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MSMBuilder is a software package for building statistical models of high-dimensional time-series
data. It is designed with a particular focus on the analysis of atomistic simulations of biomolec-
ular dynamics such as protein folding and conformational change. MSMBuilder is named for
its ability to construct Markov State Models (MSMs), a class of models that has gained favor
among computational biophysicists. In addition to both well-established and newer MSM meth-
ods, the package includes complementary algorithms for understanding time-series data such as
hidden Markov models (HMMs) and time-structure based independent component analysis (tICA).
MSMBuilder boasts an easy to use command-line interface, as well as clear and consistent ab-
stractions through its Python API (application programming interface). MSMBuilder is developed
with careful consideration for compatibility with the broader machine-learning community by fol-
lowing the design of scikit-learn. The package is used primarily by practitioners of molecular
dynamics but is just as applicable to other computational or experimental time-series measurements.
http://msmbuilder.org

I. INTRODUCTION

Molecular dynamics (MD) is a powerful probe into
atomistic dynamics. Recent advances in technology (spe-
cialized hardware [1] or commodity GPUs [2]) and strate-
gies (massively distributed architectures [3–5]) enable
simulations to reach larger size and longer timescales.
Increasing quantities of raw data require novel and so-
phisticated analysis techniques [6]. Markov state mod-
els (MSMs) have gained favor for drawing interpretable
conclusions from time-series data [6–9]. Briefly, MSMs
model dynamic systems using a set of discrete states and
pairwise transition rates. From these models, the re-
searcher can compute observables of interest and make
predictions. These models are statistically rigorous and
easy to interpret. Furthermore, MSMs are able to stitch
together many independent simulation runs, allowing re-
searchers to fully exploit distributed computing.

The idea of describing a system by its states and rates
is natural for chemists and biologists, but the estima-
tion of states and rates from finite data (perhaps molec-
ular dynamics) is not obvious. From the introduction
of MSMs to the biophysics community, algorithmic im-
provements for constructing MSMs and computing ob-
servables have been the focus of intense study. The prac-
tical implementation of these algorithms has spawned
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several historical packages for MSM construction [10–12].
Each of these packages was tied strongly to the best prac-
tices in MSM construction of the time. Due to the fast-
moving research around MSMs, software re-writes were
common [13, 14].

We introduce MSMBuilder 3, a community-driven,
open source software package for constructing MSMs.
MSMBuilder offers a curated selection of MSM con-
struction algorithms based on modern advances in the
field. MSMBuilder is implemented in the Python pro-
gramming language with performance-critical compo-
nents written in C. It exposes an extensible API modeled
after that of scikit-learn. The modular design ensures
MSMBuilder 3 is adaptable to future improvements in
MSM construction. The package can be invoked directly
from Python or via the command line.

Through two instructive examples, we showcase the
capabilities of MSMBuilder. In the first, we use
MSMBuilder to analyze a biological system of interest
from a dataset composed of more than 20,000 trajecto-
ries. This example builds a single MSM using meth-
ods unavailable in previous tools. Due to rapid ad-
vances in MSM methods, a variety of modeling choices
are now available to researchers. In the second exam-
ple, we demonstrate how MSMBuilder’s implementation
of scoring functionals can be used to choose among these
methods.
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FIG. 1. Data transformations and their dimensional-
ity. Markov state models (MSMs) partition dynamical data
into a set of states and estimate rates between them. A typical
pipeline for state definition consists of a series of transforma-
tions (indexed by circled numbers) between representations
of the data. Each step projects a higher dimensional repre-
sentation onto a lower dimensional representation. The ap-
proximate dimension of each representation is reported below
the representation name. Although not traditionally thought
of as a dimensionality reduction, clustering (step 3) reduces
each frame to a single integer cluster label.

II. INSTRUCTIVE EXAMPLES

A. Constructing an MSM

MSMBuilder allows rapid analysis of large molecular
dynamics datasets. In this example, we construct an
MSM of a kinase molecule. Kinases are critical enzymes
that control cellular pathways. Malfunctions of kinases
have been linked to many different cancers [15]. Here,
we use MSMBuilder to study the c-Src kinase, a regu-
lator of cellular growth [16], and demonstrate that the
resulting MSM can capture activation dynamics. Under-
standing the activation process reveals atomistic, kinetic,
and thermodynamic insights into the protein’s conforma-
tional heterogeneity, which can help design better thera-
peutics.

Broadly, the procedure for constructing an MSM is to
define a set of states and then estimate transition rates
among those states. Before beginning model construc-
tion, researchers must obtain time-series data they wish
to model. Usually, this is the output of a molecular dy-
namics engine (MSMBuilder supports nearly every MD
trajectory file format [17]), but it could also be experi-
mental time-series measurements. For this example, we
use a previously-generated MD dataset of the c-Src ki-
nase, publicly available from the Stanford Digital Repos-

1 feat = AlphaAngleFeaturizer(sincos=True)

2 ds = dataset('trajectories/*.lh5')

3 alphas = feat.fit_transform(ds)

4

5 tica = tICA(lag_time=500, n_components=10)

6 ticas = tica.fit_transform(alphas)

7

8 kmeans = MiniBatchKMeans(n_clusters=200)

9 assignments = kmeans.fit_transform(ticas)

10

11 msm = ContinuousTimeMSM(lag_time=400,

12 ergodic_cutoff='on')

13 msm.fit(assignments)

14 dump(msm, 'msm.pickl')

FIG. 2. Sample MSM code. MSMBuilder balances a pow-
erful API (application programming interface) with ease of
use. A sample workflow is shown here using the Python
API. Following the successful model of the broadly-applicable
scikit-learn package, each modelling step is represented
by an estimator object which operates on the data. Here,
the AlphaAngleFeaturizer transforms raw coordinates into
α angles. The output of this transformation is fed into the
tICA dimensionality reduction, MiniBatchKMeans clustering
algorithm, and finally into the ContinuousTimeMSM model.
MSMBuilder provides a litany of utility functions for dealing
with large molecular dynamics datasets for I/O. While this ex-
ample shows the Python API, MSMBuilder is fully functional
from the command line with an intuitive 1-to-1 correspon-
dence between Python estimator objects and command-line
commands.

itory (SDR) 1.
The first step of model construction is to transform

the raw Cartesian coordinates into vector features that
are invariant to translation and rotation (fig. 1, step
1). Here, we project our trajectory frames onto the
dihedral angles created by each set of four consecu-
tive alpha carbons (α angles) [18]. This reduces the
dimensionality of the data from 12,693 Cartesian co-
ordinates to 518 features. The appropriate featuriza-
tion depends on the particular system under study (see
section II B). MSMBuilder offers a collection of fea-
turization strategies with a unified interface. Popu-
lar features include backbone and side chain dihedrals
(through the DihedralFeaturizer class), heavy atom or
Cα contact distances (ContactFeaturizer), distance of
reciprocal inter-atomic distances (DRIDFeaturizer) [19],
and root mean squared deviation to a set of structures
(RMSDFeaturizer). There are additional utilities for con-
catenation of multiple choices of features and feature scal-
ing.

The second step in MSM construction projects struc-
tural features onto a lower-dimensional subspace (fig. 1,

1 Available here: https://goo.gl/LLchMT. For simulation details,
see Shukla et al. [16].
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FIG. 3. c-Src kinase MSM. MSMBuilder constructs in-
terpretable models from large datasets. This figure shows
a 2D-histogram for the Src kinase from tICA-MSM analysis
projected onto the dominant modes of a tICA model (a). A
simple macrostate model of the dynamics shows the presence
of an intermediate state I1 connecting the inactive and active
states (b). The arrow thickness corresponds to the rate of
transitions. The model indicates that the active state (red)
is the most stable state followed by the inactive and interme-
diate states (gray and blue, resp.). The analysis discovers a
coordinate (the first tIC) between the known active and in-
active conformations. Representative structures are selected
from MSM states and show the conformational differences be-
tween the two basins. The unfolding of the activation loop
(red helix) forms a catalytically active Src capable of initi-
ating and regulating downstream signaling pathways (c and
d).

step 2). This improves the statistical qualities of sub-
sequent steps, but may discard important information
if the projection is not carefully chosen. Time-structure
based independent component analysis (tICA) finds a set
of “slow” (high autocorrelation) coordinates. In practice,
this dimensionality reduction has proven to be very use-
ful for capturing slow, biophysical conformational change
[20, 21]. In this example, we reduce the dimensional-
ity of our kinase data from 518 dihedrals to 5 tICA
coordinates. MSMBuilder includes support for similar
algorithms (SparseTICA [22]) as well as general mani-
fold learning algorithms like principal components anal-
ysis (PCA), SparsePCA, or MiniBatchSparsePCA. Prior to
2013, this step was not available for model construction.
Accordingly, software available at the time could not eas-
ily be extended to accomodate tICA intermediate pro-
cessing. The design of MSMBuilder 3 permits arbitrary
addition, subtraction, and re-ordering of data transfor-

mation steps.

Next, we define the states of our MSM by grouping
conformations which interconvert rapidly (fig. 1, step 3).
For the c-Src kinase, we employ the MiniBatchKMeans
[23] clustering algorithm to parition our data into 200 mi-
crostates. We note that our data has been reduced from
5 tICA coordinates to one integer cluster label per frame.
The prior dimensionality reduction permits using off-the-
shelf clustering algorithms. Accordingly, MSMBuilder
supports K-Means like clustering algorithms (KCenters,
KMedoids, and MiniBatchKMedoids), and hierarchical
clustering.

With our states defined, we proceed to estimate the
rates among them. As the final model construction step,
we learn a continuous-time MSM [24] from our labeled
trajectories. We have chosen to use a continuous-time
MSM to directly estimate transition rates; we could have
alternatively built a traditional MSM (to estimate tran-
sition probabilities) or a hidden Markov model (HMM).
We direct interested readers to a more thorough appli-
cation of HMM modelling to the c-Src dataset [25]. The
relevant Python code for constructing this MSM is shown
in fig. 2. Complete, executable code is available in the SI
as an IPython [26] notebook.

To draw interpretable conclusions from our data via
Markov modelling, we query the model. For c-Src, we
use MSMBuilder to relate model behavior to biological
function. We present a log-scaled 2D histogram (fig. 3a)
of the trajectories projected onto the two dominant slow
processes, or “tICs”, from our tICA model. We then
sample the centroids of states (shown as pink and black
stars) in low free energy regions to visualize representa-
tive configurations in three dimensions [27] (fig. 3c and
d). The dominant tIC (x-axis) highly correlates with
the activation of the kinase. Kinase activation requires
the unfolding of the activation loop (red) and an inward
swing of the catalytic helix (C-helix). The inward ro-
tation of the helix coincides with the switching of hy-
drogen bonding pair from Glu-Arg to Glu-Lys (licorice).
We investigate the dynamics between the active, inactive,
and intermediate macrostates by applying Robust Perron
Clustering Analysis (PCCA+) to our MSM. PCCA+ is a
spectral clustering method, which lumps MSM states into
an arbitrary number of metastable macrostates, facilitat-
ing qualitative analysis of rates and populations among
biologically-relevant macrostates [28]. The rates among
three macrostates are shown by the thickness of arrows
in fig. 3b. Further options of querying the model (not
shown here but available in MSMBuilder) include com-
putation of relaxation timescales, transition path theory
analysis [29–31], and generation of synthetic trajectories
for visual inspection.

The assortment of modeling options such as the choice
of featurizer, the use of dimensionality reduction, and the
selection of the clustering algorithm, along with any as-
sociated internal parameter choices, presents the modeler
with a motley of modeling decisions and tunable param-
eters. In the next section, we show how a scoring metric
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for MSMs can provide the modeler with a unbiased pro-
tocol for determining which parameters are suitable given
a set of MD trajectories.

B. Selecting Hyperparameters

1 features = FeatureSelector([
2 ('diheds', DihedralFeaturizer(types=['phi', 'psi']),
3 ('contacts', ContactFeaturizer(scheme='ca'))])
4 pipeline = Pipeline([
5 ('featurizer', features),
6 ('tica', tICA(n_components=2)),
7 ('cluster', MiniBatchKMeans(n_clusters=250)),
8 ('msm', MarkovStateModel(n_timescales=3))])
9 ss = ShuffleSplit(28, n_iter=50, test_size=0.5)

10 cv = GridSearchCV(pipeline, cv=ss, param_grid={
11 'featurizer__which_feat': ['contacts', 'diheds'],
12 'tica__lag_time': [1, 4, 16, 64]})
13 cv.fit(trajs)

FIG. 4. Sample GMRQ code. MSMBuilder seamlessly in-
teroperates with the broader Python ecosystem. In this code
sample, we use scikit-learn for algorithm-agnostic data pro-
cessing and MSMBuilder for biophyics-oriented time-series al-
gorithms with the goal of selecting model hyperparameters.
Our analysis pipeline is similar to that of section II A but
with a choice of features (between dihedrals and contact dis-
tances) and tica lag times (among 1, 4, 16, and 64 steps).
The ShuffleSplit cross-validation scheme runs 50 iterations
of equal partitioning of the 28 trajectories between train and
test sets, and we perform a full grid-search over parameter
choices. We can plot the distribution of scores vs. parame-
ters as in fig. 5.

Historically, the heuristic choice of hyperparameters—
choices of protocol—rendered MSM construction as much
of an art as a science. It is clear from section II A
that there is an abundance of algorithms available in
MSMBuilder. In this instructive example, we use a scor-
ing functional to select the best models.

Nüske et al. [32] introduced a variational principle that
formalized the definition of a “good” MSM. In keep-
ing with inspiration from the broader machine learning
community, MSMBuilder extends this formalism in the
context of cross-validation through the work of McGib-
bon and Pande [33]. The resulting generalized matrix
Rayleigh quotient (GMRQ) score offers an objective way
to pick the best model (i.e. the appropriate modeling
choices) from the given data. Briefly, the GMRQ mea-
sures the ability of a model to capture the slowest dy-
namics of a system. The variational principle states that
approximating the full phase space by discrete states will
always yield dynamics that are too fast. The GMRQ
score is a summation of the leading eigenvalues of the
model and therefore provides a measure of “slow-ness”.
A higher score means the model is closer to the varia-
tional bound, and therefore should be prefered over lower
scoring models.
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FIG. 5. GMRQ parameter selection. MSMBuilder offers
robust machinery for selecting hyperparameters that cannot
a priori be learned from the data. Here, we perform shuffle-
split cross validation over choices of featurization and tICA
lag time. Historically, these parameters were chosen heuris-
tically. With the advent of the GMRQ score and its imple-
mentation in MSMBuidler, we can choose these parameters
in a statistically rigorous way. Here, we plot the distribution
of scores for each set of of model parameters. Note that a
higher score is generally an indication of a more predictive
model. In this example, we find that featurization with dihe-
dral angles at a lag time of 4 steps has highest median score
and recommend this hyperparameter set to be chosen for the
final model.

In this example, we use the GMRQ score under cross-
validation to evaluate the relative merit of enumerated
hyperparameter values when constructing a model for
the Fs peptide [34]. The relevant code in fig. 4 sets up
a choice between two structural features (dihedral angles
or contact distances) and a choice among tICA lag times.
We perform shuffle-split cross-validation by randomly as-
signing the 28 trajectories to either the training set or
test set. The MSM is learned on the training set and
scored on the test set. By concealing the training data
during scoring, cross-validation guards against overfitting
(overconfidence in excessively complex models). The tra-
jectories are re-shuffled and this process is repeated to
compute an average score for a given set of hyperparam-
eters. The scores for each of the 50 cross-validation splits
are plotted in a box plot in fig. 5. The dihedral angle fea-
turization with a lag-time of 4 steps gives the best model
in this search space. A simple grid search as performed
in this example can become intractible as the number of
hyperparameters (i.e. the dimension of the search space)
increases. We direct interested users to Osprey [35], a
tool for hyperparameter optimization with a variety of
search strategies and support for parallel computation.
Osprey interoperates with any scikit-learn estimator
including those in MSMBuilder.
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This example leverages the Pipeline, ShuffleSplit,
and GridSearchCV machinery from scikit-learn. Ad-
ditionally, MSMBuilder uses this library internally for
generic machine learning algorithms such as clustering
or PCA. We note that such general algorithms do not
need to be reinvented and re-programmed by the bio-
physics community. By delegating some development ef-
fort to this widely-used machine learning library, we en-
sure that the development of MSMBuilder is focused on
biophysical algorithms and considerations. This advan-
tage offers rapid adoption of the latest algorithms which
have demonstrated improved ability to build MSMs (e.g.
[33]) and a larger community for code maintenance and
longevity.

III. CONCLUSIONS

MSMBuilder 3 is a powerful and accessible software
package for drawing interpretable conclusions from time-
series data. We used two examples to demonstrate how
MSMBuilder can make sense of a molecular dynamics
dataset consisting of thousands of trajectories in a highly
automated and statistically robust way. In the first ex-
ample, we construct a “vanilla” MSM and show how
MSMBuilder enables the construction of interpretable
models that expose the connection between biological
function and structural dynamics. We highlight the
breadth of relevant algorithmic choices for featurization,
normalization, dimensionality reduction, clustering, and
MSM modelling. In the second instructive example, we
acknowledge that the explosion of choices in parameters
and protocol can be overwhelming. We use the GMRQ
score and off-the-shelf cross-validation machinery to do
a simple grid search over tunable parameters to evaluate
the relative merit of many MSMs built on the same MD
dataset of a small protein. Since cross-validation is not a
technique unique to biophysics, we leverage the greater
Python machine learning ecosystem for this example.

More broadly, MSMBuilder’s power and clarity is de-
rived from its integration with the machine learning com-
munity at large. Our power to focus on developing meth-
ods bespoke to biophysics and time-series analysis comes
from exploiting general-purpose algorithms implemented
by respective experts. The clarity of MSMBuilder’s API
is due in large part to the massive amount of effort and
skill put into the design of scikit-learn’s API. As dis-
tributed computing and Markov modelling continue to

become more prominent, MSMBuilder offers a sustain-
able, extensible, powerful, and easy-to-use set of Python
and command-line tools to help researchers draw mean-
ingful conclusions from their data.

IV. AVAILIBILITY

MSMBuilder documentation and installation is avail-
able at http://msmbuilder.org. The source code
is available under the open-source LGPL2.1 license
and is accessible at http://github.com/msmbuilder/
msmbuilder. The current release at time of writing is
version 3.5 [36]. Complete examples can be found as
IPython notebooks in the supporting information and at
http://github.com/msmbuilder/paper.
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tiis, and F. Noé, J. Chem. Phys. 139, 015102 (2013).

[22] R. T. McGibbon and V. S. Pande, “Identification of
simple reaction coordinates from complex dynamics,”
(2016), arXiv:1602.08776.

[23] D. Sculley, in Proceedings of the 19th international con-
ference on world wide web (Association for Computing
Machinery (ACM), 2010).

[24] R. T. McGibbon and V. S. Pande, J. Chem. Phys. 143,
034109 (2015).

[25] R. T. McGibbon, B. Ramsundar, M. M. Sultan, G. Kiss,
and V. S. Pande, in Proceedings of The 31st International
Conference on Machine Learning (2014) pp. 1197–1205.
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