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1  Abstract
2 Investigations of transcriptional responses during developmental transitions typically use time
3 courses with intervals that are not commensurate with the timescales of known biological
4 processes. Moreover, such experiments typically focus on protein-coding transcripts, ignoring
5 the important impact of long noncoding RNAs. We evaluated coding and noncoding expression
6 dynamics at high temporal resolution (6-hourly) in differentiating mouse embryonic stem cells
7 and report the effects of increased temporal resolution on the characterization of the underlying
8 molecular processes. We present a refined resolution of global transcriptional alterations,
9 including regulatory network interactions, coding and noncoding gene expression changes as
10 well as alternative splicing events, many of which cannot be resolved by existing coarse
11 developmental time-courses. We describe novel short lived and cycling patterns of gene
12 expression and temporally dissect ordered gene expression at bidirectional promoters and
13 responses to transcription factors. These findings demonstrate the importance of temporal
14 resolution for understanding gene interactions in mammalian systems.
15

16 Links to data

17 Data has been deposited into GEO: The Reviewer access link is:

18  http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=cnglummejbkltyj&acc=GSE75028
19
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20 Introduction

21 Over the past decade, transcriptomic investigations into the of nature embryonic stem cell (ESC)
22 differentiation have elucidated key biochemical features of stemness and differentiation.
23 Increasingly, it has become apparent that understanding the dynamics and coordination of gene
24 expression signatures over time during the key phases of differentiation is critical to adequate

25 characterization of fundamental biological processes.

26 ESC differentiation in mouse is a highly complex cascade of gene expression changes that allow
27 single pluripotent cells in culture to progress to an organoid resembling a pre-implantation
28 blastocyst within only five days. The spontaneous differentiation of these cells in culture has
29 provided key insights into the developmental processes underlying the generation of the primary
30 germ cell layers(Martello and Smith 2014). Microarray and RNA sequencing have provided a
31 means to characterize the molecular transitions in gene expression underlying ESC biology and
32 more recently single cell transcriptomic studies have provided the first glimpses into the
33 molecular history of these cells(Liu et al. 2014). However, it is clear that much more of the

34 transcriptional landscape of ESC remains to be elucidated(Rosa and Brivanlou 2013).

35 Access to new technologies, such as massively parallel sequencing (MPS), has led to a dramatic
36 increase in our knowledge of the mammalian transcriptome. Early genomic tiling array analysis
37 indicated that most of the genome was transcribed into RNA(Bertone et al. 2004). MPS of the
38 transcriptome validated this observation and revealed that the majority of the mammalian
39 genome is pervasively transcribed as interlaced and overlapping RNAs(Djebali et al. 2012), many
40 of which lack protein-coding potential(Guttman et al. 2009). The large number of long-noncoding
41 transcripts (IncRNA) has become the focus of significant interest due to their exquisite cell type
42 specific expression(Mercer et al. 2008), potent biological function (Bonasio and Shiekhattar
43 2014; Fatica and Bozzoni 2014), and rapid transactivation of cellular processes. However, in
44 general, IncRNAs are lowly expressed and short lived(Clark et al. 2012), possibly because, unlike
45 mRNAs that require translation, are able to exert their function directly. These qualities
46 obfuscate their identification and characterization with traditional approaches that are tuned to
47 the properties of mRNAs. Owing to the relative infancy of the field, the vast majority of noncoding

48 transcripts are of unknown function(Quek et al. 2015). Additionally, the expression patterns of
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49 these genes imply that their function is dependent on cellular context and likely
50 regulatory(Bonasio and Shiekhattar 2014), thus the identification of these molecules and the

51 context in which they act remains a research priority(Gloss 2015).

52 Various expression profiling studies, using both microarrays and RNA-seq(Bruce et al. 2007a;
53 Cloonan et al. 2008; Dinger et al. 2008; Bergmann et al. 2015), have been used to explore the
54 molecular changes occurring during ES cell development, typically at 24-hourly or more. This
55 potentially has lead to incomplete gene expression relationships through the phenomenon of
56 temporal aggregation bias whereby each time point is assumed to represent all the signaling
57 changes occurring in that time window (Bay et al. 2004). In contrast to single cell based
58 approaches- which provide insight into the state of individual cells - examinations of whole cell
59 populations provides system-wide behavior and a practical means to explore gene expression
60 dynamics across time. The combination of these techniques has recently shed light the molecular
61 framework of cellular differentiation (Chu et al. 2016). Higher temporal resolution has also
62 shown rapid induction (within two hours of retinoic acid stimulation) of IncRNAs associated with
63 the HOX locus (De Kumar et al. 2015). Furthermore, high temporal resolution has provided
64  valuable insights into transcriptional annotation and regulation in drosophila (Arbeitman et al.

65 2002; mod et al. 2010), Xenopus (Tan et al. 2013) and C.elegans (Boeck et al. 2016).

66 Here we show that additional temporal resolution of the global transcriptome in spontaneously
67 differentiating mESC cells following LIF withdrawal enables the capture of the rapid and complex
68 dynamic regulatory and noncoding changes occurring during ES development. We analyzed the
69 transcriptome of differentiating mouse ESCs at six-hourly intervals over a five-day period, over
70 which time the three primordial germ layers are specified. Using this fine-resolution temporal
71 sampling approach, we identify significant transitions in the transcriptome and large-scale shifts
72 in observable transcription factor activities that could not be observed at 24 hourly sampling
73 periods. Moreover, we identify entirely novel coding and noncoding transcripts that are
74 expressed only within specific sub-24-hour window. By leveraging the high sampling frequency
75 of the data, we are able to both accurately recapitulate known regulatory cascades in ES

76 development and predict and refine others. Finally, using correlative approaches, we can infer
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77 functions for uncharacterized IncRNAs and predict the regulatory centers across the genome that

78 coordinate early development.

79  Results

80 The dynamic transcriptome of mESC differentiation at high temporal resolution

81 A median 42-million, paired-end 100-bp reads (Supplementary Figure S1A) were mapped from
82 stranded, poly-A derived cDNA libraries derived from biological duplicate, six-hourly time
83 courses of mESC differentiation over five days where key differentiation programs occur (0-120
84 hours, Figure 1A). Transcript-level expression data was generated as previously described
85 (Anders et al. 2013), then normalized for library size and transformed for data visualization and
86 differential gene expression analysis. Evaluation of 24 hourly time points indicated that our data
87 was comparable to previously published data in a similar model (Hirst et al. 2006)
88 (Supplementary Figure S1B). An interactive gene expression portal was created to visualise this

89  data (https://betsig.shinyapps.io/paper_plots).

90 To assess the reproducibility and provide confidence in the biological validity of the global
91 transcriptome trends, a principle components analysis (PCA) was performed on the 2,000 most
92 variable genes (Figure 1B). This analysis indicated that biological replicates clustered closely,
93 indicating that synchrony was retained, and that the major contributor to the determination of
94  variance was explained by time. Deconvolution of the dimensions yielded time-dependent
95 expression (in the first dimension) of genes enriched in focal adhesion/ ECM interactions KEGG
96 pathways. Interestingly, the second dimension deconvolution (PC2), in which undifferentiated
97 ESCs resemble the more differentiated embryoblast, yielded genes enriched in MAPK-signaling
98 and cancer pathways, implying that the process of differentiation involves a partial retention of a
99 cells capacity for self renewal. In the third component (PC3), in which the undifferentiated ES cell
100 is separate, the axon-guidance pathway was enriched. We then evaluated expression patterns of
101 genes associated with pluripotency, primitive streak formation and cell specialization (Figure
102 1C). We observed that, although the gene expression patterns were broadly consistent with
103 published studies (Supplementary Figure S1B), there were changes in expression on less than 24

104  hourly timeframes that could not be attributed to measurement biases (within the top 5% of
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105 deviation from loess-smoothed expression values). To establish how prevalent sub-24 hour gene
106 expression changes were in in the transcriptome of developing ESC;s, we evaluated the extent to
107 which gene expression patterns observed 24 hourly were unable to capture gene expression
108  changes happening within that window (temporal aggregation bias (Bay et al. 2004)). We
109 observed that, compared to 24 hour time points, 417 more genes had counts data considered
110 sufficient for differential gene expression analysis; reflecting a substantial increase in detected
111  noncoding genes over protein coding (>12% vs. 2% respectively, chi-squared p value <0.001,
112  Supplementary Table S1, Supplementary Figure S1C). Furthermore, the additional time points
113  allowed the assembly of 58% more novel multiexonic intergenic, antisense and intronic
114 noncoding RNAs from the data - indicating that a substantial proportion of noncoding transcripts
115 are present on timescales much shorter than 24 hours. Finally, to ensure that the 6-hourly
116 measures represented distinct gene expression patterns to the 24-hourly measures, we observed
117 that no single 24-hourly measure was representative of the average expression over that day
118  (Mann-Whitney U p. adj. <1E-145) and that more than 1,000 genes displayed a more than 2-fold
119  difference mostly in the first 24 hours of differentiation (Supplementary Figure 1D-E). These
120 results indicate that enhanced temporal resolution reduces the phenomenon of temporal
121 aggregation bias and allows the observation of more distinct cell expression states than typical

122 time-courses..

123  Animproved signaling cascade described by higher temporal resolution

124 Increased sampling frequency can provide a powerful insight into understanding of the
125 contribution of gene regulatory networks to cellular differentiation (mod et al. 2010). We utilized
126  the DREM v2 analysis tool (Schulz et al. 2012) to evaluate transcription factor (TF) target gene
127 expression patterns. Divergence of gene targets responsive to groups of TF at each time point,
128  either 24-hourly or 6-hourly (Figure 2A-B) was shown if the overall difference was significant at
129  p<0.001. Compared to 24-hourly, the observed complexity was significantly higher, especially in
130 the first 48 hours. We observed that significant changes in gene regulation occurred continuously
131  within the 24-hour windows. Most notably, first 24 hours following depart from pluripotency
132 resembles an ordered cascade of TF activity (Figure 24, Supplementary Figure S2A) with large-

133  scale changes in TF activity at 12, 18 and 24 hours; of which little can be deduced measuring at
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134 just 24 hours (Figure 2B, Supplementary Figure S2B). Focusing on the interplay between two key
135 transcription factors (OTX2 and POU5F1/0CT4(Yang et al. 2014), Figure 2A), we observed a
136  rapid rise in OTX2 activity in the first six hours and stable POU5F1 activity for the first 24 hours
137 (Red Box). OTX2 activity did not coincide with mRNA expression of the factor itself (Figure 2C),
138  although previous studies have observed increased in OTX2 protein expression within 3-hours of
139  differentiation(Yang et al. 2014), however periodic drops in POU5F1 mRNA expression appeared
140  to coincide with decreases in Pou5fl1 target genes, we calculated the time taken for POUSF1
141 expression to result in changes in highly positively correlated (r>0.8) target genes using a cross-
142  correlation approach similar to (Li et al. 2002). We then evaluated how these “delays” enriched
143 for certain Reactome pathways (Figure 2D). We found rapid effects for targets enriched for “gene
144  expression”- and a delayed effect on “cell cycle” pathways compared to a null distribution
145 produced by 500 random “target” selections (grey). These were similarly observed in the DREM
146 GO-term enrichment tool for Pou5F1 targets decreasing in expression at 42 (early- Transcription
147  Factor Activity) and 54 hours (late- Epithelial Proliferation; Figure 2A, Blue Box &
148  Supplementary Figure S2C) and associated with the decrease in Pou5F1 expression (Figure 2C,
149  Blue Box). Importantly, Pou5F1 mRNA and protein expression are temporally correlated (Yang et
150 al. 2014). This result implies that TF-target genes may be activated in an ordered- time
151 dependent fashion. To explore this more broadly, we evaluated other TF-target gene temporal
152 dynamics for other TFs that exhibited strong positive or negative correlations between the TF
153 and their target genes. We found evidence of highly structured TF-target expression patterns in
154 time for negatively correlated Pou5f1 and Suz12 targets, as well as positively correlated Nanog,
155  Myc, Sox2 and Suz12 targets (Supplementary Figure S3).

156 These observations of precise temporal ordering of transcriptional events emphasize the
157 importance of factoring time delays into understanding gene regulatory networks (Chen et al.
158 2014) and highlight the capacity of increased temporal resolution to directly identify -rather
159 than inference in most cross-correlation approaches -valuable new knowledge of regulator-

160  target gene interactions.
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161 Increased temporal resolutions identifies genes with previously uncharacterized

162  expression patterns (Short-lived (sIRNA) & Cycling (cycRNA))

163 Having established that the increased temporal resolution markedly improves the molecular
164 framework for evaluating the contribution of gene expression to ES differentiation, we next
165 sought to identify gene expression signatures previously unable to be resolved using lower
166 temporal resolution. For each 24-hour period, we identified genes that were differentially
167 expressed between 0 and 6, 12 and 18 hours but not between any 24-hourly measures
168  (Supplementary Figure S2D). We identified 1,135 genes with significant changes in gene
169  expression that were unchanged between any 24-hourly comparison (adjusted p<0.0001). Of
170 these, 354 were differentially expressed for more than half of the corresponding 24-hour
171 window, mostly in the first and last 24-hour periods. These genes were described as short-lived
172 RNAs (sIRNAs). sIRNA expression patterns over the first 24 hours of differentiation were found
173 to be positively correlated with the same time window of retinoic acid directed differentiation
174 (De Kumar et al. 2015) (Supplementary Figure S2E) implying that these genes may form part of
175 the early response to differentiation signals. K-means clustering and KEGG pathway analysis of
176 the expression profiles of these genes (Figure 2E) revealed enrichment in genes associated with
177 the spliceosome (p=0.02) dramatically decreasing in expression over the first 24 hours before
178 returning slowly to baseline. To examine whether this impacted gene-splicing patterns, we
179 employed a differential exon (DEX) analysis between consecutive six-hourly time points and
180 counted the number of genes displaying DEX usage (Figure 2E). Consistent with previous studies,
181 the alternate splicing was most highly associated with cell differentiation(Salomonis et al. 2010)
182 (Figure 2E). Increased temporal resolution has elucidated that these changes happen very
183  rapidly (majority of changes in the first six hours), and that sIRNAs may be involved in
184 suppressing the alternate splicing of genes and limiting transcriptional plasticity.

185 Some sIRNAs appeared to have periodic expression profiles. We thus sought to uncover periodic
186 expression patterns genome-wide, by applying a fast-Fourier transformation to our data (see
187 Methods). Periodogram analysis was utilized to ascertain the dominant cycling period for each
188  gene. We found 137 genes, which we termed cycling RNAs (cycRNAs), sharing the same

189 dominant cycling period of less than 36 hours in both biological replicate experiments
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190  (Supplementary Table S2). Supporting the efficacy of the approach, we found Clock, which
191  encodes a key regulator of circadian rhythm in mammals, to have a period of 24.2 hours. We
192  identified 20 genes that displayed characteristics of both sIRNAs and cycRNAs (Supplementary
193  Figure S2F), including Ewsr1 and CIk1, involved in gene splicing(Paronetto et al. 2011; Liu et al.
194  2013) as well as five uncharacterized IncRNAs. Given the highly specific expression patterns in
195 this context, we propose these genes may similarly have roles in maintaining or establishing
196 biological rhythms. Together these investigations show that the augmented temporal resolution
197 approach provides access to gain insights from regulatory pathways by identifying transitions in

198  expression that would otherwise have remained hidden.

199 Increased temporal resolution gives insight into local gene regulation in the

200 genome

201 Evaluating gene transcription at high temporal resolution in a highly dynamic process such as ES
202  development, we anticipated that it might be feasible to dissect structural gene regulation within
203 a given locus. To explore this possibility, we examined expression arising from transcripts that
204 are oriented head-to-head as so-called bidirectional pairs (Trinklein et al. 2004; Yang and
205 Elnitski 2014). Interestingly, we observed that the antisense transcript for Evx1 (Figure 1C)
206  displayed a previously unobserved (Dinger et al. 2008) increase in expression in the first 24
207 hours after departure from pluripotency that was reflected in its paired protein coding gene Evx1
208  (Supplementary Figure S4A), highlighting the increased power of frequent sampling over time. In
209  total, we identified 1,251 gene pairs with bidirectional transcriptional start sites (TSS) within
210 2,000 bp and evaluated correlation coefficients across the time course, distance between TSS and
211 median expression values. Consistent with other studies, we found expression correlation more
212  positive for bidirectional gene pairs than random transcript pairs(Trinklein et al. 2004)
213  (Supplementary Figure S4B). We were also able to show that the distance between TSS of highly
214 correlated bidirectional gene promoters is typically less than 500 bp (Figure 3A), consistent with
215 a common regulatory domain. Highly correlated or anti-correlated genes pairs displayed
216 differences in total gene expression, particularly with discordant gene biotypes (Figure 3B). We
217 found that protein coding gene pairs were more likely to be of similar expression levels and

218  positively correlated (p<0.05) than protein coding/noncoding pairs (Supplementary Figure S4C).
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219  Applying a variant of the temporal offset analysis used to measure TF- gene target delays, we
220 calculated the time taken and defined the apparent driver gene type for peak correlation in
221  coding/noncoding bidirectional pairs (Supplementary Figure S4D, E). This did not reveal a
222 generalized bias in either time taken or particular “driving” gene type. However, this approach
223  shows that the IncRNA HOTAIRM1, required for activation of HOXA1(Zhang et al. 2009), appears
224  to have a six-hour delay between its expression changes and HoxAl. We present evidence of
225 other examples of IncRNA-led expression of protein coding genes in small numbers of

226  bidirectional pairs (Supplementary Figure S5).

227 To investigate whether the strong correlative potential between gene pairs could facilitate the
228 identification of regions of the genome that are coordinately regulated (Lercher et al. 2002), we
229 scanned across the genome for regions containing five or more contiguous genes that were
230  coexpressed (r>0.5). This revealed 59 regions with a mean size of 821 kb -each containing 5-14
231 genes (mean of 6) genes. The majority of these regions were each contained within a single
232  topological associated domain(Dixon et al. 2012) (Supplementary Figure S4F), increasing the
233 propensity for a common regulatory architecture. Evaluation of gene-expression patterns across
234 these clusters revealed evidence of high co-expression at both the inter- and intra-chromosomal
235 levels (Supplementary Figure S4G). We assembled a map of regions of the mouse genome
236 displaying high levels of clustered co-expression (Figure 3C) by comparing the expression
237 profiles of the regions. Two independent modules were identified with distinct decreasing
238  (green)- and increasing (blue) expression patterns with differentiation. Given the independent
239 location and expression patterns of these clusters, we suggest these regions may form core
240 expression-factories of cellular differentiation. In support of this notion, this analysis identified
241  the gene cluster -associated with the “increasing module”- containing the imprinting locus of
242  H19,IGF2, Tnn3 and Mrpl23(Kaffer et al. 2001) (Supplementary Figure S4H); previously shown

243  tobe activated in concert during early stem cell differentiation(Poirier et al. 1991).

244 These investigations illustrate how analysis of high-resolution temporal transcriptomic data
245 provides an independent and convenient approach (relying only RNA-Seq) to guide the

246  partitioning of the genome into regulatory domains.
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247  Increased temporal resolution refines the noncoding landscape of mESC

248 differentiation

249 Having shown that rapid changes in IncRNAs are a key feature of ES differentiation, and that co-
250 expression analysis is a powerful tool for understanding gene regulation with augmented

251 temporal resolution, we sought to unravel the roles that IncRNAs might play in ES differentiation.

252 Analysis of gene annotations yielded confident expression data for 588 IncRNA genes at six-
253 hourly resolution (520 for 24-hourly, Supplementary Table S1). Indeed, added temporal
254 resolution increased information of all noncoding transcript biotypes indicating that a
255 proportion of these genes were only present for a short duration in this system. Clustering
256 IncRNA expression patterns with time-dependent protein coding gene expression showed that
257 IncRNAs were enriched at lower expression levels and shared related expression profiles to
258 protein coding genes (Figure 4A). This relationship was further examined whereby K-means
259 clustering of these expression profiles compared to clustering of a similar number of time-
260 dependent protein coding genes (Figure 4B, Supplementary Figure S6A) revealed clusters of
261 IncRNA genes resembling gene expression patterns associated with stemness (cluster a)
262  primitive streak formation (cluster b) and WNT signaling (cluster c)(Dinger et al. 2008).
263  Determining the role that these IncRNAs play in these processes will be important in

264  understanding the molecular events underlying cell differentiation.

265 As IncRNAs often exert their function through guiding or assembling transcriptional machinery,
266  we sought to identify potential regulatory IncRNAs in this system. We selected 50 highly or
267 variably expressed IncRNAs (Figure 4A) and tested for evidence of gene regulatory behavior
268 across the transcriptome. Since IncRNAs typically exert their function as a transcript, we set a
269 maximum time offset of 18 hours to avoid secondary (altered protein level) effects and examined
270 patterns in the predicted gene targets of IncRNAs (r>0.8, p<0.05, divided by positive or negative
271 associations). Reactome pathway analysis revealed that 11 of these IncRNAs (including well
272 characterized IncRNAs, Supplementary Figure S6B&C) were potentially involved in regulating
273 networks of genes associated with key developmental processes (p.adj<0.05, Supplementary
274 Figure S6C). These analyses assigned target gene networks consistent with characterized IncRNA

275 biological functions for Malatl (oncogenic(Li et al. 2009)), Neatl & Rian (association with gene
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276 repression(Guttman et al. 2011)) and Meg3 (tumour suppressor(Zhang et al. 2003)).
277 Interestingly, these data suggest that the pro-tumorigenic function of Malatl may be mediated
278 through facilitating the increase of MAPK signaling molecules. Importantly, these data also
279 provide testable evidence for seven previously uncharacterized IncRNAs role in ES development
280  and describes a map of regulatory interactions driven by IncRNAs (Figure 4C) whereby IncRNAs
281 can affect gene expression across the genome. The identification of IncRNAs with a predicted
282  biological role is important for unraveling IncRNA function, providing candidate functional

283  IncRNA and providing a level of molecular detail that is currently lacking in many IncRNA studies.

284  Discussion

285 Transcriptional regulation of key biological events is a key feature in understanding the
286 complexity of cellular processes. Here we describe a detailed transcriptomic resource for
287 research in cellular development, a framework for unraveling this detail and identifying new
288 targets for analysis. We also present a comprehensively detailed survey of noncoding transcripts
289  throughout early stem cell development. We have identified many previously uncharacterized
290  noncoding RNAs with potentially pivotal roles in cellular differentiation. This will provide a

291 valuable tool for researchers unraveling the transcriptional complexity of cellular differentiation.

292  Increased interpretive power

293  The understanding of molecular events underlying the departure from pluripotency has been
294 determined by the extant knowledge of how biological functions are exerted - often measured at
295 24 hourly or greater intervals. We hypothesized that interpretations of this model were missing
296  detail in light of evidence indicating the unforeseen dynamics in RNA biology and regulation. By
297 probing this detail with finer time distinctions, we show that gene expression profiles of well-
298 characterized genes display significant variation of expression levels and that such variations are
299 manifest in a significantly more complex gene regulatory framework. This is consistent with a
300 reduction in temporal aggregation bias (Bay et al. 2004) and highlights early array-based
301 investigations in yeast demonstrating the importance of sufficient temporal resolution in
302  understanding gene expression patterns (Bar-Joseph et al. 2003). As such, much detail is likely

303 missing from other systems that involve a change in phenotype or cellular behavior. With large-
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304 scale transcriptomic analyses becoming increasingly accessible, it is opportune to revisit other
305 well-studied transitions with the view of improving understanding and applicability of their

306 results rather than relying on presuppositions about gene expression patterns (Rosa et al. 2012).

307 Insights into short bursts of transcription

308 We have shown the benefit of frequent sampling over time in observing the transcription of
309  genes that are observable only within sub-24 hourly windows. This approach highlights the
310 importance of taking into account the presence of short-lived transcripts and shows that cells
311 express more of the transcriptome in a time-dependent fashion. To this end, we have identified
312 rapid changing and periodically expressed genes, which we term short-lived (sIRNA) and cycling
313  (cycRNA), that were unobservable outside this framework. That many sIRNAs exhibited changes
314 in expression over the first 24 hours of differentiation is consistent with rapid initial cellular
315 response to stimuli (Gasch et al. 2000; De Kumar et al. 2015). Indeed the it is likely that
316 significant gene expression changes- especially noncoding- occur on timeframes shorter than
317 those presented that may not be amenable to optimal timepoint prediction strategies (Rosa et al.
318  2012). By probing deeper into time-dependent gene transcription-possibly by interpolating
319  available datasets-(Bar-Joseph et al. 2003) it will be possible to uncover further complexity
320 underlying cellular plasticity and gene regulation. These observations reinforce the concept that
321 adequate temporal resolution is vital for describing biological transitions- for example in
322  dissecting primary from follow on effects in gene knockdown studies - and that end-point

323  analysis likely does not reflect the complex biology of phenotype changes.

324 Insight genome organization and regulation

325 Similarly, by using time to separate the order of gene transcription, we have been able to predict
326 local gene regulation across the genome. We have been able to observe concerted gene
327 expression (in trans) of hundreds of genes separated by large genome differences (in cis). Typical
328 studies of this nature involve correlative analysis requiring large samples sizes and resources
329  (Prieto et al. 2008). We have instead leveraged the time axis to achieve these as well as
330 discriminate driver from passenger molecular events. This has allowed the estimation of the time

331 delay for changes in expression of regulatory molecules to manifest in changes in their target
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332 gene transcription and we have been able to unravel a potentially complex network of gene
333  profiles responding to IncRNA transcription. Finally, we have been able to use an integrated
334 biological system to draw strong associations in trans relationships with bidirectional promoters.
335 Typically these associations are observed by using thousands of gene expression profiles, yet

336  here we have been able to do so with only 42.

337 General experimental considerations

338 The design and interpretation of time course experiments has been of great interest over the past
339  decade (Bay et al. 2004; Rosa et al. 2012) and they have been used effectively to elucidate
340  transcriptome expression and regulation in many organisms (Arbeitman et al. 2002; mod et al.
341 2010; Tan et al. 2013; Boeck et al. 2016). Furthermore, improvements in sequencing
342 technologies are making the dynamics of larger and complex genomes more available to closer
343  inspection. By probing transcriptional complexity in mouse ES development, we have gained
344 insight into many areas of molecular inquiry. Using uniform dense sampling enables strong gene
345 expression relationships to be drawn whilst simultaneously facilitating the dissection of
346 expression ordering and kinetics. Importantly these data show that substantial changes in gene
347 expression cannot be inferred from coarse time-points and that the continuous representation of
348 gene expression data in many developmental time courses obscures detail. Therefore the
349  assumptions made when choosing time points for these kinds of studies (such as how long a
350 biologically significant event takes to occur) need to be re-evaluated; RNA and protein turnover
351 is extremely rapid (Schwanhausser et al. 2011) and transcriptional responses are extremely
352 rapid (Gasch et al. 2000; Bar-Joseph et al. 2003; De Kumar et al. 2015) and can be transient (Lee
353 et al. 2014). It is therefore likely that dense profiling will yield more insights into reprogramming
354 until some sort of maxima or real-time picture is reached, especially in the first 24 hours.
355 Furthermore, using temporal approaches to augment single cell transcriptome studies such as
356 dissecting cellular heterogeneity (Trapnell et al. 2010) and IncRNA expression patterns (Kim et
357 al. 2015) similar to the method employed in (Chu et al. 2016) may allow the temporal tracking of

358  single cell alterations over time.

359 Analysis of high-resolution temporal transcriptomic data reveals an unprecedented level of

360  regulatory complexity and presents a tantalizing opportunity to revisit and bring new insight
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361 into other clinically or biotechnologically significant biological transitions. In designing these
362  experiments it is important to choose the approach to match the aim. For example, gene
363  knockdown experiments using siRNAs may benefit from early time point transcriptomes for
364 dissecting primary from secondary or tertiary effects. Uniform temporal sampling simplifies the
365 interpretation of temporal correlations in gene expression whereas focus on early responses will
366 necessarily require rapid initial time point selection with tracking samples. The frequency of
367 collection will necessarily depend on the duration of the response and practical and financial
368 considerations. The ability to observe transient gene expression increases incrementally with
369  each additional time point measured (Supplementary Figure S7) Finally, temporal experiments
370 should always be performed in duplicate at least to ensure uniformity of the biology underlying

371  the process in question.

372
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373 Methods

374  Sample Generation and Library Preparation

375 Biological duplicate, low passage number (P18) W9.5 ESCs were cultured and differentiated as
376 described previously(Bruce et al. 2007b; Dinger et al. 2008). Cultures were harvested every six
377 hours from the induction of differentiation to 120 hours post differentiation induction. Total RNA
378 from cultures was purified using Trizol (Life Technologies) and DNase treatment was performed
379 by RQ1 DNase (Promega) according to the manufacturer’s instructions. RNA integrity was
380 measured on a Bioanalyzer RNA Nano chip (Agilent). RNA-Seq library preparation and
381  sequencing of Poly-A-NGS libraries generated from 500 ng total RNA using SureSelect Strand
382 Specific RNA Library Preparation Kit (Agilent) according to the manufacturer’s instructions.
383  Paired-end libraries were sequenced to the first 100 bp on a HiSeq 2500 (Illumina) on High

384  Output Mode.

385 Quality control and read mapping

386 Library sequencing quality was determined using FastQC (Babraham Bioinformatics) and FastQ
387 Screen (Babraham Bioinformatics). [llumina adaptor sequence and low quality read trimming
388  (read pair removed if < 20 base pairs) was performed using Trim Galore! (Babraham
389  Bioinformatics: www.bioinformatics.babraham.ac.uk/). Tophat2 (Kim et al. 2013) was used to
390 align reads to the December 2011 release of the mouse reference genome (mm10) as outlined by
391  Anders et al.(Anders et al. 2013). Read counts data corresponding to GENCODE vM2 transcript
392 annotations were generated using HTSeq (Anders et al. 2014). de novo transcript assembly was
393 performed on each merged BAM file using Cufflinks’ reference annotation based transcript
394  (RABT) assembly(Roberts and Pachter 2011), using the Gencode vM2 transcriptome(Harrow et
395  al 2012) as a guide (options: -u -I 500000 -j 1.0 -F 0.005 --trim-3-dropoff-frac 0.05 -g
396 gencode.vM2.annotation.gtf --library-type fr-firststrand). Transcript assemblies were then
397 merged using Cuffmerge(Trapnell et al. 2010) using default parameters, and compared to the
398 Gencode vM2 reference transcriptome using Cuffcompare(Trapnell et al. 2010). Novel transcripts
399  with a Cuffcompare class code of j, i, o, u or x were filtered using three steps to find novel

400  IncRNAs. First, a Browser Extensible Data (BED) format file was generated using a python script
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401 (https://gist.github.com/davidliwei/1155568) and any single exon transcripts were removed.

402  Second, the FASTA-formatted sequence for each transcript was obtained using
403  BEDTools(Quinlan and Hall 2010), the nucleotide (nt) length and open reading frame (ORF) size
404  found using Perl scripts, and those with a length less than 200 nt or a ORF size greater than 300
405 nt were removed. Lastly, transcript sequences were submitted to Coding Potential Calculator
406  (CPC)(Kong etal. 2007), and those with a coding potential of >0 were removed.

407

408 Bioinformatics

409  All analyses were performed in the R Statistical Environment(R Core Team 2014). Briefly, counts
410 data were background corrected and normalized for library size using edgeR(Robinson et al.
411  2010), then transformed using voom(Law et al. 2014) for differential expression analysis using
412  LIMMA(Smyth 2004). Transcription Factor (TF) activity was inferred from gene expression data
413  using DREM(Schulz et al. 2012) with a branching P-value of 0.001 based on curated TF-target
414  gene lists associated with mouse ESC differentiation from ChEA(Lachmann et al. 2010). TF-target
415 gene was calculated by maximal Pearson’s correlation coefficient of >0.8 using a custom
416  autocorrelation analysis and verified with the “ccf” function in R. Gene differential exon (DEX)
417 usage was analyzed by DEXSeq(Anders et al. 2012) on vM2 gene annotations using default
418  settings and an adjusted p value cutoff of 0.001 for DEX between biological duplicates at each
419  consecutive time-point. Genome position analyses were performed using genomic
420 ranges(Lawrence et al. 2013) based on vM2 annotations imported with ‘rtracklayer’(Lawrence et
421 al. 2009) and Pearson’s correlation coefficient of gene expression Bidirectional genes were
422  defined as two genes with expression data on opposing strands with <2000 bp between the
423 transcriptional start sites (TSS). Co-expressed gene clusters were defined as >5 contiguous genes
424  with expression data displaying a Pearson’s Correlation Coefficient of >0.5 with neighbouring
425 genes. Cluster co-expression data was visualized with corrplot(Wei 2013) and Cytoscape
426  (v3.1.0(Shannon et al. 2003)), location of related clusters was visualized by Circos(Krzywinski et
427 al. 2009). Gene expression periodicity was measured on 120 interpolated expression
428  values(Orlando et al. 2008) for each replicate time series using GeneCycle(Strimmer 2012),

429 candidate periodically expressed genes were identified as having the same calculated dominant
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430 cycling frequency between biological replicates. Time-dependent expression signatures were
431 established using maSigPro(Nueda) with a replicate correlation coefficient cutoff of 0.8. Target
432  genes of potential regulatory (top 50 most highly and/or variably expressed) IncRNAs were
433  identified using the GeneReg package(Huang 2012) on 100 point-interpolated expression data
434  based on fitted expression values between duplicates and setting a maximum time delay of 18
435 hours and a global correlation coefficient of 0.9 and visualized using Cytoscape. Gene lists were
436  functionally annotated with KEGG and Reactome pathways (adjusted p value <0.05) using the

437  clusterProfiler and ReactomePA packages(Yu et al. 2012).
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Gloss et al. Figure 1

Global and gene-specific evaluation of augmented temporal resolution in mES differentiation. (A)
Schematic of mouse embryonic stem cell (ESC) differentiation into embryoid bodies (EB) over the time
course evaluated here. (B)Analysis of the top three principle components (PCs) based on the 2,000 most
variable genes from biological duplicate-6 hourly transcriptomes.and KEGG pathway enrichment for 500
genes contributing most to each of the top three PCs. (C) Expression profiles of genes associated with
pluripotency, primitive streak formation and cell specialization .
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Gloss et al. Figure 2

Insights into regulatory and gene expression kinetics . (A & B) Observable regulatory network dynamics
at 24- and 6-hourly measures with OTX2 and POU5F1 target containing profiles annotated and in bold, See
Supplementary Figure S2 for full figure. Transcriptomes at 24- (top) and 6-hourly (bottom) were subjected
to DREM analysis of mouse TF/target gene interactions. A p-value cutoff of 0.001 was applied to calculating
divergent TF activity (splits). Relative circle sizes are proportional to the spread of gene expression levels
corresponding to that point. Red and blue boxes pertain to branch points of interest (C) Expression of the
key transcription factors Pou5F1 (Oct4) and OTX2. Red and blue boxes correspond to the time points
highlighted in part A. (D) Distribution of the number of genes and the time delay required to meet a
maximum correlation (>0.8) between gene targets of Pou5f1 and pPou5f1 itself compared to 95% quantiles
of 500 random gene selections. (E) Two k-means clusters short-lived RNA (sIRNA) genes displaying
differential expression without changes at 24-hourly time points (adj. p<0.0001).
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Analysis of gene coexpression patterns using augmented temporal resolution. (A) Smoothed scatter

plot showing the correlation coefficient across the time course vs. distance
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Gloss et al. Figure 4

Augmented temporal resolution of ncRNA expression in cellular differentiation. (A) Hierarchical
clustering of IncRNAs (dark blue) with time-dependent protein coding genes (light blue) by their expression
patterns over time. Dendrogram was manually colored to reflect gene expression levels of the top-level
clusters. (B) K-means clustered expression profiles of protein coding genes compared to the same number
of IncRNA gene expression clusters. Common profiles are marked with arrows. (C) Expression profiles of
four IncRNAs predicted to have regulatory roles in ES development as well as the genome location &
pathways enriched in their gene targets. Malatl and IRX3o0s display a positive association with their targets,
whereas 1700057H21Rik and 1700042010Rik have a putative repressive impact.
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Supplementary Figures and Legends

Please see attached Excel Spreadsheet (Gloss_2015_SuppTab.xlsx) containing
Supplementary Table S1: Counts of Genes by biotype
Supplementary Table S2: Periodic Genes
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Gloss et al. Supplementary Figure S1

Global evaluation of high-resolution transcriptomic data. (A) Histogram of mapped read number
distribution per sample (pooled from biological replicates). (B) Comparison of expression levels and
principle components analysis measurd 24 hourly between this study and Hirst 2006 (C) Heatmap of
expression levels for genes only expressed outside of 24 hourly timepoints, clustered by expression pattern.
(D) Evidence of differential expression within one 24 hour period vs. any change across all 24hourly times
(p <0.0001). (E) Comparing whether the 24 hourly measures “summarize” that 24 hour window by
comparing mean expression for that window with the 24 hour time point
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Highlighting unique knowledge gained from increased temporal resolution. (A &B) Fully annotated

-15 -10 -05 00 05
blue boxes in Figure 2A. Black boxes represent similar terms identified in figure 2D. (D) Schematic of

differential expression analysis design used to identify sIRNAs. (E) Correlation of sIRNA expression in (De
Kumar et al. 2015). (F) Comparison of sIRNAs and cycRNAs. Venn diagram of the overlap observed and

term enrichment (adjusted p<0.05) for genes corresponding branch points designated as early (co-observed
examples from each class.

with change in POU expression) and late (observed after POU5f1 Expression changes) highlighted by the

DREM schematic of estimated TF activity of key ESC related TFs at 6hourly (A) vs. 24 hourly (B). (C) GO
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Gloss et al. Supplementary Figure S3

Temporal offsets in transcription factor (TF)- target gene expression. (A) Curated TF/gene targets were
downloaded from chea (http://amp.pharm.mssm.edu/lib/chea.jsp) for Myc, Nanog, Pou5f1, Sox2 and Suz12.
Expression of target genes were tested for correlation with their TF at different temporal offsets (0-36
hours) and compared to 500 random selections of the same number of genes (Null). Where absolute
correlations of predicted targets exceeded the null distribution (arrow), (B) the number of genes achieving a
maximal absolute correlation of >0.8 and the offset required to reach these maxima was plotted against the
5th and 95thquantiles of the same results from the null distribution. Where the number of target genes
exceeded the null distribution, the lists of genes in each offset were tested for enrichment of Reactome
pathways relative to the total predicted target list (enrichment). (C) Example expression patterns of genes
displaying these attributes were plotted.
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Gloss et al. Supplementary Figure S4

Bidirectional and co-expression analysis of mouse ES development. (A) Expression profile of EVX1 and
its antisense (and positively correlated) transcript EVX1AS- the peak at 6-18 hours has not been observed
previously. (B) Distribution of correlation coefficients of bidirectional gene pairs (red) compared to similar
numbers of randomly chosen genes pairs, randomly chosen genes from the same chromosome and,
randomly selected neighbouring genes (dotted lines). ks=Kolmogorov-Smirnov test (bidirectional vs.
random neighbouring gene pairs). (C) Characteristics of bidirectional gene pairs (Correlation coefficient,
Distance between TSS and Difference of median expression (log scale) based on annotated gene-biotype. (D)
Counts of bidirectional gene pairs of differing biotypes achieving an improved correlation coefficient of
>0.15 (to at lease 0.25) over that at time zero, colored by the biotype of the “following” gene or by the
temporal offset required to achieve the improvement. (E) Comparison of responding gene biotype to the
temporal offset for lincRNA and antisense biotypes. (F) Number of topological associated domains (TADS,
HindIII data mapped to mm10 using liftOver from mm9) associated with each co-expressed gene cluster. (G)
Clustering of co-regulated gene clusters by correlation coefficient visualized by network diagram and
hierarchical clustering of the correlation matrix. (H) The imprinted H19/IGF2 cluster identified as a co-
expressed gene cluster with gene expression data for measured genes. Some genes did not have expression
data (no data).
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Gloss et al. Supplementary Figure S5
Temporal relationships of highly correlated coding-noncoding bidirectional pairs. (A) Bar chart of the
temporal offset required to reach a maximum correlation >0.8 and whether the noncoding gene preceded
the protein coding gene or vice versa. (B) Example gene expression profiles of bidirectional paired gene
over the time course. Gene profiles are arranged and colored as the bar chart.
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LncRNAs and their role in ES development. (A) Reactome pathway enrichment for 5/6 k-means clusters
of time-dependent protein coding genes. (B) Expression profiles for characterized IncRNAs described in
text. (C) Reactome pathway enrichment for putative gene targets positively or negatively associated with
candidate IncRNAs (top 4 pathways, enrichment adj. pval.<0.05)
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The number of conditions in which each gene observed is expressed above background in both
replicates across the time course. ~150 new genes are observed at a single timepoint.
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