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Abstract  

Patient classification has widespread biomedical and clinical applications, including 

diagnosis, prognosis, disease subtyping and treatment response prediction. A general 

purpose and clinically relevant prediction algorithm should be accurate, generalizable, be 

able to integrate diverse data types (e.g. clinical, genomic, metabolomic, imaging), handle 

sparse data and be intuitive to interpret. We describe netDx, a supervised patient 

classification framework based on patient similarity networks that meets the above 

criteria. netDx models input data as patient networks and uses the GeneMANIA machine 

learning algorithm for network integration and feature selection. We demonstrate the 

utility of netDx by integrating gene expression and copy number variants to classify breast 

cancer tumours as being of the Luminal A class (N=348 tumours). In a simplified 

comparison using gene expression, netDx performed as well as or better than established 

state of the art machine learning methods, achieving a mean accuracy of 89% (2% s.d.) in 

classifying Luminal A. netDx uses pathway features to aid biological interpretability and 

results can be visualized as an integrated patient similarity network to aid clinical 

interpretation. Upon publication, netDx will be made publicly available via github. 

Introduction 

The goal of precision medicine is to build quantitative models that guide clinical decision-

making by predicting disease risk and response to treatment using data measured for an 

individual. Within the next five years, several countries will have general-purpose cohort 

databases with 10,000 to >1 million patients, with linked genetics, electronic health 

records, metabolite status, and detailed clinical phenotyping; examples of projects 

underway include the UK BioBank1, the US NIH Precision Medicine Initiative 

(www.whitehouse.gov/precision-medicine), and the Million Veteran Program 

(http://www.research.va.gov/MVP/). Additionally, specific human disease research 

projects are moving towards profiling of multiple data types at the population level, 

including genetic and genomic assays, brain imaging, behavioural testing and clinical 

history from integrated electronic medical records2-4 (e.g. the Cancer Genome Atlas, 

http://cancergenome.nih.gov/). Computational methods to integrate these diverse patient 

data types for analysis and prediction will aid understanding of disease architecture and 

ideally provide actionable clinical guidance. 

 

Statistical models that predict common disease risk are in routine clinical use in the fields 

of cardiovascular health, metabolic disorders, and certain cancers5-8. Most of these models 

were developed in the pre-genomic era, and use a combination of clinical history and 

metabolite state (e.g. PSA test9 for prostate cancer or risk categories for diabetes7). Models 

that integrate genetic information are still rare; a notable exception is the BOADICEA model 

that predicts breast cancer risk by including medical and family history, and BRCA1/2 

status10,11. Established clinical risk prediction models typically use generalized linear 

regression or survival analysis, in which all individual measures are presented as terms (or 

features) of a single equation. Standard methods of this type have limitations analyzing the 

large data from genomic assays. Machine learning methods can handle large data, but are 

often treated as black boxes that take substantial effort to understand how specific features 
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are useful for prediction. Many existing methods also do not natively handle missing data, 

and require the user to address this by data pruning or imputation. Additionally, each data 

type may capture a characteristic “view” of patient similarity through its correlation 

structure, with different data types separating patients into different classes. A simple 

combination of heterogeneous data sources into a single model ignores this data type 

specific correlation and may lose important patient similarity structure12. 

 

The patient similarity network framework can overcome many of these challenges and 

excels at integrating heterogeneous data, handling missing information, and model 

interpretability. In this framework, each input patient data feature is represented as a 

pairwise patient similarity network (PSN) (Figure 1). Each PSN node is an individual 

patient and an edge between two patients corresponds to pairwise similarity for a given 

feature. PSNs can be constructed based on any available data as long as a similarity 

measure is available (e.g. Pearson correlation for gene expression data). Patients that are 

highly similar to one another in one or more PSNs can be grouped (unsupervised 

classification/clustering/subtyping), and those of unknown status can be classified based 

on their relative similarity to patients with known labels (supervised classification). Patient 

similarity networks (PSN) have been used for unsupervised class discovery in cancer and 

type 2 diabetes4,12. We describe a PSN-based approach, called netDx, for supervised patient 

classification. Conceptually, this patient similarity-based classification is like that used in 

routine clinical diagnosis, which often involves a physician relating a patient to a mental 

database of similar patients they have seen. As demonstrated below, our netDx PSN 

framework is accurate, supports heterogeneous and missing data, and incorporates feature 

selection. Additionally, our use of biological pathway based features supports improved 

accuracy and generalization, aids interpretability of genome oriented patient data and 

identifies disease-altered physiological processes. To our knowledge, netDx is the first 

reported supervised patient network-based classifier. 

Methods 

The overall netDx workflow is shown in Figure 1. 

 

Input data design. Each patient similarity network (PSN) is a feature, similar to a variable 

in a regression model (we use the terms “input networks” and “features” interchangeably). 

A PSN can be generated from any kind of patient data, so long as a measure of pairwise 

patient similarity can be defined. For example, gene expression similarity can be measured 

using Pearson correlation for the genes of interest, while patient age similarity could be 

measured by normalized age difference. A simple design is to define one similarity network 

per data type, such as a single network based on correlating the expression of all genes in 

the human genome, or a network based on similarity of responses to a multi-question 

clinical questionnaire. Using unit measurements is more interpretable as individual data 

types (e.g. individual gene expression levels or questionnaire answers) can be identified as 

important for classification. However, this approach can easily lead to too many features 

generated (e.g. millions of SNPs), which increases risk of overfitting and leads to large 

computational resource requirements. To address this for ‘omics data (e.g. genomics, 

proteomics, metabolomics), we group measurements into biological pathways, which we 

assume capture relevant aspects of cellular and physiological processes underlying disease 
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and normal phenotypes. This biological process-based design generates ~1,000 networks 

from gene expression data, with one network per pathway. Feature selection identifies 

pathways that have good discriminative value, which helps improve our understanding of 

the underlying mechanisms. This idea can be extended to non-genomic data; functional 

brain imaging data could be grouped by brain regions co-activated during a task of interest, 

while responses to behavioural assessments could be grouped by measurement of the 

same latent variable. 

 

We have considered two broad categories of patient network types. The first is a dense 

network where the same measures are obtained on all or almost all patients (Figure 1A). 

Examples include standardized assays or tests, such as gene expression assays that provide 

gene-level measures. The second is a sparse network in which features are rare, thus there 

is little opportunity to relate patients based on them. Examples include rare genomic 

events such as de novo DNA copy number variants (Figure 1B). This sparseness is 

addressed by aggregating sparse counts into larger counts by grouping units, such as 

grouping a set of copy number variants affecting a set of genes in a biological pathway. 

 

Network integration and similarity-based ranking. netDx uses the GeneMANIA13,14 

multiple association network integration algorithm to integrate all input networks into a 

single composite patient similarity (or association) network (Figure 1C; Supplementary 

Figure 1). When provided with a set of query patients – for example, all patients with a 

tumour of a given class – GeneMANIA first reduces redundant networks, and then weights 

each network based on how informative it is for discriminating the set of query patients 

from all other patients. A weighted linear combination of all networks is used to create the 

composite network. GeneMANIA then uses label propagation on this integrated network to 

rank all patients (network nodes) by similarity to the query set (Supplementary Figure 1). 

Top ranked patients (according to a threshold) can be classified as being part of the query 

patient set. For example, if the query patients are all of a specific class, top ranked patients 

can be classified as part of this class. 

 

Feature selection to identify predictive networks. Feature selection identifies the input 

networks with the highest general predictive power. For a given query, the network weight 

computed by GeneMANIA is a measure of the value of that network in the classification 

problem. netDx is trained based on samples from the class of interest; this is achieved by a 

set of GeneMANIA queries using a cross-validation based approach designed to reduce the 

chances of over-fitting (Figure 1C, top panel). The score for a given network is the 

frequency with which it is assigned a positive weight in the cross-validation procedure. The 

classifier’s sensitivity and specificity can then be controlled by thresholding this score; a 

network with a higher score achieves greater specificity and lower sensitivity. This feature 

selection step results in a subset of input networks that can be integrated by GeneMANIA to 

produce a predictor for the patient class of interest. Data can be optionally resampled 

during training to improve test classifier generalization, though this is computationally 

intensive. 

 

Class prediction using selected features. For every class label, an integrated network 

database is built using networks with high feature selection scores for that class. This 
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database must comprise all training and test samples in the data set. For each class, a 

GeneMANIA query is run against the network database, using training samples for that 

class as the query. This step results in a class-specific ranking for all test patients (Figure 

1C, bottom panel). The patient is then assigned to the class with the highest normalized 

rank. This process is equivalent to labelling the patient with the class to which the patient 

is most similar.  

 

Integrating heterogeneous data types and feature selection: Classifying a breast 

tumour as “Luminal A” class 

We used netDx as a binary classifier for the Luminal A breast cancer subtype (or class) and 

performed feature selection. Luminal A breast tumours are low-grade, with a majority 

(~87%) being clinically positive for estrogen receptor and negative for HER215. These 

features increase the chances that this tumour type responds to hormone therapy and 

chemotherapy. Gene expression and CNV coordinates were downloaded for 348 primary 

breast tumours from TCGA (Level 3 data; https://tcga-

data.nci.nih.gov/docs/publications/brca_2012/)15. The workflow for building a classifier is 

shown in Figure 2A-C. Data were split 70:30 into training and test groups respectively; for 

feature selection, input networks were constructed using only training samples (N=104 

LumA, 130 other). Patient similarity was defined at the level of cellular pathways collected 

from curated pathway databases (Supplementary Methods). Individual networks were 

based on similarity by gene expression data or by shared CNV occurrence in genes of each 

pathway (Figure 2A). Networks based on gene expression used pathway-level Pearson 

correlation as a measure of similarity (N=1,801 networks); networks were sparsified to 

retain only the strongest connections (Supplementary Methods). CNV-based networks used 

a binary measure of shared overlap of a pathway (N=1,622 pathways). Unlike the networks 

derived from gene expression, these networks do not each contain all the patients in the 

data set; rather, each network contains only those patients with CNVs overlapping genes of 

the same pathway. Feature selection was separately performed for each class (Figure 2B). 

In each case, ten-fold cross validation was used to score the predictive value of networks 

for the class of interest (positive labels). For each fold of cross validation, GeneMANIA was 

run with a different 9/10th of positive training samples as each input query. We ensured 

that each sample was part of the non-query set exactly once. Each time a network was 

returned in the GeneMANIA network ranking table, its score was increased by one; a 

network could therefore score a maximum of ten for the ten folds of cross validation. In this 

design, feature selected networks for a given class were those that score >= 9/10. 

  

Out of a total of 3,423 networks (1,801 based on gene expression and 1,622 on CNV), 57 

networks were feature selected for the LumA class; eight of these were CNV-based 

networks. Feature selected networks included previously reported themes of cell cycle 

regulation16,17, mitotic spindle checkpoint16,18, DNA damage repair18, and pyrimidine 

metabolism17 (Figure 2D). Following feature selection, a patient similarity network 

database was constructed for each class (Figure 2B); each database contained all samples 

in the dataset. A single query was run against each database, using all training samples for 

the corresponding class as query. This resulted in a class-specific ranking for each sample 

and test samples were assigned to the class with the higher rank (Figure 2C). This predictor 
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has a 92% accuracy in classifying LumA tumours, with a positive predictive value of 84% 

(Table 1); the overall predictor accuracy is 88.8%. As a comparison, Paquet and Hallett19 

recently report an accuracy of 86.6% in Luminal A classification with a predictor that uses 

relative gene expression of pairs of genes within the same sample.  Luminal A samples are 

closer to each other and separate from other samples in the resulting integrated network 

(Figure 2E); the average weighted shortest path for LumA-LumA nodes is 0.138 

(SD=0.051), which is shorter than the LumA-other distance of 0.266 (SD 0.075) (other-

other=0.162 (SD=0.055); all-all=0.157 (SD=0.047)). 

Comparison to other model-building methods 

Using the TCGA breast cancer data, we compared the performance of netDx to two 

established machine-learning algorithms, elastic net regression and random forests 

(Supplementary Methods). To simplify the comparison, only gene expression data were 

used. For comparison to pathway-level networks in netDx, features for the other two 

methods were tested in two ways: the model was either limited to genes present in 

pathways (N=7,948 features) or each feature was defined as the mean expression value of 

all genes in a pathway (N=1,802 features). To reduce overfitting, all methods used three-

fold resampling (see discussion of predictor design strategies); biological themes identified 

through this approach are similar to those found by the simpler predictor version 

presented above (Supplementary Figure 2). netDx performs at par with these methods 

(504 train/test splits; mean accuracy 89+/- 2%, range 81-95%; mean PPV 84+/-3%SD; 

range 75-94%) (Table 2). Thus, netDx matches the performance of state of the art methods, 

is easy to use because of provided software and examples, and automatically provides an 

interpretable model based on patient similarities and biological pathways. 

Computational requirements 

Supplementary Table 1 shows computational resources and timing for running the breast 

cancer predictor on a workstation and a laptop. Running a version with no resampling – 

one round of 10-fold cross validation – takes 40 minutes on a workstation (Intel Xeon CPU 

2.9GHz, 8 cores, 128 Gb RAM). Running the predictor with three-way resampling takes 

under two hours. By default, all intermediate data is stored, to permit a detailed 

examination of the process of classifier creation. The memory requirement for running 

netDx scales with the number of GeneMANIA algorithm queries that run in parallel. Despite 

sparsification, a single GeneMANIA algorithm query with 1,801 gene expression-based 

networks requires ~7Gb RAM. In practice, we have found that a compute node running 8 

queries in parallel requires between 30 and 50Gb RAM. These memory requirements 

preclude running predictors with networks with gene-level features (~17K dense 

networks) in typical cases. Thus, some feature selection is necessary to limit input 

networks to potentially informative genes; this list may include differentially-expressed 

genes, most variable genes, or “eigengenes”/hub genes that represent a correlated set of 

genes20. On a modern laptop, running the simplified version of the breast cancer predictor 

takes 1 hour 40 minutes (Supplementary Table 1). Thus running netDx on a laptop is 

feasible (see discussion below). 
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Discussion 

We present a novel machine learning application for clinical sample classification based on 

patient similarity networks. The method performs at a state of the art level on test data, but 

is more intuitive and interpretable due to the extensive use of feature selection and 

biological pathway features for genomic data. 

 

While the applications we describe here use genomic data as input, networks can be 

derived from other types of patient data including clinical, genetic, and brain imaging. A 

requirement is the definition of a suitable similarity measure from a data type of interest. 

Optimal feature design is an open problem and is likely to depend on the data, and 

classification task. New patient data types or similarity measures can be evaluated before 

generating patient networks in the netDx framework. For example, exploratory data 

analysis, such as unsupervised clustering approaches, may be used to ascertain if classes 

separate when using a candidate measure of similarity. Domain expertise must guide the 

predictor and feature selection building process by assessing the relative merits of various 

similarity measures and by identifying data groupings grounded in prior knowledge; 

examples include pathways to group genes, brain regions co-activated in a functional 

imaging assay, and questionnaire scores that measure the same physiological variable or 

cognitive ability. Features with clear clinical or mechanistic interpretation are more likely 

to inform the understanding of the classes, in addition to providing predictive value. 

However, given enough compute power, it is also possible to use a “brute force” approach 

to assess the predictive value of all possible candidate networks. Another consideration is 

the use of appropriate controls to validate initial findings, to ensure that the structure of 

networks derived from novel data types – for example, sparse networks – does not 

adversely affect the algorithm. For instance, injecting simulated random similarity 

networks as input features would serve as a negative control, as such networks should not 

be feature selected. 

 

As with any machine learning method, principles of good predictor design are applicable 

when using netDx. A common problem in predictor building is overfitting, where a 

predictor fits irrelevant variation (or “noise”) in the training data and is therefore less 

generalizable to new input. The ideal scenario, in which a dataset is large enough to 

accommodate a training set representative of the population being studied, and which can 

provide sufficiently large sample size for validation, is currently rare in patient genomics. 

Instead, strategies such as partitioning of data into training and test samples, and 

resampling are used to mitigate overfitting (Supplementary Figure 3). At a minimum, the 

sample size should be large enough to be partitioned into a training set and a “blind” test 

set (Supplementary Figure 3A). Feature selection should be performed using only the 

training set; the test samples are then used to validate the predictor. In the applications 

presented here, we use a 70:30 split for training and test data; we find this split provides a 

reasonable balance for providing sufficient samples to build the predictor and separately to 

assess performance. A second strategy is resampling, where the network score is computed 

on multiple subsets of training data, which are then aggregated to provide the final set of 

scores. The netDx algorithm uses resampling in the cross validation used to assign network 

scores (Figure 1C top panel, Supplementary Figure 3B). In N-fold cross validation, N 
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GeneMANIA algorithm queries are run on different training data samplings; network scores 

are the frequency with which a given network is identified as predictive. Resampling 

ensures that some samples are not sampled more often than others, by excluding each 

sample from exactly one iteration. While here we use 10-fold cross validation (i.e. N=10), N 

can be increased or decreased depending on training set size; the goal is to ensure that a 

reasonable number of samples are included in a given query, so that the contribution of any 

single query to the network score is non-trivial. Finally, datasets with large sample sizes 

can build a more robust predictor by running this inner cross-validation loop for multiple 

resamples of the overall training set (Supplementary Figure 3C). When added, cross 

validation scores from different resamplings provide a more fine-grained measure of 

predictive power. They promote networks that score moderately in any given resampling 

but that are robust to resampling, over networks with highly fluctuating predictive power. 

This approach may also be useful for sparse patient networks, such as those based on CNV 

deletions and duplications, which increase the chance of overfitting. 

 

We plan to further develop netDx to include other data types – such as clinical, genetic, 

brain imaging – and to optimize similarity measure computation (e.g. using NBS21). We also 

propose storing and sharing of patient similarity networks, useful as features for netDx and 

other PSN methods in the NDEx network exchange system22. Future versions should 

automatically handle covariates. We currently propose considering covariates by use of a 

logistic regression, subsequent to netDx prediction, that includes terms for netDx predictor 

values and for covariates in a single equation. 

 

We propose that netDx will be clinically useful because of its interpretive value. In the 

future, clinical researchers could run the predictor via a web-based interface using their 

patient data, while the actual computation could be run on compute servers that can 

connect to data from patient databases, such as electronic medical records. Results could 

be provided in the form of reports that indicate model performance, and that plot the 

organization of high-ranking features, similar to the enrichment map in Figure 2D. While 

netDx was developed for biomedical data, the algorithm is generic enough to be applicable 

to any domain requiring supervised classification by integration of multiple data types; 

examples of possible applications include agriculture (networks of similarity between crop 

strains) and microbial pathogenicity (similarity between microbes). 

 

The netDx method is implemented as an open-source R software package and will be made 

available upon publication at http://netdx.org, with worked examples.  
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Figures 

 

Figure 1. The netDx workflow. 

A. netDx converts patient data into a set of patient similarity networks (PSN), with patients

as nodes and a user-provided similarity measure as weighted edges. The user can

optionally group data using prior knowledge. The method generates one network for each

input data or grouping. 

B. For sparse data such as genomic structural variants, similarity may be defined as the

shared occurrence within a set of genomic regions, such as a pathway. This aggregates

sparse counts into larger counts by group. The resulting patient similarity networks are

binary and include varying numbers of patients. Steps A and B can be repeated for an

arbitrary number of heterogeneous data sources.  

C. netDx predictor workflow. Patient data is partitioned into a training and a blind test set

Feature selection (top) is performed once per class. The GeneMANIA algorithm is used to

integrate input patient networks and to rank patients by similarity to a query input. For

each class, networks are scored by the frequency with which they are identified as being

predictive by the GeneMANIA algorithm. A threshold is then used to subset feature-

selected networks. Such networks can provide mechanistic insight into the class

Classification of test samples (bottom) serves to evaluate the predictor. Prediction uses a

PSN database containing feature-selected networks that includes both training and test

samples. Test patients are ranked for class similarity to training samples, and patients are

assigned to the highest-ranking class.  
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Figure 2. Predicting Luminal A breast tumour status by integrating gene expression and 

copy number variant data.  

A. Feature selection uses samples in the training set (70% per class). Similarity networks 

are constructed for each data type, and then integrated into a single PSN database.  

B. Feature selection is conducted separately for the positive (LumA) and negative (other) 

class. Networks with a score of nine or ten out of ten pass feature selection. Following this 

step, a single PSN database is constructed per class; this database contains both training 

and test samples. 

C. Patient classification occurs by assigning a patient to the highest-ranking class. 
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D. Networks that pass feature selection for the “LumA” class show themes related to DNA 

repair and cell cycle regulation. A pathway enrichment map is displayed, where nodes 

indicate pathways and edges connect pathways with overlapping genes. Node colour and 

cluster label indicates type of member networks, and large nodes correspond to larger 

gene-sets. See supplementary methods for details. 

E. Patient similarity network with integrated networks scoring ten using netDx. Nodes 

indicate individual Luminal A (orange) or other (grey) tumours; edges show maximum 

patient similarity between two nodes. For visualization, only the top 50 edges per node 

were retained. 
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Tables 

 

 

Class # total # train # selected 

networks  

(# CNV) 

accuracy PPV 

LumA 154 103 57 (8) 47/51 

(92%) 

47/56 

(84%) 

other 194 129 67 (25) 56/65 

(86%) 

56/60 

(93%) 

 

Table 1. Statistics for netDx binary classification of breast tumour as LumA or not, by 

integration of gene expression and CNV data. 
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 Limit to genes in 
pathway 
(N=7,948 features) 

Average expression in 
pathway 
(N=1,802 features) 

 Accuracy Positive 
Predictive 
Value 

Accuracy Positive 
Predictive 
Value 

Elastic net 90 84 91 86 

Random forest 92 92 
 

90 84 

netDx: No resampling  
(score out of 10)  

  88 85 

netDx: three-way resampling 
(score out of 30)  

  91.5 88 

netDx: three-way resampling 
(score out of 30; 504 train/test 
splits) 

  Mean 
88.9% 
(81-95%) 

Mean 
84% (75-
94%) 

 

Table 2. Comparison of netDx to elastic net and random forests machine learning methods. 

The task involved binary classification of breast tumours as being of class “Luminal A” or 

not, using only gene expression data. Features for other methods were either limited to 

genes in one or more pathways (green), or were at the level of individual pathways (blue; 

mean gene expression). For comparison, netDx was run either with a single round of 10-

fold cross validation (no resampling), with three rounds of resampling and a particular 

train/test split, or with three rounds of resampling and 504 train/test splits.  
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