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Abstract 

During rest, envelopes of band-limited on-going MEG signals co-vary across the brain in 

consistent patterns, which have been related to resting-state networks measured with fMRI. 

To investigate the genesis of such envelope correlations, we consider a whole-brain network 

model assuming two distinct fundamental scenarios: one where each brain area generates 

oscillations in a single frequency, and a novel one where each brain area can generate 

oscillations in multiple frequency bands. The models share, as a common generator of 

damped oscillations, the normal form of a supercritical Hopf bifurcation operating at the 

critical border between the steady state and the oscillatory regime. The envelopes of the 

simulated signals are compared with empirical MEG data using new methods to analyse the 

envelope dynamics in terms of their phase coherence and stability across the spectrum of 

carrier frequencies. 

Considering the whole-brain model with a single frequency generator in each brain area, we 

obtain the best fit with the empirical MEG data when the fundamental frequency is tuned at 

12Hz. However, when multiple frequency generators are placed at each local brain area, we 

obtain an improved fit of the spatio-temporal structure of on-going MEG data across all 

frequency bands. Our results indicate that the brain is likely to operate on multiple frequency 

channels during rest, introducing a novel dimension for future models of large-scale brain 

activity. 
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1 Introduction 

Understanding the genesis of spatially and temporally structured brain rhythms is a crucial 

matter in neuroscience (Buzsáki, 2006, Wang, 2010, Womelsdorf et al., 2014). In vitro 

studies have shown that the cortical tissue is excitable, displaying the emergence of coherent 

oscillations under specific medium conditions while the single neurons fire only 

intermittently at lower (or higher) frequency (Buhl et al., 1998, Fisahn et al., 1998). Detailed 

computational models of spiking neurons have helped to investigate how neurons (and 

interneurons) connected in specific network topologies can generate firing patterns 

replicating electrophysiological measurements (Abbott and van Vreeswijk, 1993, Ermentrout 

et al., 2001, Brunel and Wang, 2003). The frequency of such oscillations is determined by 

time constants such as the feedback delay (relying on the excitatory-inhibitory loop), the 

synaptic time constants (delay and rise) and the axonal transmission times. Furthermore, the 

ratio of time scales of excitatory and inhibitory currents and the balance between excitation 

and inhibition also affect the properties of the rhythms.  

To investigate how these locally generated oscillations interact at the macroscopic level of 

the whole brain network, it is useful to use neural-mass models in order to reduce the 

complexity of spiking neuron models to a small set of differential equations describing the 

population activity (Honey et al., 2007, Ghosh et al., 2008, Deco et al., 2009, Cabral et al., 

2011, Cabral et al., 2014a). Following different reduction lines, these neural-mass models 

generate oscillations (with damped or constant amplitude) in a frequency tuned by the model 

parameters. Although these models have proved useful to investigate the source of long-range 

slow BOLD signal correlations, they assume a homogeneous oscillation frequency in every 

brain area, whereas evidence from EEG and MEG studies points in a different direction, i.e. 

that brain functional connectivity (FC) occurs in multiple frequency levels, displaying 

different functional networks according to the carrier oscillations (Mantini et al., 2007, de 

Pasquale et al., 2010, Brookes et al., 2011b, Hipp et al., 2012, Magri et al., 2012, 

Tagliazucchi et al., 2012, Keller et al., 2013, Hipp and Siegel, 2015).  

The concept of a carrier oscillation implies that it is modulated (either through amplitude or 

frequency) by a ‘carried’ signal with much lower frequency. Indeed, several recent studies 

have detected meaningful long-range correlations in the slow amplitude envelopes (or power 

fluctuations) of narrowband neurophysiological signals obtained with EEG, MEG or LFP 

(Liu et al., 2010, Brookes et al., 2011b, Hipp et al., 2012, Magri et al., 2012, Engel et al., 

2013, Keller et al., 2013, Hipp and Siegel, 2015, Brookes et al., 2016). 
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A number of models have aimed at replicating large-scale spontaneous electrophysiological 

data using large-scale network models with local neural-mass models, namely using the 

normal form of a Hopf bifurcation in the subcritical regime (Robinson et al., 2002, Freyer et 

al., 2011, Freyer et al., 2012) or simple Kuramoto oscillators (Cabral et al., 2014b). In these 

models, the cortico-thalamic and/or the cortico-cortical connectivity (with associated time-

delays) serve as the structural support for a multistable regime, in which the system switches 

between the local node dynamics and global network dynamics with particular spectral 

properties.  

In particular, Cabral and colleagues (2014b) have proposed that envelope correlations of 

alpha- and beta-band oscillations are originated by the metastable large-scale synchronization 

of locally generated gamma-band oscillations at 40Hz. This relies on the fact that, due to the 

presence of delays in the order of 10ms, the collective oscillations are more stable at reduced 

frequencies falling in the alpha and beta ranges (Niebur et al., 1991). Although this model 

provides an insightful mechanistic explanation for the phenomena observed in resting-state 

MEG, whether this mechanism actually occurs in the brain remains uncertain.  

In this work we propose two novel candidate scenarios to explain the envelope correlations of 

carrier oscillations observed in the brain at rest. We address the problem from a different 

perspective where each brain area, as a complex neural mass operating in a critical regime, 

spontaneously generates oscillations on receiving sufficient input. Since the transition to the 

oscillatory state is induced by external noisy input, nodes receiving correlated input (through 

structural connections) are more likely to display the simultaneous emergence of oscillations, 

which in turn results in correlated envelopes shaped by the structural connectivity. Following 

empirical observations in resting-state MEG data where alpha- and beta-band oscillations 

emerge and dissipate in a correlated fashion throughout the cortex forming different 

functional networks, we remove the constraint that each neural mass can only resonate in the 

gamma-frequency band (30 to 100Hz) (in contrast with Cabral et al. (2014b)), and assume 

that brain areas may also resonate at slower frequencies (<30Hz) due both to complex 

internal connectivity and to external thalamo-cortical connectivity (Buzsáki, 2006, Palva and 

Palva, 2007, Engel et al., 2013). Moreover, we investigate two scenarios: one where local 

brain areas generate oscillations in a single fundamental frequency using the normal form of a 

Hopf Bifucation model; and another where each local brain area can resonate at multiple 

different frequencies (i.e. multiple Hopf bifurcation models, each with a different 

fundamental frequency). From a biophysical perspective, each brain area has millions of 
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neurons coupled in complex connectivity patterns which may not unlikely resonate at a broad 

range of frequencies rather than a single one. In addition, cortical areas are connected to 

subcortical structures with intrinsic rhythmicity, such as the thalamus,which is believed to 

drive cortical oscillations in the alpha-frequency band (Lopes da Silva et al., 1997). As such, 

considering multiple rhythms within a brain area is not only biophisically plausible but 

should be considered in models of coupled brain areas to obtain a better picture of the whole-

brain network dynamics captured with MEG. 

The model outputs are compared with resting-state MEG brain activity, focusing on the 

temporal dynamics of envelope correlations as a function of the underlying carrier frequency. 

We follow the line of recent works from the fMRI and MEG literature that investigate the 

temporal dynamics of FC (Hutchison et al., 2013, Allen et al., 2014, Baker et al., 2014, 

Hansen et al., 2015), which have demonstrated that resting FC is definitively not static but 

shows a specific spatio-temporal structure, which is neglected when considering solely the 

static FC computed as an average over the whole recording time. Indeed, the so-called FCD 

(FC dynamics) allows for a better characterization of the data and a more accurate constraint 

on the model. We will show that the maximal richness of the MEG FCD is present around the 

carrier frequency of 10-16 Hz, in the same range where static band-limited amplitude 

correlations are known to be maximal in electrophysiological data (Brookes et al., 2011b, 

Hipp and Siegel, 2015, Siems et al., 2016).  

Considering the whole-brain model with a single frequency generator in each brain area, we 

obtain the best fit with the empirical MEG data when the oscillation frequency is tuned at 

12Hz. However, when multiple frequency generators are placed at each local brain area, we 

find the model largely outperforms the single-frequency case, leading to an improved fit of 

the spatio-temporal structure of on-going MEG data across all frequency bands. 

 

2 Methods 

2.1 Participants 

The scanning of healthy participants was approved by the internal research board at the 

Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Denmark. The 

study was performed in accordance with the Declaration of Helsinki ethical principles for 

medical research and ethics approval was granted by the Research Ethics Committee of the 

Central Denmark Region (De Videnskabsetiske Komitéer for Region Midtjylland) (Ref 1-10-

72-252-13).  
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Sixteen participants with an average age of 24.75 (SD 2.54; 11 male, 5 female) were recruited 

through the online recruitment system at Aarhus University. Before inclusion into the study 

all participants received written and oral information about the entire study. All participants 

signed informed consent after receiving the information again on the first visit before any 

further screening and testing was completed. Participants were excluded if they suffered from 

psychiatric or neurological disorders or symptoms or had a history thereof. All participants 

were scanned on two separate days where the MEG data was acquired on the first day and the 

DTI data was acquired during the second visit. 

 

2.2 MEG data collection and pre-processing  

Empirical resting-state MEG (rs-MEG) data were acquired using a 306 channel Elekta 

Neuromag TRIUX system (Elekta Neuromag, Helsinki, Finland) located in a magnetically 

shielded room at the CFIN at Aarhus University Hospital, Denmark. All data were recorded 

at a sampling rate of 1000 Hz with an analogue filtering of 0.1–330 Hz. Approximately five 

minutes of resting-state was collected for each participant. 

Before data collection, a three-dimensional digitizer (Polhemus Fastrak, Colchester, VT, 

USA) was used to record the participant's head shape relative to the position of four 

headcoils, with respect to three anatomical landmarks, which could be registered on the MRI 

scan (the nasion, and the left and right preauricular points). A structural MRI scan for each 

participant was acquired during a separate session during which DTI data were collected as 

well. The position of the headcoils was tracked during the entire recording using continuous 

head position identification (cHPI), providing information on the exact head position within 

the MEG scanner. This allows for accurate movement correction at a later stage during data 

analysis.  

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was 

downsampled from 1000 Hz to 250 Hz using MaxFilter and converted to SPM8 format. 

Using an in-house-built data viewer channels with excessive noise levels were marked and 

excluded from the following signal space separation. To attenuate interference originating 

outside of the scalp, signal space separation was applied to each data set using MaxFilter, 

applying its temporal extension as introduced in Taulu and Simola (2006). Data was once 

again converted to SPM8 format and remaining noisy segment and channels were excluded 

from further analysis, once again through visual inspection. In order to identify and remove 
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signal originating from mains interference, ocular- and cardiac activity, as well as other non-

neuronal interference each data set was then submitted to Blind Source Separation by 

temporal Independent Component Analysis (ICA), a tool that has been shown effective at 

separating artefactual signals from MEG sensor data (Mantini et al., 2011). Following 

Mantini et al. (2011) we used the FastICA algorithm (Hyvarinen and Oja, 2000, Vigario et 

al., 2000) as implemented in the FastICA toolbox for MATLAB 

(http://research.ics.aalto.fi/ica/fastica/). Each independent component (IC) was represented by 

an independent time-course and a mixing matrix describing each of the MEG sensors 

contribution to the given IC. Prior to ICA gradiometers and magnetometers were normalised 

by their respective minimum eigenvalues. The dimensionality of the ICA was set to 62. We 

used the following 4 criteria to identify artefactual ICs: i) if the spectrogram of the IC had a 

global maximum at 50 Hz and was of low kurtosis (<0.4) the IC was flagged as mains 

interference, ii) if the squared of the IC time course and the concomitantly acquired EOG 

correlated by more than 0.15, the IC was flagged as ocular interference, iii) if the squared of 

the IC time course and the concomitantly acquired ECG correlated by more than 0.15, the IC 

was flagged as cardiac interference, and iv) if the kurtosis of the IC time course was higher 

than 20 the IC was flagged as non-neural activity. This resulted in an average of ~ 3 rejected 

ICs across all data sets. Specifically, the artefactual ICs were removed by subtracting the 

contribution and the sensor data recomposed into its original channel dimensionality by the 

use of the SPM8 function spm_eeg_montage, where the montage-matrix, M, was estimated 

for each data set like the following: 

  

 � � �I � �����	
����
��

�

 

 

where I is the identity matrix of dimensionality [number of channels x number of samples], 

X+ is the pseudoinverse of the data matrix X [number of channels x number of samples] 

computed using an order of 62, Sa(t) represents the time courses of the artefactual ICs, and Aa 

[number of artefactual ICs x number of samples] their corresponding mixing matrices 

[number of channels x number of artefactual ICs]. Superscript T denotes the matrix 

transpose. The resulting de-noised sensor data was then used for further processing.  

 

2.3 MEG data in Source Space 

A scalar implementation of the LCMV beamformer was applied to estimate the source level 
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activity of the MEG sensor data at each brain area (Van Veen et al., 1997, Sekihara et al., 

2001, Woolrich et al., 2011). We used the widely-used and freely available AAL template 

(Tzourio-Mazoyer et al., 2002) to parcellate the brain into 90 non-cerebellar regions in line 

with previous studies of resting-state MEG data (Cabral et al., 2014b, Hindriks et al., 2015, 

Brookes et al., 2016). Note however that, although this anatomy-derived parcellation serves 

for the purpose of the current work, it is unlikely to perform as well as a function-derived 

parcellation involving PCA (Baker et al., 2014, Colclough et al., 2015). 

For each individual subject, a structural T1 MRI scan was collected for the purpose of co-

registration of the MEG data and the AAL parcellation template. The acquisition parameters 

for the T1 scan were: voxel size = 1 mm3; reconstructed matrix size 256x256; echo time (TE) 

of 3.8 ms and repetition time (TR) of 2300 ms. Each individual T1-weighted MR scans was 

co-registered to the standard MNI template brain through an affine transformation and further 

referenced to the space of the MEG sensors by use of the Polhemus head shape data and the 

three fiducial points. An overlapping-spheres forward model was computed, representing the 

MNI-co-registered anatomy as a simplified geometric model using a basis set of spherical 

harmonic volumes (Huang et al., 1999). One of the advantages of beamformers over other 

source-reconstruction strategies is that it reconstructs sources at any given location, 

independent from sources at other locations. Since we were interested in locating source 

activity at the AAL brain areas, we directed the beamformer to the center-of-gravity 

coordinates of the 90 non-cerebellar AAL areas as in Cabral et al. (2014b). The beamformer 

was applied to the sensor data band-pass filtered between 2-40 Hz, where the two sensor 

modalities (magnetometers and planar gradiometers) were combined by normalising them by 

the mean of their respective eigenvalues. The estimation of the data covariance matrix, 

necessary for the beamformer reconstruction, was regularised using the top 62 (minus 

number of rejected ICs) principal components. This yielded, for each subject, a [90 x number 

of samples] source-space data matrix, representing the spontaneous activity at the 90 AAL 

areas in the 2-40 Hz frequency range. 

 

2.4 DTI data collection and Structural Connectivity 

Two DTI datasets were acquired for each subject with opposite phase encoding directions. 

For the DTI data acquisition the following parameters were used: TR = 9000 ms, TE = 84 ms, 

flip angle = 90˚, reconstructed matrix size of 106x106, voxel size of 1.98x1.98 mm with slice 

thickness of 2 mm and a bandwidth of 1745 Hz/Px. Furthermore, the data were collected with 
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62 optimal nonlinear diffusion gradient directions at b=1500 s/mm2. Approximately one non-

diffusion weighted image (b=0) was acquired for every 10 diffusion-weighted images. 

Additionally, for the first acquisition we used an anterior to posterior phase encoding 

direction and the second acquisition was performed in the opposite direction.  

The construction of the structural connectivity matrix (SC) followed the methodology from 

Cabral et al. (2012). Briefly, the regions defined using the AAL template (Tzourio-Mazoyer 

et al., 2002) were warped from MNI space to the diffusion MRI native space using the FLIRT 

tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) (Collins et al., 1994). 

Secondly, the connections between regions were estimated using probabilistic tractography 

with default parameters of the FSL diffusion toolbox (Fdt). The local probability distribution 

of fibre direction at each voxel was estimated following Behrens et al. (2003) and the 

probtrackx tool in Fdt was used for the automatic estimation of crossing fibres within each 

voxel (Behrens et al., 2007). 

The connectivity probability from a seed voxel i to another voxel j was defined as the 

proportion of fibres passing through voxel i that reach voxel j using a sampling of 5000 

streamlines per voxel (Behrens et al., 2007). This was extended from the voxel level to the 

region level, such that in an AAL region i, the connectivity probability Pij from region i to 

region j is calculated as the proportion of sampled fibres in all voxels in region i that reach 

any voxel in region j. For each brain region, the connectivity probability to each of the other 

89 regions within the AAL was calculated using in-house Perl scripts. As directionality of 

connections cannot be determined based on diffusion MRI, the undirected connectivity 

probability between regions i and j was defined as the average between Pij and Pji. This 

undirected connectivity was considered as a measure of the structural connectivity Cij=Cji, 

resulting in a 90x90 symmetric weighted matrix C representing the network organization of 

each individual brain. A group averaged structural connectivity matrix <C> was obtained by 

averaging across all 16 healthy participants. 

 

2.5 Whole-Brain Model 

The whole-brain model consists of 90 coupled brain areas (nodes) defined according to the 

AAL parcellation scheme referred to above. We assumed that the local dynamics at the node 

level can be properly approximated to the normal form of a Hopf bifurcation (also known as 

Landau-Stuart Oscillator), in which all elements within a system (here, all neurons within a 

brain area) can be in an asynchronous noisy state below a given threshold, a, or display 
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coherent oscillations above that threshold (see Figure 1 for an illustration). This is the 

canonical model for studying the transition from noisy to oscillatory dynamics from applied 

bifurcation theory (Kuznetsov, 1998). Recently, Freyer et al. (2011, 2012) have nicely shown 

the usefulness, richness and generality of this type of model for describing EEG dynamics at 

the local node level. Here, we focus on how those local noisy oscillators interact through the 

anatomical network to generate spontaneous spatio-temporally structured fluctuations. Within 

this model, each node j of the network was modelled by a normal Hopf bifurcation with a 

fundamental frequency ff =ω/2π equal for all nodes as: 

���

��
� ���� � ��� � 	��

�	
 �  �����                      (1) 

where 

�� � ������ � �� � ���                                          (2)  

Where ηj(t) is additive Gaussian noise with standard deviation β. Inserting equation (2) in 

equation (1) and separating the real part in equation (3) and the imaginary part in equation (4) 

we obtain: 

���

��
� ��� � ��

� � ��
�
�� � ���� �  �����            (3) 

�	�

��
� ��� � ��

� � ��
�
�� � ���� �  �����            (4) 

The global dynamics of the whole-brain model results from the mutual interactions of local 

nodes coupled through the underlying anatomical connectivity. The structural matrix Cij 

denotes the density of fibres between cortical areas i and j as extracted from the DTI-based 

tractography, averaged across the 10 subjects. Thus, the whole-brain dynamics was defined 

by the following set of coupled equations: 

���

��
� ��� � ��

� � ��
�
�� � ���� �  � ∑ ������ � ��� �� �����        (5) 

�	�

��
� ��� � ��

� � ��
�
�� � ���� �  � ∑ ������ � ��� �� �����        (6) 

where xj is the simulated MEG signal of each node j. Each node j has a supercritical 

bifurcation at aj=0, such that for aj<0 the node is in a stable fixed point at (xj,yj)=(0,0) and is 

represented by neuronal noise (corresponding to the asynchronous firing of neurons), whereas 

for aj>0 the system switches to a pure oscillatory state (corresponding to the synchronized 

firing of neurons at a fundamental frequency ff =ω/2π). When the system is operating near 

the bifurcation (a=0) in the presence of noise, noisy fluctuations may induce temporary 

excursions to the oscillatory regime. During such excursions, the local node will display the 

temporary emergence of oscillations at the fundamental frequency ff. Importantly, regions 
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receiving correlated input are more prone to generate oscillations simultaneously, leading to 

correlated envelopes of carrier oscillations around ff. Since we are specifically interested in 

investigating such type of mechanism, we considered all nodes to be operating in the critical 

regime, i.e. aj=0 for all nodes. G is a global scaling factor (global conductivity parameter 

scaling equally all synaptic connections) and serves as the control parameter to find the 

optimal dynamical working region where the simulations maximally fit the empirical data. In 

order to fall in the same range of G as in previous studies (Deco et al., 2016), the maximum 

value of Cij was set to 1 and multiplied by a scaling factor of α=0.2 as C=α*C/max(C(:)). 

This procedure only rescales the arbitrary units of the coupling strength G (which we varied 

between 0 and 1) and of the standard deviation of additive Gaussian noise (which was set to 

β=0.02) without affecting the overall model results. 

Regarding the fundamental frequency at which brain areas oscillate, we explored a range of 

frequencies between 1 and 30Hz. The selection of frequencies was purely phenomenological, 

with the intention of verifying if Hopf bifurcation models could reproduce the envelope 

correlations detected in resting-state MEG studies, which are maximal for carrier oscillations 

between 8 and 20Hz (Brookes et al., 2011b, Hipp et al., 2012). Actually, it is known that 

neural masses mostly resonate in the gamma-frequency range (>30Hz), whereas slower 

cortical rhythms (<30Hz) are currently believed to arise from thalamo-cortical interactions 

(Buzsaki, 2006, Palva and Palva, 2007, Engel et al., 2013). Irrespective of their genesis, 

empirical evidence shows that the latter emerge spontaneously in the cortex and in a 

correlated fashion during rest. Following this evidence, we model their emergence as a 

transition to the oscillatory state with a Hopf bifurcation model.  

For the single-frequency model, simulations were performed for a range of fundamental 

frequencies ff=1:2:29Hz with ff equal for all brain areas. Simulations were subsequently run 

with the selected optimal frequency ff=12Hz. In order to simulate a multi-frequency model, 

we computed simulations with ff=4,8,12,16,20,24,28 Hz (as in the single-frequency case), 

with homogeneous coupling G for all fundamental frequencies, and analysed each simulation 

in the corresponding carrier frequency band (see Figure 3). All simulations were run for a 

duration of 3200 seconds, which corresponds to the total duration of the MEG recordings 

from the 16 subjects. Since time delays do not contribute for this specific mechanism and the 

envelope fluctuations are intrinsically slow, we have assumed instantaneous transmission 

between nodes to reduce the complexity of the simulations. 
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2.6 Frequency-specific Amplitude Envelope 

Following recent developments in the analysis of spontaneous MEG data, we focused our 

analysis on the amplitude envelopes of distinct carrier oscillations, considering the 

narrowbands [fcarrier-2, fcarrier+2 Hz] with fcarrier=4:2:28 Hz) (see Figure 1) (Brookes et al., 

2011a, Cabral et al., 2014b). Note that the power of an oscillation is proportional to its 

squared amplitude, so this is comparable to using the band-limited power (BLP) of the MEG 

signals. To obtain the amplitude envelopes, first the source-reconstructed MEG signals (or 

simulated data) were band-pass filtered within the narrowbands [f-2,f+2 Hz] and the 

instantaneous amplitude of each narrowband signal was calculated using the Hilbert 

transform. The Hilbert transform represents a narrowband signal, s(t), in the time domain as a 

rotating vector with an instantaneous phase, φ(t), and an instantaneous amplitude, A(t) such 

that ���� � ����cos ������. Further, we consider solely the ultra-slow fluctuations of the 

amplitude envelope A(t) by low-pass filtering at 0.2 Hz as this is known to maximize 

meaningful resting-state FC in MEG studies (Brookes et al., 2011a, Hipp et al., 2012). 

Indeed, Hipp and colleagues (2012) have shown that, the slower the envelope component, the 

higher the envelope correlation between distant, yet functionally related, brain areas. This 

slow component of the envelopes of each brain node at a given carrier frequency is the signal 

used in subsequent analysis of temporal correlations and phase dynamics (Figure 2). 
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Figure 1 – Data processing pipeline. MEG data: The broad-band MEG sensor signals are beamformed into source space 
to the centre-of-gravity locations of 90 brain areas defined in the AAL template. The signal is bandpass-filtered in narrow 
carrier frequency bands and the corresponding amplitude envelopes are computed using the Hilbert transform. Model: 
Structural connectivity (SC) between the 90 AAL brain areas is computed from DTI-based tractography. Each entry SC(n,p) 
contains the average proportion of sampled fibres in region n that reach region p. The local dynamics of each brain area is 
modelled using the normal form of a Hopf bifurcation at the critical point between a quiescent state a (represented by noise) 
and the emergence of oscillations (which occur at a predefined fundamental frequency). The simulated data is subsequently 
bandpass-filtered in narrow carrier frequency bands and the corresponding envelopes are computed in the same way as the 
empirical MEG data. 

2.7 Envelope FC  

The Envelope FC was defined as the matrix of Pearson’s correlations of the slow components 

of the amplitude envelopes of MEG signals at a given carrier frequency over the whole 

acquisition time (see Figure 2). For each carrier frequency band, the Envelope FC matrices 

were averaged across participants, in line with previous resting-state Envelope FC studies 

(Cabral et al., 2014b, Brookes et al., 2016).  

 

2.8 Metastability 

In order to analyse the envelope connectivity dynamics in the phase domain, we first 

calculated the instantaneous phase of the envelopes of each brain area at each carrier 

frequency band using the Hilbert transform (see Figure 2) (Glerean et al., 2012). We refer to 
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metastability as a measure of the variability of phase configurations as a function of time, i.e. 

how the global synchronization between brain areas fluctuates across time (Shanahan, 2010, 

Wildie and Shanahan, 2012, Cabral et al., 2014b). Thus, we measured the metastability as the 

standard deviation of the Kuramoto order parameter, which is defined by the following 

equation: 

 

����� �∑ ��������
��	 � 	⁄         (7) 

 

where φk(t) is the instantaneous phase of the narrowband envelope at node k. The Kuramoto 

order parameter measures the global level of synchronization of the ensemble of n oscillating 

signals. Under complete independence, the n phases are uniformly distributed and thus R is 

nearly zero, whereas R=1 if all phases are equal (full synchronization). We computed the 

metastability of the empirical MEG and simulated signals at each carrier frequency using the 

Hilbert-derived phases of the slow envelope fluctuations. 

 

2.9 Coherence Connectivity Dynamics (CCD) 

In order to characterize the time-dependency of the envelope correlations, we estimated a 

frequency-specific version of the FCD matrix (Hansen et al., 2015) that we call Coherence 

Connectivity Dynamics (CCD) (see Figure 2). The CCD is constructed following these steps: 

1) Calculate the instantaneous phase of the envelopes of each brain area at each carrier 

frequency band; 2) Compute a vector V(t) representing the instantaneous coherence state, 

containing the cosine of the absolute phase difference between all undirected pairs of nodes; 

3) Calculate the CCD which is a time-versus-time symmetric matrix where the (t1, t2) entry is 

defined by the cosine similarity (i.e. normalised vector product) between the instantaneous 

coherence vectors at times t1 and t2. Epochs of stable coherence states are reflected as blocks 

around the CCD diagonal. The histogram of CCD values contains valuable information about 

the time-dependencies of envelope phase dynamics in empirical data and was used as the 

most sensitive measure to fit with the model. At each carrier frequency band, the upper 

triangular elements of the empirical CCD matrices (over all participants and sessions) were 

computed and their distribution was compared with the distribution of simulated CCD values 

(for each value of G) using the Kolmogorov-Smirnov distance (KS-distance), which 

quantifies the maximal difference between the two cumulative distribution functions (see 

Figure 2). As such, the KS-distance serves as a fitting function to minimize the differences 
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between the real and simulated CCD histograms. 

 
Figure 2 – Data analysis pipeline – Top - The analysis is performed separately for each frequency band, starting with the 
low-pass filtered (<0.2Hz) envelopes of both pre-processed and source-reconstructed MEG signals and simulated model 
data. The Envelope FC is the Pearson’s correlation between the low-pass filtered envelopes from all pairs of brain areas. For 
the phase analysis, we apply the Hilbert transform to the envelope and obtain the Envelope Phase at each instant of time. 
Bottom left panel - Instantaneous phase synchronization R(t) is calculated using the Kuramoto Order Parameter and its 
variability is used as a measure of the system’s Metastability. The dynamical working point of the model is adjusted in 
order to approximate the metastability observed in resting-state MEG data. Bottom right panel - To obtain the matrix of 
Coherence Connectivity Dynamics (CCD) we first calculate the Coherence state V(t), which is a vector with the 
instantaneous phase coherence between all pairs of nodes. The cosine similarity between V(t1) and V(t2) is reported in 
CCD(t1,t2), providing a picture of the evolution of coherence states over time. The distribution of values in the upper 
triangular part of CCD the matrix is compared between empirical and model experiments using the Kolmogorov-Smirnov 
Distance, in order to search for the optimal model parameters that generate a Phase coherence dynamics similar to the one 
observed in MEG data from healthy subjects at rest.  

3 Results 

In order to emulate the global characteristics of spontaneous whole-brain dynamics observed 

in empirical MEG data from a group of healthy humans we used a whole-brain model linking 

the underlying anatomical structural connectivity (derived from DTI tractography) with the 

local dynamics of each brain area. The spatial and temporal structures of spontaneous MEG 

fluctuations were characterized focusing on three observables: 1) the Envelope FC; 2) the 

Coherence Connectivity Dynamics (CCD); and 3) the metastability index. The Envelope FC 

describes the Pearson’s correlations of the envelopes between different brain areas over the 
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entire recording time. The CCD describes the temporal evolution of envelope coherence 

states. The metastability characterizes the richness of the dynamical repertoire by means of 

the variability of the global level of synchronization between envelopes (see Methods for 

details). These three measures were calculated for each carrier frequency considered in this 

study: fcarrier=4:2:28 Hz in windows [fcarrier-2 Hz, fcarrier+2 Hz]. We performed the same 

analysis on both empirical and model data. Figure 1 sketches the general processing pipeline. 

Figure 2 describes the analysis pipeline for computing the three measures, namely the 

Envelope FC, the CCD and the metastability. 

 

 
Figure 3 – Illustration of the two different modelling approaches considered. A – In the single-frequency model, only 

one fundamental oscillation frequency (ff), identical for all 90 brain areas, is considered at a time. The output is filtered in 

narrow carrier frequency bands (fcarrier) and compared with empirical data. B – In the multi-frequency model, each brain area 

generates rhythms in different fundamental frequencies. Whole-brain simulations are performed independently for each 

fundamental frequency (as in the single-frequency model). The simulated signals at each fundamental frequency are then 

filtered only in the corresponding carrier frequency band. As such, the Envelope FC matrices from each carrier band are 

originated by a different set of Hopf-bifurcation models located in each brain area. 

3.1 Single-frequency model 

As a first step, we started by evaluating the performance of the classical model, considering 

only one fundamental oscillation frequency at a time, identical for all brain areas, varying ff 

between 1 and 29 Hz with increments of 2Hz (See Figure 3A). For each fundamental 

frequency considered, we analysed the resulting simulations in all carrier frequency bands. In 

Figure 4A we show the mean FC and the metastability of empirical resting-state MEG 

activity as a function of the carrier frequency band [f-2 Hz, f+2 Hz]. We find that correlations 

are stronger and the level of synchrony fluctuates more for envelopes of carrier oscillations 

between 10 and 16Hz. That particular range of carrier frequencies was already found to 

maximize inter-area envelope correlations in a number of MEG resting-state studies (Brookes 
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et al., 2011a, Hipp et al., 2012, Cabral et al., 2014b), and we extend those results here for the 

second order statistics, i.e. for the degree of richness in the exploration of the dynamical 

repertoire given by the metastability index. 

In Figure 4B, we calculate the same measures but for each fundamental frequency assumed in 

the classical Hopf model (y-axis) as a function of the carrier frequencies (x-axis). The global 

coupling of the model was initially set to G=0.5, which falls in the optimal range where the 

simulations best replicate the empirical measures, as we will show in Figure 5. From the 

comparison between simulations and experimental results, we find that the most suitable 

fundamental frequency lies between 11 and 13Hz. Setting oscillations in the model in that 

frequency range, the mean FC and the metastability peak between 10-14Hz, quantitatively 

reproducing the respective values observed in the empirical MEG data. 

 

 
Figure 4 – Finding the optimal fundamental frequency for the single-frequency model. A – Properties from resting-state 
MEG data that we aim to reproduce with the model: (Left) Mean value of the envelope FC matrices at each carrier frequency 
(c.c. = correlation coefficient). The envelope correlations are stronger for 10-14Hz carrier oscillations. (Right) The 
metastability - measured as the standard deviation of the order parameter, σ(o.p), of envelope phases - has a broad peak 
between 10 and 16Hz. B – Results obtained from the single-frequency model with a range of fundamental frequencies (y-
axis) to compare with the empirical data. The red dashed-lines serve as visual guidelines to match the peaks from panel A 
with the simulated values in panel B. We find that, using a fundamental frequency between 11 and 13Hz, the simulated 
signals show a peak in mean envelope FC (Left) and metastability (Right) for same range of carrier frequencies observed 
empirically. As such, ff=12Hz was selected as the optimal fundamental frequency for the single-frequency model. 

Selecting an optimal fundamental frequency of 12 Hz, we then explored the level of fitting of 
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the three measurements: FC, CCD and metastability, in all carrier frequencies, as a function 

of the global coupling parameter G of the model (Figure 5). To define the optimal coupling 

value, we considered the 3 observables but focused mainly in minimizing the Kolmogorov-

Smirnov distance between the empirical and simulated CCD histograms, which capture the 

time-dependencies of the envelope fluctuations, a feature of high sensitivity in the model. 

Actually, the correlation between empirical and simulated FC matrices, which is a traditional 

fitting measure used in most resting-state models, does not capture the temporal dimension 

and can be high for a broad range of G. Moreover, the metastability only captures the 

intensity of coherence fluctuations without informing about the time-scales at which these 

occur. As such, we chose to optimize G such that the temporal dynamics in the model best 

fits the empirical data in the range between 8 and 16Hz, where resting-state MEG has shown 

more meaningful envelope FC. As can be seen in Figure 5, this occurs for 0.4<G<0.6, so we 

chose G=0.5. 

 

 
Figure 5 – Optimizing the global coupling strength G for the single-frequency model with ff=12Hz. (Left) Correlation 

coefficient (c.c.) between the empirical and simulated Envelope FC matrices at each carrier frequency as a function of the 

global coupling strength G. (Middle) Kolmogorov-Smirnov (KS) distance between the empirical and simulated CCD 

histograms at each carrier frequency as a function of the global coupling G. (Right) Index of metastability (measured as the 

standard deviation of the order parameter, σ(o.p), of the simulated signals at each carrier frequency, as a function of the 

global coupling G. The red dashed-lines serve as visual guides to highlight the range of optimal coupling strength.  

An example of the simulated data with ff = 12 Hz and G=0.5 is shown in Figure 6 for two 

representative brain areas. When the simulated signals are bandpass-filtered between 10-

14Hz, we find that the amplitude envelope fluctuates over time. At a global level, we find 

that the mean amplitude of the bandpass-filtered signals over all brain areas correlates 

strongly with the zero-lag phase synchrony of the underlying carrier oscillations (cc=0.77), as 

shown in Figure 6C.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/084103doi: bioRxiv preprint 

https://doi.org/10.1101/084103
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

 
Figure 6 – Simulated signal in two brain areas before and after band-pass filtering. A and B – (Top) Simulated signal 
obtained with the Hopf model with ff = 12 Hz and G=0.5. (Bottom) The same signal bandpass filtered between 10 and 14 Hz 
(blue) with the corresponding amplitude envelope obtained using the Hilbert transform (red). Plots are shown for 10 seconds 
of simulations and for two randomly selected seeds, the left Frontal Inferior Orbital area (A) and the left Inferior Parietal 
area (B). C – The phase of the 10-14Hz band-pass filtered signals was obtained for each brain area using the Hilbert 
transform and the global synchrony degree was estimated using the Kuramoto Order Parameter. Overall, the synchrony 
degree (blue) correlates strongly with the mean amplitude (red) of 10-14 Hz oscillations (cc=0.77). 

The performance of the single-frequency model with fundamental frequency ff=12 Hz and 

coupling strength G=0.5 is shown in Figure 7 in comparison with empirical MEG data. The 

panel (A) plots the correlation between the empirical and simulated Envelope FCs and the 

Kolmogorov-Smirnov distance between the empirical and simulated CCD histograms, both 

as a function of the carrier frequency. The single-frequency Hopf model is clearly able to 

achieve a good fit for the limited -but most relevant (see Figure 4A)- range of carrier 

frequencies between 10 and 14Hz. The same happens with the metastability (Figure 7B). 

However, the performance of the model decreases as the difference between the fundamental 

frequency and the carrier frequency increases. In order to visualize the similarity between 
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simulations (with ff=12Hz, G=0.5) and empirical resting-state data for the carrier band 

centred at fcarrier=12Hz, we report in Figure 7C the corresponding Envelope FC matrices, the 

CCD matrices, CCD distributions and the evolution of the Envelope Synchronization over 

time (defined in equation 7). Both empirical and simulated CCD matrices show a 

checkerboard pattern, which is indicative of time-dependencies, i.e, the coherence between 

envelopes (CC) is not constant over time but instead alternates between periods of increased 

temporal similarities (lasting up to several seconds) with periods of incoherence. Similar 

checkerboard patterns have been reported by Hansen et al. (2015) in FCD matrices, where the 

correlation matrices of BOLD signals were compared over sliding-windows. The evidence of 

temporal dependencies is complemented by the long-tailed shape of the CCD distributions. If 

the patterns of CC were constant over time, all CCD values would be shifted to 1. On the 

other hand, if CC states were unrelated over time, the CCD distributions would be shifted to 

zero. Instead, we find a peak at relatively low values (corresponding to the periods of weak 

temporal similarities) together with a long tail towards high CCD values, indicating the 

existence of periods of high similarity between CC states. Moreover, as can be seen in the 

right plot, the synchrony degree of envelope phases fluctuates strongly over time (i.e. high 

metastability) meaning that envelopes synchronize and desynchronize over time. In the model 

(bottom), a similar temporal dynamics of envelope connectivity is achieved for G=0.5, where 

interactions between brain areas through the structural connectome in the presence of noise 

lead to temporary excursions to the oscillatory state. Constant transitions in and out of the 

oscillatory state induce correlated envelope fluctuations of 12Hz oscillations between 

structurally connected brain areas (as seen in the envelope FC matrix). Over time, we observe 

similar fluctuations in the synchrony degree as observed in the experimental data. However, 

although the single-frequency model is a good candidate to explain the dynamics occurring in 

the specific frequency range around the fundamental frequency (here for the carrier bands 8-

12Hz, 10-14Hz and 12-16Hz), it fails to reproduce the dynamics when we consider slower or 

faster carrier oscillations, as can be seen by the increased distance between CCD histograms 

(A), the decreased Envelope FC fitting (A) and the lower metastability (B), indicating the 

absence of metastable coherent states in other frequency ranges.  
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Figure 7 – Performance of the single-frequency model with ff=12Hz and G=0.5. A – (Blue) Correlation between the 
envelope FC matrices (upper triangular part only) obtained with the single-frequency model and from resting-state MEG 
data as a function of the carrier frequency. (Red) Kolmogorov-Smirnov distance between the histograms of the values in the 
upper triangular part of the CCD matrices obtained from empirical data and with the model. B – Index of Metastability, 
measured as the coherence variability of envelope phases. C – Example from a single-subject MEG recording (top) and from 
simulations with the single-frequency model with ff=12Hz and G=0.5 (bottom) of the Envelope FC matrices (c.c = 
correlation coefficient), the CCD matrices distributions (c.s. = cosine similarity) and temporal evolution of the Envelope 
Phase Synchronization (Order Parameter) for the carrier frequency fcarrier=12. The CCD matrices are shown only for 50 
seconds for a better illustration of the checkerboard effect, indicative of time-dependencies, similarly to what is obtained in 
fMRI studies of Functional Connectivity Dynamics (Hansen et al., 2015).  

3.2 Multi-frequency model 

Considering that the brain operates at multiple frequency levels and has the capacity to 

generate oscillations in a broad range of frequencies within a brain area, a multi-frequency 

model may be formulated, as sketched in Figure 3 (right). In this framework, spontaneously 

generated oscillations interact in the structural network, giving rise to structured amplitude 

envelopes with fluctuating phase coherence (i.e. metastability) in all frequency ranges.  

Previously, in Figure 4B, we observed that a shift in the fundamental frequency of the Hopf 

model led to an associated shift in the frequency at which the envelopes correlate the most 

and where the corresponding phase coherence fluctuated the most. Moreover, as shown in 

Figure 5, the scaling of the coupling strength G allows fine-tuning the amount of 

metastability and the associated dynamics of Phase coherence states (as captured by the CCD 
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histograms). This suggests that a multi-Hopf model would consequently be able to describe 

the FC and metastability equally well in the whole range of carrier frequencies. In order to 

show this, we simulated a multi-frequency model using the fundamental frequencies 4, 8, 12, 

16, 20, 24 and 28 Hz in parallel. For all fundamental frequencies, we considered the same 

value of global coupling G=0.5. In Figure 8A and B we show that now all the three fitting 

measures are similarly good across the whole range of carrier frequencies considered, namely 

the correlation between simulated and empirical Envelope FCs is kept high above 0.45, the 

Kolmogorov-Smirnov distance between CCD histograms is always shorter than 0.2 and the 

metastability profile is similar to the empirical one, with a peak at 12 Hz. 

Finally, in Figure 8C, we show the empirical and simulated envelope FC matrices for the 

range of non-overlapping carrier bands considered. The empirical envelope FC matrices (top) 

are spatially structured across the whole range of carrier frequencies considered, with some 

pairs of brain areas displaying stronger envelope correlations than others. In the current 

model, the main source of correlated input driving the simultaneous emergence of oscillations 

is the structural connectivity matrix C, obtained from DTI-based tractography. Considering 

the single-frequency model with ff=12Hz (middle) we find that the envelope FC matrix is 

shaped by C for the carrier band centred at the fundamental frequency of 12Hz, with some 

structure appearing in the neighbour bands around 8 and 16Hz. However, when the carrier 

frequency band is more distant from the fundamental frequency, the envelope FC matrices 

appear totally random and the correlation with empirical matrices decreases considerably (as 

shown in Figure 8A). On the other hand, considering the multi-frequency model, correlated 

envelope fluctuations appear in each frequency band resulting in structured envelope FC 

matrices across the frequency spectrum (bottom). Since in each frequency layer the nodes are 

coupled according to the same structural connectivity matrix C (which shapes the envelope 

correlations) the FC matrices are similar across the frequency spectrum, only varying the 

intensity of the correlations according to the global coupling G. In fact, for the current model 

to form frequency-specific functional networks, a different structural network should be 

considered at each frequency layer, with loss of biophysical realism. Additionally, if the 

structural connectivity was randomized, the FC matrices would consequently appear 

randomized and the correlation with the empirical FCs would drop drastically. 

In the current model, and for a phenomenological proof of concept, we considered only two 

extreme scenarios. However, including a suitable number of optimized frequencies would not 

only increase the performance with regards to the single-frequency model but also make it 
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more realistically plausible than the multi-frequency model. For instance, considering only 

two natural frequencies corresponding to typically observed alpha and beta peaks, most of the 

CCD variance and envelope FC structure would be replicated in the frequency range where 

maximal metastability is observed in real MEG recordings. 

 

 
Figure 8 – Performance of the multi-frequency model and comparison between Envelope FCs across modalities.  A - 
Correlation between simulated and empirical Envelope FCs (Blue) is kept high above 0.45 across all carrier frequencies and 
the Kolmogorov-Smirnov (KS) distance between CCD histograms remains low (<0.2). B - The metastability profile is 
similar to the empirical one across the spectrum of carrier frequencies, with a peak around 12 Hz. C - Envelope FC matrices 
obtained from empirical MEG data (top) and from simulations with the single-frequency model (middle, ff=12Hz) and the 
multi-frequency model (bottom) for the range of non-overlapping carrier bands considered. 

4 Discussion 

Over the last decade, a number of whole-brain network models have been used to investigate 

the mechanisms underlying resting-state activity observed with fMRI, proposing different 

scenarios for the origin of structured BOLD-signal fluctuations. However, due to its intrinsic 

limitations, fMRI provides only a narrow picture of the complex dynamics governing brain 

activity at rest. Recent MEG observations have revealed meaningful envelope correlations of 

band-limited signals, imposing novel constraints to consider in whole-brain models of 

spontaneous activity. 

Following the expanding trend focusing on the envelope dynamics of band-limited carrier 

oscillations, we extract the envelopes from resting-state MEG signals on multiple carrier 
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frequency bands and analyse not only their correlation maps across the brain (Envelope FC) 

but also explore new grounds by considering the coherence of envelope phases over time (i.e. 

the metastability) and explore time-dependencies using a measure of coherence connectivity 

dynamics (CCD). Using a computational model, we test two mechanistic scenarios for the 

origin of spatio-temporally organized envelope fluctuations of narrow-band carrier 

oscillations observed in resting-state MEG signals: one scenario where brain areas only 

resonate at a single oscillatory frequency, and another where brain areas resonate in parallel 

at multiple different frequencies. 

 

4.1 Empirical evidence from resting-state MEG  

Looking at the MEG data from healthy subjects at rest, we find that the envelopes appear 

more strongly correlated for carrier waves between 10-16Hz, corroborating previous findings 

(Brookes et al., 2011a, Brookes et al., 2011b, Hipp et al., 2012, Cabral et al., 2014b). 

Moreover, we find that the coherence of envelope phases fluctuates strongly for the same 

range of carrier waves, which is indicative of metastability in the system. This reveals a rich 

dynamical regime, in which the envelope phases are neither fully synchronized nor 

completely incoherent over time, but fluctuate between states of partial synchronization that 

exist in the dynamical repertoire of the system. In addition, considering the CCD, we find that 

the patterns of envelope coherence replicate over time, with a long-tailed distribution of CCD 

values. These three observables are used to constrain the models in order to identify the 

optimal working point at which the brain is most likely to operate during rest.   

 

4.2 Models and mechanisms of resting-state MEG FC 

Despite the empirical evidence of frequency-specific envelope FC, the mechanism at the 

genesis of this phenomenon remains unclear. A successful model of resting-state MEG data 

must generate frequency-specific envelope FC, where a given pair of brain areas (or nodes in 

the model) display correlated increases and decreases of power in specific carrier frequencies. 

Whole-brain network models - as the one presented herein - serve as ‘toy models’ to test 

different mechanistic scenarios where similar dynamical behaviours may be obtained with a 

reduced set of coupled dynamical equations. One way to validate the models is to quantify 

their fit with empirical data, for instance, by comparing the empirical and simulated 

frequency-specific FC matrices. Yet, comparing two models based on their quantitative fit of 

empirical data is not necessarily conclusive. For instance, even if the Hopf model reaches a 
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fit of cc=0.5 and the Kuramoto reaches only a fit of cc=0.4 (Cabral et al., 2014), the main 

difference between the models does not rely on their quantitative performance in fitting the 

envelope FC, but rather on the fact that they are built on different assumptions. 

In the model proposed in Cabral et al. (2014), local oscillations were restricted to the gamma-

frequency range (i.e. with homogeneous frequencies at 40Hz). When coupled in the brain 

network, these gamma-band oscillators can temporarily synchronize with other brain areas at 

slower delay-dependent network frequencies falling in the alpha- and beta-frequency ranges 

(with a peak around 16Hz). This mechanism of metastable synchronization occurs in a 

critical working point where the system spontaneously switches between two regimes: one 

where the nodes oscillate at their fundamental frequency at 40Hz, and another where nodes 

synchronize with their neighbours at collective delay-dependent frequencies. However, this 

model builds on the assumption that brain areas are constantly engaged in self-sustained 

oscillations and their behaviour can be described by the Kuramoto model of coupled 

oscillators with time-delays. As such, it remains a theoretical scenario that needs further 

validation from experimental neurophysiological studies and/or from more detailed and 

biophysically realistic computational models. 

In the model proposed herein, a brain area may be in a quiescent state and only engage in 

limit-cycle oscillations if the input is sufficiently strong to cross a supercritical bifurcation, as 

modelled by the normal form of a Hopf bifurcation. When embedded in a neuroanatomical 

network model, the input received from neighbouring areas modulates the amplitude of the 

oscillations. Since no mechanism of frequency reduction is implicit in this model, oscillations 

must be explicitly tuned in the alpha- and beta-frequency ranges, such that their power is 

modulated by the interactions in the neuroanatomical network. This builds on the assumption 

that sufficiently large brain areas may resonate at fundamental frequencies below the gamma-

frequency range (note that gamma is so far considered the main resonant frequency of neural 

masses according to electrophysiological (Buhl et al., 1998) and theoretical studies (Brunel 

and Wang, 2003)). In addition, whether brain areas can resonate in parallel at a range of 

different frequencies – as assumed in the multi-frequency model – remains a purely 

conceptual scenario that requires further validation from the experimental/theoretical side. 

Yet, it serves to test a theoretical prediction before its empirical validation, forging new paths 

to investigate frequency-specific FC via computational models. 

Importantly, rather than competing against each other for an optimal quantitative fit of MEG 

data, these modelling works are part of a collaborative effort to investigate the complex 
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mechanisms underlying resting-state activity on multiple time-scales. Addressing the problem 

from different phenomenological perspectives, each model brings insightful information, 

irrespective of its individual flaws. In the complexity of the brain, it is not unlikely that the 

different mechanisms coexist and interplay at different levels, so these studies should be seen 

as complementary rather than exclusive, exploring new grounds that will eventually serve 

further experimental and computational studies. For instance, brain areas may not only 

resonate at multiple fundamental frequencies as proposed herein, but may additionally 

synchronize at myriad delay-dependent network frequencies if delays are considered. 

 

4.3 Single-frequency Hopf Model 

Following the line of previous whole-brain network models with locally-generated 

oscillations, we first considered a scenario where each brain area could generate oscillations 

in only one fundamental frequency. We tested a range of different fundamental frequencies 

and compared the results with the empirical data. We found that the best fit was obtained 

when the fundamental frequency matched the carrier frequency displaying the richest 

envelope dynamics in empirical data, namely 12 Hz. In this scenario, the amplitude of 12 Hz 

oscillations is modulated by the input received through the structural connectome. Areas 

belonging to a more densely coupled community receive correlated input and hence are more 

likely to display correlated amplitude envelopes. For this reason, we obtained a good fit of 

the envelope FC matrix for carrier bands around 12Hz. In addition, states of coherent 

envelopes (high synchrony) alternate with less coherent states, giving rise to strong 

fluctuations in the synchrony degree, similarly to what is observed in empirical MEG data. 

From the CCD analysis, we find similar time-dependencies because the patterns of envelope 

coherence (highly shaped by the structural connectivity) replicate over time. These results 

show that the complex envelope dynamics observed in resting-state MEG can be the 

signature of a relatively simple biophysical phenomenon where brain areas, composed of 

naturally excitable cortical tissue, are operating at the threshold of excitability. Although the 

model nicely fits the empirical observations in the most prominent frequency band, our 

results show that a single Hopf-model with an optimized fundamental frequency is not 

sufficient to explain the envelope dynamics in the remaining carrier frequency bands. 

 

4.4 Multi-Frequency Hopf Model 

To account for the limitations of the single-frequency model, we tested a conceptual model 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted February 14, 2017. ; https://doi.org/10.1101/084103doi: bioRxiv preprint 

https://doi.org/10.1101/084103
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

 26

where each brain area could resonate simultaneously and independently at a range of 

fundamental frequencies. In more detail, each brain area consisted of several Hopf bifurcation 

models each with a different fundamental frequency. For each independent frequency layer, 

the nodes were coupled through the same structural connectivity (like in the single-frequency 

case). The selection of frequencies was purely phenomenological and, although it did not 

intend to match the peaks of the power spectrum typically found in resting-state recordings, it 

included values in the range of frequencies typically considered as resting-state carrier 

frequencies, namely the alpha and the beta bands (Hipp et al., 2012, Engel et al., 2013). This 

hypothetical scenario is supported by the fact that each brain area has complex internal and 

external connectivity patterns which may not unlikely resonate at a broad range of 

frequencies rather than a single one. Although the generative mechanisms of gamma-band 

oscillations have been subject of extensive study both in vivo, in vitro (Buhl et al., 1998) and 

through computational models (Brunel and Wang, 2003), one cannot neglect the clear 

evidence of oscillations in other frequency ranges (Berger and Gloor, 1969, Mantini et al., 

2007, He et al., 2008, Scholvinck et al., 2010, Magri et al., 2012, Tagliazucchi et al., 2012, 

Keller et al., 2013), either arising (like gamma) from internal connectivity within a neural 

mass (Brunel and Wang, 2003), or from thalamo-cortical connectivity (Lopes da Silva et al., 

1997), or even from delay and network-dependent frequencies defined by the large-scale 

neuroanatomical wiring structure (Cabral et al., 2014b). 

As shown here, considering multiple rhythms within a brain area improved the performance 

of the model across the frequency spectrum. We had no intention to select an optimal number 

of frequencies, but rather to mimic a scenario where brain areas resonate at multiple 

fundamental frequencies in parallel, irrespective of their underlying generative mechanism. 

Recently, Hipp and colleagues (2015) found that a broad range of frequencies (2-128Hz) is 

implicated in resting-state functional connectivity, with different cortico-cortical connections 

being associated to distinct carrier frequencies. In the current implementation of the multi-

frequency Hopf model, the same SC matrix shapes envelope correlations in all frequency 

layers. As such, little diversity of envelope FC matrices is obtained between frequencies, in 

contrast with what is observed in the empirical data (Hipp and Siegel, 2015). One way of 

overcoming this is to adjust the likelyhood that an area will resonate at each frequency by 

tuning the bifurcation parameter of each area aj for each fundamental frequency (e.g. 

informed by empirical MEG data). Importantly, what we learn from this model is that, unless 

delay-dependent network mechanisms generate more frequencies in the system (as in Cabral 
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et al., 2014), multiple independent rhythm generators must be incorporated in future whole-

brain network models in order to investigate the properties observed in resting-state MEG 

recordings at different frequency levels. 

 

4.5 Cross-Frequency Interactions 

In the multi-frequency model, we assumed no cross-frequency interactions. Actually, whether 

or not there is long-range coupling between different frequency bands in the brain remains 

under debate (Canolty and Knight, 2010, Engel et al., 2013, Aru et al., 2015). Indeed, even in 

the cases where experimental evidence of cross-frequency coupling is reported in the 

literature, either at the amplitude-to-amplitude (Furl et al., 2014, Brookes et al., 2016) or 

phase-to-amplitude level (Florin and Baillet, 2015), one cannot exclude the hypothesis that 

correlations between bands are generated by common biophysical processes unrelated to 

direct coupling or just by methodological pitfalls (Aru et al., 2015). Moreover, whilst there is 

extensive knowledge about the physiological mechanisms responsible for different frequency 

components (Buzsaki, 2006), not much is known about the cellular and network mechanisms 

of the interactions between these components (Canolty and Knight, 2010). Indeed, in order to 

validate the hypothesis of cross-frequency coupling in the brain, a biophysical theory needs to 

be put forward as to how a neuron or an ensemble of neurons physically implements the 

coupling. For example, Pastoll et al. (2013) have proposed a biophysical explanation to 

account for the theta-to-gamma (phase-to-amplitude) correlations, where the low frequency 

oscillation reflects periodic fluctuations of the membrane potential and thus excitability, 

which in turn gate the occurrence of rhythmic gamma oscillations. Yet, in the absence of 

proof to the contrary, assuming no cross-frequency interactions remains a plausible 

hypothetical scenario. 

Considering no cross-frequency coupling at the generative level allows for an analogy with 

what is observed in networks of electromagnetic waves or radio waves. Indeed, frequency-

division multiplexing is commonly used to transmit multiple independent signals over 

different non-overlapping carrier frequency bands (channels) via cables or optical fibres. In 

addition, this technique enables bidirectional communications over one strand of fibre, as 

well as multiplication of capacity (Weinstein and Ebert, 1971, Akam and Kullmann, 2014). 

As we show here, considering multiple uncoupled frequency generators at each brain area 

allows communication through independent frequency channels all sharing a common wiring 

structure of white matter pathways. 
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4.6 Amplitude vs Phase Coupling Modes 

In this work, we focused in the amplitude coupling of MEG signals. This type of functional 

connectivity, also known as narrow-band envelope correlation or band-limited power 

modulation, operates on ultra-slow time-scales and has revealed meaningful resting-state 

networks similar to the ones observed in fMRI. Following the historical development of 

resting-state models, we focused on the genesis of slow amplitude modulations and neglected 

the faster interactions at the phase level. However, to understand long-range communication 

between brain areas requires deriving a complete picture of connectivity across coupling 

modes, including phase-to-phase, amplitude-to-amplitude and even phase-to-amplitude 

coupling (Engel et al., 2013). The model we propose here has the potential to be extended 

and optimized to serve as a tool to explore this multi-modal connectivity structure. 

Importantly, to focus on phase interactions rather than amplitude correlations, propagation 

times should be included in the model to account for non-negligible time-delays between 

distant brain areas. 
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