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Summary 23	

1. A growing number of studies incorporate functional trait information to analyse patterns and 24	

processes of community assembly. These studies of trait-environment relationships generally 25	

ignore phylogenetic relationships among species. When functional traits and the residual 26	

variation in species distributions among communities have phylogenetic signal, however, 27	

analyses ignoring phylogenetic relationships can decrease estimation accuracy and power, inflate 28	

type I error rates, and lead to potentially false conclusions. 29	

2. Using simulations, we compared estimation accuracy, statistical power, and type I error rates 30	

of linear mixed models (LMM) and phylogenetic linear mixed models (PLMM) designed to test 31	

for trait-environment interactions in the distribution of species abundances among sites. We 32	

considered the consequences of both phylogenetic signal in traits and phylogenetic signal in the 33	

residual variation of species distributions generated by an unmeasured (latent) trait with 34	

phylogenetic signal. 35	

3. When there was phylogenetic signal in the residual variation of species among sites, PLMM 36	

provided better estimates (closer to the true value) and greater statistical power for testing 37	

whether the trait-environment interaction regression coefficient differed from zero. LMM had 38	

unacceptably high type I error rates when there was phylogenetic signal in both traits and the 39	

residual variation in species distributions. When there was no phylogenetic signal in the residual 40	

variation in species distributions, LMM and PLMM had similar performances. 41	

4. LMMs that ignore phylogenetic relationships can lead to poor statistical tests of trait-42	

environment relationships when there is phylogenetic signal in the residual variation of species 43	

distributions among sites, such as caused by unmeasured traits. Therefore, phylogenies and 44	
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PLMMs should be used when studying how functional traits affect species abundances among 45	

communities in response to environmental gradients. 46	

Introduction 47	

Species composition and abundance in ecological communities depend in part on both the 48	

environmental conditions at a site and the traits expressed by species that allow them to live 49	

under these environmental conditions. Typically, environmental conditions at a site allow only a 50	

subset of species from the regional species pool to reach high abundances, with different 51	

functional traits favouring species in different sites. Therefore, both environmental conditions 52	

and functional traits play an important role in explaining species abundances in communities. To 53	

better understand community assembly, we need to study the statistical interaction between 54	

environmental conditions at a site and the functional traits of species that live there (McGill et al. 55	

2006; Westoby & Wright, 2006). 56	

 57	

Common statistical approaches to analyse how traits mediate species responses to environmental 58	

variables have used either ordination with permutation tests (the fourth-corner problem and RLQ 59	

analysis, Legendre, Galzin & Harmelin-Vivien 1997; Dray & Legendre, 2008) or an indirect 60	

two-step approach. The fourth-corner problem links three data matrix tables: a site × species 61	

incidence/abundance matrix (L), a site × environmental variables matrix (R), and a species × 62	

traits matrix (Q). The traits × environmental variables matrix (R'LQ) is the fourth matrix (thus 63	

explaining the etymology of the approach). While this approach provides a good qualitative 64	

overview of how traits and environmental variables are associated, it does not give information 65	

about species-specific variation in responses to environmental variables, and it is difficult to use 66	
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for prediction. The second, two-step approach first fits species-specific regressions of abundance 67	

against environmental variables; the resulting regression coefficients are then regressed against 68	

traits (e.g., Soudzilovskaia et al. 2013). This approach, while informative at the species level, 69	

does not incorporate all community data in a single analysis and has low statistical power (Jamil 70	

et al. 2013). 71	

 72	

The interactions between traits and environmental variables can also be directly tested with 73	

model-based methods (Bolker et al. 2009; Jamil et al. 2013; Brown et al. 2014; Warton et al. 74	

2014, Ovaskaine, De Knegt & Delgado 2016). Statistically, the interaction between traits and 75	

environmental variables can be estimated as the trait-environment interaction coefficient in 76	

generalized linear models (GLMs, Brown et al. 2014), linear mixed models (LMMs, Ovaskaine, 77	

De Knegt & Delgado 2016), or generalized linear mixed models (GLMMs, Pollock, Morris & 78	

Vesk 2012; Jamil et al. 2013). These model-based methods allow model selection and prediction, 79	

and are often more flexible, powerful, and informative than fourth-corner and two-step 80	

approaches (Ives & Helmus 2011; Jackson et al. 2012; Brown et al. 2014; Warton et al. 2014).  81	

 82	

Most analyses of trait-environment interactions ignore phylogenetic relationships among species, 83	

despite the large literature on phylogenetic analyses in comparative studies (Felsenstein 1985; 84	

Harvey & Pagel 1991; Paradis 2012; Garamszegi 2014) and the relevance of phylogeny to many 85	

areas of ecology (Webb et al. 2002; Cavender-Bares et al. 2009). This can lead to statistical 86	

problems because functional traits often exhibit a phylogenetic pattern in which closely related 87	

species share similar trait values (i.e., phylogenetic signal, Blomberg, Garland & Ives 2003). If 88	

there are multiple traits that affect species abundance or incidence (or other characteristic of 89	
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interest), then the unmeasured traits with phylogenetic signal may generate covariance in the 90	

unexplained, residual variation after accounting for measured traits. This covariance in the 91	

residual variation will reflect the phylogeny, and will affect model estimation and hypothesis 92	

testing of regression coefficients (e.g., Felsenstein 1985, Martins & Hansen 1997; Garland, 93	

Bennett & Rezende 2005; Revell 2010).  94	

 95	

Here, we investigate the need to incorporate phylogenetic covariance among species in 96	

regressions for trait-environment interactions. We considered a regression problem in which 97	

there is a causal but unmeasured (latent) trait that introduces unexplained variability in species 98	

abundance, and phylogenetic covariance in the unexplained variation if the unmeasured trait has 99	

phylogenetic signal. This gives four possible cases (Revell 2010): the pairwise combinations of 100	

whether or not there is phylogenetic signal in the measured trait in the regression, and whether or 101	

not there is phylogenetic signal in the residual variation. We then compared the accuracy, type I 102	

error rates, and statistical power of linear mixed models (LMMs) and phylogenetic linear mixed 103	

models (PLMMs, Ives & Helmus 2011) in estimating the trait-environment interaction 104	

coefficient. We show that when there is phylogenetic signal in the residual variation (latent trait), 105	

PLMM outperformed LMM, with LMM performing particularly poorly when there is also 106	

phylogenetic signal in the measured trait.  107	

 108	

Materials and methods 109	

We simulated data to test the importance of accounting for phylogenetic relationships when 110	

studying how functional traits interact with environmental variables to affect species abundances. 111	

All simulations and calculations were performed with R (R Core Team, 2015). 112	
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Simulations 113	

We simulated the abundance Y of species j (j = 1, …, n) at site s (s = 1, …, m) that depends on 114	

two site environmental variables (env1 and env2) and two species functional traits 115	

(trait1 and trait2) using the model 116	

 117	

Yi = α + β1 env1site[i] + β2 env2site[i] + β3 trait1spp[i] + β4 trait2spp[i] + 118	

 β5 (env1site[i] × trait1spp[i]) + β6 (env1site[i] × trait2spp[i]) + ei. (1) 119	

 120	

Functions spp[i] and site[i] map the observation i to the identity of the species and site, 121	

respectively (Gelman & Hill, 2007, p251-252), so i takes values from 1 to nm. We assume both 122	

environmental variable env1 and functional trait trait1 are measured. Env1 (e.g., soil fertility, 123	

canopy cover) affects the abundance of all species among sites (β1 ≠ 0), and trait1 (e.g., nutrient 124	

absorption capacity, specific leaf area) determines in part the overall abundance of species (β3 ≠ 125	

0). Furthermore, there is an interaction between env1 and trait1 (β5 ≠ 0) implying that trait1 126	

affects the performance of species along the environmental gradient env1.  127	

 128	

To introduce unexplained variation and phylogenetic signal, we treated env2 and trait2 as 129	

unmeasured (latent) variables. Like env1, env2 has a direct effect on species abundances (β2 ≠ 0). 130	

Like trait1, trait2 determines in part species abundances (β4 ≠ 0) and has an interactive effect 131	

with env1 (β6 ≠ 0). As we are mainly interested in the trait × environment interactions for the 132	

measured data (env1 and trait1), we did not include the interactions between env2 and trait1 or 133	

trait2. Our goal is to investigate the interaction between env1 and trait1 which is given by β5. 134	

Consequently, we set all parameters in equation 1 other than β5 to be 1. Finally, we simulated ei 135	
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as a normal random variable that is independent among species and sites. In this way, we treated 136	

the abundance of species Y as log-transformed values from count data. We did not simulate 137	

abundance as raw count data because log-transformation of count data usually does not affect the 138	

significance tests for regression coefficients when low count values (<5) are uncommon (Ives 139	

2015; Warton et al. 2016). 140	

 141	

We simulated the phylogeny as a uniform birth-death process with birth rate = 1 and death rate = 142	

0 using the sim.bdtree function of the geiger R package (Harmon et al. 2008). The 143	

phylogeny gives the expected phylogenetic covariances among species under Brownian motion 144	

evolution (Grafen 1989; Martins & Hansen 1997) that can be used to construct a matrix C, and 145	

when there is no phylogenetic signal the (zero) covariance structure is given by the identity 146	

matrix I. Because functional traits may or may not have phylogenetic signal, we simulated four 147	

scenarios for the two functional traits: trait1 with phylogenetic signal but not trait2 (trait1: C; 148	

trait2: I); trait2 with phylogenetic signal but not trait1 (trait1: I; trait2: C); both traits with 149	

phylogenetic signal (trait1: C; trait2: C); and neither trait with phylogenetic signal (trait1: I; 150	

trait2: I). Functional traits without phylogenetic signal were simulated as N(0, 1) normal random 151	

variables; functional traits with phylogenetic signal were simulated using the fastBM function of 152	

the phytools R package (Revell 2012). We simulated env1 as a uniform distribution ranging 153	

from –1 and 1 to generate a strong environmental gradient. Variable env2 and residuals ei were 154	

simulated as N(0, 1) normal random variables.  155	

 156	

We conducted simulations with 30 sites. To study type I error rates (false positives that 157	

incorrectly reject the true null hypothesis), we set β5 = 0 and varied the number of species (20, 158	
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30, 40, 50, 60, 70, 80). To study statistical power, we varied the value of β5 (0, 0.25, 0.5, 0.75, 1) 159	

and fixed the number of species at 50. For each case we performed 1000 simulations. 160	

 161	

Model fitting 162	

We fit both LMM and PLMM to the simulated datasets with R package pez (Pearse et al. 2015). 163	

The LMM has the form 164	

 165	

Yi = α + aspp[i] + bsite[i] + (β1 + cspp[i]) env1site[i] + β3 trait1spp[i] + β5 env1site[i] × trait1spp[i] + ei          166	

a ~ Gaussian(0, σ2
aIn) 167	

b ~ Gaussian(0, σ2
bIm) 168	

c ~ Gaussian(0, σ2
cIn) (2) 169	

 170	

Here, we use the convention of multilevel models (Gelman & Hill, 2007), with fixed and random 171	

effects given by Greek and Latin letters, respectively. The fixed effects β1, β3, and β5 correspond 172	

to the same coefficients in the simulation model (equation 1). Random effect aspp[i] allows 173	

different species to have different overall abundance to capture effects of the term β4 trait2spp[i] in 174	

equation 1. Random effect bsite[i] allows different sites to have different overall abundance across 175	

all species within that site to capture effects of the term β2 env2site[i] in equation 1. Finally, 176	

random effect cspp[i] allows different species to have different responses to env1 to capture effects 177	

of the term β6 env1site[i] × trait2spp[i] in equation 1. 178	

 179	

The PLMM includes all terms of equation 2, plus phylogenetic version of random terms aspp[i] 180	

and cspp[i]: 181	
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 182	

Yi = α + (aspp[i] + ap
spp[i]) + bsite[i] + (β1 + cspp[i] + cp

spp[i]) env1site[i] + β3 trait1spp[i] + 183	

β5 env1site[i] × trait1spp[i] + ei  184	

a ~ Gaussian(0, σ2
aIn) 185	

ap ~ Gaussian(0, σ2
apC) 186	

b ~ Gaussian(0, σ2
bIm) 187	

c ~ Gaussian(0, σ2
cIn) 188	

cp ~ Gaussian(0, σ2
cpC) (3) 189	

 190	

Random effect ap
spp[i] implies closely related species to have similar overall abundance; this will 191	

capture the main effects of traits in the simulations (equation 1) if trait2 has phylogenetic signal. 192	

Similarly, random effect cp
spp[i] allows closely related species to have similar responses to env1, 193	

thereby capturing the interactive effect of trait2 and env1 in the simulations if trait2 has 194	

phylogenetic signal. 195	

Results 196	

To compare LMMs and PLMMs, we focused on the regression coefficient β5 for the interaction 197	

between env1 and trait1. For each simulated dataset, we compared the accuracy of LMM and 198	

PLMM by determining the frequency with which one gave a more accurate estimate of β5 than 199	

the other, and also by calculating the means and standard deviations of the estimates of β5. We 200	

also counted the number of estimates that were scored as significant at the a = 0.05 level for both 201	

models to determine their type I errors (when the true value of β5 = 0) and statistical power 202	

(when the true value of β5 > 0).  203	
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 204	

No phylogenetic signal in trait2 205	

When the unmeasured trait2 did not have phylogenetic signal (trait1: I; trait2: I, and trait1: C; 206	

trait2: I), implying no phylogenetic signal in the unexplained variation in species abundances 207	

among sites, LMM and PLMM had similar estimation accuracy (Fig. 1-2), type I error rates, and 208	

power (Fig. 3). Averaged across all simulation scenarios, in roughly 50% of simulations LMM 209	

produced better estimates (closer to the true value) of β5 (Fig. 1). The estimators of β5 from 210	

LMM and PLMM had similar means and standard deviations (Fig. 2A, Fig. 2B, Fig. A1). 211	

Furthermore, LMM and PLMM had almost identical type I error rates and power across all 212	

simulation scenarios (Fig. 3). They also gave very similar estimates when β5 > 0 (Fig. A2). These 213	

results are explained, in part, by the fact that in about 65% of simulations across all scenarios we 214	

investigated with no phylogenetic residual variation (trait2: I), the estimates of both σ2
ap and σ2

cp 215	

in the PLMM were zero, so the PLMM collapsed to the LMM and estimates of β5 were the same 216	

(± numerical accuracy in the REML optimizations). 217	

 218	
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 219	

Figure 1. The fraction of simulations in which PLMM yielded a better estimate of β5 (i.e., closer to its 220	

true value) than LMM versus (A) the number of simulated species and (B) the true value of β5 (Eq. 1). 221	

The performance of PLMM was consistently better than LMM whenever there was phylogenetic signal in 222	

the residual variation (caused by unmeasured trait2). Abbreviations: trait1: I – measured trait1 does not 223	

have phylogenetic signal; trait1: C – measured trait1 has phylogenetic signal; trait2: I – unmeasured trait2 224	

does not have phylogenetic signal; trait2: C – unmeasured trait2 has phylogenetic signal.  225	

0.00

0.25

0.50

0.75

1.00

20 30 40 50 60 70 80
Number of species

R
el

at
ive

 fr
eq

ue
nc

y 
th

at
 P

LM
M

 is
 b

et
te

r

trait1: I; trait2: I
trait1: C; trait2: I
trait1: I; trait2: C
trait1: C; trait2: C

(A)

0.00

0.25

0.50

0.75

1.00

0 0.25 0.5 0.75 1
True value of β5 in Eq. 1 (trait−environment interaction term)

(B)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 28, 2016. ; https://doi.org/10.1101/084178doi: bioRxiv preprint 

https://doi.org/10.1101/084178
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

 226	

Figure 2:  Mean (± standard deviation) of simulated estimates of β5 (Eq. 1) using LMM and PLMM 227	

versus the number of species in the simulations for cases (A) trait1: I; trait2: I, (B) trait1: C; trait2: I, 228	

(C) trait1: I; trait2: C, and (D) trait1: C; trait2: C. Horizontal dash lines represent the true value of the 229	

parameter. Abbreviations are as in Fig. 1. 230	
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 231	

Figure 3.  (A) Type I error rates and (B) statistical power of LMMs and PLMMs under four scenarios of 232	

simulated functional traits (abbreviations as in Fig. 1). For all tests, a significance level of α = 0.05 is used 233	

(horizontal dashed lines). 234	
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Phylogenetic signal in trait2 235	

When the unmeasured trait2 had phylogenetic signal (trait1: I; trait2: C, and trait1: C; trait2: C), 236	

PLMM had substantially higher estimation accuracy (Fig. 1-2), better type I error control (Fig. 237	

3A), and higher power (Fig. 3B) than LMM. Type I error control and power were particularly 238	

poor for LMM when trait1 also had phylogenetic signal (i.e., trait1: C; trait2: C).  239	

 240	

Averaged across all simulation conditions, in about 75% simulations PLMM produced more 241	

accurate estimates of β5 (Fig. 1), and the variance of the estimator of β5 (Fig. 2 and A1) was 242	

consistently lower than LMM. The was true regardless of the number of species, the true value of 243	

β5, and the status of the measured trait1 (with or without phylogenetic signal) used in 244	

simulations. In addition, for type I error control and power, LMM had particularly poor 245	

performance when the measured trait1 had phylogenetic signal (trait1: C; trait2: C). For 246	

simulations with β5 = 0 (Fig. 3), LMM rejected H0: β5 = 0 at the α = 0.05 level in ~25% of the 247	

datasets with 20 species, and type I error control became worse as the number of species 248	

increased. When there was no phylogenetic signal in trait1 (trait1: I; trait2: C) and type I error 249	

control was only slightly elevated, LMM had much lower power than PLMM (Fig. 3B) 250	

 251	

We investigated further the particularly poor type I error control of LMM when there is 252	

phylogenetic signal in both the measured trait and the unexplained residual variation (trait1: C; 253	

trait2: C). Poor type I error control occurs when the estimate of the standard error of β5 is smaller 254	

than the true standard error. For cases both with phylogenetic signal in trait 1 (trait1: C; trait2: C) 255	

and without (trait1: I; trait2: C), we plotted the estimate of the standard error of β5 for each 256	

simulated dataset against the estimate of β5 using both LMM and PLMM (Fig. 4). For the case 257	
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(trait1: I; trait2: C), the decrease in accuracy of LMM relative to PLMM is seen in the greater 258	

variance in the estimates of β5 (variance in the horizontal direction). Despite this increase in the 259	

variance in the estimates of β5, false positives (given by values to the right of the dashed line of 260	

Fig. 4) from the LMM are only slightly inflated, because the LMM estimates of the standard 261	

error of β5 are larger than those from PLMM. However, for the case (trait1: C; trait2: C), the 262	

decrease in accuracy of LMM relative to PLMM is not accompanied by an appropriate increase 263	

is the LMM estimates of the standard error, thereby leading to high type I error rates. In contrast 264	

to LMM, even though the variance in the estimates of β5 from PLMM increases when there is 265	

phylogenetic signal in trait1 (Fig. 4A vs. 4B), the estimates of the standard error also increase, 266	

leading to much better type I error control than LMM. In summary, the poor type I error control 267	

for LMM when there is phylogenetic signal in trait1 occurs because, as phylogenetic signal in 268	

trait1 increases the variance in the LMM estimates of β5, phylogenetic signal in trait1 decreases 269	

the LMM estimates of this variance. The decrease in power of LMM relative to PLMM for the 270	

case without phylogenetic signal in trait1 (trait1: I; trait2: C) is caused by the increase in 271	

variance in the estimator of β5, that is, decreased accuracy. Given the very poor type I error 272	

control for LMM for the case with phylogenetic signal in trait1 (trait1: C; trait2: C), it is 273	

inappropriate to assess power for this case. 274	

 275	
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 276	

Figure 4. The relationships between the absolute value of the estimates of β5 and the estimates of the 277	

standard errors from LMM (yellow) and PLMM (blue). Solid points to the right of the dashed line would 278	

(approximately) reject the null hypothesis H0: β5 = 0 at the 0.05 a significance level. When unmeasured 279	

trait2 has phylogenetic signal but not measured trait1 (trait1: I; trait2: C), LMM estimates are more 280	

variable (horizontal axis) and have greater estimated standard errors (vertical axis) than PLMM, leading 281	

to only slightly inflated type I error control. When both trait1 and trait2 have phylogenetic signal (trait1: 282	

C; trait2: C), LMM estimates are more variable, but this is not correctly captured by increasing estimates 283	

of standard errors, leading to very high type I error rates. The dashed line has intercept of zero and slope 284	

of 1/1.96. Simulations were performed with 50 species; the fractions of simulations rejecting the null 285	

hypothesis (text in the panels) were calculated from 1000 simulations, of which only 300 are presented 286	

for clarity. 287	

 288	

Discussion 289	

Our simulations have demonstrated the importance of incorporating phylogeny into the study of 290	

how species functional traits interact with the environment to affect their abundance. In 291	
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simulations in which there was phylogenetic signal in the residual variation in abundances 292	

caused by an unmeasured (latent) trait, we showed that LMMs have lower accuracy, poor type I 293	

error control, and lower power than PLMMs in identifying the trait × environment interaction. 294	

The performance of LMMs was particularly poor in terms of type I error control and power when 295	

there was also phylogenetic signal in the measured trait. In contrast, PLMMs had better 296	

accuracy, generally good type I error control (except when the number of species was small), and 297	

good power. 298	

 299	

Our results mirror the results of Revell (2010) who studied the performance of LMs and PLMs 300	

applied to regression for phylogenetic comparative data. The model he considered that most 301	

closely corresponds to our PLMM is a phylogenetic least-squares model in which Pagel’s l 302	

branch-length transform is used. Pagel’s l transformation can be constructed by adding a 303	

phylogenetic and a non-phylogenetic covariance matrix with l scaling between them (i.e., (1 – 304	

l)I + lC). In our PLMM (Eq. 3), covariance terms are similarly combined; for example, the 305	

covariance for species-specific slopes across environmental variable 1 is σ2
cIn + σ2

cpC. Revell 306	

(2010) found that PLMs outperformed LMs when there was phylogenetic signal in the residual 307	

variation, with the performance of LMs particularly poor when there was also phylogenetic 308	

signal in the independent variable. Thus, we found similar results in the more-complex problem 309	

of identifying trait × environment interactions in community data. 310	

 311	

The better performance of PLMMs over LMMs is not surprising on theoretical grounds. For the 312	

special, hypothetical case in which the variance parameters σ2
a, σ

2
ap, σ

2
b, σ

2
c, and σ2

cp are known, the 313	

PLMM in equation 3 will be the minimum variance estimator of the regression coefficients 314	
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(fixed effects), including the trait × environment interaction β5; this is a consequence of the 315	

Cramer-Rao Theorem applied to Generalized Least Squares (GLS) models (Judge et al. 1985). 316	

This explains why PLMMs provide more accurate estimates of β5 than LMMs, and the increase 317	

in accuracy explains the increase in power of PLMMs relative to LMMs.  318	

 319	

A particular warning derived from our simulations is the poor type I error control for LMMs 320	

when there is phylogenetic signal in both the residual variation and in the independent variable. 321	

When there is also phylogenetic signal in the measured trait1, the variance in the estimates of β5 322	

greatly increases. Nonetheless, the LMM estimates of the standard error of β5 do not increase as 323	

they should, leading to false rejections of the null hypothesis that β5 = 0. Because PGLMMs are 324	

close to the minimum variance estimators of β5, the variance in its estimates of β5 does not 325	

increase as much as LMMs when there is phylogenetic signal in the independent variable, and 326	

what increase occurs is correctly given by the estimates standard errors of β5; thus, there is 327	

generally good type I error control. 328	

 329	

When the number of species is small (<60), however, PLMM had inflated type I error rates; for 330	

simulations with 20 species and phylogenetic signal in both independent variable (measured 331	

trait1) and residual variation (unmeasured trait2), the null hypothesis H0: β5 = 0 was rejected in 332	

10% of the datasets at the a significance level of 0.05. In analyses with small numbers of species 333	

and P-values computed from the data that are close to the significance level selected by the 334	

researcher, we suggest using parametric bootstrapping. This can be performed by estimating 335	

parameters from the data under H0: β5 = 0 (i.e., without the trait × environment interaction), 336	

simulating a large number (e.g., 2000) datasets with these parameter values, fitting each dataset 337	
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with the full model (i.e., with the trait × environment interaction), and for each dataset recording 338	

the Z-score of the estimate of β5. The bootstrap approximate P-value of β5 under an a 339	

significance level of 0.05 is then given by the proportion of bootstrap Z-scores whose absolute 340	

values exceed the absolute value of the Z-score from the observed data. Code for performing this 341	

bootstrap is provided in Appendix S1. 342	

 343	

Our analyses have been confined to abundance as a continuous dependent variable. 344	

Presence/absence (incidence) community data can also be analysed with phylogenetic 345	

information using PGLMM (Ives and Helmus 2011), and results will likely be similar. We did 346	

not pursue this here, however, because the computational burden of PGLMMs with existing 347	

software makes simulation studies difficult. Nonetheless, if tests of the existence of relationships 348	

(i.e., testing H0: β5 = 0) are all that is needed, applying PLMMs to binary data generally provides 349	

good type I error control, although at the expense of some power (Ives 2015; Warton et al. 2016). 350	

 351	

Even when there was no phylogenetic signal in the residual variation, PLMMs performed as well 352	

as LMMs. In part, this is because, when PLMMs detected no phylogenetic signal in the residual 353	

variation, they give the same results as the corresponding LMMs (although their AIC values are 354	

still penalized by the variance term that equals zero). The fact that PLMMs often collapse exactly 355	

to LMMs as a special case suggests that PLMMs should be always used in analyses of trait × 356	

environment interactions, since there is no cost in the absence of phylogenetic signal and 357	

considerable benefits when there is (which is likely). 358	

 359	
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results for fixed effects (as rds.zip and rds2.zip files). (We cannot upload these two files 436	

through manuscript central as they include >50 files; one can download them from here: 437	

https://uwmadison.box.com/s/l1nnsmqlymg53xyxdarfksjrtegvuzci) 438	

 439	

 440	

Figure A1. Mean (± standard deviation) of estimates of β5 (Eq. 1) using LMM and PLMM varying the 441	

true value of β5 (0, 0.25, 0.5, 0.75, and 1). Horizontal dash lines represent the true value of the parameter. 442	

Abbreviations are as in Fig. 1. 443	
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 444	

Figure A2. The relationships between the absolute value of the estimates of β5 and the estimates of the 445	

standard errors for LMM (yellow) and PLMM (blue). Solid points to the right of the dashed line would 446	

reject the null hypothesis H0: β5 = 0. When neither trait1 nor trait2 has phylogenetic signal (trait1: I; 447	

trait2: I), LMM and PLMM estimates have similar variability (horizontal axis) and similar estimated 448	

standard errors (vertical axis). When trait1 has phylogenetic signal (trait1: C; trait2: I), both LMM and 449	

PLMM estimates become less variable, which is correctly captured by decreasing estimates of standard 450	

errors, leading to appropriate type I error rates. The dashed line has intercept of zero and slope of 1/1.96. 451	

Simulations were performed with 50 species; the fractions of simulations rejecting the null hypothesis 452	

(text in the panels) were calculated from 1000 simulations, of which only 300 are presented for clarity. 453	
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