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Abstract 17 

The ability to quantify differentiation potential of single cells is a task of critical 18 

importance for single-cell studies. So far however, there is no robust general molecular 19 

correlate of differentiation potential at the single cell level. Here we show that 20 

differentiation potency of a single cell can be approximated by computing the signaling 21 

promiscuity, or entropy, of a cell’s transcriptomic profile in the context of a cellular 22 

interaction network, without the need for model training or feature selection. We 23 

validate signaling entropy in over 7,000 single cell RNA-Seq profiles, representing all 24 

main differentiation stages, including time-course data. We develop a novel algorithm 25 

called Single Cell Entropy (SCENT), which correctly identifies known cell 26 

subpopulations of varying potency, enabling reconstruction of cell-lineage trajectories. 27 

By comparing bulk to single cell data, SCENT reveals that expression heterogeneity 28 

within single cell populations is regulated, pointing towards the importance of cell-cell 29 

interactions. In the context of cancer, SCENT can identify drug resistant cancer 30 

stem-cell phenotypes, including those obtained from circulating tumor cells. In 31 

summary, SCENT can directly estimate the differentiation potency and plasticity of 32 

single-cells, allowing unbiased quantification of intercellular heterogeneity, and 33 

providing a means to identify normal and cancer stem cell phenotypes. 34 

 35 

Keywords: Single-Cell; RNA-Seq; Stem-Cell; Differentiation; Cancer; Entropy  36 

Software Availability: SCENT is freely available as an R-package from github: 37 

https://github.com/aet21/SCENT 38 

 39 

 40 

One of the most important tasks in single-cell RNA-sequencing studies is the identification 41 

and quantification of intercellular transcriptomic heterogeneity [1-4]. Although some of the 42 

observed heterogeneity represents stochastic noise, a substantial component of intercellular 43 

variation has been shown to be of functional importance [1, 5-8]. Very often, this biologically 44 

relevant heterogeneity can be attributed to cells occupying states of different potency or 45 

plasticity. Thus, quantification of differentiation potency, or more generally functional 46 

plasticity, at the single-cell level is of paramount importance. However, currently there is no 47 

concrete theoretical and computational model for estimating such plasticity at the single cell 48 

level.  49 

Here we make significant progress towards addressing this challenge. We propose a very 50 

general model for estimating cellular plasticity. A key feature of this model is the 51 

computation of signaling entropy [9], which quantifies the degree of uncertainty, or 52 
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promiscuity, of a cell’s gene expression levels in the context of a cellular interaction network. 53 

We show that signaling entropy provides an excellent and robust proxy to the differentiation 54 

potential of a cell in Waddington’s epigenetic landscape [10], and further provides a 55 

framework in which to understand the overall differentiation potency and transcriptomic 56 

heterogeneity of a cell population in terms of single-cell potencies. Attesting to its general 57 

nature and broad applicability, we compute and validate signaling entropy in over 7000 single 58 

cells of variable degrees of differentiation potency and phenotypic plasticity, including 59 

time-course differentiation data, neoplastic cells and circulating tumor cells (CTCs). This 60 

extends entropy concepts that we have previously demonstrated to work on bulk tissue data 61 

[9, 11-13] to the single-cell level. Based on signaling entropy, we develop a novel algorithm 62 

called SCENT (Single Cell Entropy), which can be used to identify and quantify biologically 63 

relevant expression heterogeneity in single-cell populations, as well as to reconstruct 64 

cell-lineage trajectories from time-course data. In this regard, SCENT differs substantially 65 

from other single-cell algorithms like Monocle [14], MPath [15], SCUBA [16], Diffusion 66 

Pseudotime [17] or StemID [18], in that it uses single-cell entropy to independently order 67 

single cells in pseudo-time (i.e. differentiation potency), without the need for feature selection 68 

or clustering. 69 

 70 

Results 71 

Single-cell entropy as a proxy to the differentiation potential of single cells in 72 

Waddington’s landscape 73 

A pluripotent cell (by definition endowed with the capacity to differentiate into effectively all 74 

major cell-lineages) does not express a preference for any particular lineage, thus requiring a 75 

similar basal activity of all lineage-specifying transcription factors [9, 19]. Viewing a cell’s 76 

choice to commit to a particular lineage as a probabilistic process, pluripotency can therefore 77 

be characterized by a state of high uncertainty, or entropy, because all lineage-choices are 78 

equally likely (Fig.1A). In contrast, for a differentiated cell, or for a cell committed to a 79 

particular lineage, signaling uncertainty/entropy is reduced, as this requires activation of a 80 

specific signaling pathway reflecting that lineage choice (Fig.1A). Thus, a measure of global 81 

signaling entropy, if computable, could provide us with a relatively good proxy of a cell’s 82 

overall differentiation potential. Here we propose that signaling entropy can be estimated 83 

in-silico by integrating a cell’s transcriptomic profile with a high quality 84 

protein-protein-interaction (PPI) network to define a cell-specific stochastic “random-walk” 85 

matrix from which a global signaling entropy (abbreviated as SR) can then be computed 86 

(Fig.1A-B, Online Methods). It can be shown that signaling entropy is, in effect, the 87 

correlation of a cell’s transcriptomic profile with the connectivity profile of the corresponding 88 

proteins in the PPI network (Online Methods). Underlying our model is therefore the 89 

assumption that highly connected proteins are more likely to be highly expressed under 90 
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conditions in which the requirement for a cell’s phenotypic plasticity is high (e.g. as in a 91 

pluripotent state). 92 

 93 

Validation of single-cell entropy as a measure of differentiation potency 94 

To test that signaling entropy correlates with differentiation potency, we first estimated it for 95 

1018 single-cell RNA-seq profiles generated by Chu et al [20], which included pluripotent 96 

human embryonic stem cells (hESCs) and hESC-derived progenitor cells representing the 3 97 

main germ-layers (endoderm, mesoderm and ectoderm) (“Chu et al set”, SI table S1, Online 98 

Methods). In detail, these were 374 cells from two hESC lines (H1 & H9), 173 neural 99 

progenitor cells (NPCs), 138 definite endoderm progenitors (DEPs), 105 endothelial cells 100 

representing mesoderm derivatives, as well as 69 trophoblast (TB) cells and 148 human 101 

foreskin fibroblasts (HFFs). Confirming our hypothesis, pluripotent hESCs attained the 102 

highest signaling entropy values, followed by multipotent cells (NPCs, DEPs), and with less 103 

multipotent HFFs, TBs and ECs attaining the lowest values (Fig.2A). Differences were 104 

highly statistically significant, with DEPs exhibiting significantly lower entropy values than 105 

hESCs (Wilcoxon rank sum P<1e-50 (Fig.2A). Likewise, TBs exhibited lower entropy than 106 

hESCs (P<1e-50), but higher than HFFs (P<1e-7) (Fig.2A). Importantly, signaling entropy 107 

correlated very strongly with a pluripotency score obtained using a previously published 108 

pluripotency gene expression signature [21] (Spearman Correlation = 0.91, P<1e-500, Fig.2B, 109 

Online Methods). In all, signaling entropy provided a highly accurate discriminator of 110 

pluripotency versus non-pluripotency at the single cell level (AUC=0.96, Wilcoxon test 111 

P<1e-300, Fig.2C). We note that in contrast with pluripotency expression signatures, this 112 

strong association with pluripotency was obtained without the need for any feature selection 113 

or training.  114 

To further test the general validity and robustness of signaling entropy we computed it for 115 

scRNA-Seq profiles of 3256 non-malignant cells derived from the microenvironment of 19 116 

melanomas (Melanoma set, [22], SI table S1). Cells profiled included T-cells, B-cells, 117 

natural-killer (NK) cells, macrophages, fully differentiated endothelial cells and 118 

cancer-associated fibroblasts (CAFs). For a given cell-type and individual, variation between 119 

single cells was substantial and similar to the variation seen between individuals (SI fig.S1). 120 

Mean entropy values however, were generally stable, showing little inter-individual variation, 121 

except for T-cells from 4 out of 15 patients, which exhibited a distinctively different 122 

distribution (SI fig.S1). In order to assess overall trends, we pooled the single-cell entropy 123 

data from all patients together, which confirmed that all lymphocytes (T-cells, B-cells and 124 

NK-cells) had similar average signaling entropy values (Fig.2E). Intra-tumor macrophages, 125 

which are derived from monocytes, exhibited a marginally higher signaling entropy (Fig.2E). 126 

The highest signaling entropy values were attained by endothelial cells and CAFs (Fig.2E), 127 

consistent with their known high phenotypic plasticity [23-26]. Importantly, the entropy 128 

values for all of these non-malignant differentiated cell-types were distinctively lower 129 
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compared to those of hESCs and progenitor cells from Chu et al (Figs.2A & 2E), consistent 130 

with the fact that hESCs and progenitors have much higher differentiation potency. To test 131 

this formally, we compared hESCs, mesoderm progenitors, and terminally differentiated cells 132 

within the mesoderm lineage (which included all endothelial cells and lymphocytes), which 133 

revealed a consistent decrease in signaling entropy between all three potency states 134 

(Wilcoxon rank test P<1e-50, Fig.2F). Of note, signaling entropy could discriminate 135 

progenitor and differentiated cells better than the score derived from the pluripotency gene 136 

expression signature [21], attesting to its increased robustness as a general measure of 137 

differentiation potency (Fig.2G, SI fig.S2). 138 

Next, we assessed signaling entropy in the context of a time-course differentiation 139 

experiment, whereby hESCs were induced to differentiate into definite endoderm progenitors 140 

via the mesoendoderm intermediate [27]. scRNA-Seq for a total of 758 single cells, obtained 141 

at 6 timepoints, including origin, 12, 24, 36, 72 and 96 hours post-induction were available 142 

(Online Methods) [27]. We observed that single cell entropies exhibited a particular large 143 

decrease only after 72 hours (Fig.2H), consistent with previous knowledge that 144 

differentiation into definite endoderm occurs around 3-4 days after induction [27].  145 

 146 

Signaling entropy is robust to choice of PPI network and NGS platform 147 

We verified that signaling entropy is robust to the choice of PPI network (SI fig.S3). This 148 

robustness to the network stems from the fact that signaling entropy depends mainly on the 149 

relative connectivity of the proteins in the network (SI fig.S4A). Importantly, signaling 150 

entropy lost its power to discriminate pluripotent from non-pluripotent cells if expression 151 

values were randomly reshuffled over the network (SI fig.S4B-C), demonstrating that 152 

features such as pluripotency are encoded in a subtle positive correlation between expression 153 

levels and connectivity. In order to test the robustness of signaling entropy across 154 

independent studies, we analyzed scRNA-Seq data for an independent set of single cell 155 

hESCs derived from the primary outgrowth of the inner cell mass (“hESC set” [28], SI table 156 

S1). Obtained signaling entropy values were most similar to those of single cells derived 157 

from the H1 and H9 hESC lines, confirming the robustness of signaling entropy across 158 

different studies and next-generation sequencing platforms (Fig.2D, SI table S1).  159 

 160 

Non-linear association between single cell entropy and cell-cycle phase 161 

A major source of variation in scRNA-Seq data is cell-cycle phase [22, 29]. We explored the 162 

relation between signaling entropy and cell-cycle phase in a large scRNA-Seq dataset 163 

encompassing 3256 non-malignant and 1257 cancer cells derived from the microenvironment 164 

of melanomas (Melanoma set, [22], SI table S1). A cycling score for both G1-S and G2-M 165 

phases and for each cell was obtained using a validated procedure [22, 29, 30] and compared 166 

to signaling entropy, which revealed a strong yet highly non-linear correlation (SI fig.S5). 167 

Specifically, we observed that cells with a low signaling entropy were never found in either 168 
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the G1-S or G2-M phase (SI fig.S5). In contrast, cells with high signaling entropy could be 169 

found in either a cycling or non-cycling phase. These results are consistent with the view that 170 

cycling-cells must increase expression of promiscuous signaling proteins and hence exhibit 171 

an increased signaling entropy. 172 

 173 

Quantification of inter-cellular expression heterogeneity with SCENT 174 

Given that signaling entropy correlates with differentiation potency, we used it to develop the 175 

SCENT algorithm (Fig.1C). Briefly, the SCENT algorithm uses the estimated signaling 176 

entropies of single cells to derive the distribution of discrete potency states across the cell 177 

population (Fig.1C, Online Methods). Thus, SCENT can be used to quantify expression 178 

heterogeneity at the level of potency. In addition, SCENT can be used to directly order single 179 

cells in pseudo-time [14] to facilitate reconstruction of lineage trajectories. A key feature of 180 

SCENT is the assignment of each cell to a unique potency state and co-expression cluster, 181 

which results in the identification of potency-clusters (which we call “landmarks”), through 182 

which lineage trajectories are then inferred (Online Methods).  183 

To test SCENT, we applied it to the scRNA-Seq data from Chu et al, a non-time course 184 

single-cell experiment, which includes hESCs and progenitor cell populations (SI table S1). 185 

SCENT correctly predicted a parsimonious two potency state model, with a high potency 186 

pluripotent state and a lower potency non-pluripotent progenitor-like state (Fig.3A). 187 

Interestingly, a small fraction (approximately 4%) of the single hESCs were deemed to be 188 

non-pluripotent cells (Fig.3B), consistent with previous observations that pluripotent cell 189 

populations contain cells that are already primed for differentiation into specific lineages [5, 190 

6]. Supporting this further, these non-pluripotent “hESC” cells exhibited lower cycling-scores 191 

and higher expression levels of neural (HES1/SOX2) and mesoderm (PECAM1) stem-cell 192 

markers, compared to the pluripotent hESC cells (SI fig.S6). Whereas all HFFs and ECs were 193 

deemed non-pluripotent, definite endoderm progenitors (DEPs), TBs and NPCs exhibited 194 

mixed proportions, with NPCs exhibiting approximately equal numbers of pluripotent and 195 

non-pluripotent cells (Fig.3B). Correspondingly, the Shannon index, which quantifies the 196 

level of heterogeneity in potency, was highest for the NPC population (Fig.3C). In total, 197 

SCENT predicted 6 co-expression clusters, which combined with the two potency states, 198 

resulted in a total of 7 landmark clusters (Fig.3D). These landmarks correlated very strongly 199 

with cell-type, with only NPCs being distributed across two landmarks of different potency 200 

(Fig.3E). SCENT correctly inferred a lineage trajectory between the high potency NPC 201 

subpopulation and its lower potency counterpart, as well as a trajectory between hESCs and 202 

DEPs (Fig.3F). The other cell-types exhibited lower entropies (Fig.2B & Fig.3F), and 203 

correspondingly did not exhibit a direct trajectory to hESCs, suggesting several intermediate 204 

states which were not sampled in this experiment.  205 

To ascertain the biological significance of the two NPC subpopulations (Fig.3B,E,F), we first 206 

verified that the NPCs deemed pluripotent did indeed have a higher pluripotency score (SI 207 
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fig.7A), as assessed using the independent pluripotency gene expression signature from 208 

Palmer et al [21]. We further reasoned that well-known transcription factors marking neural 209 

stem/progenitor cells, such as HES1, would be expressed at a much lower level in the NPCs 210 

deemed pluripotent compared to the non-pluripotent ones, since the latter are more likely to 211 

represent bona-fide NPCs. Confirming this, NPCs with low HES1 expression exhibited 212 

higher differentiation potential than NPCs with high HES1 expression (Wilcoxon rank sum 213 

test P<0.0001, Fig.3G). Similar results were evident for other neural progenitor/stem cell 214 

markers such as PAX6 and SOX2 (SI fig.S7B). Of note, NPCs expressing the lowest levels of 215 

PAX6, HES1 or SOX2 were generally always classified by SCENT into a pluripotent-like 216 

state (Fig.3G, SI fig.S7B). Thus, these results indicate that SCENT provides a biologically 217 

meaningful characterization of intercellular transcriptomic heterogeneity. 218 

 219 

 220 

SCENT reconstructs lineage trajectories of human myoblast differentiation 221 

We next tested SCENT in the context of a differentiation experiment of human myoblasts 222 

[14], involving skeletal muscle myoblasts which were first expanded under high mitogen 223 

conditions and later induced to differentiate by switching to a low serum medium (Trapnell et 224 

al set, SI table S1). A total of 96 cells were profiled with RNA-Seq at differentiation 225 

induction, as well as at 24h and 48h after medium switch, with a remaining 84 cells profiled 226 

at 72h. As expected, signaling entropy was highest in the myoblasts, with a stepwise 227 

reduction in signaling entropy observed at 24h (Fig.4A). No decrease in entropy was 228 

observed between 24 and 72h, indicating that commitment of cells to become differentiated 229 

skeletal muscle cells already happens early in the differentiation process. Over the whole 230 

timecourse, SCENT predicted a total of 3 potency states, with a distribution consistent with 231 

the time of sampling (Fig.4B). Cells sampled at differentiation induction were made up 232 

primarily of two potency states (Fig.4C, PS1 & PS2), which differed in terms of CDK1 233 

expression, consistent with one subset (PS1) defining a highly proliferative subpopulation 234 

and with the rest (PS2) representing cells that have exited the cell-cycle (SI fig.S8). In total, 235 

SCENT predicted 4 landmarks, with one landmark defining undifferentiated (t=0) myoblasts 236 

of high potency (Fig.4D). Another landmark of lower potency contained cells at all time 237 

points, with cells expressing markers of mesenchymal cells (e.g PDFGRA and FN1/LTBP2) 238 

(Fig.4D). Cells from this landmark which were present at differentiation induction exhibited 239 

intermediate potency expressing low levels of CDK1 (SI fig.S8 & Fig.4D), suggesting that 240 

these are “contaminating” interstitial mesenchymal cells that were already present at the start 241 

of the time course, in line with previous observations [14, 15]. Importantly, SCENT correctly 242 

predicts that the potency of all these mesenchymal cells in this landmark does not change 243 

during the time-course, consistent with the fact that these cells are not primed to differentiate 244 

into skeletal muscle cells, but which nevertheless aid the differentiation process [14, 15]. 245 

Another landmark of intermediate potency predicted by SCENT defined a trajectory made up 246 
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of cells expressing high levels of myogenic markers (MYOG & IGF2) from 24h onwards 247 

(Fig.4D). Thus, this landmark corresponds to cells that are effectively committed to 248 

becoming fully mature skeletal muscle cells. The final landmark consisted of cells exhibiting 249 

the lowest level of potency and emerged only at 48h, becoming most prominent at 72h 250 

(Fig.4D). As with the previous landmark, cells in this group also expressed myogenic 251 

markers, and likely represent a terminally differentiated and more mature state of skeletal 252 

muscle cells. In summary, SCENT inferred lineage trajectories that are highly consistent with 253 

known biology and with those obtained by previous algorithms such as Monocle [14] and 254 

MPath [15]. However, in contrast to Monocle and MPath, SCENT inferred these 255 

reconstructions without the explicit need of knowing the time-point at which samples were 256 

collected. 257 

 258 

 259 

Signaling entropy detects drug resistant cancer stem cell phenotypes 260 

Cancer cells are known to be less differentiated and to acquire a more plastic phenotype 261 

compared to non-malignant cells. Hence their signaling entropy should be higher than that of 262 

non-malignant cell-types. We confirmed this using scRNA-Seq data from 12 melanomas 263 

(Melanoma-set [22], SI table S1), for which sufficient normal and cancer cells had been 264 

profiled (Fig.5A, SI fig.S9). Although there was some variation in the signaling entropy of 265 

cancer cells between individuals, this variation was relatively small in comparison to the 266 

difference in entropy between cancer and normal cells. Combining data across all 12 patients, 267 

demonstrated a dramatic increase in the signaling entropy of single cancer cells compared to 268 

non-malignant ones (Wilcoxon rank sum test P<1e-500, Fig.5B).  269 

Since signaling entropy is increased in cancer and correlates with stemness, it could, in 270 

principle, be used to identify putative cancer stem cells (CSC) or drug resistant cells. To test 271 

this, we first computed and compared signaling entropy values for 38 acute myeloid leukemia 272 

(AML) bulk samples from 19 AML patients, consisting of 19 diagnostic/relapse pairs [31]. 273 

Confirming that signaling entropy marks drug resistant cell populations, we observed a 274 

higher entropy in the relapsed samples (paired Wilcox test P=0.004, Fig.5C). For one 275 

relapsed sample, scRNA-Seq for 96 single AML cells was available (AML set, SI table S1). 276 

We posited that comparing the signaling entropy values of these 96 cells would allow us to 277 

identify a CSC-like subset responsible for relapse. Since in AML there are well accepted CSC 278 

markers (CD34, CD96), we tested whether expression of these markers in high entropy AML 279 

single cells is higher than in low entropy AML single cells (Fig.5D). Both CD34 and CD96 280 

were more highly expressed in the high entropy AML single cells (Wilcox test P=0.008 and 281 

0.032, respectively, Fig.5D).  282 

We next computed signaling entropies for 73 circulating tumor cells (CTCs) derived from 11 283 

castration resistant prostate cancer patients (CTC-PrCa set, SI table S1), of which 5 patients 284 

exhibited progression under treatment with enzalutamide (an androgen receptor (AR) 285 
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inhibitor) (n=36 CTCs), with the other 6 patients not having received treatment (n=37 CTCs) 286 

[32]. Although of marginal significance, signaling entropy was higher in the CTCs from 287 

patients exhibiting resistance (Wilcox test P=0.047, Fig.5E). Among putative prostate cancer 288 

stem cell markers (e.g. CD44, CD133, KLF4 and ALDH7A1) [32], we observed a positive 289 

association of signaling entropy with ALDH7A1 expression, suggesting that ADLH7A1 (and 290 

not other markers such as CD44) may mark specific prostate CSCs which are resistant to 291 

enzalutamide treatment (Fig.5F). 292 

 293 

Comparison of signaling entropy of bulk tissue to that of single cells reveals that 294 

intercellular expression heterogeneity is regulated 295 

It has been proposed that expression heterogeneity of cell populations is regulated and 296 

optimized in a way which fulfills specific requirements such as pluripotency or homeostasis 297 

[3]. To test whether signaling entropy can predict such regulated expression heterogeneity, we 298 

compared the average of single-cell entropies with the signaling entropy of the bulk 299 

population. Specifically, we devised a “measure of regulated heterogeneity” (MRH), which 300 

measures the likelihood that the signaling entropy of the cell population could have been 301 

observed from picking a single cell at random from that population (Online Methods, 302 

Fig.6A). We first estimated MRH for the data from Chu et al, for which matched bulk and 303 

scRNA-Seq data was available. We first note that although for bulk samples entropy 304 

differences between cell-types were smaller, that they were nevertheless consistent with the 305 

trends seen at the single-cell level (SI fig.S10 & Fig.2C). The MRH for each of the six 306 

cell-types (hESCs, NPCs, DEPs, TBs, HFFs, ECs) in Chu et al, revealed evidence of 307 

regulated heterogeneity, with the entropy values of bulk samples being significantly higher 308 

than that of single-cells (Fig.6B). As a negative control, the signaling entropy of the average 309 

expression over bulk samples would not exhibit regulated heterogeneity since bulk samples 310 

are completely independent from each other (i.e. they are not linked in space or time and 311 

represent non-interacting cell populations). Confirming this, the MRH of the average 312 

expression taken over bulk samples, measured relative to individual bulk samples was not 313 

significant (Normal deviation test P=0.30, Fig.6B).  314 

In order to obtain further evidence for regulated heterogeneity, we note that matched bulk 315 

RNA-Seq data is not absolutely required since bulk samples can be approximated by 316 

averaging the expression profiles of individual cells in the population. Indeed, we verified 317 

that the signaling entropy of the previous bulk samples correlated well with the entropy 318 

values obtained by averaging expression profiles of single cells, although as expected the 319 

values for the true bulk samples were always marginally higher, in line with the fact that the 320 

single cell assays only capture a subpopulation of the bulk sample (Fig.6C). Given this result, 321 

we explored if there is also regulated expression heterogeneity among normal cells of the 322 

tumor microenvironment using the average expression over single cells to approximate the 323 
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bulk. This analysis was performed for T-cells and B-cells found in melanomas (Melanoma-set, 324 

SI table S1), for which sufficient numbers of single cells had been profiled. In all cases, 325 

signaling entropies of the bulk were much higher than expected based on the distribution of 326 

single-cell entropies (SI fig.S11). Evidence for regulated expression heterogeneity was also 327 

seen among the melanoma cancer cells from each of 12 patients (Combined Fisher test 328 

P<1e-6, SI fig.S12). We also analysed RNA-Seq data for 96 single cancer cells from a 329 

relapsed patient with acute myeloid leukemia (AML) (AML set [31], SI table S1). The 330 

signaling entropy for the AML cell population was 0.88, significantly larger than the maximal 331 

value over the 96 cells (SR=0.82, Normal deviation test P<0.001, Fig.6D). Again, to illustrate 332 

that this regulated heterogeneity is a result of inter-cellular interactions at the single-cell level, 333 

we analysed all 19 bulk AML samples at relapse, treating bulk samples from independent 334 

AML patients as if they were single cells from a common population. Estimating the 335 

signaling entropy of the average expression profile over all 19 bulk samples did not reveal a 336 

value significantly higher than that of the individual bulk samples (Normal deviation test 337 

P=0.32, Fig.6D). This result was unchanged if the bulk samples at relapse were replaced with 338 

bulk samples at diagnosis (Fig.6D). In summary, these data strongly support the view that the 339 

differentiation potential or phenotypic plasticity of a cell population is higher than that of a 340 

randomly picked single cell in the population, consistent with a model in which expression 341 

heterogeneity between single cells is regulated. 342 

 343 

Discussion 344 

Although Waddington proposed his famous epigenetic landscape of cellular differentiation 345 

many decades ago [10], it has proved challenging to construct a robust molecular correlate of 346 

a cell’s elevation in this landscape. Here we have made significant progress, demonstrating 347 

that the differentiation potency and phenotypic plasticity of single cells, be they normal or 348 

malignant, can be estimated in-silico from their RNA-Seq profile using signaling entropy. As 349 

we have seen, signaling entropy can accurately discriminate pluripotent from multipotent and 350 

differentiated cells, without the need for feature selection or training, outperforming a 351 

pluripotency gene expression signature and providing a more general measure of 352 

differentiation potency.  353 

The ability of signaling entropy to independently order single cells according to 354 

differentiation potency is a central component of the SCENT algorithm, which, as shown here, 355 

can help quantify and identify biologically relevant intercellular expression heterogeneity and 356 

cell subpopulations. Indeed, key findings which strongly support the validity of SCENT are 357 

the following: (i) using SCENT we were able to correctly predict that a hESC population 358 

contains a small fraction of cells of lower potency which are primed for differentiation, (ii) 359 

SCENT inferred that an assayed neural progenitor cell population was made up two distinct 360 
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subsets, correctly predicting that only the lower potency subset represents bona-fide NPCs (as 361 

determined by expression of known neural stem cell markers), (iii) in a time course 362 

differentiation experiment of human myoblasts, SCENT correctly identified a contaminating 363 

interstitial mesenchymal cell population, whose potency did not change appreciably during 364 

the experiment. The ability of SCENT to assign single cells and cell subpopulations to 365 

specific potency states thus adds novel insight and functionality over what can be achieved 366 

with other algorithms such as Monocle or MPath. Alternatively, signaling entropy could be 367 

combined with existing algorithms like Monocle to empower their inference, since signaling 368 

entropy provides an unbiased, independent, approach to ordering of single cells in 369 

pseudo-time, i.e. it constitutes an approach which does not need to know the time point or 370 

nature of the assayed cells. 371 

In a proof of principle analysis, we further demonstrated the ability of SCENT to identify 372 

putative drug resistant cancer stem cells, encompassing two different cancer-types (AML and 373 

prostate cancer), including CTCs. The ability to quantify stemness in cancer cell populations, 374 

either in tissue or in circulation, is a task of enormous importance. As shown here, as well as 375 

in our previous work on bulk cancer tissue [9, 11, 13], signaling entropy is, so far, the only 376 

single sample measure to have been conclusively demonstrated to robustly correlate with 377 

both stemness and cancer. Indeed, a recent study by Gruen et al [18] explored a very different 378 

measure of transcriptome entropy, but which was not demonstrated to correlate well with 379 

differentiation potency or cancer. Likewise, signaling entropy is a more general measure of 380 

stemness/plasticity outperforming existing pluripotency expression signatures, as shown here 381 

and previously [11]. 382 

Importantly, signaling entropy also provides a computational framework in which to 383 

understand differentiation potency at the macroscopic (cell population) level from the 384 

corresponding potencies of single cells. As shown here, signaling entropy of cell populations, 385 

be they normal or malignant cells, exhibit synergy, with the entropy of the bulk being 386 

substantially higher than the entropy values of single cells. While no existing assay can 387 

measure all single cells in a population, we nevertheless demonstrated that our result is 388 

non-trivial, since mixing up bulk samples (to serve as a negative control) did not reveal such 389 

synergy. Biologically, increased potency of a cell population as a result of synergistic cell-cell 390 

interactions, supports the view that features such as pluripotency are best understood at the 391 

cellular population level [3]. 392 

To conclude, signaling entropy and the SCENT algorithm provide a computational 393 

framework to advance our understanding of single-cell biology. We envisage that SCENT 394 

will be of great value for quantifying biologically relevant intercellular heterogeneity and 395 

identifying key cell subpopulations in scRNA-Seq experiments. 396 

 397 

Online Methods  398 
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Single cell and bulk RNA-Seq data sets 399 

The main datasets analysed here, the NGS platform used and their public accession numbers 400 

are listed in SI table-1. Below is a more detailed description of the samples in each data set: 401 

 402 

Chu et al Set: This RNA-Seq dataset derives from Chu et al [27]. This set consisted of 4 403 

experiments. Experiment-1 generated scRNA-Seq data for 1018 single cells, composed of 404 

374 hESCs (212 single-cells from H1 and 162 from H9 cell line), 173 neural progenitor cells 405 

(NPCs), 138 definite endoderm progenitors (DEPs), 105 mesoderm derived endothelial cells 406 

(ECs), 69 trophoblast cells (TBs), 159 human foreskin fibroblasts (HFFs). Experiment-2 is a 407 

time-course differentiation of single-cells, specifically of hESCs induced to differentiate into 408 

the definite endoderm, via a mesoendoderm intermediate. Timepoints assayed were before 409 

induction (t=0h, n=92), 12 hours after induction (12h, n=102), 24h (n=66), 36h (n=172), 72h 410 

(n=138) and 96h (n=188). Experiment-3 matches experiment-1 and consists of RNA-Seq data 411 

from 19 bulk samples: 7 representing hESCs, 2 representing NPCs, 2 TBs, 3 HFFs, 3 ECs 412 

and 2 DEPs. Experiment-4 consists of 15 RNA-Seq profiles from bulk samples, profiled as 413 

part of the time-course differentiation experiment (Experiment-2), with 3 samples per 414 

time-point (12h, 24h, 36h, 72h, 96h). 415 

 416 

Melanoma Set: This scRNA-Seq dataset derives from Tirosh et al [22], and consists of 4645 417 

single-cells derived from the tumor microenvironment of 19 melanoma patients. Of these, 418 

3256 are non-malignant cells, encompassing T-cells (n=2068), B-cells (n=515), Natural Killer 419 

cells (n=52), Macrophages (n=126), Endothelial Cells (EndC, n=65) and cancer-associated 420 

fibroblasts (CAFs, n=61). The rest of single cells profiled were malignant melanoma cells 421 

(n=1257). 422 

 423 

AML Set: This set derives from Li et al [31]. A total of 96 single cells from a relapsed acute 424 

myeloid leukemia (AML) patient (patient ID=130) were profiled. In addition, 38 paired bulk 425 

AML samples were profiled from 19 patients (all experiencing relapse), with 19 samples 426 

obtained at diagnosis and with the other matched 19 samples obtained at relapse. 427 

 428 

hESC Set: This set derives from Yan et al [28]. It consists of 124 single cell profiles, of which 429 

90 are from different stages of embryonic development, with 34 cells representing hESCs. 430 

These 34 hESCs were derived from the inner cell mass, with 8 cells profiled at primary 431 

outgrowth and 26 profiled at passage-10. The 90 single cells from the pre-implantation 432 

embryo were distributed as follows: Oocyte (n=3), Zygote (n=3), 2-cell embryo (n=6), 4-cell 433 

embryo (n=12), 8-cell embryo (n=20), morulae (n=16), late blastocyst (n=30). 434 

 435 

Trapnell et al set: This scRNA-Seq set derives from Trapnell et al [14]. It consists of a 436 

timecourse differentiation experiment of human myoblasts, which profiled a total of 372 437 
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single cells: 96 cells at t=0 (time at which differentiation was induced), 96 at t=24h after 438 

induction, another 96 at t=48h after induction, and 84 cells at 72h post-induction. 439 

 440 

CTC-PrCa set: This scRNA-Seq dataset derives from Miyamoto et al [32].We focused on a 441 

subset of 73 single-cells from castration resistant prostate cancers, of which 36 derived from 442 

patients who developed resistance to enzulatamide treatment, with the remaining 37 derived 443 

from treatment-naïve patients. 444 

 445 

The Single-Cell Entropy (SCENT) algorithm 446 

There are five steps to the SCENT algorithm: (1) Estimation of the differentiation potency of 447 

single cells via computation of signaling entropy, (2) Inference of the potency state 448 

distribution across the single cell population, (3) Quantification of the intercellular 449 

heterogeneity of potency states, (4) Inference of single cell landmarks, representing the major 450 

potency-coexpression clusters of single cells, (5) Lineage trajectory (or dependency network) 451 

reconstruction between landmarks. We now describe each of these steps: 452 

  453 

1. Computation of signaling entropy: The computation of signaling entropy for a given 454 

sample proceeds using the same prescription as used in our previous publications [9, 11]. 455 

Briefly, the normalized genome-wide gene expression profile of a sample (this can be a single 456 

cell or a bulk sample) is used to assign weights to the edges of a highly curated 457 

protein-protein interaction (PPI) network. The construction of the PPI network itself is 458 

described in detail elsewhere [11], and is obtained by integrating various interaction 459 

databases which form part of Pathway Commons (www.pathwaycommons.org) [33]. The 460 

weighting of the network via the transcriptomic profile of the sample provides the biological 461 

context. The weight of an edge between protein g and protein h, denoted by wgh , is assumed 462 

to be proportional to the normalized expression levels of the coding genes in the sample, i.e. 463 

we assume that wgh ~ xg xh . We interpret these weights (if normalized) as interaction 464 

probabilities. The above construction of the weights is based on the assumption that in a 465 

sample with high expression of g and h, that the two proteins are more likely to interact than 466 

in a sample with low expression of g and/or h. Viewing the edges generally as signaling 467 

interactions, we can thus define a random walk on the network, assuming we normalize the 468 

weights so that the sum of outgoing weights of a given node i is 1. This results in a stochastic 469 

matrix, P, over the network, with entries  470 ݌௜௝ = ∑௝ݔ ௞௞∈ே(௜)ݔ =  ௜(ݔܣ)௝ݔ
where N(i) denotes the neighbors of protein i, and where A is the adjacency matrix of the PPI 471 

network (Aij=1 if i and j are connected, 0 otherwise, and with Aii=0). The signaling entropy is 472 

then defined as the entropy rate (denoted Sr) over the weighted network, i.e.  473 
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(Ԧݔ)ݎܵ = −෍ߨ௜ ෍ ௜௝݌ log ௜௝௝∈ே(௜)݌
௡
௜ୀଵ  

where π is the invariant measure, satisfying πP=π and the normalization constraint πT1=1. 474 

Assuming detailed balance, it can be shown that ߨ௜ = ௜(ݔܣ)௜ݔ /(xTAx). Given a fixed 475 

adjacency matrix A (i.e. fixing the topology), it can be shown that the maximum possible Sr 476 

among all compatible stochastic matrices P, is the one with ܲ = భംିݒଵ ⊗ ⊗ܣ  where ⨂ 477 ݒ

denotes product of matrix entries and where v is the dominant eigenvector of A, i.e. Av=λv 478 

with λ the largest eigenvalue of A. We denote this maximum entropy rate by maxSr, and 479 

define the normalized entropy rate (with range of values between 0 and 1) as  480 ܴܵ(ݔԦ) =  ݎܵݔܽ݉(Ԧݔ)ݎܵ

Throughout this work, we always display this normalized entropy rate. 481 

 482 

As shown by us previously, signaling entropy is influenced mainly by the invariant measure 483 

π , since the dynamic range of local signaling entropies ௜ܵ = −∑ ௜௝݌ log ௜௝௝∈ே(௜)݌  is in 484 

practice quite small [12]. In a mean field approximation, it is clear that (ݔܣ)௜ ≈ ݇௜̅ݔ, where 485 ̅ݔ is the average expression over all genes in the network. Thus, ܴܵ(ݔԦ)~∑ ௜ݔ ௜ ݇௜, i.e, the 486 

signaling entropy is effectively the Pearson correlation of the cell’s transcriptome and the 487 

connectome from the PPI network. In this work, although we never use this approximation, in 488 

practice this approximation is highly accurate and helps understand the biological features of 489 

signaling entropy [12]. 490 

 491 

2. Inference of potency states: In this work, we show that signaling entropy (i.e. the entropy 492 

rate SR) provides a proxy to the differentiation potential of single cells. We can model a cell 493 

population as a statistical mechanical model, in which each single cell has access to a number 494 

of different potency states. For a large collection of single cells we can estimate their 495 

signaling entropies, and infer from this distribution of signaling entropies the number of 496 

underlying potency states using a mixture modeling framework. Since SR is bounded 497 

between 0 and 1, we first conveniently transform the SR value of each single cell into their 498 

logit-scale, i.e. y(SR)=log2(SR/(1-SR)). Subsequently, we fit a mixture of Gaussians to the 499 

y(SR) values of the whole cell population, and use the Bayesian Information Criterion (BIC) 500 

(as implemented in the mclust R-package) [34] to estimate the optimal number K of potency 501 

states, as well as the state-membership probabilities of each individual cell. Thus, for each 502 

single cell, this results in its assignment to a specific potency state.  503 

 504 

3. Quantifying intercellular heterogeneity of potency states: For a population of N cells, we 505 
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can then define a probability distribution pk over the inferred potency states. For K inferred 506 

potency states, one can then define a normalized Shannon Index (SI): 507 

ܫܵ 508  = − ଵ୪୭୥௄෍ ௞௄௞ୀଵ݌ log  ௞݌

 509 

which measures the amount of heterogeneity in potency within the single-cell population 510 

(1=high heterogeneity in potency, 0=no heterogeneity in potency). 511 

4. Inference of co-expression clusters and landmarks: With each cell assigned to a potency 512 

state, we next perform clustering (using the scRNA-seq profiles) of the single cells. We use 513 

the Partitioning-Around-Medoids (PAM) algorithm with the average silhouette width to 514 

estimate the optimal number of clusters, a combination which was found to be among the 515 

most optimal clustering algorithms in applications to omic data [35]. Clustering of the cells is 516 

performed over a filtered set of genes that are identified as those driving most variation in the 517 

complete dataset, as assessed using SVD. In detail, we perform a SVD on the full z-scored 518 

normalized RNA-seq profiles of the cells, selecting the significant components using RMT 519 

[36] and picking the top 5% genes with largest absolute weights in each significant 520 

component. The final set of genes is obtained by the union of those identified from each 521 

significant componente. PAM-clustering (with a Pearson distance correlation metric) of all 522 

cells results in the assignment of each cell into a co-expression cluster, with a total number of 523 

np cell-clusters. Thus, each cell is assigned to a unique potency state and co-expression cluster. 524 

Finally, landmarks are identified by selecting potency-state cluster combinations containing 525 

at least 1 to 5% of all single cells. Importantly, each of these landmarks has a specific potency 526 

state and mean signaling entropy value, allowing ordering of these landmarks according to 527 

potency. 528 

5. Inference of lineage trajectories: For each landmark in step-4, we compute centroids of 529 

gene expression using only cells that are contained within that landmark and defined only 530 

over the genes used in the PAM-clustering. Partial correlations [37, 38] between the centroid 531 

landmarks are then estimated to infer trajectories/dependencies between landmarks. 532 

Significant positive partial correlations may indicate transitions between landmarks. Since 533 

each landmark has a signaling entropy value associated with it, directionality is inferred by 534 

comparing their respective potency states.  535 

 536 

Software Availability: SCENT is freely available as an R-package from github: 537 

https://github.com/aet21/SCENT 538 

 539 

 540 
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 541 

Estimation of cell-cycle and TPSC pluripotency scores 542 

To identify single cells in either the G1-S or G2-M phases of the cell-cycle we followed the 543 

procedure described in [22]. Briefly, genes whose expression is reflective of G1-S or G2-M 544 

phase were obtained from [29, 30]. A given normalized scRNA-Seq data matrix is then 545 

z-score normalized for all genes present in these signatures. Finally, a cycling score for each 546 

phase and each cell is obtained as the average z-scores over all genes present in each 547 

signature. 548 

To obtain an independent estimate of pluripotency we used the pluripotency gene expression 549 

signature of Palmer et al [21], which we have used extensively before [11]. This signature 550 

consists of 118 genes that are overexpressed and 39 genes that are underexpressed in 551 

pluripotent cells. The TPSC score for each cell with scRNA-Seq data is obtained as the 552 

t-statistic of the gene expression levels between the overexpressed and underexpressed gene 553 

categories. Optionally, the scRNA-Seq is z-score normalized beforehand and the t-statistic is 554 

obtained by comparing expression z-scores. However, we note that the z-score procedure 555 

uses information from all single cells, so the fairest comparison to signaling entropy means 556 

we ought to compare expression levels. We note that the TPSC scores obtained from z-scores 557 

or expression levels were highly correlated and did not affect any of the conclusions in this 558 

manuscript. 559 
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 668 
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 670 

 671 

Figure Legends 672 

 673 

Figure-1: The Single-Cell Entropy (SCENT) algorithm. A) Signaling entropy of single 674 

cells as a proxy to their differentiation potential in Waddington’s landscape. Depicted on 675 

the left is a population of cells with cells occupying either a pluripotent (magenta), a 676 

progenitor (cyan) or a differentiated state (green). The potency state of each cell is 677 

determined by a complex function of the transcriptomic profile of the cell. In a pluripotent 678 

state, there is high demand for phenotypic plasticity, and so promiscuous signaling proteins 679 

(i.e those of high connectivity) are highly expressed (red colored node) with all major 680 

differentiation pathways kept at a similar basal activity level (grey edges). The probability of 681 

signaling between protein i and k, pik , is therefore 1/ki where ki is the connectivity of protein i 682 

in the network. In a differentiated state, commitment to a specific lineage (activation of a 683 

specific signaling pathway shown by red colored node) means that most pij~0 , except when 684 

j=k, so that pik~1. On the right we depict a cartoon of Waddington’s epigenetic landscape, 685 

illustrating the same concept. B) Estimation of signaling entropy. Approximation of the 686 

differentiation potential of a single cell by computation of the signaling entropy rate (SR) 687 

over all the genes/proteins in the network, where π is the invariant measure (steady-state 688 

probability). C) Quantification of intercellular heterogeneity and reconstruction of 689 

lineage trajectories. Estimation of signaling entropy at the single-cell level across a 690 

population of cells, allows the distribution of potency states in the population to be 691 

determined through Bayes mixture modelling which infers the optimal number of potency 692 

states. From this, the heterogeneity of potency states in a cell population is computed using 693 

Shannon’s Index. To infer lineage trajectories, SCENT uses a clustering algorithm over 694 

dimensionally reduced scRNA-Seq profiles to infer co-expression clusters of cells. Dual 695 

assignment of cells to a potency state and co-expression cluster allows the identification of 696 

landmarks as bi-clusters in potency-coexpression space. Finally, partial correlations between 697 

the expression profiles of the landmarks are used to infer a lineage trajectory network 698 
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diagram linking cell clusters according to expression similarity, with their height or elevation 699 

determined by their potency (signaling entropy). 700 

 701 

Figure-2: Signaling entropy correlates with differentiation potency of single cells. A) 702 

Violin plots of the signaling entropy (SR) against cell-type (hESC=human embryonic stem 703 

cells, NPC=neural progenitor cells, DEP=definite endoderm progenitors, TB=trophoblast 704 

cells, HFF=human foreskin fibroblasts, EC=endothelial cells (mesoderm progenitor 705 

derivatives)). Number of single cells in each class is indicated. Total number is 1018. 706 

Wilcoxon rank sum test P-values between each cell-type (ranked in decreasing order of SR) 707 

are given. Diamond shaped data points correspond to the matched bulk samples. B) 708 

Scatterplot of the signaling entropy (SR, y-axis) against an independent mRNA expression 709 

based pluripotency score (TPSC, x-axis) for all 1018 single cells. Cell-type is indicated by 710 

color. Spearman Correlation Coefficient (SCC) and associated P-value are given. C) Violin 711 

plot comparing the signaling entropy (SR) between the hESCs and all other (non-pluripotent) 712 

cells. P-value is from a Wilcoxon rank sum test. Inlet figure is the associated ROC curve, 713 

which includes the AUC value. D) As C), but now splitting the hESCs into cells from H1 and 714 

H9 lines, and including an additional independent set of 90 single hESCs profiled with a 715 

different NGS platform. E) Violin plot of signaling entropy (SR) values for non-malignant 716 

single cells found in the microenvironment of melanomas. Number of single cells of each 717 

cell-type are given (CAF=cancer associated fibroblasts, EndC=endothelial cells, 718 

MacPH=macrophages, T=T-cells, B=B-cells, NK=natural killer cells). Wilcoxon rank sum 719 

test P-values between EndC and MacPH, and between MacPH and all lymphocytes are given. 720 

F) Signaling entropy (SR) as a function of differentiation stage within the mesoderm lineage. 721 

Differentiation stages include hESCs (pluripotent), mesoderm progenitors of endothelial cells 722 

(multipotent) and differentiated endothelial and white blood cells. Wilcoxon rank sum test 723 

P-values between successive stages are given. G) ROC curves and AUC values for 724 

discriminating the progenitor and differentiated cells within the mesoderm lineage for 725 

signaling entropy (SR) and the t-test pluripotency score (TPSC). H) Signaling entropy (SR, 726 

y-axis) as a function of time in a single-cell time course differentiation experiment, starting 727 

from hESCs at time=0h (time of differentiation induction) into definite endoderm (which 728 

occurs from 72h onwards). Number of single cells measured at each time point is given. 729 

Wilcoxon rank sum test P-values between the first 4 time points and 72h, and between 72h 730 

and 98h are given. 731 

 732 

Figure-3: SCENT identifies single cell subpopulations of biological significance. A) Fitted 733 

Gaussian mixture model to the signaling entropies of 1018 single cells (scRNA-Seq data 734 

from Chu et al) using a logit scale for the signaling entropies (x-axis, log2[SR/(1-SR)]). BIC 735 

predicted only 2-states: a high energy/entropy pluripotent state (magenta-PS1) and a 736 

lower-energy non-pluripotent state (cyan-PS2). Number of cells categorized into each state is 737 
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indicated in plot. B) Barplot comparing, for each cell-type, the probability that a cell from 738 

this cell population is in the pluripotent (prob(Pl)) or non-pluripotent state (probe(NonPl). 739 

Cell-types include human embryonic stem cells (hESCs), neural progenitor cells (NPCs), 740 

definite endoderm progenitors (DEPs), trophoblast cells (TBs), human foreskin fibroblasts 741 

(HFFs) and endothelial cells (ECs). C) Barplot of the corresponding Shannon Index for each 742 

cell-population type. D) Distribution of single cell numbers between inferred potency states 743 

and co-expression clusters, as predicted by SCENT. In brown, we indicate “landmark clusters” 744 

which contain at least 5% of the total number of single cells. E) Distribution of single 745 

cell-types among the 7 landmark clusters. F) Inferred lineage trajectories between the 7 746 

landmarks which map to cell-types. Border color indicates potency state: magenta=PS1, 747 

cyan=PS2.  G) Left panel: Scatterplot of signaling entropy (SR) vs mRNA expression level 748 

of a neural stem/progenitor cell marker, HES1, for all NPCs. NPCs categorized as pluripotent 749 

are shown in magenta, NPCs categorized into a non-pluripotent state are shown in cyan. 750 

NPCs of high and low HES1 expression (as inferred using a partition-around-medoids 751 

algorithm with k=2) are indicated with triangles and squares, respectively. Right panel: 752 

Corresponding boxplot comparing the differentiation potency (SR) of NPCs with low vs. 753 

high HES1 expression. P-value is from a one-tailed Wilcoxon rank sum test. 754 

 755 

Figure-4: SCENT dissects distinct lineage trajectories in human myoblast 756 

differentiation. A) Signaling entropy (SR) vs. time point (0h, 24h, 48h, 72h) for a total of 757 

372 single cells, collected during a time course differentiation experiment of human 758 

myoblasts (scRNA-Seq from Trapnell et al). Violin plots show the density distribution of SR 759 

values at each time point. P-value is from a one-tailed Wilcox rank sum test comparing 760 

timepoint 0h to 24h. B) SCENT Gaussian Model fit to SR values predicts 3 potency states 761 

(PS1, PS2, PS3). C) Probability distribution of potency states at each timepoint. D) 762 

Co-expression heatmap of highly variable genes obtained by SCENT predicting 3 main 763 

clusters. Single cells have been ordered, first by cluster, then by potency state and finally by 764 

their time of sampling, as indicated. Landmarks are indicated by rectangular boxes, and 765 

distribution of single cells across landmarks and timepoints is provided in table. Genes have 766 

been clustered using hierarchical clustering. Genes that are markers of the different 767 

landmarks have been highlighted. E) Inferred lineage trajectories between landmarks. 768 

Diagram illustrates an inferred two-phase trajectory, with one trajectory describing myoblasts 769 

of high potency (t=0, cyan circle) differentiating into skeletal muscle cells of intermediate 770 

potency (t=24 and 48) (blue circles) and a mixture of terminally differentiated and 771 

intermediate potency skeletal muscle cells (t=72) (grey and blue circle, respectively). A 772 

second trajectory/landmark describes a different cell-type (interstitial mesenchymal cells) 773 

whose intermediate potency state does not change during the time-course (blue stars). 774 

 775 

Figure-5: Increased signaling entropy in cancer cells and identification of drug resistant 776 
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cancer stem cells. A) Boxplots of the signaling entropy (SR) for single melanoma cancer 777 

cells (C ) compared to non-malignant (NotC) cells for 3 different melanoma patients (patient 778 

IDs given above each plot). Numbers of single cells are given below each boxplot. P-value is 779 

from a Wilcoxon rank sum test. B) As A), but now pooled across all 12 patients. C) 780 

Comparison of signaling entropy (SR) of 19 diagnostic acute myeloid leukemia bulk samples 781 

to relapsed samples from the same patients. Wilcox rank sum test P-value (one-tailed paired) 782 

is given. D) Sorting of 96 single AML cells from one patient according to signaling entropy 783 

and comparison of mRNA expression of AML CSC markers between low and high SR 784 

groups. P-values from a one-tailed Wilcox test. E) Comparison of signaling entropy (SR) of 785 

circulating tumor cells from metastatic prostate cancer patients who did not receive AR 786 

inhibitor treatment (UNTR) to those which developed resistance (RESIST). P-value from a 787 

one-tailed Wilcox test. F) Sorting of 73 single CTCs according to SCENT (signaling entropy, 788 

SR) into low and high SR groups. Correlation of gene expression of one putative CSC marker 789 

(ALDH7A1) with SR. 790 

  791 

 792 

Figure-6: Signaling entropy predicts regulated expression heterogeneity of single-cell 793 

populations. A) Definition of the measure of regulated expression heterogeneity (MRH). The 794 

MRH is a z-statistic, obtained by measuring the deviation of the signaling entropy (SR) of the 795 

bulk expression profile from the mean of single-cell entropies, taking into account the 796 

variability of single-cell entropies in the population. B) Barplots of MRH for each cell-type 797 

population from Chu et al, representing the degree to which the signaling entropy of the cell 798 

population is higher than that of single-cells. P-values are from a one-tailed normal-deviation 799 

test. Dashed line indicates the line P=0.05. AvgBulkS compares the signaling entropy of the 800 

average expression over all bulk samples to that of the individual bulk samples, indicating 801 

that although the RHM is positive (signaling entropy increases), that it is not significantly 802 

higher than that of the individual bulk samples. C) Scatterplot of the signaling entropy of 803 

bulk samples (y-axis), representing 6 cell-types (hESCs, NPCs, DEPs, TBs, HFFs, ECs) 804 

against the corresponding signaling entropies of these cell populations obtained by first 805 

averaging the expression profiles of single-cells (“Simulated Bulk”, x-axis). R2 value and 806 

P-value are given with green dashed line representing the fitted regression. Observe how the 807 

signaling entropy of bulk samples is always higher than that obtained from first averaging 808 

expression of single cells, in line with the fact that the assayed single cells are a 809 

subpopulation of the full bulk sample. D) Left panel: Comparison of the signaling entropy of 810 

an acute myeloid leukemia (AML) bulk sample (red line and point) to the signaling entropies 811 

of 96 single AML cells (blue) from that bulk sample. P-value is from a one-tailed normal 812 

deviation test. Right panel: Comparison of the MRH value for the matched 96 single cells 813 

and bulk AML sample (SCs) to the MRH values obtained by comparing the signaling entropy 814 

of the average expression over 19 AML bulk samples to the signaling entropies of each 815 
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individual AML bulk sample. The 19 AML bulk samples come in pairs, obtained at diagnosis 816 

(dgn) and relapse (rel), which are shown separately. P-values are from a one-tailed normality 817 

deviation test. 818 

 819 
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