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10

Abstract Neurons are typically classified according to their intrinsic firing patterns and distinctive11

morphological features. However, we found that the in vitro patterns of neurons in the CA3 field of12

the rat hippocampus change very significantly following a short period of low frequency13

subthreshold stimulation of their afferents. This effect could be reproduced by intrasomatic14

current pulses and was blocked by kinase inhibitors. Cluster analysis of the firing patterns before15

and after conditioning revealed systematic transitions towards adapting and intrinsic burst16

behaviours, irrespective of the initial pattern exhibited by the cell. Using a conductance-based17

model, we demonstrate that the observed transitions can be mediated by recruitment of calcium18

and M-type potassium conductances. We conclude that CA3 neurons adapt their conductance19

profile to the statistics of ongoing activity in their embedding circuits, making their intrinsic firing20

pattern not a constant signature, but rather the reflection of long-term circuit activity.21

22

Introduction23

It is widely accepted that the diversity of morphological, molecular, and electrophysiological proper-24

ties exhibited by neurons of the neocortex and hippocampus reflects functionally distinct classes of25

cells (Ramon y Cajal, 1893;McCormick et al., 1985; Ren et al., 1992; DeFelipe, 1993; Kawaguchi and26

Kubota, 1997;Markram et al., 2004; Somogyi and Klausberger, 2005). In particular, neurons have27

been classified electrophysiologically according to the pattern of their action potential discharge28

in response to applied intra-somatic step currents. Many studies have reported that excitatory29

and different types of inhibitory neurons, identified by morphology and molecular markers, exhibit30

distinct firing patterns (Connors and Gutnick, 1990; Cauli et al., 2000; Markram et al., 2004; Butt31

et al., 2005; Dumitriu et al., 2007; Hemond et al., 2008; Tasic et al., 2016). These responses may be32

for example: adapting, accelerating, bursting, or fast spiking. With rare exceptions (Steriade, 2004),33

the patterns are assumed to be a sufficiently stable property of a neuron to be used as a basis for34

phenotypic classification (Markram et al., 2004; Ascoli et al., 2008; Tricoire et al., 2011; Van Aerde35

and Feldmeyer, 2015). A prominent view is that genetic factors determine both the morphology and36

the distinct firing patterns of individual neurons (Ascoli et al., 2008). However, there are substantial37

reasons to doubt that discharge patterns are indeed static properties of neurons. The discharge38

response of a neuron depends on the distribution and activations of the membrane conductances39
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that it expresses (Hille, 2001; Markram et al., 2004). This distribution is subject to homeostatic40

control including up- or down-regulation of conductances in response to the neuron’s own activity41

(Turrigiano et al., 1995; Turrigiano and Nelson, 2004; Marder and Goaillard, 2006). For example,42

somatogastric ganglion (STG) neurons of the lobster change their firing patterns in response to43

network isolation by changing the balance between inward and outward currents (Turrigiano et al.,44

1995). Furthermore, neurons have conserved molecular pathways that link network activity to the45

recruitment of genes and signaling factors implicated in neural excitability (Flavell and Greenberg,46

2008; Cohen and Greenberg, 2008), and activity-dependent maturation is indeed necessary for the47

emergence of the whole spectrum of electrical types (Moody and Bosma, 2005; García et al., 2011).48

In final agreement with this hypothesis, a recent study shows for the first time that the electrical49

properties of different types of basket cells can be interchanged in response to neural activity50

(Dehorter et al., 2015). These lines of evidence suggest that the firing pattern is not a static charac-51

teristic of the cell, but rather the consequence of adaptive mechanisms that adjust the behavior52

of the neuron in response to the patterns of activity in its embedding network. We have explored53

this hypothesis using whole-cell recordings from neurons in the CA3 region of rat hippocampus in54

organotypic cultures. The discharge patterns of neurons in response to constant current injection55

were characterized before and after a conditioning phase of periodic subthreshold synaptic stimu-56

lation. It was found that pre-conditioned cells could indeed be classified according to the type of57

their discharge pattern. However, conditioning by subthreshold synaptic input elicited significant58

changes in the behavior of most of the neurons examined, requiring substantial re-classification of59

their type. This effect was reproduced when conditioning the cells via intra-somatic current pulses.60

The effect was blocked by adding protein kinase A (PKA) and protein kinase C (PKC) inhibitors to the61

recording pipette, suggesting that changes are mediated at the single cell level via phosphorylation.62

We used a conductance-based single compartment neuron model to explore which changes in63

the neuronal conductance profile could underlay the observed changes in discharge pattern. We64

found that the results can be explained by a recruitment of voltage dependent calcium and M-type65

potassium ion channels. We conclude that CA3 neurons can indeed adapt their output patterns in66

response to circuit activity by by possibly tuning key conductances.67

Results68

Firing patterns of CA3 neurons change after subthreshold stimulation69

Whole-cell patch clamp recordings of CA3 neurons were performed in rat hippocampal organotypic70

cultures. The intrinsic firing patterns of the neurons were recorded before and after conditioning71

by extracellular stimulation of the mossy fibers originating in the dentate gyrus. The conditioning72

stimuli consisted of paired pulses (0.1 ms duration pulses, interval 10 – 20 ms) applied at 1 Hz, and73

repeated 500 times for a total period of approximately 8 minutes. The amplitude of the pulses74

was adjusted for each recorded cell to elicit only subthreshold excitatory post-synaptic potentials75

(EPSPs). This mossy fiber stimulation protocol is a modification of that described by Brandalise and76

Gerber (2014); Brandalise et al. (2016), which has been previously shown to elicit heterosynaptic77

subthreshold plasticity in CA3 pyramidal-pyramidal synapses. The firing patterns of neurons were78

assessed with a sequence of constant current injections. For convenience, we used the terminology79

of the Petilla classification (Ascoli et al., 2008) to label these patterns. Interestingly, we observed80

that after the conditioning protocol, the Petilla discharge label had to be adapted for most of the81

cells, independently of their initial firing type. For example, the pyramidal cell shown in Figure 1A82

had a non-adapting burst pattern before stimulation (gray traces). After conditioning (blue traces),83

this response changed to intrinsic burst. The same transition was observed for the pyramidal cell84

on panel 1B, whose initial pattern was delayed accelerating. The bipolar cell on panel 1C switched85

from non-adapting continuous to adapting continuous firing. We observed that the most common86

transition performed by the cells was towards adapting and intrinsic burst patterns. Indeed, the87

quantification of the mean fraction of spikes in the first half versus the second half of the voltage88
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Figure 1. Firing pattern transitions occur in CA3 neurons after subthreshold paired-pulse stimulation of afferents.
Three examples of neurons in the CA3 area presenting different morphologies and different firing patterns in control conditions.

The discharge patterns were measured by injection of step currents of increasing amplitude. Control measurements (gray

traces, left) were followed by stimulation of the mossy fibers. The upper trace shows all voltage traces elicited upon different

levels of current injection on that cell. Two sample traces of this set are shown below. EPSPs (middle panel) were evoked in

response to a stimulation with double current pulses, separated by 20 ms and repeated 500 times at 1 Hz. The series of

repeated pulses are shown superimposed. A sample trace is highlighted in red. The inset shows the configuration of recording

and stimulating electrodes (on the CA3 region of the hippocampus and on the dentate gyrus, respectively). Below, the

morphology obtained by labeling the cells with biocytin is shown. After the conditioning, patterns were measured again (blue

traces, right). A) Pyramidal cell switches from non-adapting burst to intrinsic burst firing. B) Pyramidal cell switches from delay

accelerating to intrinsic burst continuous pattern. C) Bipolar cell switches from non-adapting continuous to adapting

continuous firing (scale bars = 50). D) Mean Fraction of Spikes for the population in the first and second half of the voltage trace

(green and yellow rectangle below the trace, respectively) for both control and conditioned cases. A significant redistribution on

the fraction of spikes is observed after the conditioning, where the fraction of spikes on the first half is increased while it

decreases in the second half (n=50, p=1.92e-6, two-sided Wilcoxon signed rank test). E) Empirical Cumulative Distribution

Function for the data shown in D. Every individual cell, for both control and conditioned cases, is represented as the number of

spikes for the first half of the trace minus the spikes for the second half (n=50)
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for the population of recorded cells showed a distribution of the spikes in favor of the first half89

(Figures 1D, 1E) (n=50). This result supports our observations that the main pattern transitions90

are towards adapting and intrinsic burst behaviors after the conditioning. These changes in firing91

pattern were present in most cells immediately after the stimulation protocol, and were stable at92

least 15 minutes after the stimulation. The mossy fiber conditioning was followed by a significant93

36 MΩ (25%) decrease in input resistance (Rin), (from 144.8 ± 73.0MΩ to 108.4 ± 65.3MΩ, two-sided94

Wilcoxon signed rank test, p=1.1e-5). There was also a significant 5 mV (7%) depolarization of95

the resting membrane potential (Vm) (-65.3 ± 5.0mV) with respect to resting level (-70.4 ± 5.7mV,96

two-sided Wilcoxon signed rank test, p=2.3e-5, n = 50). However, the firing pattern changes could97

not be induced neither by simply holding the resting membrane potential at different values98

(see supplementary Figure S1, n = 10), nor by the step-currents used to measure the discharge99

patterns (see supplementary Figure S1, n = 15). No significant changes in Vm and Rin in cells100

were found in unconditioned cells (Vm: -69.3 ± 2.0mV, -69.1 ± 1.9mV, paired t-test, p=0.64, Rin:101

148.8 ± 56.1MΩ, 158.9 ± 55.6MΩ, paired t-test, p=0.063, n = 15). Intracellular dialysis could also be102

excluded as the cause of the pattern transitions, as firings did not change spontaneously over time103

(see supplementary Figure S1). In addition, we assessed that the effect was also present under104

conditions where dialysis was minimized (see supplementary Figure S2, n = 15).105

Firing pattern transitions occur also via somatic conditioning and are blocked by106

protein kinase A and C inhibitors107

We attempted to resolve if synaptic input was necessary to elicit the changes, or whether they could108

be induced directly at the soma. To this end, we used intra-somatic injection of paired step current109

pulses whose parameters were chosen to elicit a similar somatic voltage response compared110

to that generated by the mossy fiber stimulation (Figure 2). This direct subthreshold somatic111

stimulus evoked changes in discharge pattern that were similar to those elicited by the indirect112

mossy stimulation. The cell in Figure 2A displayed a delay accelerating firing pattern in control113

conditions and underwent a transition towards intrinsic burst pattern after somatic conditioning.114

The population data showed a significant redistribution in the fraction of spikes in favor of the115

first half of the trace versus the second half after the conditioning (Figure 1B and C) (n=12). In116

this result we observed the same tendency of neurons to become adapting and intrinsic burst117

after conditioning. Furthermore, due to the nature of the conditioning at the soma, this result118

also suggests that the mechanism inducing the firing pattern change is not localized to synapses,119

but rather acts at a more central, probably somatic or proximal dendritic level. We next sought to120

identify what internal mechanism could be responsible for the firing pattern transitions. The firing121

pattern of the cell depends on the distribution of membrane ion channels that the cell presents122

at its membrane (Hille, 2001). A possible mechanism would act upon this distribution. Due to123

the time scale of the response (on the order of minutes) we ruled out protein synthesis of new124

channels on the membrane. An alternative would be channel phosphorylation, a mechanism125

known to affect the conductance on a relatively short timescale (Davis et al., 2001). We reproduced126

the conditioning protocol in the presence of the PKA and PKC inhibitors H-89 and Go 6983 in the127

intracellular recording pipette. On Figure 2D a cell whose firing pattern in control conditions was128

delay accelerating is shown. After mossy fiber conditioning in the presence of the inhibitors the129

cell remained under this pattern. 84% of cells showed no visible modulation of the Petilla label130

pattern (11 out of the 13 cells). Panels 2E and F show the population response for cells stimulated131

under these conditions. No significant redistribution of the spikes was found on the presence of132

the inhibitors (n=13). These results suggest that phosphorylation is implicated in the mechanism of133

firing pattern transition.134
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Figure 2. CA3 firing pattern transitions occur upon somatic conditioning and are blocked by kinase inhibitors. A)
Example of an intrasomatic conditioned cell that switch from delay accelerating (gray traces) to intrinsic burst firing (blue traces).

The conditioning protocol is shown in the middle column. EPSPs were evoked by injection of paired current steps, of 50 ms in

duration and separated by 20 ms. The double steps were repeated 500 times at 1 Hz. The series of repeated pulses are shown

superimposed. A sample trace is shown in red. B) Mean Fraction of Spikes for the population in the first and second half of the

voltage trace for both control and conditioned cases. A significant redistribution on the fraction of spikes occurs after the

conditioning. The fraction of spikes on the first half is increased while it decreases in the second half (n=12, p=0.0024, two-sided

Wilcoxon signed rank test). C) Empirical Cumulative Distribution Function for the data shown in B. Every individual cell is

represented as the number of spikes for the first half of the trace minus the spikes for the second half (n=12). D) Example of a

mossy fiber conditioned cell (as described in Figure 1) under the presence of H-89 and Go 6983 (PKA and PKC inhibitors) on the

intracellular pipette. The cell presents a delay accelerating pattern in control conditions and remains under such pattern after

the conditioning protocol is applied. E) Mean Fraction of Spikes for the population in the first and second half of the voltage

trace for both control and conditioned cases. The redistribution of the fraction of spikes was not significant after the

conditioning (n=13, p=0.266, two-sided Wilcoxon signed rank test). F) Empirical Cumulative Distribution Function for the data

shown in D. Every individual cell is represented as the number of spikes for the first half of the trace minus the spikes for the

second half (n=13).
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Cluster analysis of experimental traces: quantification of identity changes in neu-135

rons136

We observed that the conditioning induced firing pattern changes from more regular patterns to-137

wards early bursting and adapting patterns. We sought to quantify these changes using hierarchical138

clustering methods (Druckmann et al., 2013; Tricoire et al., 2011; Hosp et al., 2014) to establish139

more objectively which discharge type to associate to every response, and to quantify the frequen-140

cies of transitions between them. Previous studies have used clustering methods to quantify the141

similarity between vectors of features extracted from the voltage traces, such as action potential (AP)142

amplitude, firing rate, or accommodation index (Druckmann et al., 2013; Tricoire et al., 2011; Hosp143

et al., 2014). However, those metrics are not suitable for of our dataset, because several features144

commonly used in those methods are unaffected by the conditioning. For example, AP amplitude,145

width and afterhyperpolarization (AHP) showed no difference before and after the stimulation (AP146

amplitude: 78.63 ± 14.95mV, 75.60 ± 9.77mV, paired t-test, p=0.11, AP half width: 1.11 ± 0.26ms,147

1.10 ± 0.24ms, paired t-test, p=0.74, AHP: 13.62 ± 3.76mV, 12.66 ± 4.15mV, paired t-test, p=0.12, n =148

50). Consequently, we chose to use Dynamic Time Warping (DTW) as a comparison metric, because149

it operates directly on the action potential sequence rather than relying on a pre-defined set of150

features (see Methods for a detailed explanation). Feature vectors of the instantaneous firing rate151

of the voltage traces were compared pairwise using the DTW algorithm. As an internal control,152

vectors coming from the same set of step current injections of a cell were treated independently.153

The results of the cluster analysis of discharge patterns are shown in Figure 3. We set the threshold154

of the clustering tree at a level that separates the traces into 5 distinct families. The threshold was155

chosen large enough to yield sufficient structure to interpret the hierarchy in terms of recognized156

response types (Ascoli et al., 2008). Representative traces of each family are shown in Figure 3B.157

The average of the firing rate vectors of every cluster is depicted beneath each representative158

trace. The clustering algorithm captures well the typical time courses of the firing patterns. The159

right branch of the cluster tree contains accelerating and non-adapting firing patterns, while the160

other contains adapting and intrinsic bursting patterns together with a smaller group of traces161

that have delayed spiking profiles (Figure 3A). The consistency of the algorithm was confirmed162

by its successful clustering of independent feature vectors derived from the same set of current163

injections (same cell under the same conditions) into a single cluster. Indeed, in 86% of cases (43164

of the 50 cells) the algorithm successfully allocated the majority of vectors from the same set of165

current injections into single clusters. Vectors from the 7 remaining cells were not consistently166

classified. For 50% of the cells all of their voltage traces fell into the same cluster, and for 90%167

of the cells at least 50% did (see supplementary Figure S3). The allocation of some responses168

from the same cell into more than a single cluster does however follow a biological logic. For169

example, for cells classified as accelerating, some of their voltage traces could reasonably fall into170

the non-adapting cluster because acceleration may vanish at high current injections. A similar171

reasonable misclassification is possible for adapting traces. In this case low current injections may172

be classified as non-adapting because the currents are not high enough to elicit adaptation (see173

supplementary Figure S4). In particular, many of the traces belonging to the delayed spiking cluster174

come from cells whose traces at low current injections were assigned to the accelerating cluster, or175

belonged to non-adapting cells with spiking delay. The transitions between cluster types induced176

by the stimulation protocol are shown in Figure 3C. This figure considers only those cells in which177

responses both before and after conditioning could be clearly assigned to a cluster. In total, 68%178

of the cells (n = 50) changed their original cluster as a result of subthreshold conditioning. This179

quantitative result supports the qualitative observation that cells tend to transition towards more180

adapting and intrinsic burst profiles. 70% of cells initially belonging to the non-adapting cluster181

exhibited such changes in response (14 cells), with 35% moving into the intrinsic burst category, and182

35% exhibiting adapting spike patterns. 5 of the 6 cells from the adapting cluster (83%) switched to183

the intrinsic burst type. Most of the cells for which the firing pattern did not change were already184
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Figure 3. Hierarchical clustering of experimental discharge traces. A) Dendrogram of clustered traces. The data included
in the cluster corresponds to the mossy fiber conditioned cells of Figure 1. Two main families can be identified: one containing

adapting and bursting traces, together with delayed spiking patterns (left branch); and another branch containing regular and

accelerating traces (right branch) (n=50). B) Representative traces from each cluster. Below, average instantaneous firing rate

over all traces belonging to the same cluster. Middle lines indicate the mean; light outer lines indicate standard deviations. The

instantaneous firing rate (in Hz) is normalized to 1. C) Transitions observed between firing patterns before and after

conditioning. Each cell is assigned to a single cluster (represented as a box) for both the control and conditioned cases. Arrows

indicate transitions between types whenever a cell changed cluster. Self-loops indicate that the firing pattern was retained after

conditioning. Numbers indicate percentages of observed transitions, and the number of cells in each category under control

conditions is displayed next to each pattern type. Cells tend to transition towards adapting and bursting patterns following

conditioning (n = 43). Seven cells were assigned as unclassified.

in the most common target states of transitions. For example, 89% of the intrinsic bursting cells185

did not change cluster. This provides further evidence for a predominantly unidirectional change186

of firing patterns in response to conditioning. The 7 cells that could not be consistently classified187

under control conditions were all correctly classified after the stimulation. They showed the same188

transition tendencies: 5 moved into the intrinsic bursting cluster, the other 2 became adapting.189

A conductance based model explains the transitions between firing patterns190

The consistent transition towards adapting and intrinsic bursting behaviors suggests a common191

underlying mechanism for most cell types. Our results showing that phosphorylation inhibition192

blocks firing pattern change after conditioning (Figure 2) support the hypothesis that the prime193

candidate for this mechanism is a change in the profile of active conductances contributing to action194

potential discharge dynamics. We explored this possibility using simulations of action potential195

discharge in a conductance-based single compartment neuron model containing 9 voltage and196

calcium gated ion channels (see Methods). The densities and kinetics of these channels were197

derived from experimental measurements of CA3 pyramidal neurons (Hemond et al., 2008). We198

tuned only their maximum conductances to reproduce the discharge patterns observed in our199

experiments. The allowed ranges of maximum conductances were restricted to those reported in200

the literature (Hemond et al., 2008). In order to explain the experimental transitions, we compared201

the performance of the clustering procedure on the model and the experimental data. In a first step,202

the maximal conductance densities of the model were tuned to match the various experimentally203

observed firing patterns. This tuning was performed manually, and the match to the traces was204

qualitative. The absolute values for the conductances required to match the main experimental205
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Figure 4. Hierarchical clustering of the model-generated discharge traces mapped to the experimental traces. Every
experimental trace was matched to a model trace using the DTW algorithm as a search tool on a model database of traces.

Hierarchical clustering was then applied to the model traces. A) The clustering algorithm distinguishes four main families, which

correspond to adapting, intrinsic burst, non-adapting and accelerating patterns. Below the dendrogram, a representative model

trace of every cluster is depicted. The single compartment model could reproduce the sample experimental traces of Figure 3.

The exact conductance values used to produce every model pattern and the amount of current injection are shown in the

supplementary Table S1. Underneath, average instantaneous firing rate within each cluster with its standard deviation (n = 50)

B) Conductance road map showing the key conductances responsible for a transition in firing pattern on the model generated

traces. The main channels implicated are gCa, gCaK , gKd and gKm. C) Distribution of the conductance vectors of the model
traces clustered in (A) in 3D space. Axes correspond to: calcium conductance variable (gCa); calcium-dependent potassium
channel (gCaK); and potassium channel (gKm). The dots are color coded according to their cluster assignment. D) Distribution
of the conductance vectors in 3D space of the model traces matched to cells in control conditions E) Distribution of the

conductance vectors of traces matched to cells after conditioning. Conditioned cells present a higher content of gCa and gKm.
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categories (Figure 3: adapting, intrinsic burst, delay spiking, accelerating and non-adapting) are206

reported in supplementary Table S1. We also were able to reproduce the experimental traces in the207

morphologically realistic model described by Hemond et al. (2008) (see supplementary Figure S5).208

Although the maximal conductance values had to be adjusted to satisfy the different impedance209

of the more detailed morphology, the same key channels are responsible for each category of210

firings both the single compartment and in the realistic CA3 model. In a second step, a database of211

representative ranges of conductances that could plausibly explain the discharge patterns observed212

experimentally was generated using the single compartment model. To do this, the maximal213

conductances of the different channels were swept through ranges that would likely encompass214

the experimentally observed patterns (see supplementary Table S2 for the exact ranges). In this215

way a total of 861 conductance profiles were generated. We obtained the discharge response to216

different levels of current injection for each conductance profile, giving a total of 5166 voltage217

traces with their associated conductance profiles. Every single experimental trace (coming from218

both, control and conditioned cases) was matched against the collection of traces in the model219

database using the DTW algorithm. The best fit was then selected, allowing us to obtain an estimate220

of the conductance profile likely to be present in the experimental neuron. These estimates also221

define the subset of model traces that best represent their experimental counterparts. This subset222

was then fed to the same hierarchical clustering procedure that was previously performed for the223

experimental data (Figure 3). The result of hierarchical clustering of the model traces is shown in224

Figure 4A. There are four main families, corresponding to adapting, intrinsic bursting, accelerating225

and non-accommodating behavior. The classification of the model traces is very similar to the226

experimental one. We noted however the absence of the small class of delayed-spiking patterns227

(second cluster of Figure 3), which in the case of the model were allocated mostly to the accelerating228

cluster. The transition diagram of Figure 4B represent the crucial conductances determining the229

transitions between discharge patterns, obtained during the first step of manual tuning. These230

are gKm, gCaK , gCa and gKd. In this manner, for the delayed discharge pattern, the presence of231

gKd is required for a delayed onset of the spiking, and the slow inactivation of gKd is important232

for generating the accelerating discharge pattern. In the case of the adapting and intrinsic burst233

patterns, the inclusion of gKm and gCa (given the presence of basal levels of gCaK) is necessary234

for the slowing down of the action potentials after the initial discharge. In panel 4C each point235

indicates the location of an experimental discharge response matched to the model in conductance236

space. The color of a point shows its cluster assignment. There is a systematic segregation of the237

data, indicating how the discharge classes of Figure 4A conform to localized regions of conductance238

space. This correspondence of firing patterns and biophysical parameters offers an interpretation239

of the causes of transitions between firing behaviors induced by mossy fiber stimulation (Figure 3C).240

The shift towards adapting and intrinsic bursting behavior after the conditioning corresponds to an241

increase in calcium related, and gKm conductances (Figure 4D,E).242

Discussion243

We have shown that the characteristic firing patterns of neurons in the CA3 region of the hip-244

pocampus can be modified by subthreshold stimulation of the soma. The effect was elicited either245

indirectly by stimulation of the mossy fibers, or directly by somatic current injection. The change246

was present immediately after the 8 minute conditioning protocol, suggesting that the mecha-247

nism underlying the transition operates on a timescale of at most, a few minutes. The effect was248

abolished under the presence of PKA and PKC inhibitors, indicating that phosphorylation of conduc-249

tance channels over the duration of the conditioning is necessary for the firing pattern changes.250

Hierarchical cluster analysis showed that the transitions observed are more likely towards adapting251

and intrinsic burst responses. We were able to reproduce the experimentally observed changes in252

firing in simulations of a conductance-based model of neuron electrophysiology. We found that253

the shift in responses towards adapting and intrinsic burst can be explained by recruitment of254

calcium and M-type potassium conductances. These results indicate that suprathreshold discharge255
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behavior of neurons on the time scale of seconds can be modified by the statistics of ongoing256

subthreshold activity on a much longer time scale.257

Previously reported changes in firing pattern258

Activity dependent changes on the intrinsic firing properties of neurons have been reported ex-259

tensively, although the attention has been restricted primarily to the modulation of firing rates for260

homeostatic plasticity (Desai et al., 1999; Abbott and Nelson, 2000; Turrigiano and Nelson, 2004;261

Fan et al., 2005). Regarding the dynamics of the discharge, plasticity has been reported in lobster,262

with activity isolation being a crucial component in shaping the patterns (Turrigiano et al., 1994).263

Modulation of the delay spiking pattern in the hippocampus (Cudmore et al., 2010; Hyun et al.,264

2013) and in the cortex (Dehorter et al., 2015) have been shown to be induced by network activity or265

conditioning pulses. Induction of the burst pattern after status epilepticus has also been reported266

in hippocampus (Su et al., 2002) while Thompson et al. (1996) have shown reductions in post-burst267

AHP and accommodation in CA3 neurons after eye-blink conditioning. These studies favor the268

hypothesis that is the current network status of CA3 the responsible of shaping the discharge269

pattern of neurons in this region. In this manner, the firing pattern transitions that we observe are270

likely to be elicited when disturbing the basal activity that the neurons were receiving on the CA3271

network.272

This study was performed on organotypic cultures, derived from brain slices of newborn rats273

that are incubated for three weeks using the roller-tube technique (Gähwiler, 1981). Organotypic274

cultures have been used extensively to characterize electrophysiological properties of hippocampal275

neurons and it is know that the tissue preserves the anatomical organization of the adult hippocam-276

pus, as well as its connectivity and characteristic spontaneous activity (Gähwiler, 1988; Okamoto277

et al., 2014). Most of the studies cited in this chapter were done in cultures or juvenile acute brain278

slices, indicating that the plasticity of the patterns is not unique to the organotypic preparation. It279

would be interesting to know however whether this type of plasticity is also prominent in the adult280

brain and if it also happens, at the same time scale, in other brain areas such as the cerebral cortex.281

Modulation of cell excitability via conductance changes282

Activity dependent changes of conductance have been extensively studied, and shown to be trig-283

gered even by learning paradigms (Thompson et al., 1996; Zhang and Linden, 2003; McKay et al.,284

2013). The work of Turrigiano et al. (1994) suggested that a calcium dependent mechanism could285

modulate the neural conductances in STG lobster neurons, and that this would translate into286

changes in the cells’ firing patterns. Later work showed that depolarizing pulses at 1Hz could alter287

the density of the calcium-dependent outward current ICaK and the transient outward current288

IA in the STG (Golowasch et al., 1999). These studies led to theories of homeostatic plasticity289

(Abbott and Nelson, 2000; Turrigiano and Nelson, 2004), which propose that cells maintain both290

the turnover of ion channels, and a stable level of activity, to compensate for changes in synaptic291

strength. However the time scale of such mechanisms typically extends over hours, and presum-292

ably involves processes of gene expression (Lee et al., 2005), whereas in our experiments the293

changes were observed immediately after conditioning. Aizenman and Linden (2000) observed294

rapid changes of excitability of cerebellar cells after synaptic stimulation, and proposed a calcium-295

dependent modification though phosphorylation of gCaT and gCaK to account for the observed296

changes. Interestingly, these are the same candidate channels that we have identified as underlying297

the discharge pattern changes in this study. Supporting these lines, rapid up- or down-regulation298

of ion channel conductance via phosphorylation or vesicle modulation due to calcium signaling299

has been extendedly demonstrated (Flavell and Greenberg, 2008; Davis et al., 2001; Zhang and300

Linden, 2003) and it has been shown that ion channels possess a complex of scaffold proteins301

containing certain protein kinases that could selectively regulate channel conductance through302

phosphorylation (Davis et al., 2001). This mechanism could provide a link between the activity of the303

network and the specific conductance recruitment. An alternative explanation to the conductance304
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recruitment is that continuous stimulation of the neuron may alter the ion concentrations in the305

cellular environment; for example, by altering intracellular potassium and calcium concentrations306

(Jensen et al., 1994; Su et al., 2001). However, our simulations show that the decay time constant307

of the intracellular calcium is too short to allow significant accumulation over the period of con-308

ditioning (see supplementary Figure S6A-C). Even if the time constant were greatly increased, the309

accumulation of calcium during conditioning would be insufficient to elicit a significant change in310

firing pattern (see supplementary Figure S6D). Regarding potassium, our extracellular concentration311

was less than that required (Jensen et al., 1994) for the changes in pattern that we observe. On312

the other hand, the abolition of the effect by the inhibition of phosphorylation points towards an313

induction of a biochemical pathway as the cause of the conductance increase.314

Candidate conductances for the firing pattern transitions315

Our model suggests that the likely candidates for eliciting any type of transitions through the firing316

pattern space of CA3 cells are gKd, gKm and gCa coupled with gCaK . We are aware that alternative317

channels could elicit a similar dynamical response. The effect on the spike delay mediated by a slow318

inactivating hyperpolarizing current, such as gKd can also be elicited by a slow non-inactivating319

depolarizing current such as gNap. Thus, it is possible that different cells recruit different set of320

conductances depending on their initial conductance profile. However, the candidates we propose321

have been previously reported to shape the spiking response of the cell via activity dependent322

mechanisms. For example, it is well established in the epilepsy literature that gCaT is strongly323

associated with the switch to bursting mode in hippocampal cells (Kim et al., 2001; Su et al., 2002)324

while gKd in the hippocampus and similar potassium conductances in the cortex have been shown325

to be up- or down-regulated according to network activity and modulate the delay response of326

the cell (Cudmore et al., 2010; Hyun et al., 2013; Dehorter et al., 2015). Modulation of the M-type327

current upon activity has also been shown in the Dentate Gyrus (Zhang and Shapiro, 2012) and328

in CA3 (Sánchez-Aguilera et al., 2014), with the latter group reporting that transient depolarizing329

pulses are more effective in the modulation of the current.330

The conditioning protocol elicited stereotypic transitions of pattern towards adapting or intrinsic331

burst patterns. However, it was not equally likely for all cell types to perform such transitions.332

For example, accelerating cells moved towards regular patterns with higher probability than the333

rest of patterns (Figure 3C). We speculate that either the initial density of channels favors the334

different likelihood of transitions, or that a cell on such initial state must necessarily become335

regular during the transition to any other pattern. An alternative is that there may be some cell336

types that obey distinct rules. For example, we noticed that 4 cells from the non-adapting cluster337

had high firing rates under control conditions (see supplementary Figure S7). Two of these had338

smooth cell morphologies. The other two cells correspond to very densely spiny cells, with stellate339

morphologies. Interestingly, although transitions towards bursting or classic adapting behaviors340

were not observed on these cells, there was a modulation on the delay of the first spike in both cell341

types, suggesting that the stimulation protocol had a differential effect on this particular neural342

population. One of the typical transitions that we observe in our dataset is the switch of cells343

towards bursting behaviors. We emphasize that this is not the only transition that is induced, but344

special attention should be given to the burst mechanism. It is known from the literature that345

different types of cells can present this dual behavior. For example, relay cells on the thalamus346

become bursty upon hyperpolarization because of T-type conductance inactivation (Sherman, 2001).347

In our case, after the induction protocol, the cells depolarized 5 mV in average, so we rule out348

this hyperpolarization mechanism. The main form of discharge of CA3 cells have been known to349

be either regular or bursting (Hemond et al., 2008). Although the firing pattern transitions were350

abolished in the presence of PKA and PKC inhibitors, 2 cells out of 13 showed still transitions to351

intrinsic burst. This could be likely due to failure of diffusion of inhibitors from the electrode, but352

we cannot exclude a different mechanism for this type of transition (for example, through different353

kinase pathways).354
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Functional implications of firing pattern modulation355

The fact that neurons possess the internal machinery to mediate the observed transitions raises356

questions about the computational consequences of such behavior. As proposed by Shin et al.357

(1999), a neuron that can dynamically adapt its output firing in response to its input statistics would358

have important advantages. If such neuron could adjust its threshold and dynamic range upon359

activity, it could respond to stimuli over a broad range of amplitudes and frequencies without360

compromising the sensitivity and dynamic range of the cell. Spike frequency accommodation361

has the characteristics of a high-pass filter (Benda and Herz, 2003). Since our conditioning stimuli362

occurred at constant frequencies, the cells may have recruited a specific set of conductances that363

shift their integration properties so as to gain sensitivity in the new spectrum range. Differences364

in filtering properties of brain stem neurons have also been shown to facilitate the extraction of365

spatial information from natural sounds (Remme et al., 2014) and most of the conductances that366

we identify in this study have been shown to be frequency resonance candidates (Hutcheon and367

Yarom, 2000; Hu et al., 2002; Schreiber et al., 2004). These resonance properties of cells may have368

important functional implications for neural activity and brain rhythms (Llinás, 1988; Buzsáki and369

Draguhn, 2004). In addition, modeling studies have shown that a neuron able to adapt to its own370

input statistics is able to maximize the mutual information between its input and output firing rates371

(Stemmler and Koch, 1999). This type of effect can emerge following firing rate homeostasis rules372

and promote metaplasticity (Honnuraiah and Narayanan, 2013); on the other hand it can be their373

cause (Joshi and Triesch, 2009). Finally, this fast adaptability of the firings may also be important for374

specific memory acquisition on the hippocampus (Thompson et al., 1996; Benna and Fusi, 2016).375

Further studies will be needed in order to unravel the role that such firing pattern transitions may376

have for computations in neural circuits. A first step towards this goal must be to explore more377

generally how the form and frequency spectrum of somatic input signals on the long time scale378

affect the distinct firing patterns that neurons exhibit on the short scale.379

Conclusion380

We have shown that hippocampal neurons in rat organotypic cultures can rapidly adapt their381

supratheshold action potential discharge patterns in response to subthreshold paired pulse con-382

ditioning stimuli delivered to their somata either by activation of their synapses, or directly by383

intrasomatic current injection. We propose that these changes are mediated via phosphorylation384

by recruitment of calcium and M-type potassium conductances, conditional on the statistics of their385

somatic input currents. Such a mechanism would allow the neuron to adapt its output behavior to386

the requirements of the network in which it is embedded. Our results also imply that the discharge387

characteristics of neurons in this hippocampal region are not constant and may not provide a388

reliable descriptor of a neural phenotype.389

Methods and Materials390

All experiments were conducted in accordance with guidelines and regulations of the cantonal391

veterinary office of Zurich; License Nr 81-2014.392

Electrophysiological Recordings393

Rat hippocampal organotypic cultures (Gähwiler, 1981) of average postnatal age 21 days were394

transferred to a recording chamber and mounted on an upright microscope (Axioskop FS1; Zeiss).395

The cultures were superfused with an external solution (pH7.4) containing (in mM ) 148.8 Na+, 2.7396

K+, 149.2 Cl−, 2.8 Ca2+, 2.0Mg2+, 11.6HCO−
3 , 0.4H2PO−

4 , 5.6 D-glucose, and 10 mg∕l Phenol Red.397

All experiments were performed at 34 ◦C. Whole-cell recordings of CA3 neurons were obtained with398

patch pipettes (4-7MΩ). Pipettes were filled (in mM ) with 126 Kgluconate, 4 NaCl, 1MgSO4 , 0.1399

BAPTA − free, 0.05 BAPTA − Ca2+, 15 glucose, 3 ATP , 5 HEPES (pH was adjusted to 7.2 with400

KOH ) 0.1 GTP , and 10.4 byocitin. IPSPs in the recorded cells were reduced by adding picrotoxin (1401

mM ) to the intracellular patch solution in order to elicit reliable depolarization in the cell.402
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The recording pipettes were manually positioned under microscope control. Recorded neurons403

were located mostly in the pyramidal cell layer. Electrophysiology and subsequent histology in a404

subset of the cells recorded suggest that the neurons described below include both pyramidal cells405

and smooth cells.406

Current-voltage relationships were determined by step command potentials and had duration407

of 1 s to ensure steady-state responses. Data were recorded using an Axopatch 200B amplifier408

(Molecular Devices). Series resistance was monitored regularly, and was typically between 5 and 15409

MΩ. Cells were excluded from further analysis if this value changed by more than 20% during the410

recording. Junction potential and bridge was not corrected.411

Mossy fibers were stimulated with a bipolar tungsten electrode. The intensity of the stimulus412

was adjusted to evoke subthreshold post-synaptic potential responses of 15 mV on average in the413

recorded neuron (minimal stimulation + 20% stimulation intensity).414

Action potential discharges were evoked by injected current steps (-0.08 up to 1.8 nA; step415

increment 0.05 - 0.15 nA, depending on the input resistance of the recorded cell) each lasting 5416

seconds. After this control, the neurons were conditioned by mossy fibers activation, consisting417

of a double pulse (0.1 ms duration pulses, interval 10 - 20 ms) at a frequency of 1 Hz, repeated418

500 times. Thus, the conditioning period was approximately 8 minutes. Immediately after this419

conditioning, the firing pattern of the neuron was assessed again using the same step protocol.420

The step protocols were repeated 3 times with 5 min intervals to assess stability. In a subset of421

experiments, mossy fiber subthreshold responses were mimicked by injecting somatically and at a422

frequency of 1 Hz double step current pulses of 50ms of duration and 20ms of interstep interval.423

The amplitude of the pulse was adjusted in order to get a depolarization of 15 mV on average.424

Histology425

Hippocampal slice cultures were prepared for morphological assessment by fixing in freshly pre-426

pared 4% paraformaldehyde in 0.1M phosphate buffer (PB) at pH 7.4 overnight at 4 ◦C; washing427

three times in phosphate-buffered saline (PBS, 1.5 mM KH2PO4, 8.5 mM Na2HPO4, 137 mM NaCl,428

and 3 mM KCl, pH 7.4); and permeabilizing at room temperature in PBS that contained 10%429

heat-inactivated donkey serum, and 1% Triton X-100. Then they were incubated overnight at 4 ◦C430

with streptavidin conjugated with Alexa (546�). The cultures were washed again three times in431

PBS, and then mounted in Fluorostab (Bio-Science Products AG, Emmenbrucke, Switzerland) and432

coverslipped. High-resolution images were obtained using laser scanning confocal microscopy433

(Leica TCS SP2, Leica Microsystems, Heidelberg, Germany).434

Data analysis435

Signals were digitized at 4 kHz for current clamp and 5 kHz for voltage clamp. These data were436

analyzed off-line using pCLAMP 10 (Molecular Devices) and MatlabR2011b (MathWorks). Analysis437

of the voltage traces was performed similar to Chen et al. (2015). The average resting membrane438

potential of each neuron was estimated as the mean membrane potential during the first 100 ms439

of current-injection protocol (before injection of the step-current pulses). Input resistance was440

obtained by measuring the voltage drop across the hyperpolarizing trace of the step-current pulses.441

APs were located using median filtering, and the threshold was inferred as the point at which the442

derivative of the voltage trace exceeded 5 mV/ms. AP amplitude was measured from threshold-to-443

peak and AP afterhyperpolarization (AHP) from the threshold-to through. Half-width was estimated444

as the full width at half-maximal amplitude. Statistical comparisons between conditions were445

performed using either a t-test or a two-sided Wilcoxon signed rank test, after checking the data for446

normality using a one-sample Kolmogorov-Smirnov test.447

Cluster analysis of discharge traces448

The firing patterns of the neurons were categorized by hierarchical clustering of their discharge449

patterns. The dataset consisted of all voltage traces recorded from neurons in response to step-wise450
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current injections with different amplitudes, including recordings before and after conditioning. For451

any one neuron, the collection of responses to different current injections represents the signature452

of the electrical type. However, for inherent verification of our cluster procedure, we chose to treat453

each response independently. In this way successful clustering could be confirmed by its ability to454

assign responses from the same neuron into the same category.455

The clustering measured similarity of a feature vector derived from the voltage traces. First456

the recorded voltage traces were converted into a time series of the instantaneous firing rates.457

The instantaneous firing rate at each spike was taken as 1/Inter-spike-Interval (ISI). Then the458

instantaneous rates where linearly interpolated across the spike times at 1 ms time intervals over459

6 seconds (5 second current injection step, plus 1 second on and offset), and normalized by the460

maximum firing rate. Finally, a characteristic feature vector of a common length of 600 elements461

was obtained by down-sampling the interpolated rate traces by a factor of 10, in order to make462

them computationally tractable to the similarity measurement.463

Similarity distances between pairs of traces were calculated using the Dynamic Time Warping464

(DTW) metric (Berndt and Clifford, 1994). DTW takes into account that two similar signals can be465

out of phase temporarily, and aligns them in a non-linear manner through dynamic programming466

(Keogh and Ratanamahatana, 2005). The algorithm takes two time series Q = ⟨q1, q2,… , qn⟩ and467

C = ⟨c1, c2,… , cm⟩ and computes the best match between the sequences by finding the path of468

indices that minimizes the total cumulative distance469

DTW(Q,C) = min
K
∑

k=1
wk (1)

where wk is the cost of alignment associated with the ktℎ element of a warping path W . A470

warping path starts at q1 and c1 respectively, and finds a monotonically increasing sequence of471

indices ik and jk, such that all elements qi in Q and cj in C are visited at least once, and for the472

final step of the path iend = n and jend = m holds. The optimal DTW distance is the cumulative473

distances y(i, j), corresponding to the costs of the optimal warping path ⟨q1,… , qi⟩ and ⟨c1,… , cj⟩.474

This distance can be computed iteratively by dynamic programming:475

y(i, j) = d(qi, cj) + min{y(i − 1, j − 1), y(i − 1, j), y(i, j − 1)} (2)

where d(qi, cj) is the absolute difference between the elements of the sequence. The optimal476

warping path is obtained by backtracking from the final element y(n, m), and finding which of the477

three options (increasing i only, increasing j only, or increasing i and j simultaneously) led to the478

optimal warping distance, until i = 1, j = 1 is reached. A warping window constraint of 10% of the479

vector size was chosen (Keogh and Ratanamahatana, 2005).480

The pairwise DTW distances were used to perform hierarchical clustering by Ward’s algorithm481

(Ward Jr, 1963). The number of classes increases with the level of the hierarchy. We choose to cut482

the tree at a level that provided sufficient structure to interpret the hierarchy in terms of recognized483

response types (for example, Ascoli et al. (2008)).484

Every recording for a given cell was treated as an independent observation, and could in485

principle be assigned to any cluster. If the electrophysiological state of the cell is expressed in all of486

its responses, then we expect that all the independent observations derived from that cell should487

be assigned to the same cluster. However, traces derived from current injections to the same cell in488

different conditions (pre- or post-stimulation) are expected to be assigned to different clusters if489

there is significant change in the underlying electrophysiological state.490

In fact the independent traces did not cluster perfectly. Instead, the majority of independent491

observations derived from a given state clustered together and there were a few that fell into other492

clusters. Therefore, we chose to label the electrical type of each cell according to the cluster that493

contained the mode of the traces for one set of current injections. Cells for which no clear dominant494

cluster could be identified, e.g. because half of the traces fell into one cluster, and half of them into495

14 of 26

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/084152doi: bioRxiv preprint 

https://doi.org/10.1101/084152
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

another, were labeled as unclassified. A cluster transition was recognized whenever the cell was496

assigned to different clusters before and after the stimulation protocol.497

The analysis was performed using custom-written software in MatlabR2011b. The implementa-498

tion of the DTW algorithmwas obtained fromMatlab Central (http://www.mathworks.com/matlabcentral/fileexchange/43156-499

dynamic-time- warping–dtw).500

Neuron simulation model501

A single cylindrical compartment, conductance-based neuronal model was used for all simulations.502

The length and diameter of the cylinder are set at equal dimensions to avoid spatial discretization503

problems in a single compartment (Cooley and Dodge, 1966; De Schutter and Bower, 1994). The504

geometrical dimensions and passive properties associated with the model were obtained from505

Hemond et al. (2008). We have set the length and diameter of our compartment to 50 �m to obtain506

the input resistance of 150 MΩ in our model cell that approximates the mean input resistance of our507

experimental cells (144.8 MΩ). The active properties were modeled by including appropriate voltage508

and calcium gated ion channels whose density and kinetics were obtained from experimental509

recordings performed in CA3 neurons (Hemond et al., 2008). The simulations were performed510

using NEURON (Hines and Carnevale, 1997). We choose an integration step of 25 �s, which was511

approximately 1% of the shortest time constant in the model. The voltage- and time-dependent512

currents followed the Hodgkin and Huxley formalism (1952):513

C ⋅ dV
dt

= −(INa + IKdr + IKd + IKA + IKm + ICaK + ICaL + ICaT + ICaN + ILeak) (3)

Each current Ix is described by the equation514

I(v,t) = ḡ ⋅ m ⋅ ℎ ⋅ (V(t) − E) (4)

where ḡ is the maximal conductance, m and ℎ are activation and inactivation terms, V is the515

membrane potential, and E the reversal potential of the channel. The reversal potentials for Na+516

and K+ were ENa = 50 mV and EK = -85 mV, respectively. The equations describing the different517

channel kinetics (m, ℎ) for every current were obtained from Hemond et al. (2008). Following this518

reference, the three calcium conductances (T, M and L) were incorporated into a single parameter519

gCa.520

The set of maximal conductance values that are consistent with all our experimentally observed521

firing patterns are shown in the supplementary Figure S1. The intracellular calcium dynamics were522

modeled (Hemond et al., 2008), as follows:523

524

d[Ca2+]i
dt

=
ICa
2Fv

−
[Ca2+]i − 0.0001

�Ca
(5)

The first term of the above equation describes the change caused by Ca2+ influx into a com-525

partment with volume v. F is the Faraday constant, ICa is the calcium current and �Ca is the time526

constant of Ca2+ diffusion.527

The occasional decrease in spike amplitude seen in some of the experimental traces is probably528

due to sodium inactivation. We choose not to include this feature in the model, because it does not529

affect the overall dynamics of the spike discharge itself.530
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Figure S1. Stability controls. Firing pattern transitions are not elicited by step current injection alone. A) Examples of two cells
whose firing pattern have been measured by step-wise current injection (protocol showed in the inset). The cells do not show

changes in firing pattern after 15 min of recording. B) Mean Fraction of Spikes for the population in the first and second half of

the voltage trace for both control and conditioned cases. No significant redistribution on the fraction of spikes is observed (n =

15, p=0.583, two-sided Wilcoxon signed rank test). C) Empirical Cumulative Distribution Function for the data shown in B. Every

individual case is represented as the number of spikes for the first half of the trace minus the spikes for the second half. D)

Firing pattern transitions are not elicited by sustained shifts in membrane potential. Examples of two cells that have been hold

at different membrane potentials through steady current injection (-70, -80 and -60 approximately). After changing the holding

potential of the recorded neuron the firing patter was measured by step-wise current injection (protocol showed in the inset).

No transitions of firing pattern were observed at any of the different holding potentials. E) Mean Fraction of Spikes for the

population in the first and second half of the voltage trace for every condition. No significant redistribution on the fraction of

spikes is observed (Vm 60 vs 70, p=0.652; Vm 60 vs 80, p=0.084; Vm 70 vs 80, p=0.695) (n = 10, two-sided Wilcoxon signed rank

test)). F) Empirical Cumulative Distribution Function for the data shown in E. Every individual case is represented as the number

of spikes for the first half of the trace minus the spikes for the second half.
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Figure S2. Firing pattern transitions on CA3 neurons are not induced by intracellular dialysis. A) Two cells patched with
high resistance pipettes (10MΩ). Two sample control cells that exhibit non-adapting (upper panel) and accelerating (lower panel)
firing pattern. After conditioning, both change to intrinsic burst firing pattern. The mossy fiber stimulation protocol is shown in

middle panel. B) Mean Fraction of Spikes for the population in the first and second half of the voltage trace for both control and

conditioned cases. A significant redistribution on the fraction of spikes is observed after the conditioning, where the fraction of

spikes on the first half is increased while it decreases in the second half (n=10, p=0.048, two-sided Wilcoxon signed rank test). C)

Empirical Cumulative Distribution Function for the data shown in B. Every individual case is represented as the number of

spikes for the first half of the trace minus the spikes for the second half.
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Figure S3. Clustering performance on the step-wise voltage traces. The capacity of the clustering algorithm to group
together independent voltage traces derived from the same set of current injections was evaluated. Histogram x-axis accounts

for the percentage of voltage traces from the same set that are assigned to a unique cluster. Y-axis, shows the percentage of

cells that fulfill the x condition. Ideal performance of the algorithm would allocates 100% of voltage traces coming from same

set of current injections to the same cluster. For most of the cells, at least half of the voltage traces fall into one cluster, and

almost 45% of the cells have all traces (100%) assigned to same cluster (n=50).
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Figure S4. Misclassified voltage traces from an assigned cell.Each panel shows the percentage of voltage traces of the cells
assigned to a given cluster, which have been assigned by the algorithm to the other clusters. For example, first panel shows

that 30% of voltage traces of cells classified as Accelerating fall into the Non-Adapting cluster. At higher current injection the

accelerating pattern is lost. Because of high firing rate the algorithm now classifies the traces as non-adapting . Numbers on the

x axis correspond to the different cluster classes. 1-Accelerating, 2-Non-Adapting, 3-Delayed, 4-Intrinsic Burst, 5-Adapting. Last

panel shows the distribution of voltage traces of unclassified cells. (n=50)
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Conductances Ranges 1 2 3

gKdr 0.015 : 0.05 : 0.04

gKa 0.01 : 0.01 : 0.09

gCa 0 0.2 : 0.1 : 0.6 0.8 : 0.1 : 1

gCaK 0 : 0.1 : 0.9

gKm 0 0.4 : 0.1 : 1

gKd 0 : 0.1 : 0.3 0.4 : 0.05 : 0.8 0.9 : 0.1 : 1

I 0.45 : 0.05 : 0.65 0.75 : 0.05 : 1 1.75 : 0.05 : 1.95

Total conductance vectors 861

Total traces 5166

Table S2. Range of maximal conductance values used to generate the model database of voltage traces. A model
database of voltage traces, which includes all the observed experimental firing patterns, was generated by varying 6 maximal

conductances (gKdr, gKa , gCa , gCaK , gKm and gKd ) over a given range. Each row in the table lists the ranges of conductance
values employed in every channel. The different ranges of conductances (columns) were produced in order to account for the

different firing patterns reproduced in the model. Different ranges of current were also needed to reveal the different firing

types. A total of 861 conductance vectors were generated by combining the different conductances. The firing pattern of every

conductance vector was produced at several levels of step-current injection, obtaining a total of 5166 voltage traces. Note that

gCaT , gCaN and gCaL are englobed under the single parameter gCa.
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Figure S5. Firing pattern transitions can be reproduced in both, a single compartment model and a realistic CA3pyramidal model. We find that the key ion channels responsible of the firing pattern transitions are kept in both the single
compartment model and the realistic one. The upper trace represents the model traces reproduced on the CA3 realistic

pyramidal cell, and below the same firing pattern on the single cylinder is shown. The maximal conductance values used to

reproduce every pattern are shown in the Supplementary Table 2.
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[Ca]i=0.5 µM;[Ca]o=2 mM [Ca]i=500 µM;[Ca]o=2 mM[Ca]i=50 µM;[Ca]o=2 mM

Increase in Intracellular calcium effect on pattern

Calcium Acumulation under the Stimulation Protocol
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Figure S6. Firing pattern transitions in the model are not due to calcium accumulation. A) Protocol applied to the
model cell: 1 Hz current stimulation by double current pulses that elicited a depolarization of 10 mV, repeated 500 times. B)

Comparison of model pulses with those elicited in the soma of experimental cells. C) Due to kinetics of calcium decay, the ion

does not accumulate over period of stimulation (black trace). Decay must be much longer for calcium to accumulate

significantly (green trace). D) Hypothetical increase in intracellular increase has little effect on pattern of discharge, even when

increased 1000 fold (from left to right).
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Figure S7. Selected cells with high frequency firing do not switch to adapting or intrinsic burst firings. A) Biocytin filled
spiny cell with stellate morphology. B) Smooth cell with rounded somata and short dense dendritic arbor. Firing patterns in

control (upper) and after stimulation (bottom) are shown beneath each cell for both the stellate (C) and the smooth cell (D). The

neurons present a non-adapting pattern both, before and after conditioning. Middle panel shows EPSPs elicited in the cell via

mossy fiber stimulation. Note that after conditioning, cells do not change the generic Petilla firing pattern mode (Fast Spiking),

although there is a visible modulation on the delay to first spike (’ramping response’). Scale bar = 50�m
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