of Opposition models better explained the data. Classic SPM analysis of 

spatio-temporal maps revealed an effect of prediction across and within all attentional 

manipulations, which peaked within the typical MMN time window and at fronto-central 

channels. This effect was statistically greater in the attended compared with the unattended 

conditions at the single channel level, where MMN is typically seen, suggesting that attention 

amplifies prediction errors. At the whole spatiotemporal map level, however, this interaction 

effect did not survive correction for multiple comparisons over the whole space-time, despite 

the appearance of somewhat larger clusters for the attended than the unattended condition, 

 

Our finding of a prediction error effect in all attention conditions (attended, unattended and 

divided) is in agreement with a vast body of work suggesting that the MMN is elicited 

regardless of attention, and hence is ‘pre-attentive’ in nature (Naatanen R et al. 2001). This is 

in contradistinction to Auksztulewicz R and K Friston (2015), who did not find an effect of 

prediction in the absence of attention (although this might have been due to a lack of power, 

as very few trials were included). Again, our finding of a prediction error effect regarless of 
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attention is opposite to Todorovic A et al. (2015), who found that while beta synchrony 

decreased with expectation in the unattended condition, no difference was found in the 

attended condition. The latter is seemingly at odds with the idea that attention amplifies 

prediction errors as previously shown (Jiang JF et al. 2013; Auksztulewicz R and K Friston 

2015), and as revealed in the current study. A number of factors could be explain such 

conflicting results. Perhaps most importantly, very different paradigms and measures were 

employed across the relevant experiments. Both our study and that of Auksztulewicz R and K 

Friston (2015) investigated the effects of attention and prediction on evoked responses in an 

oddball paradigm, whereas Todorovic A et al. (2015) focused on endogenous oscillatory 

activity. Moreover, both Auksztulewicz R and K Friston (2015) and Todorovic A et al. 

(2015) manipulated temporal attention, whereas here we manipulated spatial attention. 

Moreover, in our experiment attention and prediction were manipulated within the same 

spatial location (left or right ears), but were drawn toward independent auditory ‘objects’ 

(noise for the attention task, and tones for the concurrent oddball stream). By contrast, the 

aforementioned studies (and that of Kok P et al. (2012)) manipulated attention and prediction 

within the same (visual or auditory) object. Future work should test whether manipulating 

attention and prediction for common versus independent stimuli alters the extent to which 

they interact.  

 

In this work we directly compared two competing models of the effects of attention on 

expectations – the Interaction and Opposition models – put forward in Kok P et al. (2012). 

The data in that study were consistent with the Interaction model when considering regions of 

the visual cortex (V1, V2 and V3). Here, however, we took a different approach by 

implementing the models computationally and directly testing them against our data. By 

using Bayesian model comparison of statistical maps of EEG activity, and DCMs for ERPs, 
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we were able to quantify how likely each of these two models was at every point of space and 

time at the scalp level, at each voxel in source space, an in the trial-dependent plastic changes 

within a cortical network.  The Opposition model was unambiguously favoured in our data at 

every level, i.e., scalp, source, and network. At the network level we found that the plastic 

changes according to the Opposition model were more pronounced in forward connections. 

This is consistent with the idea that attention boosts, or heavily weights, prediction errors, 

which are then conveyed upward in the cortical hierarchy. Such prediction errors signal the 

need to update an internal perceptual model of the world, in turn prompting learning. While 

these findings are mostly at odds with those in Hsu YF et al. (2014) and Kok P et al. (2012), 

there was a narrow window of agreement in which the Interaction model was better at 

explaining the data at the scalp level, perhaps tellingly within the MMN time frame. This is 

an interesting finding, as it seems to point to a tonic Opposition effect between Attention and 

Prediction, and a phasic Interaction effect. Again, there are differences in both the type of 

paradigm and the neuronal measures between our study, which used EEG, and the 

experiment of Kok P et al. (2012), which used fMRI. Although Attention was manipulated 

spatially in both studies, in our study it was directed towards a different (instead of the same) 

object. Moreover, our Prediction manipulation was learnt from the sequence of stimuli, rather 

than instructed (as in Kok P et al. (2012).  

 

In conclusion, our findings provide empirical evidence for a computational model of the 

opposing interplay of attention and expectations in the brain.  These opposing effects are 

manifested in neuronal activity and in plastic changes within a fronto-temporal network 

engaged in sensory prediction errors. We demonstrate that attention boosts neuronal 

responses to predicted and unpredicted stimuli, and replicate the finding that attention boosts 

prediction errors, in keeping with the predictive coding framework (Rao RP and DH Ballard 
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1999; Friston K 2005). Finally, we demonstrate that prediction errors are elicited regardless 

of one’s state of attention, providing further support to the idea of a pre-attentive nature of 

change detection systems in the brain (Naatanen R et al. 2001). 
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Figure Captions 

 

Figure 1 – Two competing models for the relationship between attention and prediction. 

In the Opposition Model, predicted (green) and unpredicted (red) neural signals are 

multiplied by two levels of Attention, with attended stimuli (solid lines) receiving a greater 

boost than unattended stimuli (dashed lines). In the Interaction Model (proposed by Kok et 

al., 2011), predicted and unpredicted signals are multiplied by 4 (instead of 2) levels of 

Attention that depend on the level of the Prediction. 

 

 

Figure 2 – Experimental paradigm. Gaussian white noise embedded with single (90 ms) or 

double (210 ms) noise gaps (periods of silence, and the targets of this experiment) was played 

to both ears (different target sequence in each ear). One ear received the oddball sequence of 

pure tones (50 ms) at either 500 or 550 Hz (counterbalanced between blocks) (ISI = 450 ms, 

standard p = 0.85 black rectangle, deviant p = 0.15 hollow rectangle, respectively). 

Participants were instructed to pay attention to the targets embedded in the white noise in the 

left, right or both ears and to ignore the tones. ISI = inter-stimulus interval, L = left ear, R = 

right ear, Std = standard, Dev = deviant. 

 

 

Figure 3 – Event-related potentials extracted from electrode Fz for each condition. (A) 

The ERPs for each of the experimental conditions were extracted from electrode Fz and 

compared over time. The grey shadings indicate the temporal widows during which  a 

significant main effect of attention was found (** corrected for the whole epoch, * corrected 

within the a priori MMN time window). (B) ERPs for attended and unattended prediction 
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errors (the MMNs; that is, the difference between unpredicted and predicted) are plotted at 

electrode Fz. Grey shading indicates the temporal window during which a significan 

Attention by Prediction interaction was found (* corrected within the a priori MMN time 

window). 

 

Figure 4 – Main and simple effects of prediction at the scalp and source levels.  (A) 

Spatio-temporal statistical analysis revealed significant effects of prediction (predicted vs. 

unpredicted) over fronto-central areas around 220 ms and over posterior parietal areas at 295 

ms (displayed at p<0.05, FWE whole-volume corrected). (B) The effects of prediction across 

the three attentional manipulations revealed a prediction effect in the attended condition at 

185 ms, the divided attention condition at 195 ms, and in the unattended condition at 210 ms, 

all located fronto-centrally (displayed at p<0.05, FWE whole-volume corrected). There was 

no significant interaction (difference in the MMN between the attention conditions). (C) 

Source reconstruction analysis revealed a main effect of prediction within the left and right 

inferior temporal gyri. (Displayed at p<0.001 uncorrected and FWE corrected at the cluster-

level.) 

 

 

Figure 5 – Scalp Posterior Probability Maps of the Opposition and Interaction models 

over space and time. Maps display the posterior probability for both models, thresholded at 

probability >75% over space and time. Scalp maps show the four timepoints with the largest 

significant clusters. The Opposition model wins (Attention and Prediction oppose) across 

most fronto-central channels at the majority of time points (70-210 and 290-375 ms). The 

Interaction model wins (Attention and Prediction interact) at the fronto-central and lateral 

parietal regions of the scalp (channel locations) between 170-230 ms.  
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Figure 6 – Bayesian Model Comparison within the spatio-temporal clusters extracted 

from the Prediction by Attention interaction. We extracted model probabilities using the 

coordinates (scalp location and time points) of two clusters from the Interaction results (based 

on the liberal threshold of p<0.001 uncorrected). If interaction effects were present, the 

Interaction model would be more likely to win over the Opposition model at these 

coordinates. At 175 ms (within the MMN time window) and over central electrodes, there 

was a very slight advantage for the Interaction over the Opposition model. However, at 360 

ms over right lateral parietal channels, the Opposition model probability far exceeded that of 

the Interaction model, with a probability of 80%.  

 

 

Figure 7 – Source Posterior Probability Maps of the Opposition and Interaction models 

(top) and model probabilities for the three major clusters of the two models (bottom). 

BMS was used for model inference at the group-level at the source. Here, the Opposition 

model achieved >50% model probability in the left middle temporal (cluster size; KE = 82) 

and right inferior temporal (cluster size; KE = 288) gyri. The Interaction model achieved 

>50% in a small cluster in the left middle temporal gyrus (cluster size; KE = 32). Overall, the 

Opposition model achieved higher probability over a larger number of voxels. Extraction of 

model probabilities from the peak of the Opposition clusters showed that this model won 

with 82% probability in the left middle temporal gyrus and with 78% probability in the right 

inferior temporal gyrus. Model probabilities extracted from the peak of the Interaction cluster 

showed there were minimal differences between either model at this location, with 57% 

posterior probability for the Interaction model. Note the differences in the colour map scales 
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between the Opposition and Interaction models. 

 

 

Figure 8 – Dynamic Causal Modelling hypotheses testing for plastic changes according 

to the Opposition and Interaction families of models. Source locations were identified as 

bilateral primary auditory cortices (LA1 and RA1), bilateral inferior temporal gyri (LITG and 

RITG) and left inferior frontal gyrus (LIFG). (A) Extrinsic connectivity was optimised using 

responses in all four conditions under the Opposition or Interaction model. Fifteen competing 

models were tested, each with a different subset of trial-specific modulation of connections, 

according to the Opposition and Interaction models on forward (F), backward (B) and 

recurrent (R) connections (with and without intrinsic modulations of A1 (subscript i)), as well 

as a null model precluding any modulations. Summed model exceedance probabilities across 

each family show the winning family as the Opposition Family (left; blue). (B) The winning 

model architecture had recurrent connections between all regions, intrinsic modulation of A1, 

lateral connections between bilateral ITG, and included trial-dependent modulations 

according to the Opposition model in the forward connections (blue lines). 
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