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Abstract 

Three groups recently identified essential genes in human cancer cell lines using wet 

experiments, and these genes are of high values. Herein, we improved the widely used 

Z curve method by creating a λ-interval Z curve, which considered interval 

association information. With this method and recursive feature elimination 

technology, a computational model was developed to predict human gene essentiality. 

The 5-fold cross-validation test based on our benchmark dataset obtained an area 

under the receiver operating characteristic curve (AUC) of 0.8814. For the rigorous 

jackknife test, the AUC score was 0.8854. These results demonstrated that the 

essentiality of human genes could be reliably reflected by only sequence information. 

However, previous classifiers in three eukaryotes can gave satisfactory prediction 

only combining sequence with other features. It is also demonstrated that although the 

information contributed by interval association is less than adjacent nucleotides, this 

information can still play an independent role. Integrating the interval information 

into adjacent ones can significantly improve our classifier’s prediction capacity. We 

re-predicted the benchmark negative dataset by Pheg server 

(http://cefg.uestc.edu.cn/Pheg), and 118 genes were additionally predicted as essential. 

Among them, 21 were found to be homologues in mouse essential genes, indicating 

that at least a part of the 118 genes were indeed essential, however previous 

experiments overlooked them. As the first available server, Pheg could predict 

essentiality for anonymous gene sequences of human. It is also hoped the λ-interval Z 

curve method could be effectively extended to classification issues of other DNA 
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Introduction 

Catalogs of essential genes on a whole-genome scale, determined using wet-lab 

methods, are available for several prokaryotic (Mushegian and Koonin 1996; Luo et 

al. 2014; Pechter et al. 2016) and eukaryotic organisms (Kamath et al. 2003; 

Amsterdam et al. 2004; Liao and Zhang 2007; Kim et al. 2010). Computational 

methods with high accuracy offer an appealing alternative method for identifying 

essential genes. Computational methods are broadly divided into three types: machine 

learning-based methods combining intrinsic and context-dependent features (Deng et 

al. 2011; Cheng et al. 2013), flux balance analysis-based methods (Kuepfer et al. 2005; 

del Rio et al. 2009; Gatto et al. 2015), and homology search and evolutionary 

analysis-based methods (Peng et al. 2012; Wei et al. 2013). With respect to essential 

gene prediction in bacteria, we integrated the orthology and phylogenetic information 

and subsequently developed a universal tool named Geptop (Wei et al. 2013), which 

has shown the highest accuracy among all state-of-the-art algorithms. 

Some studies have focused on essential gene prediction in eukaryotic genomes. 

In 2005, Xu et al. investigated protein dispensability in Saccharomyces cerevisiae by 

combining high-throughput data and machine learning-based methods (Chen and Xu 

2005). In 2006, Seringhaus et al. reported a machine learning-based method that 

integrated various intrinsic and predicted features to identify essential genes in yeast S. 

cerevisiae genomes (Seringhaus et al. 2006). They for the first time using AUC to 

measure the machine learning classifier’s capability in identifying essential genes, and 

they also translated the essentiality from yeast S. cerevisiae to yeast Saccharomyces 
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mikatae. Yuan et al. integrated informative genomic features to perform knockout 

lethality predictions in mice using three machine learning-based methods (Yuan et al. 

2012). Lloyd et al. analyzed the characteristics of essential genes in the Arabidopsis 

thaliana genome and used A. thaliana as a machine learning-based model to 

transform the essentiality annotations to Oryza sativa and S. cerevisiae (Lloyd et al. 

2015). 

Recently, three research teams approximately identified 2,000 essential genes in 

human cancer cell lines using CRISPR-Cas9 and gene-trap technology (Blomen et al. 

2015; Hart et al. 2015; Wang et al. 2015). Their results showed high consistency, 

which further confirmed the accuracy and robustness of the essential gene sets (Fraser 

2015). These studies provided an in-depth analysis of tumor-specific essential genes 

and feasible methods to screen tumor-specific essential genes (Fraser 2015; Hart and 

Moffat 2016). The essential genes screened by these three teams provided a clear 

definition of the requirements for sustaining the basic cell activities of individual 

human tumor cell types. Practically, these genes can be regarded as targets for cancer 

treatment (Fraser 2015). The data from these three groups provided a rare opportunity 

to theoretically study the function, sequence composition, evolution and network 

topology of human essential genes. One of the most important and interesting 

theoretical issues in modern biology is whether essential genes and non-essential 

genes can be accurately classified using computational methods. The models 

established in the aforementioned three eukaryotic organisms, S. cerevisiae (Chen and 

Xu 2005; Seringhaus et al. 2006), Mus musculus (Yuan et al. 2012), and A. thaliana 
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(Lloyd et al. 2015), involved intrinsic features, or intrinsic and context-dependent 

features. These context-dependent features included those features extracted from 

experimental omics data. However, the features derived from experimental data are 

frequently unavailable; consequently, this type of machine learning model cannot be 

extended to a wide range of genomes. In the present study, we addressed this problem 

in humans by using only intrinsic features derived from sequences, from which 

certain features can be characterized using a λ-interval Z-curve. To facilitate the use of 

these data by interested researchers, we have provided a user-friendly online web 

server, Pheg, which can be freely accessed without registration at 

http://cefg.uestc.edu.cn/Pheg. 

Results 

Cross-validation Results.  

The final features of this method were described by FVw,λ., a value that contains 

information on the composition of the adjacent w-nucleotides (Gao and Zhang 2004) 

and λ-interval nucleotides. The association information was also captured by FVw,λ. 

Therefore, this method achieves improved performance compared with using the 

original Z-curve. The following results solidly confirmed this point. 

We performed a 5-fold cross-validation test with w ranging from 2 to 4 and λ 

ranging from 0 to 5. The detailed results are provided in Table 1, showing that area 

under the curve (AUC) values gradually increased with increasing λ when w was 

fixed. An examination of the performance under variable values for w and fixed 

values for λ revealed that the performance for the classifier improved with increasing 
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values for w. 

Table 1. AUC values at different w, λ and penalty parameters c. 

Variables c AUC 

FV2,0 256 0.8002  

FV2,1 64 0.8198  

FV2,2 16 0.8256  

FV2,3 128 0.8275  

FV2,4 64 0.8293  

FV2,5 64 0.8365  

FV3,0 32 0.8276  

FV3,1 1 0.8333  

FV3,2 0.5 0.8347  

FV3,3 0.25 0.8356  

FV3,4 0.5 0.8408  

FV3,5 0.25 0.8429  

FV4,0 1 0.8344  

FV4,1 0.5 0.8369  

FV4,2 0.5 0.8386  

FV4,3 0.25 0.8413  

FV4,4 0.25 0.8436  

FV4,5 0.25 0.8449  

As shown in Table 1, we obtained an AUC value of 0.8002 under FV2,0. However, 

after utilizing the λ-interval nucleotide composition, the performance was improved, 

for example, the best AUC achieved for this model was 0.8449 through the 5-fold 

cross-validation test under variable FV4,5. The AUC was improved 4.47% compared 

with FV2,0. The information redundancy and noise in the original features can 

influence the predictive power of a classifier, and high-dimensional features also 

increase the time costs for training and prediction. Feature selection technology can 

mitigate these disadvantages. The support vector machine (SVM)-recursive feature 

extraction (RFE)+correlation bias reduction (CBR) method was adopted to rank these 

features in descending order based on the contribution of each feature. Subsequently, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 28, 2016. ; https://doi.org/10.1101/084129doi: bioRxiv preprint 

https://doi.org/10.1101/084129


8 

 

the top 100 features were used to constitute the initial feature subset to train and test 

the model, and the next 100 features were added into the feature subset, followed by 

prediction using the same methods. This process was repeated until the top 4,500 

features had been added according to the rank order. The test results of each model 

were evaluated according to the AUC scores via a 5-fold cross-validation test. The 

AUC values for different top features are shown in Figure 1 (A). 

 

Figure 1. AUC values obtained under different top n features and the contribution of each group. 

Figure 1 (A) represents the AUC scores under different top features. Dots with different colors 

denote different c values. Figure 1 (B) illustrates the selective tendentiousness for every variable 

type. The red bars denote that the selective tendentiousness has significance. 

Among all 4,545 features examined, the best AUC of 0.8814 was achieved for the top 

800 selective features. The final AUC value was 8.12% higher than that for FV2,0. To 

conduct an objective evaluation of this method, we performed a rigorous jackknife 

test based on the top 800 selected features using the parameters determined via a 

5-fold cross-validation test. We obtained an AUC value of 0.8854. As expected, 

excellent performance was obtained after adopting the λ-interval nucleotide 
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composition and feature selection technology. Those results illustrated that the 

essentiality of human genes could be well reflected by only sequence information. 

As we are extremely interested in the actual essential genes in the predicted 

results, we used the positive predictive value (PPV) to further refine. This evaluation 

index can be calculated using the formula TP / (TP+FP), where TP (true positive) and 

FP (false positive) represent the number of real essential and non-essential genes 

among the positive predictions. Therefore, the PPV reflects the proportion of actual 

essential genes among the predicted essential genes. We obtained a PPV of 73.05% 

(TP=515, FP=190) using the jackknife test based on the top 800 features. One of the 

simplest cross validation tests is the holdout method. In this procedure, the dataset is 

separated into two subsets, namely, training and testing datasets. We randomly 

sampled one-fifth of the positive and negative samples from the benchmark dataset 

for the training model, and the remaining samples were used as the testing dataset. To 

comprehensively assess the method used in the present study, we repeated the holdout 

method 100 times to identify differences in the composition of the training and testing 

samples. The mean AUC score was used as the final evaluator. A mean AUC score of 

0.8537 with a variance of 1.67e-005 was obtained. Additionally, the proportions of 

samples in the training and predicting datasets were changed for further investigation. 

One-tenth of the positive and negative samples were randomly sampled as the training 

dataset, and the remaining samples were used as the testing dataset. This procedure 

was repeated 100 times. We obtained a mean AUC score of 0.8347 with a variance of 

2.77e-005. These results further confirmed that this method was robust and accurate. 
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Different contributions of each group of variables to the classification ability.  

Features with fixed w and λ values correspond to a specific group of variables. A total 

of 19 special groups were obtained, namely, fv1,0, fv1,1, fv1,2 …. fv1,5; fv2,0, fv2,1 …. fv2,5; 

fv3,0, fv3,1 …. fv3,5, and fv4,0. We calculated the percentage of features in these groups, 

and the results are provided in Table 2. 

Table 2. Feature details for every variable type in the top 800 selective features. The feature 

groups with significance are indicated bold font. 

Variables No.(A) No.(E) P(A) P(E) P(A)/P(E)-1 p value AUC c 

fv1,0 3 9 0.0038  0.0020  0.8938  0.200495 ― ― 

fv1,1 7 36 0.0088  0.0079  0.1047  0.452683 0.7220 1024 

fv1,2 3 36 0.0038  0.0079  -0.5266  0.965324 0.6216 64 

fv1,3 4 36 0.0050  0.0079  -0.3688  0.900314 0.6028 1024 

fv1,4 4 36 0.0050  0.0079  -0.3688  0.900314 0.6018 128 

fv1,5 8 36 0.0100  0.0079  0.2625  0.292801 0.6302 256 

fv2,0 19 36 0.0238  0.0079  1.9984  1.60E-06 0.7902 64 

fv2,1 35 144 0.0438  0.0317  0.3809  0.024077 0.7551 1024 

fv2,2 20 144 0.0250  0.0317  -0.2109  0.906339 0.6841 1024 

fv2,3 25 144 0.0313  0.0317  -0.0137  0.566007 0.6633 512 

fv2,4 22 144 0.0275  0.0317  -0.1320  0.802176 0.6856 1024 

fv2,5 25 144 0.0313  0.0317  -0.0137  0.566007 0.6816 1024 

fv3,0 44 144 0.0550  0.0317  0.7359  7.89E-05 0.8236 2 

fv3,1 94 576 0.1175  0.1267  -0.0729  0.821727 0.7652 8 

fv3,2 84 576 0.1050  0.1267  -0.1715  0.983389 0.7125 32 

fv3,3 107 576 0.1338  0.1267  0.0554  0.272681 0.7168 1024 

fv3,4 86 576 0.1075  0.1267  -0.1518  0.970308 0.7027 64 

fv3,5 103 576 0.1288  0.1267  0.0159  0.44446 0.6983 1024 

fv4,0 107 576 0.1338  0.1267  0.0554  0.272681 ― ― 

No. (A): feature numbers in the top 800;  

No. (E): feature numbers in the original variable FV4, 5; 

P(A): actual frequency that variables in the top 800, P(A)=No.(A)/800;  

P(E): expected frequency that variables in FV4,5, P(A)=No.(B)/4545; 

p value: hypergeometric distribution test. 

For each group, there were two frequencies: P(A), which denotes the actual frequency 

of features in each group appearing in the top 800 selected features, and P(E), which 

denotes the expected frequency of the features in each group appearing in the original 
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4,545 features. Therefore, P(A) was obtained based on the number of selected features 

in each group divided by 800, and P(E) was calculated by dividing the number of total 

features in each group by 4,545. P(A) and P(E) are listed in columns 4 and 5, 

respectively. If P(A) is higher than P(E), then the group makes a higher-than-average 

contribution to the identification of essential genes. We calculated the tendentiousness 

using the formula P(A)/P(E)-1 to denote how the features of each group were selected, 

and the results are listed in column 6 of Table 2. We further conducted a 

hypergeometric distribution test for each group, and the p values are listed in column 

7. Figure 1 (B) and Table 2 show that fv2,0 (p = 1.60E-06), fv2,1 (p = 0.02407688), and 

fv3,0 (p = 7.89E-05) are preferentially selected and are statistically significant. These 

results demonstrated that there are strong signals for classifying essential and 

non-essential genes when the character interval is equal to zero or one, but the other 

groups did not show these strong signals. To further confirm this result, the variables 

fv2,0, fv2,1, fv2,2, fv2,3, fv2,4, fv2,5 and fv3,0, fv3,1, fv3,2, fv3,3, fv3,4, and fv3,5 were used as 

input features. Improved performance was obtained under fv2,0, fv2,1, and fv3,0 

compared with the other groups (Table 2, column 8). Those results demonstrated that 

the shorter interval association provides more information. However, longer interval 

association can still play an independent role. Hence, integrating the interval 

information into adjacent ones could significantly improve our classifier’s capacity of 

discernment (Table 1). 

A web server for predicting essential genes in human cancer cell lines. 

To facilitate the use of these data by interested researchers, we constructed a 
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user-friendly online web server named Pheg (Predictor of human essential genes), 

which is freely accessible at http://cefg.uestc.edu.cn/Pheg. The Pheg algorithm is 

based on the λ-interval Z-curve. Additional parameters are not necessary, making this 

algorithm convenient to use. Pheg can predict whether a query gene is essential using 

only the CDS region of a gene as input. We integrated logistic regression into the 

Pheg server to estimate the reliability of the predicted results. Hence, this server can 

output a probabilistic estimated value as a measurement of gene essentiality for the 

inputted coding region. Note that this is the first available server for predicting human 

gene essentiality. Comparatively, some computational models have been proposed for 

the other eukaryotes however all of them did not provide online prediction service. 

We re-predicted the genes in the benchmark dataset via Pheg and obtained an AUC = 

0.9249 and PPV = 83.84%. A total of 612 genes were identified as essential genes 

among the 1,516 positive samples, and 118 genes were predicted as essential genes 

among the 10,499 negative samples. To estimate how many genes among those 

predictions are real essential genes, we calculated precisions using 5-fold, 10-fold, 

15-fold, 20-fold cross-validation, and we obtained precisions with values of 70.43%, 

71.63%, 72.48%, 72.22%, which were approximately 70%. Hence, we expect that 82 

(118×70%) are correctly predicted essential genes. The information for these 118 

genes is provided in Supplemental Information S1.  

CancerResource is a comprehensive knowledgebase for drug-target relationships 

associated with cancer and for supporting information or experimental data (Gohlke et 

al. 2016). Through the CancerResource database (Gohlke et al. 2016), these 118 genes 
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were searched using the classifier ‘Target search by gene identifiers’ 

(http://data-analysis.charite.de/care/index.php?site=target_input). Among these 118 

genes, 17 genes showed interactions with drugs and other chemical molecules, and 13 

genes had Cancer3D structures (Porta-Pardo et al. 2014). The details of these genes 

are supplemented in Supplemental Information S2. Additionally, we used these 118 

gene sequences to conduct a BLAST (Basic Local Alignment Search Tool) search 

against essential genes in the genome of Mus musculus (mouse). The current mouse 

essential gene set is accessible in the OGEE database (Chen et al. 2012). Considering 

that no BLAST program is embedded in OGEE, we downloaded the essential gene 

annotations (gene_essentiality) at (http://ogee.medgenius.info/downloads/) and 

extracted the essential gene annotation of M. musculus. We obtained the essential 

gene sequences according to the annotations (http://ogee.medgenius.info/downloads/). 

A BLAST search was performed via ncbi-blast-2.2.30+-win64.exe using the data 

from OGEE, and homologs for 21 genes were identified (e value < 1e-100) among the 

118 predicted essential genes. The sequences of the essential genes in M. musculus are 

provided in Supplemental Information S3. The details for these 21 genes and their 

corresponding homologs are provided in Supplemental Information S4. Both 

CancerResource analyses and BLAST search illustrated that at least a part of these 

118 genes have higher probability to be factually essential genes and have been 

overlooked in the essential gene screening in previous experimental studies. Hence, 

Pheg sever could be used to predict essentiality for anonymous gene sequences of 

human and closely related species, and it is also hoped to supplement the essential 
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gene list of human by identifying novel essential gene from the submitted sequences. 

Discussion 

The Z-curve has been widely used in the field of bioinformatics for tasks such as 

protein coding gene identification (Zhang and Wang 2000; Chen et al. 2003; Guo et al. 

2003; Guo and Zhang 2006; Hua et al. 2015), promoter recognition (Yang et al. 2008), 

translation start recognition (Ou et al. 2004), recombination spots recognition (Dong 

et al. 2016), and nucleosome position mapping (Wu et al. 2013). However, correlation 

and λ-interval nucleotide composition have not been incorporated into the Z-curve 

method. In the present study, we present a λ-interval Z-curve based on Z-curve theory. 

The DNA sequence can be understood as an ordinary character sequence; therefore, 

the method proposed in the present study has the potential for applications in mining 

characteristics from other character sequences and can be used as a universal feature 

extraction method for DNA sequences. 

Based on the λ-interval Z-curve, we obtained excellent performance in human 

essential gene identification. This excellent performance might be attributable to the 

following points: First, we introduced the concept of intervals, reflecting associated 

information and the λ-interval nucleotide composition. Second, we used feature 

selection technology in the present study. Thus, noisy and redundant features could be 

removed from the original features. Table 2 shows the improved performance 

obtained under fv2,0, fv2,1, and fv3,0 compared with the other variable groups. Further 

comparison of these results with other feature groups shown in Table 2, and this 

comparison shows that the AUC values obtained with λ-interval variables are smaller 
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than those obtained with shorter interval variables. However, the performance can be 

improved after adding λ-interval oligonucleotide association information (see Table 1). 

Hence, the λ-interval Z-curve should reflect additional important information for 

essential genes that cannot be contained in adjacent nucleotide association 

information.  

In 2005, Chen and Xu used a neural network and SVM to predict the 

dispensability of proteins in the yeast S. cerevisiae based on the protein evolution rate, 

protein-interaction connectivity, gene-expression cooperativity and gene-duplication 

data (Chen and Xu 2005). The next year, Seringhaus et al. only used 14 features to 

predict essential genes in S. cerevisiae and obtained a PPV=0.69 (Seringhaus et al. 

2006). Yuan et al. assembled a comprehensive list of 491 candidate genomic features 

to predict a lethal phenotype in a knockout mouse using three machine learning 

methods (Yuan et al. 2012). Among the 491 candidate genomic features, 373 features 

were derived from genomic sequences, 94 features were derived from mRNA 

expression, and 24 features were derived from molecular interaction. Moreover, the 

best AUC value was 0.782. In 2015, Lloyd et al. investigated the relationship between 

phenotype lethality and gene function, copy number, duplication, expression levels 

and patterns, rate of evolution, cross-species conservation, and network connectivity, 

and the random forest-based model used in this study achieved an AUC of 0.81, 

which is significantly better than that obtained by random guessing. In addition, these 

authors integrated the features they identified to predict essential genes in A. thaliana 

(Lloyd et al. 2015). Those previous researches in three eukaryotes illustrated 
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classifiers can gave satisfactory prediction through combining sequence with other 

features. For human essential gene identification, we only used the sequence 

composition and interval association information in the present study and still 

obtained an AUC of 0.8854. Considering that this result is better than the results 

obtained in previous studies using integrated features, the gene essentiality of the 

human genome can be accurately reflected based on only the sequence information. 

Materials and methods 

Benchmark dataset. 

The human essential genes in cancer cell lines were identified by three different 

groups (Blomen et al. 2015; Hart et al. 2015; Wang et al. 2015). The results showed 

high consistency (Fraser 2015), which further confirmed the accuracy and robustness 

of these data. We extracted the gene essentiality data from the DEG database 

(http://tubic.tju.edu.cn/deg/), the updated version of which contained human gene 

essentiality information. These essentiality annotations serve as the basis for 

constructing our benchmark dataset. The flowchart shown in Figure 2 illustrates the 

construction of the positive and negative dataset. 
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Figure 2. Description of the construction of the human essential and non-essential gene datasets. 

In the three studies, 13 datasets were provided. As lines HCT116 and KBM7 are 

represented by two datasets each, 11 cancer cell lines (KBM7, K562, Raji, Jiyoye, 

A375, HAP1, DLD1, GBM, HCT116, Hela, rpel) are involved in total. Blomen et al. 

and Wang et al. identified the essential genes in the KBM7 cell line. We combined 

these two datasets into one gene set, KBM7. A total of 2,073 and 386 essential genes 

were contained in the two datasets for HCT116. The 386 genes in this dataset were 

markedly different from those in the datasets for the other cell lines, so this dataset 

was excluded. Ultimately, 11 essential gene sets were obtained, corresponding to a 

single cell line. Essential genes, by definition, are indispensable for the survival of 

organisms under optimized growth conditions and are considered the foundation of 

life (Juhas et al. 2011). Therefore, we only retained genes that were identified as lethal 

genes in more than half of the investigated cell lines. When a gene appeared as 

essential in more than six cell lines (11/2≈6), it was selected as one sample in the 

positive dataset. According to this principle, we obtained a total of 1,518 essential 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 28, 2016. ; https://doi.org/10.1101/084129doi: bioRxiv preprint 

https://doi.org/10.1101/084129


18 

 

gene annotations. We downloaded all of the protein coding gene sequences from the 

CCDS database (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi), and the 

annotations of protein coding genes were obtained from the HGNC database 

(http://www.genenames.org/cgi-bin/statistics, March 1, 2016), which contained 

19,003 annotation entries. The essential gene sequences were extracted according to 

the annotations, and genes with no counterpart in the CCDS database were excluded. 

According to this criterion, we excluded 2 genes and obtained 1,516 essential genes. 

We used the essential gene annotation in the DEG dataset, and the gene sequences 

were extracted from the CCDS because the former did not contain the information for 

non-essential genes. For human essentiality annotations in the DEG database, a 

number of scattered annotated essential genes aside from those in the 11 cell lines 

were identified. A total of 28,166 essential gene annotated entries (including 

conditional essential gene annotated entries) were obtained. Among these annotations, 

there were many repeated annotation entries; therefore, there were considerably fewer 

unique entries. To obtain a more reliable negative dataset, i.e., absolutely 

non-essential genes, we excluded all of the human essential genes annotated in the 

DEG database (Luo et al. 2014) from the list of the protein coding genes. The 

remaining genes were regarded as the negative dataset, and their gene sequences were 

extracted from the CCDS database. Genes with no counterpart in the CCDS database 

were also excluded. A total of 10,499 non-essential genes were obtained using this 

method. Ultimately, a total of 12,015 gene entries were obtained in the benchmark 

dataset: 1,516 essential genes and 10,499 non-essential genes. The protein coding 
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gene annotations are provided in Supplemental Information S5, and information for 

the benchmark dataset is provided in Supplemental Information S6. 

λ-interval Z-curve 

The originally proposed Z-curve variables might reflect the composition of a single 

nucleotide considering the features derived from phase heterogeneity of a single 

nucleotide (Zhang and Zhang 1991; Zhang and Chou 1994; Zhang and Zhang 1994; 

Zhang 1997). Herein, we provided a summary of the Z-curve method used for gene 

identification (Zhang and Wang 2000). Let us suppose that the frequencies of bases A, 

C, G and T occurring in an ORF or a gene fragment at positions 1, 4, 7, …, 2, 5, 

8, …, and 3, 6, 9, …, are represented by a1, c1, g1, t1; a2, c2, g2, t2; a3, and c3, g3, t3, 

respectively. Those 12 symbols represent the frequencies of the bases at the 1st, 2nd 

and 3rd codon positions, respectively. According to the symbols defined above, the 

universal Z-curve mathematical expression is as follows (Zhang and Wang 2000): 

 

 

(1) 

Because composition bias for oligonucleotides in coding DNA sequence (CDS) 

regions or open reading frames (ORFs) exists, the adjacent w-nucleotides Z-curve 

method was proposed (Guo et al. 2003; Gao and Zhang 2004). Let us suppose that w 

represents the length of the adjacent nucleotide sequence. The Z-curve variables for 

the phase-specific adjacent w-nucleotides can be calculated as follows: 
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  (2) 

where k equals 1, 2, or 3 to indicate that the first oligonucleotide bases are situated at 

the 1st, 2nd and 3rd codon positions, respectively. 

Recent studies demonstrated the existence of long-range associations in 

chromosomes and showed that these associations are crucial for gene regulation 

(Fullwood et al. 2009; Ruan 2011). Although the two adjacent nucleotides in the 

primary structure have no association in some cases, strong associations in terms of 

tertiary structure might exist. Therefore, we introduced the λ-interval Z-curve to 

virtually represent the interval range association. The details of this method are 

described as pk(SwX), which represents the frequency of oligonucleotides SwX in genes 

or ORFs, where X is one of the four basic bases A, T, G and C. To facilitate this 

presentation, the length of the oligonucleotide Sw is represented as w. According to the 

predetermined characters, we generated the universal equation for the λ-interval 

Z-curve based on Z-curve theory as follows: 

  (3) 

where x, y, and z represent the accumulation of the three base groups classified 

according to chemical bond properties. Variable k denotes the phase-specific index of 

the first base in the nucleotide sequence Sw, and λ represents the intervals between Sw 

and X. The first base in the oligonucleotide Sw was located at position k. The core part 
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of λ-interval Z-curve forms oligonucleotide SwX. A schematic diagram of the 

formation of these oligonucleotides is shown in Figure 3. 

 

Figure 3. Description of the process of constructing the oligonucleotides using the λ-interval 

Z-curve theory algorithm. A gene or an ORF has three phases, denoted with different colors, i.e., 

red denotes the base located in the first phase, yellow denotes the base located in the second phase, 

and blue denotes the base located in the third phase. 

The oligonucleotide window Sw slides along a DNA molecule sequence according to 

phase, forming oligonucleotide sets with base X, which is λ intervals away from the 

last base of Sw. The periodicity derived from three codons is denoted as SwX. 

When w is equal to 1 and λ is equal to 0, Equation (3) can be transformed into 

Equation (1). When w is more than 1 and λ is equal to 0, Equation (3) can be 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 28, 2016. ; https://doi.org/10.1101/084129doi: bioRxiv preprint 

https://doi.org/10.1101/084129


22 

 

transformed into Equation (2). Thus, the phase-specific single nucleotide Z-curve and 

phase-specific adjacent w-nucleotide Z-curve are incorporated into the λ-interval 

Z-curve. Using the λ-interval Z-curve, we can extract more features to characterize 

DNA sequences. According to Equations (1) and (2), when w is equal to 0, we can 

obtain 3×3×4w-1 variables to characterize DNA sequences. When w and λ are greater 

than 0, we can obtain 3×3×4w variables. For convenience, we used fvw,λ to represent 

the variables with the length of w for oligonucleotides Sw, and the highest interval 

length between oligonucleotides Sw and base X is λ. To obtain more information from 

a DNA sequence, the final variable is described as FVw, λ, where w represents the 

longest oligonucleotides and λ is the highest interval. This variable can be represented 

as follows: 

  (4) 

where the symbol ‘U’ represents the union set of fvw,λ, i.e., FV2,0=[fv1,0, fv2,0]
T, 

FV2,1=[fv1,0 ∪ fv1,1, fv2,0]
T, FV2,2=[fv1,0 ∪ fv1,1 ∪ fv1,2, fv2,0]

T, …, FV3,0=[ fv1,0 ∪fv2,0, 

fv3,0], …. FV2,0 and FV3,0 are the combination of adjacent phase-specific w-nucleotide 

Z-curve variables. We performed this prediction with w ranging from 2 to 4 and λ 

ranging from 0 to 5. According to the discussion above, we obtained 4,545 variables 

for FV4, 5. 

Support vector machine 

SVMs can be classified into linear SVMs and non-linear SVMs according to 

complexity. SVMs can be used to transform the data into another feature space with 
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more dimensions than the original data and determine the hyper-plane. In this 

super-dimensional space, the hyper-plane can readily separate the samples. Linear 

SVMs play a key role in solving ultra-large-scale data, reflecting the effectiveness, 

rapid speed and splendid generalization of this method in training and prediction. 

LIBLINEAR, designed by Fan et al. (Fan et al. 2008), is an easy-to-use, freely 

available software tool to manage large sparse data. The new version of LIBLINEAR 

(version 2.1-4) supports not only classification, such as L2-loss and L1-loss linear 

support vector machine, but also regression, such as L2-regularized logistic regression. 

Given the ultra-high-dimensional feature vectors and large samples contained in the 

benchmark dataset in the present study, we used the LIBLINEAR software package 

for prediction. The penalty parameter c was determined using 5-fold cross-validation 

from 2-18 to 210. The new version of LIBLINEAR can be downloaded from 

https://www.csie.ntu.edu.tw/~cjlin/liblinear/. 

Feature extraction technology 

First, the predictive power of a classifier can be influenced by the relevance and noise 

in the original features. Second, additional time for training and predicting tasks can 

be increased, reflecting the high-dimensional features. Feature selection (FS) 

technology is a powerful method for the removal of noise and redundant features from 

the original features. Hence, the dimension of the features can be reduced. Recursive 

feature extraction through SVM linear kernels is a powerful FS algorithm (Guyon et 

al. 2002), but the correlation bias was not considered using this method. Yan and 

Zhang (Yan and Zhang 2015) proposed an improved method, called SVM-RFE+CBR, 
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which incorporates the CBR. The main concept is that the ranking criterion can be 

directly derived from the SVM-based model. The feature with the smallest weight is 

excluded for each run time. The training process was repeated by incorporating CBR 

until the ranks of all features are obtained. We used SVM-RFE+CBR FS technology 

to perform feature selection and improve the performance of the classifier. 

Cross-validation and jackknife tests 

Cross-validation test technology is the most popular method for evaluating the 

performance of classifiers. N-fold cross-validation means that the samples are 

randomly separated into N sub-samples sets. One of the sub-sample sets is used as the 

testing dataset, and the remaining sub-sample set is used as the training dataset during 

each run. The process is executed N times until every sub-dataset is utilized as the 

testing dataset. If N equals the number of samples in benchmark dataset, then the 

N-fold cross-validation can also be called jackknife or leave-one-out cross-validation. 

In the present study, we used the 5-fold cross-validation test to determine the best 

penalty parameter and adopted the jackknife test to further assess the predictive power 

of the classifier. The area under the ROC curve, the AUC, is often used to measure the 

performance quality of a binary classifier. An AUC of 0.5 is equivalent to random 

prediction, whereas an AUC of 1 represents a perfect prediction. There is no bias for 

evaluating the performance of the unbalanced dataset through AUC. Therefore, we 

adopted the AUC as a cross-validation criterion in the present study. 
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Data access 

Supplemental data is available at Genome Res. Online: 

Supplemental Information S1: The 118 predicted essential genes and their sequences; 

Supplemental Information S2: Details for the 17 genes with drug and molecule 

interactions among the 118 predicted essential genes, distinguished from non-essential 

genes. 

Supplemental Information S3: Sequences of the essential genes in the genome of M. 

musculus; 

Supplemental Information S4: The information for the 21 genes and their 

corresponding homologs. 

Supplemental Information S5: Annotation of human protein-coding genes; 

Supplemental Information S6: Benchmark dataset used in the present study. 

Supplemental files can also be downloaded from the CEFG group website: 

http://cefg.cn/Pheg/supplement_info.zip. 
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