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DNA is a remarkably precise medium for copying and storing biological information, with a muta-

tion rate in humans of about 1×10−8 per base pair per generation. This extraordinary fidelity results

from the combined action of hundreds of genes involved in DNA replication and proofreading, and

repair of spontaneous damage. Recent studies of cancer have shown that mutation of specific genes

often leads to characteristic mutational “signatures”–i.e., increased mutation rates within particu-

lar sequence contexts. We therefore hypothesized that more subtle variation in replication or repair

genes within natural populations might also lead to differences in mutational signatures. As a proxy

for mutational input, we examined SNV variation across human and other great ape populations.

Remarkably we found that mutational spectra differ substantially among species, human continen-

tal groups and even, in some cases, between closely-related populations. Closer examination of one

such signal, an increased rate of TCC→TTC mutations reported previously in Europeans, indicates

a burst of mutations from about 15,000 to 2,000 years ago, perhaps due to the appearance, drift, and

ultimate elimination of a genetic modifier of mutation rate.
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Main Text

Germline mutations provide the raw material for evolution, but also generate genetic load and inherited

disease. Indeed, the vast majority of mutations that affect fitness are deleterious, and hence biological

systems have evolved elaborate mechanisms for accurate DNA replication and repair of diverse types of

spontaneous damage. Due to the combined action of hundreds of genes, mutation rates are extremely

low–in humans, about 1 point mutation per 100MB or about 60 genome-wide per generation 1, 2.

While the precise roles of most of the relevant genes have not been fully elucidated, research on

somatic mutations in cancer has shown that defects in particular genes can lead to increased mutation

rates within very specific sequence contexts 3, 4. For example, mutations in the proofreading exonuclease

domain of DNA polymerase ε cause TCT→TAT and TCG→TTG mutations on the leading DNA strand
5. Mutational shifts of this kind have been referred to as “mutational signatures”. Specific signatures may

also be caused by nongenetic factors such as chemical mutagens or UV damage.

Together, these observations imply a high degree of specialization of individual genes involved in

DNA proofreading and repair. While the repair system has evolved to be extremely accurate overall,

theory suggests that in such a system, natural selection may have limited ability to fine-tune the efficacy of

individual genes 6, 7. If a variant in a repair gene increases or decreases the overall mutation rate by a small

amount–for example, only in a very specific sequence context–then the net effect on fitness may fall below

the threshold at which natural selection is effective. (Drift tends to dominate selection when the change

in fitness is less than the inverse of effective population size). The limits of selection on mutation rate

modifiers are especially acute in recombining organisms such as humans because a variant that increases

the mutation rate can recombine away from deleterious mutations it generates elsewhere in the genome.

Given these theoretical predictions, we hypothesized that there may be substantial scope for mod-

ifiers of mutation rates to segregate within human populations, or between closely related species. If

these affect specific pathways of proofreading or repair, then we may expect shifts in the abundance of

mutations within particular sequence contexts. Indeed, one of us (K.H.) has recently identified a can-

didate signal of this type, namely an increase in TCC→TTC transitions in Europeans, relative to other

populations 8. A recent preprint has replicated that result, and reported an additional mutational signature

enriched in South American populations 9. Here we show that mutation spectrum change is much more

widespread than these initial studies suggested: although the TCC→TTC rate increase in Europeans was

unusually dramatic, smaller-scale changes are so commonplace that almost every great ape species and

human continental group has its own distinctive mutational spectrum.

Results

To investigate the mutational processes in different human populations, we classified all single nucleotide

variants (SNVs) in the 1000 Genomes Phase 3 data 10 in terms of their ancestral allele, derived allele, and
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5’ and 3’ flanking nucleotides, collapsing strand-complements together to obtain 96 SNV categories. Since

the detection of singletons may vary across samples, and because some singletons may result from cell-

line or somatic mutations, we only considered variants seen in more than one copy. Using this scheme, we

calculated the distribution of derived SNVs carried by each Phase 3 individual. We used this as a proxy for

the mutational input spectrum in the ancestors of each individual, excluding annotated repeats and PhyloP

conserved regions 11.

To explore global patterns of the mutation spectrum, we experimented with performing principal

component analysis (PCA) in which each individual was characterized simply by the fraction of their

derived alleles in each of the 96 SNV categories (Fig. 1A). PCA is commonly performed on individual-

level genotypes, in which case the PCs are usually highly correlated with geography 12. Although the triplet

mutation spectrum is an extremely compressed summary statistic compared to typical genotype arrays, we

found that it contains sufficient information to reliably classify individuals by their continent of origin.

The first principal component separated Africans from non-Africans, and the second separated Europeans

from East Asians, with South Asians and admixed native Americans (Fig. S2) appearing intermediate

between the two.

B. Mutation spectrum differences between populations

A. PCA of human mutation spectra

p < 1e-5

Figure 1 Global patterns of variation in SNV spectra. A. Principal Component Analysis of individu-

als according to the fraction of derived alleles that each individual carries in each of 96 mutational types.

B. Heatmaps showing, for pairs of continental groups, the ratio of the proportions of SNVs in each of the

96 mutational types. Each block corresponds to one mutation type; within blocks, rows indicate the 5’

nucleotide, and columns indicate the 3’ nucleotide. Red colors indicate a greater fraction of a given mu-

tation type in the first-listed group relative to the second. Points indicate significant contrasts at p < 10−5.

See Figure S1 for comparisons between additional population pairs.

Remarkably, we found that the mutation spectrum differences among continental groups are com-

posed of small shifts in the abundance of many different mutation types (Fig. 1B). For example, comparing
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Africans and Europeans, 43 of the 96 mutation types are significant at a p < 10−5 threshold using a forward

variable selection procedure. The previously described TCC→TTC signature partially drives the differ-

ence between Europeans and the other groups, but most other shifts are smaller in magnitude and appear

to be spread over more diffuse sets of related mutation types. East Asians have excess A→T transversions

in most sequence contexts, while Africans have proportionally more C→X mutations relative to A→X

mutations.

One possible concern is that batch effects or other sequencing artifacts might contribute to differ-

ences in mutational spectra across individuals. Therefore we replicated our analysis using 201 genomes

from the Simons Genome Diversity Project 13. These genomes were sequenced at high coverage, inde-

pendently from 1000 Genomes, using an almost non-overlapping panel of samples. We found extremely

strong agreement between the mutational shifts in the two data sets (Fig. S3). Among the different con-

tinental comparisons, the median correlation between the pairwise enrichment/depletion ratios in the two

data sets was 76% (Fig. S4).

These widespread differences may be footprints of allele frequency shifts affecting different mutator

alleles. But in principle, other genetic and non-genetic processes may also impact the observed mutational

spectrum. First, biased gene conversion (BGC) tends to favor C/G alleles over A/T, and BGC is potentially

more efficient in populations of large effective size compared to populations of smaller effective size 14.

However, despite the bottlenecks that are known to have affected Eurasian diversity, there is no clear trend

of an increased fraction of C/G→A/T relative to A/T→C/G in non-Africans vs. Africans, or with distance

from Africa (Fig. S5), and previous studies have also found little evidence for a strong genome-wide effect

of BGC on the mutational spectrum in humans and great apes 15, 16.

It is also known that shifts in generation time or other life-history traits may affect mutational spec-

tra, particularly for CpG transitions 17, 18. Most CpG transitions result from spontaneous methyl-cytosine

deamination as opposed to errors in DNA replication. Hence the rate of CpG transitions is less affected

by generation time than other mutations 19–21. We observe that Europeans have a lower fraction of CpG

variants compared to Africans, east Asians and south Asians (Fig. 1B), consistent with a recent report of

a lower rate of de novo CCG→CTG mutations in European individuals compared to Pakistanis 22. Such a

pattern may be consistent with a shorter average generation time in Europeans 20, though it is unclear that

a plausible shift in generation-time could produce such a large effect. Apart from this, the other patterns

evident in Figure 1 do not seem explainable by known processes.
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A. World map of TCC mutation signature intensity B. A TCC mutation pulse in Europe and South Asia

D. Estimated mutation pulse durationC. Other components of the TCC mutation signature

10,0001,000100

Time (years ago)

Figure 2 Geographic distribution and age of the TCC mutation pulse. (A) Observed frequencies of

TCC→TTC variants in 1000 Genomes populations. (B) Fraction of TCC→TTC variants as a function of

allele frequency in different samples indicates that these peak around 1%. In the UK10K data, which has

the largest sample size, the peak occurs at 0.6% allele frequency (C) Other enriched C→T mutations with

similar context also peak at 0.6% frequency in UK10K. (D) A population genetic model supports a pulse

of TCC→TTC mutations from 15,000–2,000 years ago. Inset shows the observed and predicted frequency

distributions of this mutation under the inferred model.

The most significant signal in Fig. 1B is for TCC→TTC mutations, which are highly enriched in

Europeans and, to a lesser extent, in South Asians (Fig. 2A; p < 1 × 10−300 for Europe vs. Africa).

To investigate when this mutational increase occurred, we plotted the allele frequency spectrum of this

mutation type in data from 1000 Genomes, and from the larger UK10K sample 23. As expected for a

signal that is primarily European, we found particular enrichment of these mutations at low frequencies.
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But surprisingly, the enrichment peaks around 1% frequency, and there is practically no enrichment among

the very lowest frequency variants (Figures 2B and S6). In the larger UK10K dataset, signal peaks at 0.6%

frequency. C→T mutations on other backgrounds, namely within TCT, CCC and ACC contexts, are also

enriched in Europe, and show a similar peak around 0.6% frequency and declining among rarer variants

(Fig. 2C). This suggests that these four mutation types comprise the signature of a single mutational pulse

that is no longer active. No other mutation types show such a pulse-like distribution in UK10K, though

several types show evidence of monotonic rate change over time (Figures S7 and S8).

We used the enrichment of TCC→TTC mutations as a function of allele frequency to estimate when

this mutation pulse was active. Assuming a simple piecewise-constant model, we infer that the rate of

TCC→TTC mutations increased dramatically ∼15,000 years ago and decreased again ∼2,000 years ago.

This time-range is consistent with results showing this signal in a pair of prehistoric European samples

from 7,000 and 8,000 years ago, respectively 9. We hypothesize that this mutation pulse may have been

caused by a mutator allele that drifted up in frequency starting 15,000 years ago, but that is now rare or

absent from present day populations.

Encouraged by these results, we sought to find other signatures of recent mutation pulses. We

generated heatmaps and PCA plots of mutation spectrum variation within each continental group, looking

for fine-scale differences between closely related populations (Figures S9-S14). In some cases mutational

spectra differ even between very closely related populations. For example, one notable signal is apparent in

east Asia, where most Japanese individuals cluster separately from most other east Asians (Figures 3A and

S12). These individuals carry elevated rates of *AC→*CC, ACA→AAA, and TAT→TTT mutations. This

signature appears to be present in only a handful of Chinese individuals, and no Kinh or Dai individuals.

As seen for the European TCC mutation, the enrichment of these mutation types peaks at low frequencies,

i.e., ∼1%.

PCA reveals relatively little fine-scale structure within the mutational spectra of Europeans or South

Asians (Figures S14, S13). However, Africans exhibit significant substructure (Fig. S11), and the Luhya

have a particularly distinctive mutational spectrum. Unexpectedly, a closer examination of PC loadings

reveals that the Luhya outliers are enriched for the same mutational signature identified in the Japanese.

Even in Europeans and South Asians, the first PC is heavily weighted toward *AC→*CC, ACA→AAA,

and TAT→TTT, although this signature explains less of the mutation spectrum variance within these more

homogeneous populations. The sharing of this signature may suggest either parallel increases of a shared

mutation modifier, or a shared aspect of environment or life history that affects the mutation spectrum.
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A. PCA of East Asian mutation spectra B. Heat map of East Asian mutation spectrum differences

C. Mutation spectrum vs allele frequency in the Japanese (JPT) D. Mutation spectrum vs allele frequency in the Dai (CDX)

Figure 3 Mutational variation among east Asian populations. (A) PCA of east Asian samples from

1000 Genomes, based on the relative proportions of each of the 96 mutational types. (B) Heatmaps show-

ing, for pairs of east Asian samples, the ratio of the proportions of SNVs in each of the 96 mutational

types. Points indicate significant contrasts at p < 10−5. (C) and (D) Relative enrichment of each muta-

tional type in Japanese and Dai, respectively as a function of allele frequency. Six mutation types that are

enriched in JPT are indicated. Populations: CDX=Dai, CHB=Han (Beijing); CHS=Han (south China);

KHV=Kinh; JPT=Japanese.

Together, these results suggest that modifiers of the mutation spectrum may segregate in human pop-

ulations. It would be natural to perform genome-wide mapping for modifiers, although measurements of

mutation spectrum in individual families are highly imprecise given the small number of de novo muta-

tions per zygote. As an alternative, we explored the use of SNVs to test for mutator function at a candidate

locus. Although a mutator allele would generate mutations genome-wide, recombination would quickly

randomize the resulting variants with respect to genotypes at the mutator. However, at the mutator locus
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itself, there should be a specific increase of the relevant mutation types on haplotypes that carry the mu-

tator, compared to those that do not. A recent study reported that two common germline variants affect

both cancer risk and the somatic mutational spectrum by altering regulation of APOBEC DNA-editing en-

zymes 24. Given that APOBEC activity appears to cause germline mutations as well 25, we hypothesized

that these two variants might also be germline mutators. Based on previous descriptions of the APOBEC

signature 3, 26, we classified TC→TT and TC→TG as potentially APOBEC-associated, all other mutations

as non-APOBEC-associated, and tested for enrichment of APOBEC-associated variants on the candidate

mutator haplotypes. We found modest enrichment of APOBEC mutations on the predicted mutator allele

(p = 0.03) for SNP rs1014971. This associated variant lies in the APOBEC3B regulatory region and

increases the risk of bladder cancer.

Finally, given our finding of extensive fine-scale variation in mutational spectra between human

populations, we hypothesized that mutational variation between species is likely to be even greater. To

compare the mutation spectra of the great apes in more detail, we obtained SNV data from the Great Ape

Diversity Panel, which includes 78 whole genome sequences from six great ape species including human
27. Overall, we find dramatic variation in mutational spectra among the great ape species (Figures 4 and

S15). As noted previously, one major trend is an increase in CpG proportion among the species closest

to human, possibly reflecting lengthening generation time along the human lineage 16, consistent with

previous indications that species closely related to humans have lower mutation rates than more distant

species28–30.

Human Bornean 
Orangutan

Sumatran 
Orangutan

GorillaBonoboChimp

More A-to-T
 transversions 

More CpG
transitions and
 transversions 

Fewer A-to-C
 transversions 

More C-to-T
transitions at 

non-CpG sites

More CpG
and CpC

 transversions 

More 
CpC-to-CpA

 transversions 
More

CpC-to-CpT
 transitions

Fewer 
CpA-to-TpA
 transitions

More 
ApC-to-TpC

 transversions 

A. Mutation spectrum contrasts between great ape species B. Phylogeny of ape mutation spectra

Figure 4 Mutational differences among the great apes. (A) Relative abundance of SNV types in 5

ape species compared to Bornean Orangutan; data from 27. Boxes indicate labels in (B). For additional

comparisons see Fig. S15. (B) Schematic phylogeny of the great apes highlighting notable changes in SNV

abundances.

However, most other differences are not obviously related to known processes such as biased gene

conversion and generation time change. The A→T mutation rate appears to have sped up in the common
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ancestor of humans, chimpanzees, and bonobos, a change that appears consistent with a mutator variant

that was fixed instead of lost. It is unclear whether this ancient A→T speedup is related to the A→T

speedup in East Asians. Other mutational signatures appear on only a single branch of the great ape tree,

such as a slowdown of A→C mutations in gorillas.

Discussion

In summary, we report here that, mutational spectra differ significantly among closely related human pop-

ulations, and that they differ greatly among the great ape species. Our work shows that subtle, concerted

shifts in the frequencies of many different mutation types are more widespread than dramatic jumps in the

rate of single mutation types, although the existence of the European TCC→TTC pulse shows that both

modes of evolution do occur 8, 9, 20.

At this time, we cannot exclude a role for nongenetic factors such as changes in life history or

mutagen exposure in driving these signals. However given the sheer diversity of the effects reported here,

it seems parsimonious to us to propose that most of this variation is driven by the appearance and drift

of genetic modifiers of mutation rate. This situation is perhaps reminiscent of the earlier observation

that genome-wide recombination patterns are variable among individuals 31, and ultimate discovery of

PRDM9 32; although in this case it is unlikely that a single gene is responsible for all signals seen here. As

large datasets of de novo mutations become available, it should be possible to map mutator loci genome-

wide. In summary, our results suggest the likelihood that mutational modifiers are an important part of the

landscape of human genetic variation.
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Methods

Data Availability. All datasets analyzed here are publicly available at the following websites:

1000 Genomes Phase 3 http://www.1000genomes.org/category/phase-3/

UK10K http://www.uk10k.org/data-access.html

Simons Genome Diversity Panel https://www.simonsfoundation.org/life-sciences/

simons-genome-diversity-project-dataset/

Human Mutation Spectrum Processing. Mutation spectra were computed using 1000 Genomes Phase

3 SNPs 10 that are biallelic, pass all 1000 Genomes quality filters, and are not adjacent to any N’s in

the hg19 reference sequence. Ancestral states were assigned using the UCSC Genome Browser align-

ment of hg19 to the PanTro2 chimpanzee reference genome; SNPs were discarded if neither the refer-

ence nor alternate allele matched the chimpanzee reference. To minimize the potential impact of an-

cestral misidentification errors, SNPs with derived allele frequency higher than 0.98 were discarded.

We also filtered out regions annotated as “conserved” based on the 100-way PhyloP conservation score
11, download from http://hgdownload.cse. ucsc.edu/goldenPath/ hg19/phastCons100way/, as well as re-

gions annotated as repeats by RepeatMasker 33, dowloaded from http://hgdownload.cse.ucsc.edu/ golden-

path/hg19/database/nestedRepeats.txt.gz. To be counted as part of the mutation spectrum of population P

(which can be either a continental group or a finer-scale population from one city), a SNP should not be

a singleton within population P–at least two copies of the ancestral and derived alleles must be present

within that population.

An identical approach was used to extract the mutation spectrum of the UK10K ALSPAC panel 23,

which is not subdivided into smaller populations. The data were filtered as described in 34. The filtering

procedure performed by Field, et al. reduces the ALSPAC sample size to 1927 individuals.

We also computed mutation spectra of the Simons Genome Diversity Panel (SGDP) populations.
9. Four of the SGDP populations, West Eurasia, East Asia, South Asia, and Africa, were compared to

their direct counterparts in the 1000 Genomes data. Three additional SGDP populations, Central Asia

and Siberia, Oceania, and America, had no close 1000 Genomes counterparts and were not analyzed

here (although each project contained a panel of people from the Americans, the composition of the

American panels was extremely different, with the 1000 Genomes populations being much more admixed

with Europeans and Africans). SGDP sites with more than 20% missing data were not utilized. All other
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data processing was done the same way described for the 1000 Genomes data.

The following table gives the same size of each population panel, as well as the total number of

SNPs segregating in the panel that are used to compute mutation type ratios:

Dataset Population Number of individuals Number of SNPs

1kg Africa 504 16,870,400

1kg Europe 503 8,508,040

1kg East Asia 504 7,895,925

1kg South Asia 489 9,552,781

SGDP Africa 45 6,569,658

SGDP West Eurasia 69 4,201,571

SGDP East Asia 49 3,312,645

SGDP South Asia 38 3,449,624

Great Ape Diversity Panel Data Processing. Biallelic great ape SNPs were extracted from the Great Ape

Diversity Panel VCF 27, which is aligned to the hg18 human reference sequence. Ancestral states were

assigned using the Great Ape Genetic Diversity project annotation, which used the Felsenstein pruning

algorithm to assign states to internal nodes in the great ape tree (Fig. S1). For each site, node 18 is assumed

to encode the human ancestral state, while node 17 encodes the chimpanzee and bonobo ancestral state,

node 19 encodes the gorilla ancestral state, and node 15 encodes the orangutan ancestral state. A SNP was

discarded whenever the ancestral node was assigned an uncertain or polymorphic ancestral state. As with

the human data, SNPs with derived allele frequency higher than 0.98 were not used, and both repeats and

PhyloP-annotated conserved regions were filtered away.

Visual representation of mutation spectra. The mutation type of a SNP is defined in terms of its ances-

tral allele, its derived allele, and its two immediate 5’ and 3’ neighbors. Two mutation types are considered

equivalent if they are strand-complementary to each other (e.g. ACG→ATG is equivalent to CGT→CAT).

This scheme classifies SNPs into 96 different mutation types, each that can be represented with an A or C

ancestral allele.

To compute the frequency fP (m) of SNP m in population P , we count up all SNPs of type m where
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the derived allele is present in at least one representative of population P (which can be either a specific

population such as YRI or a broader continental group such as AFR). After obtaining this count CP (m),

we define fP (m) to be the ratio CP (m)/
∑

m′ CP (m
′), where the sum in the denominator ranges over all

96 mutation types m′. The enrichment of mutation type m in population P1 relative to population P2 is

defined to be fP1(m)/fP2(m); these enrichments are visualized as heat maps in Figures 1B, 3B, and 4A.

To track changes in the mutational spectrum over time, we compute fP (m) in bins of restricted

allele frequency. This involves counting the number of SNPs of type m that are present at frequency

φ in population P to obtain counts CP (m,φ) and frequencies fP (m,φ) = CP (m,φ)/
∑

m′ CP (m
′φ).

Deviation of the ratio fP (m,φ)/fP (m) from 1 indicates that the rate of m has fluctuated recently in the

history of population P . To make the sampling noise approximately uniform across alleles of different

frequencies, alleles of derived count greater than 5 were grouped into approximately log-spaced bins that

each contained similar numbers of UK10K SNPs. More precisely, we defined a set of bin endpoints

b1, b2, ... such that the total number of SNPs ranging in derived allele count between bi and bi+1 − 1 is

greater than or equal to the number of 5-ton SNPs, while the total number of SNPs ranging in derived

allele count from bi to bi+1 − 2 is less than the number of 5-ton SNPs.

Significance testing. Let Si denote the total number of SNPs segregating in population Pi, and let S(m)
i

denote the number of SNPs of mutation typem. If mutation typem is more prevalent in population P1 than

in population P2, a chi-square test provides a natural way of assessing the significance of this difference.

As described in 8, this test is performed on the following 2-by-2 contingency table:

S
(m)
1 P1 − S(m)

1

S
(m)
2 P2 − S(m)

2

If we were to perform 96 different chi-square tests of this type, one for each mutation considered

with triplet context, these tests would not be independent. A sufficiently large increase in the rate of one

mutation type m1 in population P1 after divergence from P2 could cause another mutation type m2, whose

rate has remained constant, to comprise significantly different fractions of the SNPs from P1 and P2. To

minimize this effect, we use the following iterative procedure: first, compute a chi-square significance

value punordered(m) for each mutation type m using the 2-by-2 chi-square table above. We then use these

values to order the SNPs from lowest p value to highest and compute a set of ordered p values pordered(m).

For the mutation type m0 with the lowest unordered p value, punordered(m0) = pordered(m0). For mutation

type mi, which has the ith lowest unordered p value and i < 96, pordered(mi) is computed from the

following contingency table:
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S
(mi)
1

∑96
j=i+1 S

(mj)
1

S
(mi)
2

∑96
j=i+1 S

(mj)
2

For mutation type m96, which has the highest unordered p value, the ordered p value is computed

from the contingency table

S
(m96)
1 S

(m95)
1

S
(m96)
2 S

(m95)
2

Principal component analysis (PCA). The python package matplotlib.mlab.PCA was used to perform

PCA on the complete set of 1000 Genomes haplotypes, each haplotype h represented by a 96-element

vector encoding the mutation frequencies (fh(m))m of the non-singleton derived alleles present on that

haplotype. In the same way, a separate PCA was performed on each of the 5 continental groups to reveal

finescale components of mutation spectrum variation.

Dating of the TCC→T mutation pulse. We estimated the duration and intensity of TCC→T rate ac-

celeration in Europe by fitting a simple piecewise-constant rate model to the UK10K frequency data. To

specify the parameters of the model, we divide time into discrete log-spaced intervals bounded by time

points t1, ..., td, assigning each interval a TCC→T mutation rate r0, ...rd. In units of generations before the

present, the time discretization points were chosen to be: 20, 40, 200, 400, 800, 1200, 1600, 2000, 2400,

2800, 3200, 3600, 4000, 8000, 12000, 16000, 20000, 24000, 28000, 32000, 36000, 40000. We assume

that the total rate r of mutations other than TCC→T stays constant over time (a first-order approximation).

In terms of these rate variables, we can calculate the expected shape of the TCC→T pulse shown

in Figure 2B of the main text. The shape of this curve depends on both the mutation rate parameters

ri and the demographic history of the European population, which determines the joint distribution of

allele frequency and allele age. To account for the effects of demography, we use Hudson’s ms program

to simulate 10,000 random coalescent trees under a realistic European demographic history inferred from

allele frequency data 35 and condition our inference upon this collection of trees as follows: LetA(m, t) be

the function for which
∫ ti+1

ti
A(m, t)dt equals the coalescent tree branch length, averaged over the sample

of simulated trees, that is ancestral to exactly m lineages and falls between time ti and ti+1. Given this

function, which can be empirically estimated from a sample of simulated trees, the expected frequency
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spectrum entry k/n is

E(k/n) =

∑d
i=1

∫ ti
ti−1

A(k, t)dt∑n
j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt

and the expected fraction of TCC→T mutations in allele frequency bin k/n is

E(fTCC→T(k/n)) =

∑d
i=1 ri

∫ ti
ti−1

A(k, t)dt

r
∑d

i=1

∫ ti
ti−1

A(k, t)dt
.

The expected value of the TCC→T enrichment ratio being plotted in Figure 2B is

E(rTCC→T(k/n)) =

∑d
i=1 ri

∫ ti
ti−1

A(k, t)dt ·
∑n

j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt∑d
i=1

∫ ti
ti−1

A(k, t)dt ·
∑n

j=1

∑d
i=1 ri

∫ ti
ti−1

A(j, t)dt

In Figure 2B, enrichment ratios are not computed for every allele frequency in isolation, but for

allele frequency bins that each contain similar numbers of SNPs. Given integers 1 ≤ km < km+1 ≤ n,

the expected TCC→T enrichment ratio averaged over all SNPs with allele frequency between km/n and

km+1/n is:

E(rTCC→T(km/n)) =

∑d
i=1 ri

∫ ti
ti−1

∑km+1

k=km
A(k, t)dt ·

∑n
j=1

∑d
i=1

∫ ti
ti−1

A(j, t)dt∑d
i=1

∫ ti
ti−1

∑km+1

k=km
A(k, t)dt ·

∑n
j=1

∑d
i=1 ri

∫ ti
ti−1

A(j, t)dt

We optimize the mutation rates r1, . . . , rd using a log-spaced quantization of allele frequencies

k1/n, . . . , km/n defined such that all bins contain similar numbers of SNPs. The chosen allele count

endpoints k1, . . . , km are: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300,

400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000. Given this quantization of allele frequencies, we

optimize r1, . . . , rd by using the BFGS algorithm to minimize the least squares distance D(r0, . . . , rd) be-

tween E(rTCC→T(km/n)) and the empirical ratio rTCC→T(km/n) computed from the UK10K data. This

optimization is subject to a regularization penalty that minimizes the jumps between adjacent mutation

rates ri and ri+1:

D(r0, . . . , rd) =
d∑

m=1

(E(rTCC→T(km/n))− rTCC→T(km/n))
2 + 0.25

√√√√ d∑
i=1

(ri−1 − ri)2

Testing candidate loci for APOBEC-associated mutagenicity. A recent study found that two common

germline variants affect both cancer risk and the somatic mutational spectrum by altering the regulation of

APOBEC DNA-editing enzymes 24. We tested each variant for germline mutator activity in the ALSPAC

cohort of the UK10K data by looking at mutations that fall within 20 kB of the candidate mutator and

have likely not had time to recombine away. We posited that a variant arose on the mutator background if
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at least 80% of its derived alleles occur on a haplotype containing the candidate mutator; conversely, we

posited that it arose on the ancestral background if less than 20% of its derived alleles are currently linked

to the candidate mutator. In genomes that are heterozygous for the putative mutator allele, singletons

were assigned uniformly at random to the ancestral and derived allelic backgrounds. Based on previous

descriptions of the APOBEC signature 3, 26, we classified TC→TT and TC→TG mutations as potentially

APOBEC-associated, all other mutations as non-APOBEC-associated, and tested for an enrichment of

APOBEC-associated variants on the candidate mutator background.

The derived allele of SNP rs1014971, in the APOBEC3B regulatory region, is associated with an

increased burden of somatic APOBEC mutations as well as increased risk of bladder cancer. We counted

34 APOBEC-type mutations linked to the derived allele in UK10K, as well as 206 non-APOBEC-type

mutations. On the ancestral allele background, we counted 15 APOBEC-type mutations and 189 non-

APOBEC-type mutations. By a χ2 test, the derived allele is significantly associated with an increased

proportion of APOBEC-type mutations (p = 0.03).

A second APOBEC variant is associated with an increased risk of breast cancer: a 30 kB deletion that

elides APOBEC3A and APOBEC3B into a single upregulated chimera. We attempted to test this deletion

for germline mutagenicity by applying our testing procedure to the tag SNP rs12628403. One complicating

factor is that the APOBEC deletion is rare in Europeans compared to East Asians, Amerindians, and

Oceanians 36. In addition, low coverage sequencing datasets like the UK10K are vulnerable to assembly

difficulties and a dearth of SNP calls near sites of structural variation. As a result, only 19 SNPs, 1

APOBEC-type and 18 non-APOBEC-type, were found linked to the deletion within 20 kB, too few to

reliably test for germline mutator activity.

Code availability. Contact K.H. (kelleyh@stanford.edu) to request copies of the python scripts that were

used to perform the analyses in this paper.
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