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Abstract
4

DNA is a remarkably precise medium for copying and storing biological information.5

This high fidelity results from the action of hundreds of genes involved in replication,6

proofreading, and damage repair. Evolutionary theory suggests that in such a system,7

selection has limited ability to remove genetic variants that change mutation rates8

by small amounts or in specific sequence contexts. Consistent with this, using SNV9

variation as a proxy for mutational input, we report here that mutational spectra differ10

substantially among species, human continental groups and even some closely-related11

populations. Close examination of one signal, an increased TCC→TTC mutation rate12

in Europeans, indicates a burst of mutations from about 15,000 to 2,000 years ago,13

perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of14

mutation rate. Our results suggest that mutation rates can evolve markedly over short15

evolutionary timescales and suggest the possibility of mapping mutational modifiers.16
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Main Text17

Germline mutations provide the raw material for evolution, but also generate genetic load18

and inherited disease. Indeed, the vast majority of mutations that affect fitness are delete-19

rious, and hence biological systems have evolved elaborate mechanisms for accurate DNA20

replication and repair of diverse types of spontaneous damage. Due to the combined action21

of hundreds of genes, mutation rates are extremely low–in humans, about 1 point mutation22

per 100MB or about 60 genome-wide per generation [1, 2].23

While the precise roles of most of the relevant genes have not been fully elucidated,24

research on somatic mutations in cancer has shown that defects in particular genes can25

lead to increased mutation rates within very specific sequence contexts [3, 4]. For example,26

mutations in the proofreading exonuclease domain of DNA polymerase ε cause TCT→TAT27

and TCG→TTG mutations on the leading DNA strand [5]. Mutational shifts of this kind28

have been referred to as “mutational signatures”. Specific signatures may also be caused by29

nongenetic factors such as chemical mutagens, UV damage, or guanine oxidation [6].30

Together, these observations imply a high degree of specialization of individual genes31

involved in DNA proofreading and repair. While the repair system has evolved to be ex-32

tremely accurate overall, theory suggests that in such a system, natural selection may have33

limited ability to fine-tune the efficacy of individual genes [7, 8]. If a variant in a repair gene34

increases or decreases the overall mutation rate by a small amount–for example, only in a35

very specific sequence context–then the net effect on fitness may fall below the threshold at36

which natural selection is effective. (Drift tends to dominate selection when the change in37

fitness is less than the inverse of effective population size). The limits of selection on muta-38

tion rate modifiers are especially acute in recombining organisms such as humans because a39

variant that increases the mutation rate can recombine away from deleterious mutations it40

generates elsewhere in the genome.41

Given these theoretical predictions, we hypothesized that there may be substantial scope42

for modifiers of mutation rates to segregate within human populations, or between closely43

related species. Most triplet sequence contexts have mutation rates that vary across the44

evolutionary tree of mammals [9], but evolution of the mutation spectrum over short time45

scales has been less well described. Weak natural mutators have recently been observed46

in yeast [10] and inferred from human haplotype data [11]; if such mutators affect specific47

pathways of proofreading or repair, then we may expect shifts in the abundance of mutations48
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within particular sequence contexts. Indeed, one of us has recently identified a candidate49

signal of this type, namely an increase in TCC→TTC transitions in Europeans, relative50

to other populations [12]; this was recently replicated [13]. Here we show that mutation51

spectrum change is much more widespread than these initial studies suggested: although the52

TCC→TTC rate increase in Europeans was unusually dramatic, smaller-scale changes are53

so commonplace that almost every great ape species and human continental group has its54

own distinctive mutational spectrum.55

Results56

To investigate the mutational processes in different human populations, we classified each57

single nucleotide variants (SNV) in the 1000 Genomes Phase 3 data [14] in terms of its58

ancestral allele, derived allele, and 5’ and 3’ flanking nucleotides. We collapsed strand com-59

plements together to obtain 96 SNV categories. Since the detection of singletons may vary60

across samples, and because some singletons may result from cell-line or somatic mutations,61

we only considered variants seen in more than one copy. We further excluded variants in62

annotated repeats (since read mapping error rates may be higher in such regions) and in63

PhyloP conserved regions (to avoid selectively constrained regions) [15]. From the remaining64

sites, we calculated the distribution of derived SNVs carried by each Phase 3 individual. We65

used this as a proxy for the mutational input spectrum in the ancestors of each individual.66

To explore global patterns of the mutation spectrum, we performed principal component67

analysis (PCA) in which each individual was characterized simply by the fraction of their68

derived alleles in each of the 96 SNV categories (Fig. 1A). PCA is commonly applied to69

individual-level genotypes, in which case the PCs are usually highly correlated with geog-70

raphy [16]. Although the triplet mutation spectrum is an extremely compressed summary71

statistic compared to typical genotype arrays, we found that it contains sufficient information72

to reliably classify individuals by continent of origin. The first principal component sepa-73

rated Africans from non-Africans, and the second separated Europeans from East Asians,74

with South Asians and admixed native Americans (Figure 1–Figure Supplement 2) appearing75

intermediate between the two.76

Remarkably, we found that the mutation spectrum differences among continental groups77

are composed of small shifts in the abundance of many different mutation types (Fig. 1B).78

For example, comparing Africans and Europeans, 43 of the 96 mutation types are signifi-79
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B. Mutation spectrum differences between populations

A. PCA of human mutation spectra

p < 1e-5

Figure 1: Global patterns of variation in SNV spectra. A. Principal Component
Analysis of individuals according to the fraction of derived alleles that each individual carries
in each of 96 mutational types. B. Heatmaps showing, for pairs of continental groups, the
ratio of the proportions of SNVs in each of the 96 mutational types. Each block corresponds
to one mutation type; within blocks, rows indicate the 5’ nucleotide, and columns indicate the
3’ nucleotide. Red colors indicate a greater fraction of a given mutation type in the first-listed
group relative to the second. Points indicate significant contrasts at p < 10−5. See Figure
Supplements 1, 2, and 3 for heatmap comparisons between additional population pairs as
well as a description of PCA loadings and the p-values of all mutation class enrichments.
Figure Supplement 4 demonstrates that these patterns are unlikely to be driven by biased
gene conversion. In Figure Supplement 5, we see that this mutation spectrum structure
replicates on both strands of the transcribed genome as well as the non-transcribed portion
of the genome. Figure Supplements 6, 7, and 8 show that most of this structure replicates
across multiple chromatin states and varies little with replication timing.
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cant at a p < 10−5 threshold using a forward variable selection procedure. The previously80

described TCC→TTC signature partially drives the difference between Europeans and the81

other groups, but most other shifts are smaller in magnitude and appear to be spread over82

more diffuse sets of related mutation types. East Asians have excess A→T transversions in83

most sequence contexts, as well as about 10% more *AC→*CC mutations than any other84

group. Compared to Africans, all Eurasians have proportionally fewer C→* mutations rela-85

tive to A→* mutations.86

Replication of mutation spectrum shifts. One possible concern is that batch effects or87

other sequencing artifacts might contribute to differences in mutational spectra. Therefore88

we replicated our analysis using 201 genomes from the Simons Genome Diversity Project [17].89

The SGDP genomes were sequenced at high coverage, independently from 1000 Genomes,90

using an almost non-overlapping panel of samples. We found extremely strong agreement91

between the mutational shifts in the two data sets (Fig. 2). For example, all of the 4392

mutation types with a significant difference between Africa and Europe (at p < 10−5) in93

1000 Genomes also show a frequency difference in the same direction in SGDP (comparing94

Africa and West Eurasia). In both 1000 Genomes and SGDP, the enrichment of *AC→*CC95

mutations in East Asia is larger in magnitude than any other signal aside from the previously96

described TCC→TTC imbalance.97

The greatest discrepancies between 1000 Genomes and SGDP involve transversions at98

CpG sites, which are among the rarest mutational classes. These discrepancies might re-99

sult from data processing differences or random sampling variation, but might also reflect100

differences in the fine-scale ethnic composition of the two panels.101

Evidence for a pulse of TCC→TTC mutations in Europe and South Asia. To102

investigate the timescale over which the mutation spectrum change occurred, we analyzed103

the allele frequency distribution of TCC→TTC mutations, which are highly enriched in104

Europeans (Fig. 3A; p < 1 × 10−300 for Europe vs. Africa) and to a lesser extent in South105

Asians. We calculated allele frequencies both in 1000 Genomes and in the larger UK10K106

genome panel [18]. As expected for a signal that is primarily European, we found particular107

enrichment of these mutations at low frequencies. But surprisingly, the enrichment peaks108

around 0.6% frequency in UK10K, and there is practically no enrichment among the very109

lowest frequency variants (Figure 3B and Figure 3–Figure Supplement 1). C→T mutations110
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SGDP

1000G SGDP
SGDP

SGDP

1000G

1000G 1000G

Figure 2: Concordance of mutational shifts in 1000 Genomes vs. SGDP. Each panel
shows natural-log mutation spectrum ratios between a pair of continental groups, based on
1000 Genomes (x-axis) and SGDP (y-axis) data. Data points encoded by (+) symbols denote
mutation types that are not significantly enriched in either population in the Figure 1 1000
Genomes analysis (p < 10−5). These heatmaps use the same labeling and color scale as in
Figure 1. All 1000 Genomes ratios in this figure were estimated after projecting the 1000
Genomes site frequency spectrum down to the sample size of SGDP. See Figure Supplements
1 and 2 for a complete set of SGDP heatmaps and regressions versus 1000 Genomes.
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on other backgrounds, namely within TCT, CCC and ACC contexts, are also enriched in111

Europe and South Asia and show a similar enrichment around 0.6% frequency that declines112

among rarer variants (Fig. 3C). This suggests that these four mutation types comprise the113

signature of a single mutational pulse that is no longer active. No other mutation types show114

such a pulse-like distribution in UK10K, though several types show evidence of monotonic115

rate change over time (Figure 3–Figure Supplements 3,4 and 5).116

We used the enrichment of TCC→TTC mutations as a function of allele frequency to117

estimate when this mutation pulse was active. Assuming a simple piecewise-constant model,118

we infer that the rate of TCC→TTC mutations increased dramatically ∼15,000 years ago119

and decreased again ∼2,000 years ago. This time-range is consistent with results showing this120

signal in a pair of prehistoric European samples from 7,000 and 8,000 years ago, respectively121

[13]. We hypothesize that this mutation pulse may have been caused by a mutator allele122

that drifted up in frequency starting 15,000 years ago, but that is now rare or absent from123

present day populations.124

Although low frequency allele calls often contain a higher proportion of base calling er-125

rors than higher frequency allele calls do, it is not plausible that base-calling errors could126

be responsible for the pulse we have described. In the UK10K data, a minor allele present127

at 0.6% frequency corresponds to a derived allele that is present in 23 out of 3854 sampled128

haplotypes and supported by 80 short reads on average (assuming 7x coverage per individ-129

ual). When independently generated datasets of different sizes are projected down to the130

same sample size, the TCC→TTC pulse spans the same range of allele frequencies in both131

datasets (Figure 3–Figure Supplements 1 and 2), which would not be the case if the shape132

of the curve were a function of low frequency errors.133

Fine-scale mutation spectrum variation in other populations. Encouraged by these134

results, we sought to find other signatures of recent mutation pulses. We generated heatmaps135

and PCA plots of mutation spectrum variation within each continental group, looking for136

fine-scale differences between closely related populations (Figure 4 and Figure 4–Figure Sup-137

plements 1 through 6). In some cases mutational spectra differ even between very closely138

related populations. For example, the *AC→*CC mutations with elevated rates in East139

Asia appear to be distributed heterogeneously within that group, with most of the load140

carried by a subset of the Japanese individuals. These individuals also have elevated rates141

of ACA→AAA and TAT→TTT mutations (Figure 4A and Figure Supplement 4). This142
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A. World map of TCC mutation signature intensity B. A TCC mutation pulse in Europe and South Asia

D. Estimated mutation pulse durationC. Other components of the TCC mutation signature

10,0001,000100

Time (years ago)

Model �t to UK10K

Figure 3: Geographic distribution and age of the TCC mutation pulse. (A) Ob-
served frequencies of TCC→TTC variants in 1000 Genomes populations. (B) Fraction of
TCC→TTC variants as a function of allele frequency in different samples indicates that these
peak around 1%. See Figure Supplement 1 for distributions of TCC→TTC allele frequency
within all 1000 Genomes populations, and see Figure Supplement 2 for the replication of this
result in the Exome Aggregation Consortium Data. In the UK10K data, which has the largest
sample size, the peak occurs at 0.6% allele frequency. (C) Other enriched C→T mutations
with similar context also peak at 0.6% frequency in UK10K. See Figure Supplements 3, 4
and 5 for labeled allele frequency distributions of all 96 mutation types (most represented
here as unlabeled grey lines). See Figure Supplement 6 for heatmap comparisons of the 1000
Genomes populations partitioned by allele frequency, which provide a different view of these
patterns. (D) A population genetic model supports a pulse of TCC→TTC mutations from
15,000–2,000 years ago. Inset shows the observed and predicted frequency distributions of
this mutation under the inferred model.
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signature appears to be present in only a handful of Chinese individuals, and no Kinh or143

Dai individuals. As seen for the European TCC mutation, the enrichment of these muta-144

tion types peaks at low frequencies, i.e., ∼1%. Given the availability of only 200 Japanese145

individuals in 1000 Genomes, it is hard to say whether the true peak is at a frequency much146

lower than 1%.147

PCA reveals relatively little fine-scale structure within the mutational spectra of Euro-148

peans or South Asians (Figure 4–Figure Supplements 5 and 6). However, Africans exhibit149

some substructure (Figure 4–Figure Supplement 3), with the Luhya exhibiting the most150

distinctive mutational spectrum. Unexpectedly, a closer examination of PC loadings reveals151

that the Luhya outliers are enriched for the same mutational signature identified in the152

Japanese. Even in Europeans and South Asians, the first PC is heavily weighted toward153

*AC→*CC, ACA→AAA, and TAT→TTT, although this signature explains less of the mu-154

tation spectrum variance within these more homogeneous populations. The sharing of this155

signature may suggest either parallel increases of a shared mutation modifier, or a shared156

aspect of environment or life history that affects the mutation spectrum.157

Mutation spectrum variation among the great apes. Finally, given our finding of158

extensive fine-scale variation in mutational spectra between human populations, we hypoth-159

esized that mutational variation between species is likely to be even greater. To compare160

the mutation spectra of the great apes in more detail, we obtained SNV data from the Great161

Ape Diversity Panel, which includes 78 whole genome sequences from six great ape species162

including human [19]. Overall, we find dramatic variation in mutational spectra among the163

great ape species (Figure 5 and Figure 5–Figure Supplement 1).164

As noted previously [20], one major trend is a higher proportion of CpG mutations among165

the species closest to human, possibly reflecting lengthening generation time along the human166

lineage, consistent with previous indications that species closely related to humans have lower167

mutation rates than more distant species [21, 22, 23]. However, most other differences are168

not obviously related to known processes such as biased gene conversion and generation169

time change. The A→T mutation rate appears to have sped up in the common ancestor170

of humans, chimpanzees, and bonobos, a change that appears consistent with a mutator171

variant that was fixed instead of lost. It is unclear whether this ancient A→T speedup is172

related to the A→T speedup in East Asians. Other mutational signatures appear on only a173

single branch of the great ape tree, such as a slowdown of A→C mutations in gorillas.174
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A. PCA of East Asian mutation spectra B. Heat map of East Asian mutation spectrum differences

C. Mutation spectrum vs allele frequency in the Japanese (JPT) D. Mutation spectrum vs allele frequency in the Dai (CDX)

Figure 4: Mutational variation among east Asian populations. (A) PCA of east
Asian samples from 1000 Genomes, based on the relative proportions of each of the 96 muta-
tional types. See Figure Supplements 2 through 6 for other finescale population PCAs. (B)
Heatmaps showing, for pairs of east Asian samples, the ratio of the proportions of SNVs
in each of the 96 mutational types. Points indicate significant contrasts at p < 10−5. See
Figure Supplement 1 for additional finescale heatmaps. (C) and (D) Relative enrichment of
each mutational type in Japanese and Dai, respectively as a function of allele frequency. Six
mutation types that are enriched in JPT are indicated. Populations: CDX=Dai, CHB=Han
(Beijing); CHS=Han (south China); KHV=Kinh; JPT=Japanese.
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Discussion175

The widespread differences captured in Figures 1 and 2 may be footprints of allele frequency176

shifts affecting different mutator alleles. But in principle, other genetic and non-genetic177

processes may also impact the observed mutational spectrum. First, biased gene conver-178

sion (BGC) tends to favor C/G alleles over A/T, and BGC is potentially more efficient in179

populations of large effective size compared to populations of smaller effective size [24]. How-180

ever, despite the bottlenecks that are known to have affected Eurasian diversity, there is no181

clear trend of an increased fraction of C/G→A/T relative to A/T→C/G in non-Africans vs.182

Africans, or with distance from Africa (Figure 1–Figure Supplement 7), and previous studies183

have also found little evidence for a strong genome-wide effect of BGC on the mutational184

spectrum in humans and great apes [26, 20]. For these reasons, we think that evolution of185

the mutational process is a better explanation than BGC or selection for differences that186

have been observed between the spectra of ultra-rare singleton variants and older human187

genetic variation [25];188

It is also known that shifts in generation time or other life-history traits may affect189

mutational spectra, particularly for CpG transitions [27, 28]. Most CpG transitions result190

from spontaneous methyl-cytosine deamination as opposed to errors in DNA replication.191

Hence the rate of CpG transitions is less affected by generation time than other mutations192

[9, 29, 30]. We observe that Europeans have a lower fraction of CpG variants compared to193

Africans, East Asians and South Asians (Fig. 1B), consistent with a recent report of a lower194

rate of de novo CCG→CTG mutations in European individuals compared to Pakistanis [31].195

Such a pattern may be consistent with a shorter average generation time in Europeans [29],196

though it is unclear that a plausible shift in generation-time could produce such a large197

effect. Apart from this, the other patterns evident in Figure 1 do not seem explainable by198

known processes.199

In summary, we report here that, mutational spectra differ significantly among closely200

related human populations, and that they differ greatly among the great ape species. Our201

work shows that subtle, concerted shifts in the frequencies of many different mutation types202

are more widespread than dramatic jumps in the rate of single mutation types, although the203

existence of the European TCC→TTC pulse shows that both modes of evolution do occur204

[12, 29, 13].205

At this time, we cannot exclude a role for nongenetic factors such as changes in life history206
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or mutagen exposure in driving these signals. However given the sheer diversity of the effects207

reported here, it seems parsimonious to us to propose that most of this variation is driven208

by the appearance and drift of genetic modifiers of mutation rate. This situation is perhaps209

reminiscent of the earlier observation that genome-wide recombination patterns are variable210

among individuals [32], and ultimate discovery of PRDM9 [33]; although in this case it is211

unlikely that a single gene is responsible for all signals seen here. As large datasets of de212

novo mutations become available, it should be possible to map mutator loci genome-wide.213

In summary, our results suggest the likelihood that mutational modifiers are an important214

part of the landscape of human genetic variation.215
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Methods221

Data Availability.222

All datasets analyzed here are publicly available at the following websites:223

1000 Genomes Phase 3 http://www.1000genomes.org/category/phase-3/
UK10K http://www.uk10k.org/data-access.html

Simons Genome Diversity Panel https://www.simonsfoundation.org/life-sciences/
simons-genome-diversity-project-dataset/224

Human Mutation Spectrum Processing.225

Mutation spectra were computed using 1000 Genomes Phase 3 SNPs [14] that are biallelic,226

pass all 1000 Genomes quality filters, and are not adjacent to any N’s in the hg19 reference se-227

quence. Ancestral states were assigned using the UCSC Genome Browser alignment of hg19228

to the PanTro2 chimpanzee reference genome; SNPs were discarded if neither the reference229

nor alternate allele matched the chimpanzee reference. To minimize the potential impact of230

ancestral misidentification errors, SNPs with derived allele frequency higher than 0.98 were231

discarded. We also filtered out regions annotated as “conserved” based on the 100-way Phy-232

loP conservation score [15], download from http://hgdownload.cse. ucsc.edu/goldenPath/233

hg19/phastCons100way/, as well as regions annotated as repeats by RepeatMasker [34],234

downloaded from235

http://hgdownload.cse.ucsc.edu/ goldenpath/hg19/database/nestedRepeats.txt.gz . To be236

counted as part of the mutation spectrum of population P (which can be either a continen-237

tal group or a finer-scale population from one city), a SNP should not be a singleton within238

population P–at least two copies of the ancestral and derived alleles must be present within239

that population.240

An identical approach was used to extract the mutation spectrum of the UK10K ALSPAC241

panel [18], which is not subdivided into smaller populations. The data were filtered as242

described in [35]. The filtering procedure performed by Field, et al. reduces the ALSPAC243

sample size to 1927 individuals.244

We also computed mutation spectra of the Simons Genome Diversity Panel (SGDP)245

populations [17]. Four of the SGDP populations, West Eurasia, East Asia, South Asia,246

and Africa, were compared to their direct counterparts in the 1000 Genomes data. Three247

additional SGDP populations, Central Asia and Siberia, Oceania, and America, had no close248
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1000 Genomes counterparts and were not analyzed here (although each project contained a249

panel of people from the Americans, the composition of the American panels was extremely250

different, with the 1000 Genomes populations being much more admixed with Europeans251

and Africans). SGDP sites with more than 20% missing data were not utilized. All other252

data processing was done the same way described for the 1000 Genomes data.253

The following table gives the same size of each population panel, as well as the total254

number of SNPs segregating in the panel that are used to compute mutation type ratios:255

Dataset Population Number of individuals Number of SNPs
1kg Africa 504 16,870,400
1kg Europe 503 8,508,040
1kg East Asia 504 7,895,925
1kg South Asia 489 9,552,781

SGDP Africa 45 6,569,658
SGDP West Eurasia 69 4,201,571
SGDP East Asia 49 3,312,645
SGDP South Asia 38 3,449,624256

Great Ape Diversity Panel Data Processing.257

Biallelic great ape SNPs were extracted from the Great Ape Diversity Panel VCF [19],258

which is aligned to the hg18 human reference sequence. Ancestral states were assigned using259

the Great Ape Genetic Diversity project annotation, which used the Felsenstein pruning260

algorithm to assign allelic states to internal nodes in the great ape tree. In the Great Ape261

Diversity Panel, the most recent common ancestor (MRCA) of the human species is labeled262

as node 18; the MRCAs of chimpanzees, bonobos, gorillas, and orangutans, respectively, are263

labeled as node 16, node 17, node 19, and node 15. We extracted the state of each MRCA264

at each SNP in the alignment and used it to polarize the ancestral and derived allele at265

that site; a SNP was discarded whenever the ancestral node was assigned an uncertain or266

polymorphic ancestral state. As with the human data, SNPs with derived allele frequency267

higher than 0.98 were not used, and both repeats and PhyloP-annotated conserved regions268

were filtered away.269

Visual representation of mutation spectra.270

The mutation type of a SNP is defined in terms of its ancestral allele, its derived allele, and271

its two immediate 5’ and 3’ neighbors. Two mutation types are considered equivalent if they272
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are strand-complementary to each other (e.g. ACG→ATG is equivalent to CGT→CAT).273

This scheme classifies SNPs into 96 different mutation types, each that can be represented274

with an A or C ancestral allele.275

To compute the frequency fP (m) of SNP m in population P , we count up all SNPs of type276

m where the derived allele is present in at least one representative of population P (which can277

be either a specific population such as YRI or a broader continental group such as AFR).278

After obtaining this count CP (m), we define fP (m) to be the ratio CP (m)/
∑

m′ CP (m′),279

where the sum in the denominator ranges over all 96 mutation types m′. The enrichment of280

mutation type m in population P1 relative to population P2 is defined to be fP1(m)/fP2(m);281

these enrichments are visualized as heat maps in Figures 1B, 3B, and 4A.282

To track changes in the mutational spectrum over time, we compute fP (m) in bins of283

restricted allele frequency. This involves counting the number of SNPs of type m that are284

present at frequency φ in population P to obtain counts CP (m,φ) and frequencies fP (m,φ) =285

CP (m,φ)/
∑

m′ CP (m′φ). Deviation of the ratio fP (m,φ)/fP (m) from 1 indicates that the286

rate of m has fluctuated recently in the history of population P . To make the sampling287

noise approximately uniform across alleles of different frequencies, alleles of derived count288

greater than 5 were grouped into approximately log-spaced bins that each contained similar289

numbers of UK10K SNPs. More precisely, we defined a set of bin endpoints b1, b2, ... such290

that the total number of SNPs ranging in derived allele count between bi and bi+1 − 1 is291

greater than or equal to the number of 5-ton SNPs, while the total number of SNPs ranging292

in derived allele count from bi to bi+1 − 2 is less than the number of 5-ton SNPs.293

In some cases, e.g. Figures 2, Figure 2–Figure Supplement 1B, and Figure 3–Figure294

Supplement 1, site frequency spectra were projected down to a smaller sample size before295

counting SNPs in order to more accurately compare datasets of different sample sizes. A296

binomial sampling approach was used to project a sample of N haplotypes does to a smaller297

sample size n. Letting C
(N)
P (m,φ) denote the SNP counts in the large sample ofN haplotypes,298

effective SNP counts C
(n)
P (m,φ) in a sample of n haplotypes are computed as follows:299

C
(n)
P (m, k/n) =

(
n

k

)N−1∑
`=1

(`/N)k(1− `/N)n−kC
(N)
P (m, `/N)
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Significance testing.300

One central goal of this paper is to test whether many mutation types differ in rate between301

human populations or whether mutation spectrum shifts have been rare events affecting only302

a small proportion of mutation types. A simple statistical method for answering this question303

would be to perform 96 separate chi-square tests, one for each triplet-context-dependent304

mutation type, as follows:305

Let Si denote the total number of SNPs segregating in population Pi, and let S
(m)
i306

denote the number of SNPs of mutation type m. If mutation type m is more prevalent in307

population P1 than in population P2, a chi-square test provides a natural way of assessing308

the significance of this difference. As described in [12], this test is performed on the following309

2-by-2 contingency table:310

S
(m)
1 P1 − S(m)

1

S
(m)
2 P2 − S(m)

2
311

It would be appealing to conclude that every mutation type “passing” this chi-square test312

is a mutation type that has changed in rate during recent human history. However, if we313

were to perform the full set of 96 tests, they would not be independent. A sufficiently large314

increase in the rate of one mutation type m1 in population P1 after divergence from P2 could315

cause another mutation type m2, whose rate has remained constant, to comprise significantly316

different fractions of the SNPs from P1 and P2. To minimize this effect, we formulate the317

following iterative procedure of conditionally independent tests: first, compute a chi-square318

significance value punordered(m) for each mutation type m using the 2-by-2 chi-square table319

above. We then use these values to order the SNPs from lowest p value to highest and320

compute a set of ordered p values pordered(m). For the mutation type m0 with the lowest321

unordered p value, punordered(m0) = pordered(m0). For mutation type mi, which has the ith322

lowest unordered p value and i < 96, pordered(mi) is computed from the following contingency323

table:324

S
(mi)
1

∑96
j=i+1 S

(mj)
1

S
(mi)
2

∑96
j=i+1 S

(mj)
2325

For mutation type m96, which has the highest unordered p value, the ordered p value is326

computed from the contingency table327

S
(m96)
1 S

(m95)
1

S
(m96)
2 S

(m95)
2

328
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This procedure is guaranteed to find fewer mutation types to differ significantly in rate329

between populations compared to separate chi-square tests.330

Principal component analysis (PCA).331

The python package matplotlib.mlab.PCA was used to perform PCA on the complete set of332

1000 Genomes haplotypes, each haplotype h represented by a 96-element vector encoding the333

mutation frequencies (fh(m))m of the non-singleton derived alleles present on that haplotype.334

In the same way, a separate PCA was performed on each of the 5 continental groups to reveal335

finescale components of mutation spectrum variation.336

Dating of the TCC→T mutation pulse.337

We estimated the duration and intensity of TCC→T rate acceleration in Europe by fitting a338

simple piecewise-constant rate model to the UK10K frequency data. To specify the param-339

eters of the model, we divide time into discrete log-spaced intervals bounded by time points340

t1, ..., td, assigning each interval a TCC→T mutation rate r0, ...rd. In units of generations341

before the present, the time discretization points were chosen to be: 20, 40, 200, 400, 800,342

1200, 1600, 2000, 2400, 2800, 3200, 3600, 4000, 8000, 12000, 16000, 20000, 24000, 28000,343

32000, 36000, 40000. We assume that the total rate r of mutations other than TCC→T344

stays constant over time (a first-order approximation).345

In terms of these rate variables, we can calculate the expected shape of the TCC→T346

pulse shown in Figure 2B of the main text. The shape of this curve depends on both the347

mutation rate parameters ri and the demographic history of the European population, which348

determines the joint distribution of allele frequency and allele age. To account for the effects349

of demography, we use Hudson’s ms program to simulate 10,000 random coalescent trees350

under a realistic European demographic history inferred from allele frequency data [36] and351

condition our inference upon this collection of trees as follows:352

Let A(m, t) be the function for which
∫ ti+1

ti
A(m, t)dt equals the coalescent tree branch

length, averaged over the sample of simulated trees, that is ancestral to exactly m lineages

and falls between time ti and ti+1. Given this function, which can be empirically estimated

from a sample of simulated trees, the expected frequency spectrum entry k/n is

E(k/n) =

∑d
i=1

∫ ti
ti−1

A(k, t)dt∑n
j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt
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and the expected fraction of TCC→T mutations in allele frequency bin k/n is

E(fTCC→T(k/n)) =

∑d
i=1 ri

∫ ti
ti−1

A(k, t)dt

r
∑d

i=1

∫ ti
ti−1

A(k, t)dt
.

The expected value of the TCC→T enrichment ratio being plotted in Figure 2B is

E(rTCC→T(k/n)) =

∑d
i=1 ri

∫ ti
ti−1

A(k, t)dt ·
∑n

j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt∑d
i=1

∫ ti
ti−1

A(k, t)dt ·
∑n

j=1

∑d
i=1 ri

∫ ti
ti−1

A(j, t)dt

In Figure 2B, enrichment ratios are not computed for every allele frequency in isolation,

but for allele frequency bins that each contain similar numbers of SNPs. Given integers

1 ≤ km < km+1 ≤ n, the expected TCC→T enrichment ratio averaged over all SNPs with

allele frequency between km/n and km+1/n is:

E(rTCC→T(km/n)) =

∑d
i=1 ri

∫ ti
ti−1

∑km+1

k=km
A(k, t)dt ·

∑n
j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt∑d
i=1

∫ ti
ti−1

∑km+1

k=km
A(k, t)dt ·

∑n
j=1

∑d
i=1 ri

∫ ti
ti−1

A(j, t)dt

We optimize the mutation rates r1, . . . , rd using a log-spaced quantization of allele fre-

quencies k1/n, . . . , km/n defined such that all bins contain similar numbers of SNPs. The

chosen allele count endpoints k1, . . . , km are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60,

70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000. Given this

quantization of allele frequencies, we optimize r1, . . . , rd by using the BFGS algorithm to

minimize the least squares distance D(r0, . . . , rd) between E(rTCC→T(km/n)) and the empir-

ical ratio rTCC→T(km/n) computed from the UK10K data. This optimization is subject to

a regularization penalty that minimizes the jumps between adjacent mutation rates ri and

ri+1:

D(r0, . . . , rd) =
d∑

m=1

(E(rTCC→T(km/n))− rTCC→T(km/n))2 + 0.25

√√√√ d∑
i=1

(ri−1 − ri)2

Although the underlying model of mutation rate change assumed here is very simple, it353

still represents an advance over the method used in [12] to estimate of the timing of the354

TCC→TTC mutation rate increase. That method relied upon explicit estimates of allele355

age from a dataset of less than 100 individuals, which are much noisier than integration of356

a joint distribution of allele age and frequency across a sample of thousands of haplotypes.357
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Supplementary Figures358

359

Figure 1– Figure Supplement 1: Pairwise mutation spectrum comparisons360

among continental groups. Each of these plots compares the mutation spectra of two361

populations P1 and P2. Letting fi denote the fraction of SNVs in population Pi that have a362

given triplet context, ancestral allele, and derived allele, the corresponding heat map363

square visualizes the enrichment ratio f1/f2. Black dots mark mutation types for which the364

difference between populations has a χ2 p-value less than 10−5.365
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B. PC1 Loading C. PC2 LoadingA. PCA of human mutation spectra

366

Figure 1–Figure Supplement 2: PCA of all 1000 Genomes continental groups.367

All admixed North and South American individuals were omitted from Figure 1 in the368

main text to clarify the separation of other populations along an African vs non-African369

axis and an East vs West Eurasian axis. Here, admixed Americans are added in black. As370

expected, some African-Americans group with the Africans, while other admixed371

Americans fall within the variation of other East and West Eurasians. The accompanying372

heat maps show the mutation type loadings of the first two principal components, the373

second of which is heavily weighted toward the European TCC→TTC signature.374
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A. Europe vs Africa

B. Europe vs East Asia

C. East Asia vs Africa

D. South Asia vs East Asia

375
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Figure 1–Figure Supplement 3: Mutation spectrum comparison p-values. Each376

left-hand plot shows all chi-squared p-values corresponding to the ratios from Figure 1A. In377

the absence of recent mutation spectrum evolution, only one out of 96 SNP categories is378

expected to have a p-value below 0.01 (lower dotted line). In contrast, the majority of p379

values meet the more stringent threshold p < 1e− 5. The corresponding right hand panel380

shows a closeup of the distribution of p-values greater than 1e− 5.381
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Figure 1–Figure Supplement 4: The effects of biased gene conversion on383

mutation spectra. When using segregating variation to study the mutation spectrum,384

one potential source of bias is that strong-to-weak mutations, where the ancestral allele is385

G or C and the derived allele is A or T, have a lower fixation probability than386

weak-to-strong mutations due to biased gene conversion (BGC). If this effect were387

sufficiently strong, it would inflate the apparent mutation fractions of weak-to-strong388

mutations, especially in populations with large effective sizes where natural selection is389

particularly efficient. Within humans, Africans have the largest long-term effective390

population size, while East Asians and Native Americans have the lowest. Therefore, if391

BGC has created differences in mutation spectra between populations, the fraction of392

weak-to-strong SNVs should be highest in Africans, intermediate in Europeans and South393

Asians, and lowest in East Asians and Native Americans. This violin plot reveals no such394

pattern, suggesting that BGC is not a strong driver of mutation spectrum differences395
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between human populations. We do not observe either a direct correlation between in396

strong-to-weak mutation fraction and distance from Africa or an inverse correlation397

between weak-to-strong mutation fraction and distance from Africa.398

A. (+)-Transcribed DNA B. (-)-Transcribed DNA

C. Nontranscribed DNA D. Strand Bias Residuals

399

Figure 1–Figure Supplement 5: Mutation Spectra of Transcribed vs400

Non-Transcribed DNA. Using the UCSC Genome Browser annotations of the human401

reference hg19, we determined whether each SNP occurs in a transcribed or non402

transcribed region. We further divided SNPs occurring in transcribed regions according to403

whether the ancestral A or C allele occurs on the (+)-strand or the (-)-strand. Panels A,404

B, and C all show the same population-specific mutation type enrichments that are405

observed in Figure 1B. Panel D plots the residuals between panels A and B, highlighting406

mutation types that show a modest difference in strand bias between populations.407
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1: Active Promoter 2: Weak Promoter

3: Poised Promoter 4: Strong Enhancer

5: Strong Enhancer 6: Weak Enhancer

408

Figure 1–Figure Supplement 6: Mutation Spectra of ChromHMM chromatin409

states (Part I of II). To investigate whether any mutation spectrum shifts might be410

confined to particular chromatin states, we used chromHMM annotations of the human411

embryonic stem cell line HESC-H1 [37]. Each heat map plots mutation spectrum412

comparisons for SNPs that are annotated as being part of the same chromatin state, and413
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dots mark mutation types that show a significant enrichment in one population at the level414

p < 0.01. Every chromatin state shows enrichment of the TCC→TTC signature in Europe415

and South Asia. Some heat maps are noisy due to the small sample size of SNPs contained416

within these regions, but all showcase the same general patterns as Figure 1B.417

7: Weak Enhancer 8: Insulator

9: Transcription Transition 10: Transcription Elongation

11: Weak Transcription 12: Repressed

418
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Figure 1–Figure Supplement 7: Mutation Spectra of ChromHMM chromatin419

states (Part II of II).420

A. Europe vs Africa

Replication TimingEarly Late

B. East Asia vs Africa

Replication TimingEarly Late
421

Figure 1–Figure Supplement 8: Variation of the mutation spectrum with DNA422

replication timing. We partitioned the genome into 10 equal replication timing quantiles423

using data obtained from [38], then computed mutation spectrum differences within each424

quantile. Although most patterns from Figure 1B replicate within each replication timing425

bin, there are a few exceptions. CpG transitions, which occur most often in426

early-replicating regions, vary in population bias depending on replication timing. In427

addition, the deficit of ACA→AAA and AAA→ATA mutations in Africa compared to428

Europe and Asia is observed mainly in early-replicating regions.429

Figure 1–Source Data 1. This text file shows the number of SNPs in each of the 96430

mutational categories that passed all filters in each 1000 Genomes continental group.431
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A. Simons Genomic Diversity Panel (SGDP) B. 1000 Genomes Phase 3 Panel (1000G)

432

Figure 2–Figure Supplement 1: Heatmap comparisons between continental433

groups in 1000 Genomes and the SGDP. Here, each 1000 Genomes population is434

projected down to the sample size of the corresponding SGDP population in order to435

sample alleles with a similar distribution of ages and frequencies.436

A. West Eurasia vs South Asia B. South Asia vs Africa

437

Figure 2–Figure Supplement 2: Regression of the SGDP heatmap coefficients438

versus the corresponding 1000 Genomes heatmap coefficients.439
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Figure 3–Figure Supplement 1: TCC→TTC mutation fraction as a function of441

allele frequency in all 1000 Genomes populations. To enable better comparison with442

the 1000 Genomes data, the UK10K SNPs have been downsampled to 200 individuals. The443

age distribution of alleles of a given frequency varies as a function of the number of lineages444

being sampled–this is why the UK10K pulse peaks around 0.6% frequency when measured445

in a dataset of thousands of lineages, but peaks around 2% in a subsample of only 400446

lineages. Some African and East Asian population names have been omitted for clarity447

since the TCC→TTC mutation fraction is so uniform within these continental groups. Red448

= European populations; Blue = South Asian; Orange = Americas; Purple = Africa;449

Green = East Asia.450
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Figure 3–Figure Supplement 2: Fraction of TCC→TTC mutations as a function452

of allele frequency in ExAC. Lek, et al. compiled data from 60,706 exomes to create453

the Exome Aggregation Consortium dataset, which enables the analysis of ultra-rare454

human variation [39]. The overall fraction of TCC→TTC mutations is slightly higher in455

exome data than in whole genome data because exons contain a skewed distribution of456

triplet contexts, but the pulse pattern from Figure 3B reproduces unmistakably.457
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458

Figure 3–Figure Supplement 3: Mutation type enrichment as a function of459

allele frequency in UK10K (Part I of III). The eleven panels in Figure Supplements460

2, 3, and 4 show the full dependence of mutation spectrum on allele frequency in the461

UK10K data. If we let F (f,m) denote the fraction of SNVs of frequency f that are of type462

m and let F (m) denote the fraction of all mutations that are of type m, the enrichment of463

mutation type m as a function of frequency is F (f,m)/F (m). This function is expected to464

fluctuate around y = 1 unless the rate of m has recently increased or decreased. All 96465

mutation types are visualized in every panel, but most corresponding lines are greyed out466

to enhance readability. Some lines deviate from y = 1 due to the effects of biased gene467

conversion (BGC)–this occurs when one of the ancestral or derived alleles is a weak base468

(A or T, abbreviated W) and the other allele is a strong base (G or C, abbreviated S).469

W→S mutations are more abundant at high allele frequencies, while S→W mutations are470

more abundant at low frequencies. These effects are visible but modest in panels D, G, H,471

and I, but much more pronounced in panels B, C, and F, which focus on mutations in the472

CpG context. Transitions of the type CpA→CpG, which create CpG motifs, are extremely473

enriched at high frequencies, and this pattern may be an artifact of ancestral474

misidentification [40]. CpG motifs have such high mutation rates that CpG→CpT475

transitions often happen at the same site in humans and chimps, and these low-frequency476

double mutations are misclassified as high-frequency CpT→CpG mutations. Although it is477

not surprising to see a peak of CpT→CpG transitions at high frequencies in panel F, it is478

somewhat surprising to see CpG→GpG transversions peak in abundance at high479

frequencies in panel C. This might be a signature of recent declines in the rates of these480

mutations, since neither ancestral misidentification nor biased gene conversion is thought481

to produce such a pattern. In addition, neither of these processes can explain the strong482

enrichment of certain A→T mutations at high frequencies that is observed in panel K.483
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484

Figure 3–Figure Supplement 4: Mutation type enrichment as a function of485

allele frequency in UK10K (Part II of III). The eleven panels in this 3-part figure486

show the full dependence of mutation spectrum on allele frequency in the UK10K data.487
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488

Figure 3–Figure Supplement 5: Mutation type enrichment as a function of489

allele frequency in UK10K (Part III of III). The eleven panels in this 3-part figure490

show the full dependence of mutation spectrum on allele frequency in the UK10K data.491
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492

Figure 3–Figure Supplement 6: Mutation spectrum comparisons partitioned by493

allele frequency. Each of these heatmaps shows a subset of the data used to construct494

Figure 1B, partitioned by allele frequency to show how rare variants are the most highly495

differentiated between populations. Black dots highlight mutation types that are496

significantly different in abundance between two populations in a particular frequency class497

at the p < 10−5 level according to a chi-square test.498
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A. Finescale African Mutation Spectra B. Finescale European Mutation Spectra

C. Finescale East Asian Mutation Spectra D. Finescale South Asian Mutation Spectra

499

Figure 4–Figure Supplement 1: Mutation spectrum differences within Africa,500

Europe, East Asia, and South Asia. Figure 4B of the main text shows heat map501

comparisons between East Asian populations, which display fine-scale differences that are502

exceptionally well defined. For completeness, this figure shows finescale heatmap503

comparisons within all 1kG continental groups. We can see that CAC→CCC and504

TAT→TTT are heterogeneously distributed within multiple continents, but to the greatest505

extent in East Asia. In addition the TCC→TTC signature is somewhat heterogeneously506

distributed within Europe and South Asia, being depleted in Finns and enriched in the507

Punjabi and Gujarati. Each continental group in the 1000 Genomes data is divided into 5508

sub-populations. These heat maps compare the mutation spectra of these fine-scale509

populations to each other. African populations are: MSL = Mende in Sierra Leone; LWK =510

Luhya in Webuye, Kenya; YRI = Yoruba in Ibadan, Nigeria; GWD = Gambian in Western511

Divisions; ESN = Esan in Nigeria. European populations are: IBS = Iberian Population in512
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Spain; TSI = Toscani in Italia; GBR = British in England and Scotland; CEU = Utah513

Residents (CEPH) with Northern and Western Ancestry; FIN = Finnish in Finland. East514

Asian populations are: CDX = Chinese Dai in Xishuangbanna, China; JPT = Japanese in515

Tokyo, Japan; CHB = Han Chinese in Bejing, China; CHS = Southern Han Chinese; KHV516

= Kinh in Ho Chi Minh City, Vietnam. South Asian populations are: ITU = Indian Telugu517

from the UK; GIH = Gujarati Indian from Houston, Texas; PJL = Punjabi from Lahore,518

Pakistan; BEB = Bengali from Bangladesh; STU = Sri Lankan Tamil from the UK.519

B. PC1 Loading C. PC2 LoadingA. Amerindian Mutation PCA

520

Figure 4–Figure Supplement 2: PCA of American populations. Population521

abbreviations are: CLM = Colombians from Medellin, Colombia; MXL = Mexican522

Ancestry from Los Angeles, USA; PUR = Puerto Ricans from Puerto Rico; PEL =523

Peruvians from Lima, Peru; ACB = African Caribbeans in Barbados; ASW = Americans524

of African Ancestry in SW USA. Admixed populations from the Americans show structure525

that mirrors the continental groups, with PC1 essentially measuring the ratio between526

African and non-African ancestry and PC2 measuring the ratio between European and527

Native American ancestry. The accompanying heat maps show the loadings of the first two528

principal components.529
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B. PC1 Loading C. PC2 LoadingA. African Mutation PCA

530

Figure 4–Figure Supplement 3: PCA of African populations. Population531

abbreviations are: MSL = Mende in Sierra Leone; LWK = Luhya in Webuye, Kenya; YRI532

= Yoruba in Ibadan, Nigeria; GWD = Gambian in Western Divisions; ESN = Esan in533

Nigeria.534

B. PC1 Loading C. PC2 LoadingA. East Asian Mutation PCA

535

Figure 4–Figure Supplement 4: PCA of East Asian populations. Population536

abbreviations are: CDX = Chinese Dai in Xishuangbanna, China; JPT = Japanese in537
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Tokyo, Japan; CHB = Han Chinese in Bejing, China; CHS = Southern Han Chinese; KHV538

= Kinh in Ho Chi Minh City, Vietnam.539

B. PC1 Loading C. PC2 LoadingA. South Asian Mutation PCA

540

Figure 4–Figure Supplement 5: PCA of South Asian populations. Population541

abbreviations are: ITU = Indian Telugu from the UK; GIH = Gujarati Indian from542

Houston, Texas; PJL = Punjabi from Lahore, Pakistan; BEB = Bengali from Bangladesh;543

STU = Sri Lankan Tamil from the UK.544

B. PC1 Loading C. PC2 LoadingA. European Mutation PCA

545
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Figure 4–Figure Supplement 6: PCA of European populations. Population546

abbreviations are: IBS = Iberian Population in Spain; TSI = Toscani in Italia; GBR =547

British in England and Scotland; CEU = Utah Residents (CEPH) with Northern and548

Western Ancestry; FIN = Finnish in Finland.549

Figure 4–Source Data 1. This text file shows the number of SNPs in each of the 96550

mutational categories that passed all filters in each finescale 1000 Genomes population.551
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552

Figure 5–Figure Supplement 1: Mutation spectra of great apes. These heatmap553

comparisons demonstrate that closely related great apes such as Chimpanzees and Bonobos554

have more similar mutation spectra than more distantly related apes do.555
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