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Abstract

Motivation: Long read technologies have made a revolution in de novo genome assembly by generating
contigs of size orders of magnitude more than that of short read assemblies. Although the assembly
contiguity has increased, it still does not span a chromosome or an arm of the chromosome, resulting
in an unfinished chromosome level assembly. To address this problem, we develop a scalable and
computationally efficient scaffolding method that can boost the contiguity of the assembly by a large extent
using genome wide chromatin interaction data such as Hi-C. Particularly, we demonstrate an algorithm
that uses Hi-C data for longer-range scaffolding of de novo long read genome assemblies.
Results: We tested our methods on two long read assemblies of different organisms. We compared
our method with previously developed method and show that our approach performs better in terms of
accuracy of scaffolding.
Availability: The software is available for free use and can be downloaded from here:
https://github.com/machinegun/hi-c-scaffold
Contact: jchin@pacificbiosciences.com

1 Introduction
The advent of massively parallel sequencing technologies has made
generation of billions of reads possible at a very low cost per sequenced
base. Despite the progress made in de novo assembly algorithms, the
quality of short read assemblies is far from the quality necessary for
effective further analysis due to fundamental limit- the read length is shorter
than repeat lengths for the majority of repeat classes (Nagarajan and Pop,
2009; Bresler et al., 2013). For example, a short read de novo assemblies
of human genome are highly fragmented compared to the chromosomes
of the H.sapien reference (Gnerre et al., 2011; Li et al., 2010). Thus, high
throughput sequencing technology has reached a point where increasing
the number of short reads does not significantly improve assembly quality.

Recent advances in single-molecule sequencing technologies have
provided reads almost 100 times longer than second generation methods
(Schatz et al., 2010). Most prominently, Pacific Biosciences’ single
molecule real time (SMRT®) sequencing delivers reads of lengths up to 50

Kbp (Eid et al., 2009) whereas Oxford Nanopore’s nanopore sequencing
can deliver read lengths greater than 10 Kbp (Lee et al., 2014). Such
read lengths drastically reduce the complexity caused by repeats during
the assembly process. However, these long reads suffer from low accuracy
which requires new algorithms for assembly. Despite the higher error rates,
SMRT sequencing has random error model (Koren et al., 2012; Ono et al.,
2013) due to which near perfect assembly is possible (Lam et al., 2014).
Hence by sampling the genome at sufficient coverage, SMRT sequencing
has been used to produce assemblies of unprecedented continuity (Koren
et al., 2013; Chin et al., 2013; Ribeiro et al., 2012; Berlin et al., 2015).

Various strategies have been explored to increase the continuity of de
novo genome assemblies. Some of these strategies are end sequencing of
fosmid clones (Gnerre et al., 2011), fosmid clone dilution pool sequencing
(Chinwalla et al., 2002), optical mapping (Schwartz et al., 1993; Dong
et al., 2013; Shelton et al., 2015; English et al., 2015), linked-read
sequencing (Zheng et al., 2016; Zook et al., 2016) and synthetic long
reads (McCoy et al., 2014; Koren and Phillippy, 2015; Madoui et al.,
2015). Some of the newer technologies like Hi-C use proximity ligation and
massively parallel sequencing to probe the three-dimensional structure of
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chromosomes within the nucleus, with interacting regions captured by pair-
ended reads (Lieberman-Aiden et al., 2009; Duan et al., 2010). In the data
generated by Hi-C protocol, the probability of intrachromosomal contacts
is on an average much higher than the that of interchromosomal contacts
(Burton et al., 2013; Kaplan and Dekker, 2013). Another important
property is that the probability of interaction decays rapidly with increasing
genomic distance, even regions separated by several hundred megabases
on the same chromosome are more likely to interact than the regions on
different chromosomes (Lieberman-Aiden et al., 2009).

In this work, we make use of the genome-wide chromatin interaction
data sets generated by the Hi-C protocol to linearly arrange the pre-
assembled contigs along entire chromosomes. We develop a scaffolding
tool SALSA (Simple AssembLy ScAffolder) based on a computational
method that exploits the information of genomic proximity in Hi-C data
sets for long range scaffolding of de novo genome assemblies. We tested
SALSA on human and goat genome assembly. Our method can produce
centromere to telomere scaffolds of chromosomes in most cases and
telomere to telomere scaffolds in best cases.

2 Related Work
Several efforts have been made to use Hi-C data to scaffold the ’draft stage’
short read assemblies. (Burton et al., 2013) developed a computational
approached in their tool LACHESIS that combined Hi-C data with pair
ended sequencing data to generate chromosome level scaffolds. They
used their methods to scaffold de novo assemblies of human, mouse
and Drosophilia Melanogaster. LACHESIS uses the alignment of Hi-C
reads to contigs to clusters contigs into 1 cluster per chromosome with
hierarchical clustering. It then orients and orders the contigs in each cluster
to obtain final scaffolds. One of the drawbacks of this method is that it
needs the number of clusters to be pre-specified. This can not be applied
to scaffolding contigs of genomes when the number of chromosomes
in the organisms are unknown. (Kaplan and Dekker, 2013) developed a
method for scaffolding based on statistical techniques. Their method uses
the hierarchical clustering method similar to LACHESIS, but it predicts
the number of clusters by itself. The major drawback of their method is
that they do not orient the contigs in each cluster, thereby not providing
complete information needed for scaffolding. Their method also works
with an assumption that all contigs are of the same size, which does not hold
true in the case of long read assemblies since there can be contigs which
are tens of Mb long whereas there can be shorter contigs generated by the
assembler. Since both of these methods rely on hierarchical clustering, it
is expensive to compute all vs all link scores for all the contigs thereby
causing the scalability issues. Another drawback of both methods is that
they do not provide the way to detect and correct misassemblies generated
by the assembler. If such errors are not corrected, then that would result
in erroneous scaffolds in the end and may also propagate errors across
multiple scaffolds causing misjoins.

In our work, we address the issues in the previous methods. Our
method does not need the number of clusters to be pre-specified. We also
provide an option to detect certain types of misassemblies in contigs before
scaffolding them.

3 Methods

3.1 Aligning Hi-C Reads

Hi-C reads were aligned to SMRT read assemblies using BWA (Li and
Durbin, 2009) with default parameters. Reads with mapping quality <
30, which included the reads mapped more than once were removed from
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Fig. 1. Physical coverage induced by Hi-C read pair. The solid arrows denote the read pair
and dotted line denote the gap between the reads in the pair.

further analysis. Also, only the read pairs with both reads in the pair aligned
to contigs are considered for scaffolding.

3.2 Detection of Mis-assemblies

Contigs obtained from assemblers may contain mis-assemblies (Phillippy
et al., 2008). We provide a method to detect and correct these
misassemblies similar to the one described in (Putnam et al., 2016) using
the mapping of Hi-C data to the assembled contigs. For each read pair, it’s
physical coverage is defined as the total bases spanned by the sequence of
reads and the gap between the two reads when mapped to contigs (Figure
1). We also define, per base physical coverage for each base in the contig
as the number of read pairs’ physical coverage it is part of. Using these
definitions, we compute the physical coverage for each base of all the
contigs in the assembly. The misassembly can be detected by the sudden
drop in per-base physical coverage in a contig. A particular threshold
below which if per base physical coverage falls for contiguous regions in
the genome, we call it a misassembly and break contigs at that point. To do
this efficiently, we use a variation of Kadane’s algorithm for maximum sum
subarray problem(Simon and Kadane, 1975). We find the subarray in the
array of physical coverage where coverage is consistently low compared
to the adjacent regions and use that as the signal for misassembly.

3.3 Graph Construction and Link Scoring

We use an idea similar to the string graph formulation in (Myers, 2005)
to construct the scaffold graph. The scaffold graph G(V,E,W ) consists
of nodes V which represent the end of contigs, edgs E representing the
edges implied by Hi-C read pairs between ends of two contigs and weight
function W to assign weight to each edge. The ends of each contig are
annotated by two tags, B and E where B stands for the beginning of the
contig and E stands for the end of the contig. Using this concept of node,
there are 4 types of edges in the graph, BE joining beginning of first
contig to end of second, EB joining end of the first contig to beginning of
second, BB joining beginning of the first contig to beginning of second
contig and EE joining end of the first contig to end of second (Figure 2).
Using raw counts of Hi-C read pairs shared between ends of two contigs
is not the correct way to score the edges because of length biases since
longer contigs with a large genomic distance between them tend to share
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Fig. 2. (a) Type of edges present in the scaffold graph. We consider Hi-C read pairs
originating from the end of contigs. Since a contig can be reverse complemented, there
are 4 possible links. (b) Scaffold Graph G. There are two nodes in G corresponding to each
contig. There is always an edge between ’B’ node and ’E’ nodes of same contig.

more read pairs compared to two short or one long and one short contig
with much lesser genomic distance between them. To address this issue,
we define an edge weight function in such a way that it reduces such length
biases. We define a length cutoff l and consider the read pairs mapped in
the region of length l at both ends (B andE) of contigs. Our normalization
of the edge weight is based on how many times the restriction enzyme used
in Hi-C protocol cuts the region of length l and divide the counts of read
pairs by this number. Putting all this together, the edge weight function is
expressed as:

W (E) =
links(C1, C2)

RE(C1) +RE(C2)

where C1 and C2 are the contigs yielding the edge, links(C1, C2) is
the number of hi-c links present in region of length l at the end of contigs
and RE(C1) and RE(C2) is the number of sites cut by the restriction
enzyme in region l at the end of C1 and C2. This gives us the normalized
edge weights which we use for scaffolding.

Once we calculate the edge weights, we construct graph G as follows.
We first sort all the edges in decreasing order of their weights given by
W . After this, we remove all the edges which have very low number of
read pairs shared between them which account for sequencing errors. Once
edges are sorted and filtered, we construct G according to Algorithm 1.
We greedily add edges to G only if both the nodes corresponding to the
edge are not present in G. In the end, we add edges between B and E

ends of same contigs to G which completes the graph construction. G
can contain some cycles due to the following reason: we can add an edge
between both B and E ends of two contigs (BB and EE edges) and later
add edges between B and E ends of same contigs. However, this kind
of cycle can easily be removed by removing the lower cost edge among
BB and EE edges. Once we remove cycles from G, we get final scaffold
graph which we use for further analysis (Figure 2).

3.4 Scaffold Construction

Before explaining the scaffold construction algorithm, we prove following
lemmas to understand the properties of G.

Lemma 3.1. G has no nodes with degree greater than 2.

Algorithm 1 Scaffold Graph Construction
1: procedure Construct(L) . L is the list of links sorted by their scores
2: G = () . Scaffold Graph to be returned
3: while L is not empty do
4: l is the current link
5: u, v, w = l.source,l.target, l.weight

6: if G.has_node(u) == False and G.has_node(v) ==

False then
7: G.add_edge(u, v, w)

8: L.remove(l)

9: for c ∈ C do . C is the set of all contigs
10: G.add_edge(c_B, c_E)

11: return G

Proof: While constructing G, we add edges at most twice for each
node. First when we have no edge associated to that node and second when
we add an edge between B and E ends of the contig associated with that
node. If some node has degree greater than 2, it would mean that we added
an edge to that node apart from the cases described previously , which is
a contradiction.

Lemma 3.2. Each connected component of G has exactly two nodes of
degree 1.

Proof: We know from the construction of G that G has no cycles. We
can prove this for some connected component C of G and the argument
can be applied to all connected components. Since G has no cycles, C
will have at least one node with degree 1. In the first case, suppose C has
exactly one node of degree 1. This implies that we have at least two edges
originating from all other nodes in C. It would mean that there exists at
least one node in C with a degree at least 3. This is a contradiction because
of lemma 3.1. In the second case, suppose C has more than two nodes of
degree 1. It would mean that there exists at least one node in C with degree
3. This is again a contradiction due to lemma 3.1.

Knowing these properties about G we construct scaffolds as described
in Algorithm 2. First, a threshold th is decided for a scaffold to qualify
as a seed scaffold. If a scaffold has a number of contigs greater than th, it
is marked as seed scaffold. For each connected component of G, we first
find out two nodes u and v with degree 1. We will always find such nodes
due to lemma 3.2. After this, the path connecting u and v is found in the
connecting component. Since all the nodes in the connected component
have degree either 1 or 2, there will always be just 1 path connecting u

and v. If this path has the number of contigs greater than th, we mark this
path as seed scaffold, otherwise, it is marked as the small scaffold.

Even after edge weight normalization, there can still be some length
biases resulting in the omission of smaller contigs from the seed scaffolds.
To account for this, we develop a method to insert the contigs in small
scaffolds into seed scaffolds. First, for each contig in small scaffolds,
exactly one seed scaffold is assigned to it based on the total edge weight
of the edges in the original scaffold graph connecting this contig to all
the contigs in seed scaffold. After this, each contig is tested for insertion
into its corresponding seed scaffolds in both the orientations at all possible
position. It is inserted at the position where it maximizes the total weight
of the scaffold. Once all the contigs are inserted into seed scaffolds, it
leaves us with the final scaffolds. The algorithm is sketched in Algorithm
2.

4 Dataset
For NA 12878, a human genome used in 1000 genomes project (Siva,
2008), we used the assembly generated at Icahn School of Medicine
(Genebank assembly accession GCA_001013985.1). This assembly was
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Algorithm 2 Scaffold Construction
1: procedure Get-Seed-Scaffold(G) . G is scaffold graph
2: C = Connected_Components(G)

3: S = List of seed scaffolds
4: T = List of small scaffolds
5: for c ∈ C do
6: u, v = nodes with degree 1 in c

7: path = c.find_path(u, v)
8: if path.length ≥ th then
9: S.add(path)

10: else
11: T.add(path)

12: return S, T

13: procedure Generate-Scaffold(G) . G is scaffold graph
14: S, T = Get-Seed-Scaffold(G)
15: for t ∈ T do
16: Assign seed scaffold from S for contigs in t

17: for t ∈ T do
18: for c ∈ t do . c is contig in t

19: Sc = seed scaffold of c
20: Place c on Sc so that sum of edges in of Sc is maximized

21: Return updated seed scaffolds as final scaffolds

performed using Celera Assembler (Koren et al., 2012) and had 21235
contigs with N50 of 1.55 Mb. For the scaffolding of NA 12878 assembly,
Hi-C data produced from human ESCs (hESCs) (Dixon et al., 2012) was
used. The hESC replicates 1 and 2 were used (NCBI SRA Accession:
GSM862723, GSM892306), consisting of total 734M read-pairs. For
Capra hircus genome we used the data presented in (Bickhart et al., 2016).
Capra hircus is a domestic goat of San Clemente breed. The assembly
performed using long reads with CA PBcR pipeline had contig NG50
of 4.15 Mb. These contigs were scaffolded using Irys optical mapping
data, resulting in increased scaffold size. All the sequencing data and
intermediate assemblies are publically available 1. We used Hi-C data
(NCBI SRA Accession: SRX1910977) with both contig assembly and Irys
optical map scaffolds to perform scaffolding and compared the extended
scaffolds with the scaffolds given by LACHESIS.

5 Results

5.1 Contact Probability of Hi-C data

We aligned Hi-C reads for NA12878 to GRCh38 human reference using
BWA mem (Li and Durbin, 2009) with default parameters. If both mates in
the read pair are aligned to the same chromosome, it provides an evidence
that Hi-C data gives valuable information about the intrachromosomal
contact. For each chromosome, we count how many read pair have both
mates mapped to that chromosome and how many reads have just one of the
mates mapped to that chromosome. Using this information, we compute
the probability of intrachromosomal and interchromosomal contact for
each chromosome. It can be seen from Figure 3 that the probability of
intrachromosomal contact is much higher than that of interchromosomal
contact.

To further understand the contact probability at contig level, we aligned
reads to NA12878 contigs. We also aligned contigs to GRCh38 reference
using Mummer (Delcher et al., 1999). For each contig that mapped to
chromosome 1, we calculated its average interaction frequency to contigs

1 Assemblies and sequencing data information can be found here:
https://gembox.cbcb.umd.edu/goat/index.html
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Fig. 4. The probability of contact of all the contigs in chromosome 1 to all other contigs.

Metric NA12878 Capra hircus
Number of Contigs 21235 33767

Contig N50 1.55 Mb 3.86 Mb
Number of Scaffolds 1555 127

Scaffold NG50 60.02 Mb 58.64 Mb
Total Bases 2.77 Gb 2.94 Gb

Table 1. Contig and Scaffold statistics for NA 12878 and Capra hirrus

belonging to the all other chromosomes. Figure 4 shows the box plot of the
distribution of average interaction frequency of all contigs of chromosome
1 among themselves and with the contigs in all other chromosomes. We
found that the average interaction frequency strongly separates inter from
intra-chromosomal interactions.
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5.2 Scaffolding assemblies of two genomes

We tested the effectiveness of our approach for the chromosome scale de
novo assembly of two genomes . We started with two assemblies, one for
NA 12878 with contig N50 of 1.55 Mb and the other for goat genome with
contig N50 of 4.15 Mb. After aligning Hi-C read pairs to these assemblies,
we used our algorithm to construct the scaffold graph and later to orient and
order contigs. For NA12878 assembly, it gave 1555 scaffolds with NG50
of 60.02 Mb. For Capra hircus assembly, it gave 127 scaffolds with NG50
of 68.64 Mb. Table 1 shows the statistics of the contigs and scaffolds.

5.3 Comparison with LACHESIS

To evaluate the quality of the scaffolds, we aligned NA12878 scaffolds to
human GRCh38 reference. For goat scaffolds, we aligned them to recently
published goat reference genome (BioProject PRJNA290100) (Bickhart
et al., 2016) using nucmer program (parameters : -c 1000) in MUMmer
package (Delcher et al., 1999). The quality of alignments was assessed
using dnadiff program (Phillippy et al., 2008), which evaluates the draft
assemblies by comparing with the reference genome based on a set of
metrics. We particularly focus on four metrics. First one is a number of
breakpoints which is defined as the number of alignments which are not
end to end with reference to a particular scaffold. A second metric is a
number of relocations which is the number of breaks in the alignment where
adjacent aligned sequences are in the same sequence but not the correct
order. This accounts of ordering errors in the scaffold construction. A third
metric is a number of translocations, which counts the number of breaks
in the alignment where adjacent sequences are in different chromosomes.
This accounts for the inter-chromosomal join errors in the scaffold. A
last metric is a number of inversions, which is the number of breaks in
the alignment where adjacent sequences are inverted with respect to each
other. This accounst for the orientation errors caused due to scaffolding
algorithm.

Table 2 shows the comparison of scaffolds generated by SALSA
and LACHESIS for NA12878 assembly. For the scaffolds generated by
SALSA, 80.82% bases could align to reference whereas only 40.70% bases
from the scaffolds generated by LACHESIS could align to the reference.
Although the number of bases aligned to the reference is significantly low
in LACHESIS scaffolds, the relocation, translocation and inversion errors
are much higher in LACHESIS compared to SALSA. Particularly, the
number of relocations is significantly high in LACHESIS implying that
LACHESIS performs a lot of errors in ordering contigs belonging to a
particular chromosome(Bickhart et al., 2016).

Table 3 shows the comparison of scaffolds generated by SALSA and
LACHESIS for Capra hircus assembly. In this case, both the scaffolds
have an almost similar percent of aligned bases to reference. Even in
this case, LACHESIS performs a lot of orientation and ordering errors
compared to SALSA. SALSA produces 67 and 105 orientation and
ordering errors in the scaffolds, which is significantly lesser than 374 and
439 orientation and ordering errors produced by LACHESIS. In addition
to this, SALSA produces lesser inter-chromosomal joins(213) compared
to LACHESIS(601).

Figure 5 and Figure 6 show the alignment dotplot for human and goat
scaffolds respectively when aligned to respective reference genomes. In the
case of NA12878 scaffolds, it can be seen that (Figure 5 A) the scaffolds
generated by LACHESIS are very fragmented and lack continuity. The
scaffolds generated by SALSA (Figure 5 B) are continuous, contain
lesser orientation and ordering errors and much more consistent with
the reference than LACHESIS scaffolds. Alignment dot plots for each
chromosome can be found in the supplementary material (Supplementary
Figure S1). In the case of goat scaffolds, it can be seen that although
LACHESIS produces continuous scaffolds, it incurs a lot of large scale
orientation and ordering errors (Figure 6 A). In contrast, SALSA is able

Metric SALSA LACHESIS
Number of Scaffolds 1555 23

Total Bases 2.92 Gb 2.79 Gb
% Aligned Bases 80.82% 40.70%

Breakpoints 14010 6820
Relocations 19 76

Translocations 4 9
Inversions 42 65

Table 2. Evaluation of scaffolds generated by SALSA and LACHESIS for the
human NA12878 assembly

Metric SALSA LACHESIS
Number of Scaffolds 127 990

Total Bases 2.44 Gb 2.62 Gb
% Aligned Bases 99.88% 99.85%

Breakpoints 8514 14035
Relocations 67 374

Translocations 213 601
Inversions 105 439

Table 3. Evaluation of scaffolds generated by SALSA and LACHESIS for the
Capra hircus assembly

Metric SALSA LACHESIS
Number of Scaffolds 90 596

Total Bases 2.22 Gb 2.61 Gb
NG50 46.64 Mb 87.34 Mb

% Aligned Bases 97.00% 99.91%
Breakpoints 10718 14741
Relocations 118 167

Translocations 185 407
Inversions 130 126

Table 4. Evaluation of scaffolds generated by SALSA and LACHESIS for Capra
hircus assembly generated using optical map data

to produce the continuous scaffolds with lesser amount of orientation and
ordering errors compared to LACHESIS thereby producing scaffolds that
are consistent with the reference to a large extent.

5.4 Scaffolding Optical Map Scaffolds

(Bickhart et al., 2016) also made scaffolds of goat assembly generated
using optical map data available publically. We used these scaffolds as a
starting point for our scaffolding method and did further scaffolding using
Hi-C data. The initial scaffold assembly had 1575 scaffolds with N50 of
23.08 Mb. After scaffolding Hi-C data with SALSA, it gave 90 scaffolds,
and scaffolding with LACHESIS gave 596 scaffolds. We evaluated these
scaffold using the metrics described before and the results are shown in
Table 4. It can be observed that even though the initial N50 of the input
assembly is high, LACHESIS is still prone to ordering errors compared to
SALSA. However, in this case, SALSA produced 3.17% more orientation
errors than LACHESIS. The alignment dotplots for both the scaffolds are
shown in supplementary material (Supplementary Figure S2).

6 Conclusion and Discussion
In this work, we show that genome-wide interaction data sets like Hi-C
are a good source of information to scaffold the pre-assembled contigs
into scaffolds. Since we use long read assemblies at the start which mostly
span through highly repetitive regions in the genome, we do not need to
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(A) (B)

Fig. 5. (A) The alignment dotplot of Lachesis scaffolds for NA 12878.(B) The alignment dotplot for NA12878 scaffolds generated by SALSA.

(A) (B)

Fig. 6. (A) The alignment dotplot of Lachesis scaffolds for Capra hircus.(B) The alignment dotplot for Captra hircus scaffolds generated by SALSA.

do repeat masking as previous methods and hence derive more continuous
scaffolds. We derive a weight function to normalize the scores of Hi-C links
which reduces the length biases caused by long contigs. Since long read
assemblies have non-uniform contig lengths, edge weight normalization
plays an important role in deriving correct scaffolds. We provide a method
to correct misassemblies in the starting assembly so that these errors do not
propagate through the further scaffolding process. We used string graph-
based approach along with some greedy heuristics to derive scaffolds.
We tested our methods on assemblies of two different organisms namely
human and goat. Our method showed significant improvements on the
same dataset over previously used method. Since our method does not need
the number of chromosomes to be specified apriori, it can be applied for
scaffolding the assemblies of organisms where we don’t know the number
of chromosomes beforehand. However, designing a clustering method
that clusters the contigs without knowing the actual number of desired
clusters is needed to estimate the number of chromosomes in an unknown
organism. To avoid errors in clustering, we can first orient and order the

contigs with respect to each other and cluster the resulting scaffolds as
we would have larger and more continuous parts of the genome to cluster
compared to contigs which are smaller portions of the genome. Most of the
orientation and ordering errors in our method were in the repetitive regions
near centromeres and telomeres. One potential solution to overcome this
problem is to do all pairwise alignment of contigs and trim the contigs
so that these repetitive regions are masked. However, there is a serious
computational bottleneck associated to this.

There are still several open questions. Our method needs some
parameter tuning to get good scaffolds. We plan to incorporate optimal
parameter detection at runtime so that the onus of parameter tuning is
taken away from the user of the tool. There are other chromatin interaction
datasets like Dovetail Chicago libraries (Putnam et al., 2016) developed
recently. We plan to extend our method so that it becomes generic to all
such datasets and adapts to their chromosomal contact model.
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