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Abstract: FST and kinship are key parameters often estimated in modern population genetics
studies in order to quantitatively characterize structure and relatedness. Kinship matrices have also
become a fundamental quantity used in genome-wide association studies and heritability estima-
tion. The most frequently used estimators of FST and kinship are method-of-moments estimators
whose accuracies depend strongly on the existence of simple underlying forms of structure, such as
the independent subpopulations model of non-overlapping, independently evolving subpopulations.
However, modern data sets have revealed that these simple models of structure likely do not hold in
many populations, including humans. In this work, we provide new results on the behavior of these
estimators in the presence of arbitrarily complex population structures, which results in an improved
estimation framework specifically designed for arbitrary population structures. After establishing a
framework for assessing bias and consistency of genome-wide estimators, we calculate the accuracy
of existing FST and kinship estimators under arbitrary population structures, characterizing biases
and estimation challenges unobserved under their originally assumed models of structure. We then
present our new approach, which consistently estimates kinship and FST when the minimum kinship
value in the dataset is estimated consistently. We illustrate our results using simulated genotypes
from an admixture model, constructing a one-dimensional geographic scenario that departs nontriv-
ially from the independent subpopulations model. Our simulations reveal the potential for severe
biases in estimates of existing approaches that are overcome by our new framework. This work may
significantly improve future analyses that rely on accurate kinship and FST estimates.

Note: This article is Part II of two-part manuscripts. We refer to these in the text as Part I and
Part II, respectively.
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1 Introduction

In population genetics studies, one is often interested in characterizing structure, genetic differenti-
ation, and relatedness among individuals. Two quantities often considered in this context are FST

and kinship. FST is a parameter that measures structure in a subdivided population, satisfying
FST = 0 for an unstructured population and FST = 1 if every locus has become fixed for some
allele in each subpopulation. More generally, FST is the probability that alleles drawn randomly
from a subpopulation are “identical by descent” (IBD) relative to an ancestral population [3, 4].
The kinship coefficient is a measure of relatedness between individuals defined in terms of IBD
probabilities, and it is closely related to FST [3].

This work focuses on the estimation of FST and kinship from biallelic single-nucleotide poly-
morphism (SNP) marker data. Existing estimators can be classified into parametric estimators
(methods that require a likelihood function) and non-parametric estimators (such as the method-
of-moments estimators we focus on, which only require low-order moment equations). There are
many likelihood approaches that estimate FST and kinship, but these are limited by assuming inde-
pendent subpopulations or Normal approximations for FST [5–13] or outbred individuals for kinship
[14, 15]. Additionally, more complete likelihood models such as that of [16] are underdetermined
for biallelic loci [17]. Non-parametric approaches such as those based on the method of moments
are considerably more flexible and computationally tractable [18], so they are the natural choice to
study arbitrary population structures.

The most frequently-used FST estimators are derived and justified under the “independent sub-
populations model,” in which non-overlapping subpopulations evolved independently by splitting all
at the same time from a common ancestral population. The Weir-Cockerham (WC) FST estimator
assumes subpopulations of differing sample sizes and equal per-subpopulation FST relative to the
common ancestral population [19]. The “Hudson” FST estimator [20] assumes two subpopulations
with different FST values. These FST estimators are ratio estimators derived using the method of
moments to have unbiased numerators and denominators, which gives approximately unbiased ratio
estimates when their assumptions are met [6, 19, 20]. We also evaluate BayeScan [12], which esti-
mates population-specific FST values using a Bayesian model and the Dirichlet-Multinomial likeli-
hood function—thus representing non-method-of-moments approaches—but which like the WC and
Hudson FST estimators also assumes that subpopulations are non-overlapping and evolve indepen-
dently. These FST estimators are important contributions, used widely in the field.

Kinship coefficients are now commonly calculated in population genetics studies to capture
structure and relatedness. Kinship is utilized in principal components analyses and linear-mixed
effects models to correct for structure in Genome-Wide Association Studies (GWAS) [18, 21–27] and
to estimate genome-wide heritability [28, 29]. Often absent in previous works is a clear identification
and role of the ancestral population T that sets the scale of the kinship estimates used. Omission
of T makes sense when kinship is estimated on an unstructured population (where only a few
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individual pairs are closely related; there T is the current population). Our more complete notation
brings T to the fore and highlights its key role in kinship estimation and its applications. The most
commonly-used kinship estimator [18, 24, 27–33] is also a method-of-moments estimator whose
operating characteristics are largely unknown in the presence of structure. We show in Section 4
that this popular estimator is accurate only when the average kinship is zero, which implies that
the population must be unstructured.

Recent genome-wide studies have revealed that humans and other natural populations are struc-
tured in a complex manner that break the assumptions of the above estimators. Such complex pop-
ulation structures has been observed in several large human studies, such as the Human Genome
Diversity Project [34, 35], the 1000 Genomes Project [36], Human Origins [37–39], and other con-
temporary [40–44] and archaic populations [45, 46]. We have also demonstrated, based on the work
in Part I and Part II here, that the global human population has a complex kinship matrix and
no independent subpopulations [47]. Therefore, there is a need for innovative approaches designed
for complex population structures. To this end, we reveal the operating characteristics of these
frequently-used FST and kinship estimators in the presence of arbitrary forms of structure, which
leads to a new estimation strategy for FST and kinship.

We generalized the definition of FST for arbitrary population structures in Section 3 of Part I.
Additionally, we derived connections between FST and three models: arbitrary kinship coefficients
[3, 16] in Section 3 of Part I (panel “Kinship Model” in Fig. 1), individual-specific allele frequencies
[48, 49] in Section 5 of Part I (panels “Coancestry Model” and “Coancestry in Terms of Kinship” in
Fig. 1), and admixture models [50–52] in Section 6 of Part I.

Here, we study existing FST and kinship method-of-moments estimators in models that allow for
arbitrary population structures (see Fig. 1 for an overview of the results). First, in Section 2 we ob-
tain new strong convergence results for a family of ratio estimators that includes the most common
FST and kinship estimators. Next, we calculate the convergence values of these FST (Section 3) and
kinship (Section 4) estimators under arbitrary population structures, where we find biases that are
not present under their original assumptions about structure (panels “Indep. Subpop. FST Estima-
tor” and “Existing Kinship Estimator” in Fig. 1). We characterize the limit of the standard kinship
estimator for the first time, identifying complex biases or distortions that have not been described
before (related results were independently and concurrently calculated by [53]). In Section 5 we
introduce a new approach for kinship and FST estimation for arbitrary population structures, and
demonstrate the improved performance using a simple implementation of these estimators (panel
“New Kinship Estimator” in Fig. 1). Lastly, in Section 6 we construct an admixture simulation
that does not have independent subpopulations to illustrate our theoretical findings through sim-
ulation. Elsewhere, we analyze the Human Origins and 1000 Genomes Project datasets with our
novel kinship and FST estimation approach, where we demonstrate its coherence with the African
Origins model, and illustrate the shortcomings of previous approaches in these complex data [47].
In summary, we identify a new approach for unbiased estimation of FST and kinship, and we provide
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new estimators that are nearly unbiased.

2 Assessing the accuracy of genome-wide estimators

Many FST and kinship coefficient method-of-moments estimators are ratio estimators, a general
class of estimators that tends to be biased and to have no closed-form expectation [54]. In the FST

literature, the expectation of a ratio is frequently approximated with a ratio of expectations [6, 19,
20]. Specifically, ratio estimators are often called “unbiased” if the ratio of expectations is unbiased,
even though the ratio estimator itself may be biased [54]. Here we characterize the behavior of two
ratio estimator families calculated from genome-wide data, detailing conditions where the previous
approximation is justified and providing additional criteria to assess the accuracy of such estimators.
These convergence results are the foundation of our analysis of estimators and are applied repeatedly
to the various kinship and FST estimators discussed in Sections 3 to 5.

2.1 Ratio estimators

The general problem of forming ratio estimators involves random variables ai and bi calculated from
genotypes at each locus i, such that E[ai] = Aci and E[bi] = Bci and the goal is to estimate A

B .
A and B are constants shared across loci (given by FST or ϕTjk), while ci depends on the ancestral
allele frequency pTi and varies per locus. The problem is that the single-locus estimator ai

bi
is biased,

since E
[
ai
bi

]
6= E[ai]

E[bi]
= A

B , which applies to ratio estimators in general [54]. Below we study two

estimator families that combine large numbers of loci to better estimate A
B .

Figure 1 (following page): Accuracy of FST and kinship estimators: overview of models and

results. Our analysis is based on two parallel models: the “Coancestry Model” for individual-specific allele

frequencies (πij ; Section 5 of Part I), and the “Kinship Model” for genotypes (xij ; Section 3.5 of Part I). The

“Coancestry in Terms of Kinship” panel connects kinship (ϕT
jk, f

T
j ) and coancestry (θTjk) parameters (proven

in Section 5.2 of Part I). We use these models to study the accuracy of FST and kinship method-of-moment

estimators under arbitrary population structures. The “Indep. Subpop. FST Estimator” panel shows the bias

resulting from the misapplication of FST estimators for independent subpopulations (F̂ indep
ST ) to arbitrary

structures (Section 3), as calculated under the coancestry model. The “Existing Kinship Estimator” panel

shows the bias in the standard kinship model estimator (ϕ̂T,std
jk ) and its resulting plug-in FST estimator

(F̂ std
ST ; Section 4), as calculated under the kinship model. The “New Kinship Estimator” panel presents a

new statistic Ajk that estimates kinship with a uniform bias, which together with a consistent estimator

of its minimum value (Âmin) results in our new kinship (ϕ̂T,new
jk ) and FST (F̂ new

ST ) estimators, which are

consistent under arbitrary population structure (Section 5). Note that estimation of FST from genotypes

requires individuals to be locally outbred and locally unrelated (see Sections 3.2 and 3.3 of Part I).
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E[xij |T ] = 2pTi

Cov(xij , xik|T ) = 4pTi
(
1− pTi

)
ϕT
jk

FST =

n∑

j=1

wjf
T
Lj

Kinship Model

θTjk =

{
fTj if j = k,

ϕT
jk if j 6= k.

Coancestry in Terms of Kinship

E[πij |T ] = pTi

Cov(πij , πik|T ) = pTi
(
1− pTi

)
θTjk

xij |πij ∼ Binomial(2, πij)

FST =
n∑

j=1

wjθ
T
jj

Coancestry Model

ϕ̂T,std
jk

a.s.−−−−→
m→∞

ϕT
jk − ϕ̄T

j − ϕ̄T
k + ϕ̄T

1− ϕ̄T

F̂ std
ST

a.s.−−−−→
m→∞

FST − ϕ̄T

1− ϕ̄T

Existing Kinship Estimator

Ajk
a.s.−−−−→

m→∞

(
ϕT
jk − 1

)
vT

Âmin
a.s.−−−−→

m→∞
−vT

ϕ̂T,new
jk = 1− Ajk

Âmin

a.s.−−−−→
m→∞

ϕT
jk

F̂ new
ST

a.s.−−−−→
m→∞

FST

New Kinship Estimator

F̂ indep
ST

a.s.−−−−→
m→∞

FST − 1
n−1

(
nθ̄T − FST

)

1− 1
n−1

(
nθ̄T − FST

)

Indep. Subpop. FST Estimator

1
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2.2 Convergence

The solution we recommend is the “ratio-of-means” estimator Âm

B̂m
, where Âm = 1

m

m∑
i=1

ai, and B̂m =

1
m

m∑
i=1

bi, which is common for FST estimators [6, 19, 20, 55]. Note that E
[
Âm

]
= Ac̄m and E

[
B̂m

]
=

Bc̄m, where c̄m = 1
m

m∑
i=1

ci. We will assume bounded terms (|ai|, |bi| ≤ C for some finite C), a

convergent c̄m → c, and Bc 6= 0, which are satisfied by common estimators. Given independent loci,
we prove almost sure convergence to the desired quantity (Supplementary Information, Section S1.1),

Âm

B̂m
=

1
m

m∑
i=1

ai

1
m

m∑
i=1

bi

a.s.−−−−→
m→∞

A

B
, (1)

a strong result that implies E
[
Âm

B̂m

]
→ A

B , justifying previous work [6, 19, 20]. Moreover, the

error between these expectations scales with 1
m (Supplementary Information, Section S1.2), just as

for standard ratio estimators [54]. Although real loci are not independent due to genetic linkage,
their dependence is very localized, so this estimator will perform well if the effective number of
independent loci is large.

In order to test if a given ratio-of-means estimator converges to its ratio of expectations as in
Eq. (1), the following three conditions must be met. (i) The expected values of each term ai, bi

must be calculated and shown to be of the form E[ai] = Aci and E[bi] = Bci for some A and B

shared by all loci i and some ci that may vary per locus i but must be shared by both E[ai],E[bi].
In the estimators we study, A and B are functions of IBD probabilities such as ϕTjk and FST, while
ci is a function of pTi only. (ii) The mean ci must converge to a non-zero value for infinite loci. (iii)
Both |ai|, |bi| ≤ C must be bounded for all i by some finite C (the estimators we study usually have
C = 1 or C = 4). If these conditions are satisfied, then Eq. (1) holds for independent loci and the
A and B found in the first step. See Section 3.2 for an example application of this procedure to an
FST estimator.

Another approach is the “mean-of-ratios” estimator 1
m

m∑
i=1

ai
bi
, used often to estimate kinship

coefficients [18, 24, 27–32] and FST [36]. If each ai
bi

is biased, their average across loci will also

be biased, even as m → ∞. However, if E
[
ai
bi

]
→ A

B for all loci i = 1, . . . ,m as the number of

individuals n→∞, and Var
(
ai
bi

)
is bounded, then

1

m

m∑

i=1

ai
bi

a.s.−−−−−→
n,m→∞

A

B
.

Therefore, mean-of-ratios estimators must satisfy more restrictive conditions than ratio-of-means
estimators, as well as large n (in addition to the large m needed by both estimators), to estimate
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A
B well. We do not provide a procedure to test whether a given mean-of-ratios estimator converges
as shown above.

3 FST estimation based on the independent subpopulations model

Now that we have detailed how ratio estimators may be evaluated for their accuracy, we turn
to existing estimators and assess their accuracy under arbitrary population structures. We study
the Weir-Cockerham (WC) [19] and “Hudson” [20] FST estimators, which assume the independent
subpopulations model described above. The panel “Indep. Subpop. FST Estimator” in Fig. 1 provides
an overview of our results, which we detail in this section.

3.1 The FST estimator for independent subpopulations and infinite subpopula-
tion sample sizes

TheWC and Hudson method-of-moments estimators have small sample size corrections that remark-
ably make them consistent as the number of independent loci m goes to infinity for finite numbers of
individuals. However, these small sample corrections also make the estimators unnecessarily cum-
bersome for our purposes (see Supplementary Information, Section S2 for complete formulas). In
order to illustrate clearly how these estimators behave, both under the independent subpopulations
model and for arbitrary structure, here we construct simplified versions that assume infinite sample
sizes per subpopulation (see Supplementary Information, Section S2 for details). This simplification
corresponds to eliminating statistical sampling, leaving only genetic sampling to analyze [56]. Note
that our simplified estimator nevertheless illustrates the general behavior of the WC and Hudson
estimators under arbitrary structure, and the results are equivalent to those we would obtain under
finite sample sizes of individuals. While the Hudson FST estimator compares two subpopulations
[20], we derive a new generalized “HudsonK” estimator for more than two subpopulations in Sup-
plementary Information, Section S2.3.

Under infinite subpopulation sample sizes, the allele frequencies at each locus and every sub-
population are known. Let j ∈ {1, ..., n} index subpopulations rather than individuals and πij be
the allele frequency in subpopulation j at locus i. We call the πij values “individual-specific allele
frequencies” (IAF), as has been previously done [49]. In this special case, both WC and Hud-
sonK simplify to the following FST estimator for independent subpopulations (“indep”; derived in
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Supplementary Information, Section S2):

p̂Ti =
1

n

n∑

j=1

πij , (2)

σ̂2
i =

1

n− 1

n∑

j=1

(
πij − p̂Ti

)2
, (3)

F̂ indep
ST =

m∑
i=1

σ̂2
i

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i

. (4)

The goal is to estimate FST = 1
n

n∑
j=1

θTjj , which weighs every subpopulation j equally (wj = 1
n ∀j),

under the coancestry model of Part I, which assumes the following moments for IAFs:

E[πij |T ] = pTi , (5)

Cov(πij , πik|T ) = pTi
(
1− pTi

)
θTjk. (6)

3.2 FST estimation under the independent subpopulations model

Under the independent subpopulations model θTjk = 0 for j 6= k, where T is the most recent common
ancestor (MRCA) population of the set of subpopulations. Note that the estimator in Eq. (4) can
be derived directly from Eqs. (5) and (6) and these assumptions using the method of moments
(ignoring the existence of previous FST estimators; Supplementary Information, Section S3.1). The
expectations of the two recurrent terms in Eq. (4) are

E

[
1

m

m∑

i=1

σ̂2
i

∣∣∣∣∣T
]

= p(1− p)TFST,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
∣∣∣∣∣T
]

= p(1− p)T
(

1− FST

n

)
, where

p(1− p)T =
1

m

m∑

i=1

pTi
(
1− pTi

)
.

Eliminating p(1− p)T and solving for FST in this system of equations recovers the estimator in
Eq. (4).

Before applying the convergence result in Eq. (1), we test that the three conditions listed in
Section 2 are met. Condition (i): The locus i terms are ai = σ̂2

i and bi = p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i ,

which satisfy E[ai] = Aci and E[bi] = Bci with A = FST, B = 1, and ci = pTi
(
1− pTi

)
. Condition

(ii): c̄m → c = E
[
pTi
(
1− pTi

)]
6= 0 over the pTi distribution across loci. Condition (iii): Since
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πij , p̂
T
i ∈ [0, 1], then 0 ≤ σ̂2

i ≤ 1 and 0 ≤ p̂Ti
(
1− p̂Ti

)
≤ 1

4 , and since n ≥ 2, C = 1 bounds both |ai|
and |bi|. Therefore, for independent loci,

F̂ indep
ST

a.s.−−−−→
m→∞

FST.

3.3 FST estimation under arbitrary coancestry

Now we consider applying the independent subpopulations FST estimator to dependent subpopula-
tions. The key difference is that now θTjk 6= 0 for every (j, k) will be assumed in our coancestry model
in Eqs. (5) and (6), and now T may be either the MRCA population of all individuals or a more
ancestral population. In this general setting, (j, k) may index either subpopulations or individuals.
The two terms of F̂ indep

ST now satisfy

E

[
1

m

m∑

i=1

σ̂2
i

∣∣∣∣∣T
]

= p(1− p)T
(
FST − θ̄T

) n

n− 1
,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
∣∣∣∣∣T
]

= p(1− p)T
(
1− θ̄T

)
,

where θ̄T = 1
n2

n∑
j=1

n∑
k=1

θTjk is the mean coancestry with uniform weights. There are two equations

but three unknowns: FST, θ̄T , and p(1− p)T . The independent subpopulations model satisfies
θ̄T = 1

nFST, which allows for the consistent estimation of FST. Therefore, the new unknown θ̄T

precludes consistent FST estimation without additional assumptions.
The FST estimator for independent subpopulations converges more generally to

F̂ indep
ST

a.s.−−−−→
m→∞

n
(
FST − θ̄T

)

n− 1 + FST − nθ̄T
=
FST − 1

n−1

(
nθ̄T − FST

)

1− 1
n−1

(
nθ̄T − FST

) , (7)

(the conclusion of panel “Indep. Subpop. FST Estimator” in Fig. 1), where it should be noted that
1

n− 1

(
nθ̄T − FST

)
=

1

n(n− 1)

∑

j 6=k
θTjk

is the average of all between-individual coancestry coefficients, a term that appears in a related
result for subpopulations [6]. Therefore, under arbitrary structure the independent subpopulations
estimator’s bias is due to the coancestry between individuals (or subpopulations in the traditional
setting). While the limit in Eq. (7) appears to vary depending on the choice of T , it is in fact a
constant with respect to T (proof in Supplementary Information, Section S4.1).

Since 1
nFST ≤ θ̄T ≤ FST (Supplementary Information, Section S5), this estimator has a down-

ward bias in the general setting: it is asymptotically unbiased (F̂ indep
ST

a.s.−−−−→
m→∞

FST) only when

θ̄T = 1
nFST, while bias is maximal when θ̄T = FST, where F̂ indep

ST
a.s.−−−−→

m→∞
0. For example, if

min θTjk = 0 so the MRCA population T is fixed, but n is large and θTjk ≈ FST for most pairs of
individuals, then θ̄T ≈ FST as well, and F̂ std

ST ≈ 0. Therefore, the magnitude of the bias of F̂ indep
ST is

unknown if θ̄T is unknown, and small F̂ indep
ST may arise even if FST is very large.
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3.4 Coancestry estimation as a method of moments

Since the generalized FST is given by coancestry coefficients θTjj (Eq. (13) of Part I), a new FST

estimator could be derived from estimates of θTjj . Here we attempt to define a method-of-moments
estimator for θTjk, and find an underdetermined estimation problem, just as for FST.

Given IAFs and Eqs. (5) and (6), the first and second moments that average across loci are

E

[
1

m

m∑

i=1

πij

∣∣∣∣∣T
]

= p̄T , (8)

E

[
1

m

m∑

i=1

πijπik

∣∣∣∣∣T
]

= p2
T

+ p(1− p)T θTjk, (9)

where p̄T = 1
m

m∑
i=1

pTi , p2
T

= 1
m

m∑
i=1

(
pTi
)2, and p(1− p)T is as before.

Suppose first that only θTjj are of interest. There are n estimators given by Eq. (9) with j = k,
each corresponding to an unknown θTjj . However, all these estimators share two nuisance parameters:

p̄T and p2
T
. While p̄T can be estimated from Eq. (8), there are no more equations left to estimate

p2
T
, so this system is underdetermined. The estimation problem remains underdetermined if all

n(n+1)
2 estimators in Eq. (9) are considered rather than only the j = k cases. Therefore, we cannot

estimate coancestry coefficients consistently using only the first two moments without additional
assumptions.

4 Characterizing a kinship estimator and its relationship to FST

Given the biases we see for F̂ indep
ST under arbitrary structures in Section 3.3, we now turn to the

generalized definition of FST and pursue an estimate of it. Recall from Eq. (3) of Part I that our
generalized FST is defined in terms of inbreeding coefficients, which are a special case of the kinship
coefficient:

FST =

n∑

j=1

wjf
T
Lj
.

Therefore, we will first consider estimates of kinship and inbreeding in this section. Note also that
estimating kinship is important for GWAS approaches that control for population structure [18,
21–32, 57, 58]. Lastly, kinship coefficients determine the bias of F̂ indep

ST in Eq. (7) (since coancestry
and kinship coefficients are closely related: see panel “Coancestry in Terms of Kinship” in Fig. 1).

In this section, we focus on a standard kinship method-of-moments estimator and calculate its
limit for the first time (panel “Existing Kinship Estimator” in Fig. 1). We study estimators that
use genotypes or IAFs, and construct FST estimators from their kinship estimates. We find biases
comparable to those of F̂ indep

ST (Section 3), and define unbiased FST estimators that require knowing
the mean kinship or coancestry, or its proportion relative to FST. The results of this section directly
motivate and help construct our new kinship and FST estimation approach in Section 5.
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4.1 Characterization of the standard kinship estimator

Here we analyze a standard kinship estimator that is frequently used [18, 24, 27–33]. We generalize
this estimator to use weights in estimating the ancestral allele frequencies, and we write it as a
ratio-of-means estimator due to the favorable theoretical properties of this format as detailed in
Section 2:

p̂Ti =
1

2

n∑

j=1

wjxij , (10)

ϕ̂T,stdjk =

m∑
i=1

(
xij − 2p̂Ti

) (
xik − 2p̂Ti

)

4
m∑
i=1

p̂Ti
(
1− p̂Ti

) . (11)

The estimator in Eq. (11) resembles the sample covariance estimator applied to genotypes, but cen-
ters by locus i rather than by individuals j and k, and normalizes using estimates of 4pTi

(
1− pTi

)
.

We derive Eq. (11) directly using the method of moments in Supplementary Information, Sec-

tion S3.2. The weights in Eq. (10) must satisfy wj > 0 and
n∑
j=1

wj = 1, so p̂Ti ∈ [0, 1] and

E
[
p̂Ti
∣∣T
]

= pTi .
Utilizing the following moments for genotypes (from the kinship model of Part I),

E[xij |T ] = 2pTi , (12)

Cov(xij , xik|T ) = 4pTi
(
1− pTi

)
ϕTjk, (13)

we find that Eq. (11) converges to

ϕ̂T,stdjk
a.s.−−−−→

m→∞

ϕTjk − ϕ̄Tj − ϕ̄Tk + ϕ̄T

1− ϕ̄T , (14)

where ϕ̄Tj =
n∑

k′=1

wk′ϕ
T
jk′ and ϕ̄T =

n∑
j′=1

n∑
k′=1

wj′wk′ϕ
T
j′k′ . (This is the conclusion of panel “Ex-

isting Kinship Estimator” in Fig. 1; see Supplementary Information, Section S6 for intermediate
calculations that lead to Eq. (14).) Therefore, the bias of ϕ̂T,stdjk varies per j and k. Analogous
distortions have been observed for sample covariances of genotypes [59] and were found in concur-
rent independent work [53]. The limit of ϕ̂T,stdjk in Eq. (14) is constant with respect to T (proof in
Supplementary Information, Section S4.2). Similarly, inbreeding coefficient estimates derived from
Eq. (11) converge to

f̂T,stdj = 2ϕ̂Tjj − 1
a.s.−−−−→

m→∞

fTj − 4ϕ̄Tj + 3ϕ̄T

1− ϕ̄T . (15)

The difference between the bias of ϕ̂T,stdjk for j 6= k in Eq. (14) and f̂T,stdj in Eq. (15) is visible in
the kinship estimates of Fig. 5C (the difference causes a discontinuity between the diagonal and
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off-diagonal values). The limits of the ratio-of-means versions of two more fTj estimators [29] are,
if p̂Ti uses Eq. (10),

f̂T,stdII
j = 1−

m∑
i=1

xij(2− xij)

2
m∑
i=1

p̂Ti
(
1− p̂Ti

)
a.s.−−−−→

m→∞

fTj − ϕ̄T
1− ϕ̄T ,

f̂T,stdIII
j =

m∑
i=1

x2
ij −

(
1 + 2p̂Ti

)
xij + 2

(
p̂Ti
)2

2
m∑
i=1

p̂Ti
(
1− p̂Ti

)
a.s.−−−−→

m→∞

fTj + ϕ̄T − 2ϕ̄Tj
1− ϕ̄T .

(16)

The estimators in Eqs. (11) and (16) are unbiased when p̂Ti is replaced by pTi [18, 29, 33],
and are consistent when p̂Ti is consistent [48]. Surprisingly, p̂Ti in Eq. (10) is not consistent (it
does not converge almost surely) for arbitrary population structures, which is at the root of the
bias in Eqs. (14) to (16). In particular, although p̂Ti is unbiased, its variance (see Supplementary
Information, Section S6),

Var
(
p̂Ti
∣∣T
)

= pTi
(
1− pTi

)
ϕ̄T , (17)

may be asymptotically non-zero as n → ∞, since pTi ∈ (0, 1) is fixed and limn→∞ ϕ̄
T may take on

any value in [0,1] for arbitrary population structures. Further, ϕ̄T → 0 as n → ∞ if and only if
ϕTjk = 0 for almost all pairs of individuals (j, k). These observations hold for any weights such that

wj > 0,
n∑
j=1

wj = 1. An important consequence is that the plug-in estimate of pTi
(
1− pTi

)
is biased

(Supplementary Information, Section S6),

E
[
p̂Ti
(
1− p̂Ti

)∣∣T
]

= pTi
(
1− pTi

) (
1− ϕ̄T

)
,

which is present in all estimators we have studied.

4.2 Estimation of coancestry coefficients from IAFs

Here we form a coancestry coefficient estimator analogous to Eq. (11) but using IAFs. Assuming
the moments in Eqs. (5) and (6), this estimator and its limit are

p̂Ti =

n∑

j=1

wjπij , (18)

θ̂T,stdjk =

m∑
i=1

(πij − p̂Ti )(πik − p̂Ti )

m∑
i=1

p̂Ti
(
1− p̂Ti

)
a.s.−−−−→

m→∞

θTjk − θ̄Tj − θ̄Tk + θ̄T

1− θ̄T , (19)

where θ̄Tj =
n∑
k=1

wkθ
T
jk and θ̄T =

n∑
j=1

n∑
k=1

wjwkθ
T
jk are analogous to ϕ̄Tj and ϕ̄T . Eq. (18) generalizes

Eq. (2) for arbitrary weights. Thus, use of IAFs does not ameliorate the estimation problems we
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have identified for genotypes. Like Eq. (17), p̂Ti in Eq. (18) is not consistent because Var
(
p̂Ti
∣∣T
)

=

pTi
(
1− pTi

)
θ̄T may not converge to zero for arbitrary population structures, which causes the bias

observed in Eq. (19).

4.3 FST estimator based on the standard kinship estimator

Since the generalized FST is defined as a mean inbreeding coefficient (Eq. (3) of Part I), here we

study the FST estimator constructed as F̂ std
ST =

n∑
j=1

wj f̂
T,std
j where f̂T,stdj is the inbreeding estimator

derived from the standard kinship estimator. Although f̂T,stdj is biased, we nevertheless plug it into
our definition of FST so that we may study how bias manifests. Note that we do not recommend
utilizing this FST estimator in practice, but we find these results informative for identifying how to
proceed in deriving new estimators (Section 5).

Remarkably, the three fTj estimators in Eqs. (15) and (16) give exactly the same plug-in F̂ std
ST if

the weights in FST and p̂Ti in Eq. (10) match, namely

F̂ std
ST =

n∑

j=1

wj f̂
T,std
j =

m∑
i=1

n∑
j=1

wj
(
xij − 2p̂Ti

)2

2
m∑
i=1

p̂Ti
(
1− p̂Ti

) − 1
a.s.−−−−→

m→∞

FST − ϕ̄T
1− ϕ̄T , (20)

where the limit assumes locally-outbred individuals so FST =
n∑
j=1

wjf
T
j . The analogous FST estima-

tor for IAFs and its limit are

F̂ std
ST =

n∑

j=1

wj θ̂
T,std
jj =

m∑
i=1

n∑
j=1

wj
(
πij − p̂Ti

)2

m∑
i=1

p̂Ti
(
1− p̂Ti

)
a.s.−−−−→

m→∞

FST − θ̄T
1− θ̄T . (21)

The estimators in Eqs. (20) and (21) for individuals and their limits resemble those of classical
FST estimators for populations of the form σ2

p

p̄(1−p̄) [6, 7]. F̂ std
ST in Eq. (21) for subpopulations j

with uniform weight and one locus is also GST for two alleles [60]. Compared to F̂ indep
ST in Eq. (4),

F̂ std
ST in Eq. (21) admits arbitrary weights and, by forgoing bias correction under the independent

subpopulations model, is a simpler target of study.
Like F̂ indep

ST in Eq. (4), F̂ std
ST in Eqs. (20) and (21) are downwardly biased since 0 ≤ ϕ̄T , θ̄T .

F̂ std
ST in Eq. (21) may converge arbitrarily close to zero since θ̄T can be arbitrarily close to FST

(Supplementary Information, Section S5). Moreover, although ϕ̄T ≈ θ̄T for large n (see panel
“Coancestry in Terms of Kinship” in Fig. 1), in extreme cases ϕ̄T can exceed FST under the coancestry
model (where θ̄T ≤ ϕ̄T ) and also under extreme local kinship, where F̂ std

ST in Eq. (20) converges to
a negative value.
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4.4 Adjusted consistent oracle FST estimators and the “bias coefficient”

Here we explore two adjustments to F̂ std
ST from IAFs in Eq. (21) that rely on having minimal addi-

tional information needed to correct its bias. If θ̄T is known, the bias in Eq. (21) can be reversed,
yielding the consistent estimator

F̂ ′ST = F̂ std
ST (1− θ̄T ) + θ̄T

a.s.−−−−→
m→∞

FST. (22)

Consistent estimates are also possible if a scaled version of θ̄T is known, namely

sT =
θ̄T

FST
=

n∑
j=1

n∑
k=1

wjwkθ
T
jk

n∑
j=1

wjθTjj

, (23)

which we call the “bias coefficient” and which has interesting properties. The bias coefficient quan-
tifies the departure from the independent subpopulations model by comparing the mean coancestry
(θTjk) to the mean inbreeding coefficient (θTjj), and given FST > 0 satisfies 0 < sT ≤ 1 (Supplementary
Information, Section S5). The limit in Eq. (21) in terms of sT is

F̂ std
ST

a.s.−−−−→
m→∞

FST
1− sT

1− sTFST
. (24)

Treating the limit as equality and solving for FST yields the following consistent estimator:

σ̂2
i =

1

1− sT
n∑

j=1

wj(πij − p̂Ti )2, (25)

F̂ ′′ST =
F̂ std

ST

1− sT (1− F̂ std
ST )

=

m∑
i=1

σ̂2
i

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ sT σ̂2

i

a.s.−−−−→
m→∞

FST. (26)

Note that σ̂2
i and F̂ indep

ST from Eqs. (3) and (4) are the special case of Eqs. (25) and (26) for uniform
weights and sT = 1

n ; hence, F̂
′′
ST generalizes F̂ indep

ST .
Lastly, using either Eq. (21) or Eq. (24), the relative error of F̂ std

ST converges to

1− F̂ std
ST
FST

a.s.−−−−→
m→∞

θ̄T (1− FST)

FST
(
1− θ̄T

) = sT
1− FST

1− sTFST
, (27)

which is approximated by sT if FST � 1, hence the name “bias coefficient”. Note sT varies depending
on the choice of T , which is necessary since FST (and hence the relative bias of F̂ std

ST from FST)
depends on the choice of T .
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5 A new approach for kinship and FST estimation

Here, we propose a new estimation approach for kinship coefficients that has properties favorable for
obtaining nearly unbiased estimates (panel “New Kinship Estimator” in Fig. 1). These new kinship
estimates yield an improved FST estimator. We present the general approach and implement a
simple version of one key estimator that results in the complete proof-of-principle estimator that is
evaluated in Section 6 and applied to human data in [47].

5.1 General approach

In this subsection we develop our new estimator in two steps. First, we compute a new statistic Ajk
that is proportional in the limit of infinite loci to ϕTjk − 1 times a nuisance factor vT . Second, we
estimate and remove vT to yield the proposed estimator ϕ̂T,new

jk . Âmin—an estimator of the limit
of the minimum Ajk—yields vT if the least related pair of individuals in the data has ϕTjk = 0,
which sets T to the MRCA population of all the individuals in the data. The new kinship estimator
immediately results in new inbreeding (f̂T,new

j ) and FST (F̂ new
ST ) estimators. This general approach

leaves the implementation of Âmin open; the simple implementation applied in this work is described
in Section 5.2, but our method can be readily improved by substituting in a better Âmin in the future.

Applying the method of moments to Eqs. (12) and (13), we derive the following statistic (see
Supplementary Information, Section S7), whose expectation is proportional to ϕTjk − 1:

Ajk =
1

m

m∑

i=1

(xij − 1)(xik − 1)− 1,

E [Ajk|T ] =
(
ϕTjk − 1

)
vTm, where

vTm =
4

m

m∑

i=1

pTi
(
1− pTi

)
.

(28)

Compared to the standard kinship estimator in Eq. (14), which has a complex asymptotic bias
determined by n parameters (ϕ̄Tj for each j ∈ {1, ..., n}), the Ajk statistics estimate kinship with
a bias controlled by the sole unknown parameter vTm shared by all pairs of individuals. The key to
estimating vTm is to notice that if ϕTjk = 0 then E[Ajk|T ] = −vTm. Thus, assuming minj,k ϕ

T
jk = 0,

which sets T to the MRCA population, then the minimum Ajk yields the nuisance parameter.
However, we recommend using a more stable estimate than the minimum Ajk to unbias all Ajk,
such as the estimator presented in Section 5.2.

In general, suppose Âmin is a consistent estimator of the limit of the minimum E[Ajk|T ], or
equivalently,

Âmin
a.s.−−−−→

m→∞
−vT ,
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along with the assumption that vTm −−−−→m→∞
vT for some vT 6= 0. Our new kinship estimator follows

directly from replacing vTm with Âmin and solving for ϕTjk in Eq. (28), which results in a consistent
kinship estimator (given the convergence proof of Section 2):

ϕ̂T,new
jk = 1− Ajk

Âmin

a.s.−−−−→
m→∞

ϕTjk. (29)

The resulting new inbreeding coefficient estimator is

f̂T,new
j = 2ϕ̂T,new

jj − 1
a.s.−−−−→

m→∞
fTj , (30)

and the new FST estimator is

F̂ new
ST =

n∑

j=1

wj f̂
T,new
j

a.s.−−−−→
m→∞

FST. (31)

Thus, only the implementation of Âmin is left unspecified from this general estimation approach of
kinship and FST. The implementation of Âmin used in the analyses in this work is given in the next
subsection.

The Ajk statistic defined above is closely related to the mean “identity by state” estimator
[18] and to another recently-described kinship estimator [53, 61]. However, only our ϕ̂T,new

jk in
Eq. (29)—scaling Ajk using Âmin—results in consistent kinship estimation under arbitrary popula-
tion structures.

5.2 Proof-of-principle kinship estimator using subpopulation labels

To showcase the potential of the new estimators, we implement a simple proof-of-principle version of
Âmin needed for our new kinship estimator (ϕ̂T,new

jk in Eq. (29)). This Âmin relies on an appropriate
partition of the n individuals into K subpopulations (denoted Su for u ∈ {1, ...,K}), where the only
requirement is that the kinship coefficients between pairs of individuals across the two most unrelated
subpopulations is zero, as detailed below. Note that, unlike the the independent subpopulations
model of Section 3, these K subpopulations need not be independent nor unstructured. The desired
estimator Âmin is the minimum average Ajk over all subpopulation pairs:

Âmin = min
u 6=v

1

|Su||Sv|
∑

j∈Su

∑

k∈Sv

Ajk. (32)

This Âmin consistently estimates the limit of the minimum Ajk if ϕTjk = 0 ∀j ∈ Su,∀k ∈ Sv for the
least related pair of subpopulations Su, Sv.

This estimator should work well for individuals truly divided into subpopulations, but may
be biased for a poor choice of subpopulations, in particular if the minimum mean ϕTjk between
subpopulations is far greater than zero. For this reason, inspection of the kinship estimates is
required and careful construction of appropriate subpopulations may be needed. See our analysis
of human data for detailed examples [47]. Future work could focus on a more general Âmin that
circumvents the need for subpopulations of our proof-of-principle estimator.
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Figure 2: Coancestry matrices of simulations. Both panels have n = 1000 individuals along
both axes, K = 10 subpopulations (final or intermediate), and FST = 0.1. Color corresponds to θTjk
between individuals j and k (equal to ϕTjk off-diagonal, f

T
j along the diagonal). A) The independent

subpopulations model has θTjk = 0 between subpopulations, and varying θTjj per subpopulation,
resulting in a block-diagonal coancestry matrix. B) Our admixture scenario models a 1D geogra-
phy with extensive admixture and intermediate subpopulation differentiation that increases with
distance, resulting in a smooth coancesty matrix with no independent subpopulations (no θTjk = 0

between blocks). Individuals are ordered along each axis by geographical position.

6 Simulations evaluating FST and kinship estimators

6.1 Overview of simulations

We simulate genotypes from two models to illustrate our results when the true population structure
parameters are known. The first simulation satisfies the independent subpopulations model that
existing FST estimators assume. The second simulation is from an admixture model with no inde-
pendent subpopulations and pervasive kinship designed to induce large downward biases in existing
kinship and FST estimators (Fig. 2). This admixture scenario resembles the population structure
we estimated for Hispanics in the 1000 Genomes Project [47]: compare the simulated kinship ma-
trix (Fig. 2B) and admixture proportions (Fig. 3C) to our estimates on the real data [47]. Both
simulations have n = 1000 individuals, m = 300, 000 loci, and K = 10 subpopulations or intermedi-
ate subpopulations. These simulations have FST = 0.1, comparable to previous estimates between
human populations (in 1000 Genomes, the estimated FST between CEU (European-Americans) and
CHB (Chinese) is 0.106, between CEU and YRI (Yoruba from Nigeria) it is 0.139, and between
CHB and YRI it is 0.161 [20]).
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Figure 3: 1D admixture scenario. We model a 1D geography population that departs strongly
from the independent subpopulations model. A) K = 10 intermediate subpopulations, evenly
spaced on a line, evolved independently in the past with FST increasing with distance, which models
a sequence of increasing founder effects (from left to right) to mimic the global human population.
B) Once differentiated, individuals in these intermediate subpopulations spread by random walk
modeled by Normal densities. C) n = 1000 individuals, sampled evenly in the same geographical
range, are admixed proportionally to the previous Normal densities. Thus, each individual draws
most of its alleles from the closest intermediate subpopulation, and draws the fewest alleles from the
most distant populations. Long-distance random walks of intermediate subpopulation individuals
results in kinship for admixed individuals that decays smoothly with distance in Fig. 2B. D) For
FST estimators that require a partition of individuals into subpopulations, individuals are clustered
by geographical position (K = 10).
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The independent subpopulations simulation satisfies the HudsonK and BayeScan estimator as-
sumptions: each independent subpopulation Su has a different FST value of fTSu

relative to the
MRCA population T (Fig. 2A). Ancestral allele frequencies pTi are drawn uniformly in [0.01, 0.5].
Allele frequencies pSu

i for Su and locus i are drawn independently from the Balding-Nichols (BN)
distribution [5] with parameters pTi and fTSu

. Every individual j in subpopulation Su draws alleles
randomly with probability pSu

i . Subpopulation sample sizes are drawn randomly (Supplementary
Information, Section S8).

The admixture simulation corresponds to a “BN-PSD” model [8, 24, 31, 48, 62], which we
analyzed in Section 6 of Part I and has a demographic model illustrated in Fig. 4 of Part I. The
intermediate subpopulations are independent subpopulations that draw pSu

i from the BN model,

then each individual j constructs its allele frequencies as πij =
K∑
u=1

pSu
i qju, which is a weighted

average of pSu
i with the admixture proportions qju of j and u as weights (which satisfy

K∑
u=1

qju =

1, as in the Pritchard-Stephens-Donnelly [PSD] admixture model [50–52]). We constructed qju

that model admixture resulting from spread by random walk of the intermediate subpopulations
along a one-dimensional geography, as follows. Intermediate subpopulations Su are placed on a
line with differentiation fTSu

that grows with distance, which corresponds to a serial founder effect
(Fig. 3A). Upon differentiation, individuals in each Su spread by random walk, a process modeled
by Normal densities (Fig. 3B). Admixed individuals derive their ancestry proportional to these
Normal densities, resulting in a genetic structure governed by geography (Fig. 3C, Fig. 2B) and
departing strongly from the independent subpopulations model (Fig. 3D). The amount of spread—
which sets the mean kinship across all individuals—was chosen to give a bias coefficient of sT =
θ̄T

FST
= 0.5, which by Eq. (27) results in a large downward bias for F̂ std

ST (in contrast, the independent
subpopulations simulation has sT = 0.1). The true θTjk and FST parameters of this simulation are
given by the fTSu

values of the intermediate subpopulations and the admixture coefficients qju of the
individuals via Eq. (17) of Part I. See Supplementary Information, Section S8 for additional details
regarding these simulations.

6.2 Evaluation of FST estimators

Our admixture simulation illustrates the large biases that can arise if FST estimators for independent
subpopulations (WC, HudsonK and BayeScan) are misapplied to arbitrary population structures
to estimate the generalized FST, and demonstrate the higher accuracy of our new FST estimator
F̂ new

ST given by the combination of Eqs. (31) and (32). BayeScan was used to estimate the per-
subpopulation FST across loci assuming no selection, and the global FST was given by the mean
FST across subpopulations.

First, we test these estimators in our independent subpopulations simulation. Both the HudsonK
(Supplementary Information, Section S2.3) and BayeScan FST estimators are consistent in this
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Figure 4: Evaluation of FST estimators. The WC, HudsonK, BayeScan, F̂ std
ST in Eq. (20)

derived from the standard kinship estimator, and our new FST estimator in Eqs. (29) and (32), are
evaluated on simulated genotypes from our two models (Fig. 2). A) The independent subpopulations
model assumed by the HudsonK and BayeScan FST estimators. All but standard kinship (F̂ std

ST )
have zero or small biases. B) Our admixture scenario, which has no independent subpopulations,
was constructed so F̂ std

ST ≈ 1
2FST. Only our new estimates are accurate. The rest of these estimators

have large biases that result from treating kinship as zero between every subpopulations imposed by
geographic clustering. The estimator limit in Eq. (7) (green dotted line) overlaps the true FST (red
line) in (A) but not (B). Estimates (blue) include 95% prediction intervals (often too narrow to see)
from 39 independently-simulated genotype matrices for each model (Supplementary Information,
Section S9).
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simulation, since their assumptions are satisfied (Fig. 4A). The WC estimator assumes that fTSu
=

FST for all subpopulations Su, which does not hold; nevertheless, WC has only a small bias (Fig. 4A).
For comparison, we show the standard kinship-based F̂ std

ST in Eq. (20) (weights from Supplementary
Information, Section S8), which does not have corrections that would make it consistent under the
independent subpopulations model. Since the number of subpopulations K is large, F̂ std

ST has a
small relative bias of about sT = 1

K = 10% (Fig. 4A); greater bias is expected for smaller K. Our
new FST estimator has a very small bias in this simulation resulting from estimating the minimum
kinship from the smallest kinship between subpopulations (see Eq. (32)) rather than their average
as HudsonK does implicitly (Fig. 4A).

Next we test these estimators in our admixture simulation. To apply the FST estimators that
require subpopulations to the admixture model, individuals are clustered into subpopulations by
their geographical position (Fig. 3D). We find that estimates of WC, HudsonK, and BayeScan are
smaller than the true FST by nearly half, as predicted by the limit of F̂ indep

ST in Eq. (7) (Fig. 4B). By
construction, F̂ std

ST also has a large relative bias of about sT = 50%; remarkably, the WC, HudsonK,
and BayeScan estimators suffer from comparable biases. Thus, the corrections for independent
subpopulations present in the WC and HudsonK estimators, or the Bayesian likelihood modeling of
BayeScan, are insufficient for accurate estimation of the generalized FST in this admixture scenario.
Only our new FST estimator achieves practically unbiased estimates in the admixture simulation
(Fig. 4B).

6.3 Evaluation of kinship estimators

Our admixture simulation illustrates the distortions of the standard kinship estimator ϕ̂T,stdjk in
Eq. (11) and demonstrates the improved accuracy of our new kinship estimator ϕ̂T,new

jk given by the
combination of Eqs. (29) and (32). The limit of the standard estimator ϕ̂T,stdjk in Eq. (11) has a
uniform bias if ϕ̄Tj = ϕ̄T for all individuals j. For that reason, our admixture simulation has varying
differentiation fTSu

per intermediate subpopulation Su (Fig. 3A), which causes large differences in
ϕ̄Tj per individual j and therefore large distortions in ϕ̂T,stdjk .

Our new kinship estimator (Fig. 5B) recovers the true kinship matrix of this complex population
structure (Fig. 5A), with an RMSE of 2.83% relative to the mean ϕTjk. In contrast, estimates using
the standard estimator have a large overall downward bias (Fig. 5C), resulting in an RMSE of
115.72% from the true ϕTjk relative to the mean ϕTjk. Additionally, estimates from ϕ̂T,stdjk are very
distorted, with an abundance of ϕ̂T,stdjk < ϕTjk cases—some of which are negative estimates (blue in
Fig. 5C)—but remarkably also cases with ϕ̂T,stdjk > ϕTjk (top left corner of Fig. 5C).

Now we compare the convergence of the ratio-of-means and mean-of-ratios versions of the stan-
dard kinship estimator to their biased limit we calculated in Eq. (14) (Fig. 5D). The ratio-of-means
estimate ϕ̂T,stdjk (Fig. 5C) has an RMSE of 2.14% from its limit relative to the mean ϕTjk. In contrast,
the mean-of-ratios estimates that are prevalent in the literature have a greater RMSE of 10.77%
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Figure 5: Evaluation of kinship estimators. Bias for the standard kinship coefficient estimator
is illustrated in our admixture simulation and contrasted to the nearly unbiased estimates of our
new estimator. Plots show n = 1000 individuals along both axes, and color corresponds to ϕTjk
between individuals j 6= k and to fTj along the diagonal (fTj is in the same scale as ϕTjk for j 6= k;
plotting ϕTjj , which have a minimum value of 1

2 , would result in a discontinuity in this figure). A)
True kinship matrix. B) Estimated kinship using our new estimator in Eqs. (29) and (32) from
simulated genotypes recovers the true kinship matrix with high accuracy. C) Standard kinship
estimates ϕ̂T,stdjk given by Eq. (11) from simulated genotypes are downwardly biased on average
and distorted by pair-specific amounts. D) Theoretical limit of ϕ̂T,stdjk in Eq. (14) as the number
of independent loci goes to infinity demonstrates the accuracy of our bias predictions under the
kinship model.
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from the same limit in Eq. (14). Thus, as expected from our theoretical results in Section 2, the
ratio-of-means estimate is much closer to the desired limit than the mean-of-ratio estimate. The
distortions are similar for the estimator that uses IAFs in Eq. (19), with reduced RMSEs from its
limit of 0.32% and 8.82% for the ratio-of-means and mean-of-ratios estimates, respectively.

6.4 Evaluation of oracle adjusted FST estimators

Here we verify additional calculations for the bias of the standard kinship-based estimator F̂ std
ST and

the unbiased adjusted “oracle” FST estimators that require the true mean kinship ϕ̄T or the bias
coefficient sT to be known. Note that F̂ new

ST in Eq. (31) is related but not identical to these oracle
estimators. We tested both IAF (Fig. 6A) and genotype (Fig. 6B) versions of these estimators. The
unadjusted F̂ std

ST in Eq. (21) is severely biased (blue in Fig. 6) by construction, and matches the
calculated limit for IAFs and genotypes (green lines in Fig. 6, which are close because ϕ̄T ≈ θ̄T ). In
contrast, the two consistent adjusted estimators F̂ ′ST and F̂ ′′ST in Eqs. (22) and (26) estimate FST

quite well (blue predictions overlap the true FST red line in Fig. 6). However, F̂ ′ST and F̂ ′′ST are
oracle methods, since they require parameters (ϕ̄T , θ̄T , sT ) that are not known in practice.

Prediction intervals were computed from estimates over 39 independently-simulated IAF and
genotype matrices (Supplementary Information, Section S9). Estimator limits are always contained
in these intervals because the number of independent loci (m = 300, 000) is sufficiently large.
Estimates that use genotypes have wider intervals than estimates from IAFs; however, IAFs are not
known in practice, and use of estimated IAFs might increase noise. Genetic linkage, not present in
our simulation, will also increase noise in real data.

7 Discussion

We studied analytically the most commonly-used estimators of FST and kinship, which can be de-
rived using the method of moments. We determined the bias of these estimators under two models
of arbitrary population structure (Fig. 1). We calculated the bias of these FST estimators when
the independent subpopulations model assumption is violated. This bias is present even when
individual-specific allele frequencies are known without error. We also showed that the standard
kinship estimator is biased on structured populations (particularly when the average kinship is
comparable to the kinship coefficients of interest), and this bias varies for each pair of individuals.
These results led us to a new kinship estimator, which is consistent if the minimum kinship is esti-
mated consistently (Fig. 1). We presented an implementation of this approach, which is practically
unbiased in our simulations. Our kinship and FST estimates in human data are consistent with
the African Origins model while suggesting that human differentiation is considerably greater than
previously estimated [47].

Estimation of FST in the correct scale is crucial for its interpretation as an IBD probability, for
obtaining comparable estimates in different datasets and across species, as well as for DNA forensics
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Figure 6: Evaluation of standard and adjusted FST estimators. The convergence values
we calculated for the standard kinship plug-in and adjusted FST estimators are validated using
our admixture simulation. All adjusted estimators are unbiased but are “oracle” methods, since
the mean kinship (ϕ̄T ), mean coancestry (θ̄T ), or bias coefficient (sT = θ̄T

FST
for IAFs, replaced by

ϕ̄T

FST
for genotypes) are usually unknown. A) Estimation from individual-specific allele frequencies

(IAFs): F̂ std
ST is the standard coancestry plug-in estimator in Eq. (21); F̂ ′ST “Adj. θ̄T ” is in Eq. (22);

F̂ ′′ST “Adj. s” is in Eq. (26). B) For genotypes, F̂ std
ST is given in Eq. (20), and the adjusted estimators

use ϕ̄T rather than θ̄T . Lines: true FST (red line), limits of biased estimators F̂ std
ST (green lines,

which differ slightly per panel). Estimates (blue) include 95% prediction intervals (too narrow to
see) from 39 independently-simulated genotype matrices for our admixture model (Supplementary
Information, Section S9).
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[5, 9, 55, 61, 63–65]. Our findings that existing genome-wide FST estimates are downwardly biased
matters in these settings. However, our findings may not have direct implications for per-locus FST

estimate approaches where only the relative ranking matters, such as for the identification of loci
under selection [10, 12, 66–71], assuming that the bias of the genome-wide estimator carries over
uniformly to all per-locus estimates. Note that our convergence calculations in Section 2 require
large numbers of loci so they do not apply to single locus estimates. Moreover, various methods for
per-locus FST estimation for multiple alleles suffer from a strong dependence to the maximum allele
frequency and heterozygosity [68–70, 72–75] that suggests that a more complicated bias is present
in these per-locus FST estimators.

We have shown that the misapplication of existing FST estimators for independent subpopula-
tions may lead to downwardly-biased estimates that can approach zero even when the true gener-
alized FST is large. Weir-Cockerham [19], HudsonK (which generalizes the Hudson pairwise FST

estimator [20] to K independent populations), and BayeScan [12] FST estimates in our admixture
simulation are biased by nearly a factor of two (Fig. 4B), and differ from our new FST estimates
in humans by nearly a factor of three [47]. These estimators were derived assuming independent
subpopulations, so the observed biases arise from their misapplication to subpopulations that are
neither independent not homogeneous. Nevertheless, natural populations—particularly humans—
often do not adhere to the independent subpopulations model [47, 76–80] (also see Section 2 in Part
I).

The standard kinship coefficient estimator we investigated is often used to control for population
structure in GWAS and to estimate genome-wide heritability [18, 24, 27–32]. While this estimator
was known to be biased [18, 32], no closed form limit had been calculated until now (concurrently
calculated by [53]). We found that kinship estimates are biased downwards on average, but bias also
varies for each pair of individuals (Fig. 1, Fig. 5). Thus, the use of these distorted kinship estimates
may be problematic in GWAS or for estimating heritability, but the extent of the problem remains
to be determined.

We developed a theoretical framework for assessing genome-wide ratio estimators of FST and
kinship. We proved that common ratio-of-means estimators converge almost surely to the ratio of
expectations for infinite independent loci (Supplementary Information, Section S1.1). Our result
justifies approximating the expectation of a ratio-of-means estimator with the ratio of expectations
[6, 19, 20]. However, mean-of-ratios estimators may not converge to the ratio of expectations for
infinite loci. Mean-of-ratios estimators are potentially asymptotically unbiased for infinite individu-
als, but it is unclear which estimators have this behavior. We found that the ratio-of-means kinship
estimator had much smaller errors from the ratio of expectations than the more common mean-of-
ratios estimator, whose convergence value is unknown. Therefore, we recommend ratio-of-means
estimators, whose asymptotic behavior is well understood.

We have demonstrated the need for new models and methods to study complex population
structures, and have proposed a new approach for kinship and FST estimation that provides nearly
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unbiased estimates in this setting. Extending our implementation to deliver consistent accuracy in
arbitrary population structures will require further innovation, and the results provided here may
be useful in leading to more robust estimators in the future.

Software

An R package called popkin, which implements the kinship and FST estimation methods proposed
here, is available on the Comprehensive R Archive Network (CRAN) at https://cran.r-project.
org/package=popkin and on GitHub at https://github.com/StoreyLab/popkin.

An R package called bnpsd, which implements the BN-PSD admixture simulation, is available
on CRAN at https://cran.r-project.org/package=bnpsd and on GitHub at https://github.
com/StoreyLab/bnpsd.

An R package called popkinsuppl, which implements memory-efficient algorithms for the WC
and HudsonK FST estimators, and the standard kinship estimator, is available on GitHub at https:
//github.com/OchoaLab/popkinsuppl.

Public code reproducing these analyses are available at
https://github.com/StoreyLab/human-differentiation-manuscript.
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S1 Accuracy of ratio estimators

S1.1 Almost sure convergence of ratio-of-means estimators with independent
and uniformly-bounded terms

Here we prove that Âm

B̂m

a.s.−−−−→
m→∞

A
B , where Âm = 1

m

m∑
i=1

ai and B̂m = 1
m

m∑
i=1

bi give the ratio-of-means

estimator described in the main text. It suffices to prove Âm
a.s.−−−−→

m→∞
Ac and B̂m

a.s.−−−−→
m→∞

Bc 6= 0,

from which the result follows using the continuous mapping theorem [81, 82]. The proof for Âm
follows, which applies analogously to B̂m. Our ai are independent but not identically distributed,
since they depend on pTi that varies per locus, so the standard law of large numbers does not apply
to Âm. We show almost sure convergence using Kolmogorov’s criterion for the Strong Law of Large
Numbers [83], which is satisfied for bounded Var(ai). Since |ai| ≤ C <∞ for all i and some C (see
main text), then E[a2

i ] ≤ C2, so Var(ai) ≤ C2. Therefore, Âm
a.s.−−−−→

m→∞
limm→∞ E

[
Âm

]
= Ac, as

desired.

S1.2 Order of error of expectations

The error of the ratio of expectations from the expectation of the ratio is given by

εm = E

[
Âm

B̂m

]
− E[Âm]

E[B̂m]
= −

Cov
(
Âm

B̂m
, B̂m

)

E
[
B̂m

] = − 1

m2Bc

m∑

i=1

m∑

j=1

Cov

(
ai

B̂m
, bj

)
,

which follows from Cov(X,Y ) = E[XY ] − E[X] E[Y ] and expanding the covariance [84]. Previous
work on ratio estimators [54, 84] assumes IID ai and bi, which does not hold for SNP loci. Assuming
independent loci (Cov(ai, bj) = 0 for i 6= j) and large m so B̂m ≈ Bc is practically independent of
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any given ai and bj , then

εm ≈ −
1

mB2c2

[
1

m

m∑

i=1

Cov(ai, bi)

]
.

Since ai, bi are bounded, |Cov(ai, bi)| ≤ C2 for the same C of the previous section, so

|εm| ≤
C2

mB2c2
,

for some large enough m and C. Hence εm = O
(

1
m

)
as is for standard ratio estimators [54].

S2 Previous FST estimators for the independent subpopulations
model

Here we summarize the previous WC and Hudson FST estimators for independent subpopulations
and introduce the generalized HudsonK estimator for more than two subpopulations. In this section,
let i index the m loci, j index the n subpopulations, nj be the number of individuals sampled from
subpopulation j, and p̂ij be the sample reference allele frequency at locus i in subpopulation j.

S2.1 The Weir-Cockerham FST estimator

The Weir-Cockerham (WC) FST estimator [19] estimates the coancestry parameter θT shared by
each of the n independent subpopulation in consideration. Let ĥij denote the fraction of het-
erozygotes in subpopulation j for locus i. The ratio-of-means WC FST estimator and its limit for
independent subpopulations (θTjk = 0 for j 6= k) with equal differentiation (θTjj = θT ) is

n̄ =
1

n

n∑

j=1

nj , C2 =
1

n̄2(n− 1)

n∑

j=1

(nj − n̄)2,

p̂Ti =
1

n

n∑

j=1

nj
n̄
p̂ij , h̄i =

1

n

n∑

j=1

nj
n̄
ĥij , σ̂2

i =
1

n− 1

n∑

j=1

nj
n̄

(
p̂ij − p̂Ti

)2
,

F̂WC
ST =

m∑
i=1

σ̂2
i − 1

n̄−1

(
p̂Ti
(
1− p̂Ti

)
− n−1

n σ̂2
i − 1

4 h̄i
)

m∑
i=1

p̂Ti
(
1− p̂Ti

) (
1− n̄C2

n(n̄−1)

)
+ 1

n σ̂
2
i

(
1 + (n−1)n̄C2

n(n̄−1)

)
+ h̄iC2

4n(n̄−1)

a.s.−−−−→
m→∞

FST = θT .

Note that p̂Ti above weighs every individual equally by weighing subpopulation j proportional to
its sample size nj , so it equals the estimator in Eq. (10) with uniform weights.

Now we simplify this estimator as the sample size of every subpopulation becomes infinite. First
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set the sample size of every subpopulation nj equal to their mean n̄, which implies C2 = 0 and

p̂Ti =
1

n

n∑

j=1

p̂ij , h̄i =
1

n

n∑

j=1

ĥij , σ̂2
i =

1

n− 1

n∑

j=1

(
p̂ij − p̂Ti

)2
,

F̂WC
ST =

m∑
i=1

σ̂2
i − 1

n̄−1

(
p̂Ti
(
1− p̂Ti

)
− n−1

n σ̂2
i − 1

4 h̄i
)

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i

.

Now we take the limit as the sample size n̄→∞, which results in sample allele frequencies converging
to the true subpopulation allele frequencies p̂ij → πij for every subpopulation j and locus i, and

p̂Ti =
1

n

n∑

j=1

πij , σ̂2
i =

1

n− 1

n∑

j=1

(
πij − p̂Ti

)2
, F̂WC

ST =

m∑
i=1

σ̂2
i

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i

,

which matches the F̂ indep
ST in Eqs. (2) to (4) as desired. Note the number of subpopulations n remains

finite, and the sample heterozygosity h̄i is not needed in the limit.

S2.2 The Hudson FST estimator

The Hudson pairwise FST estimator [20] measures the differentiation of two subpopulations (j, k).
The estimator and its limit for two independent subpopulations (θTjk = 0) is

F̂Hudson
ST =

m∑
i=1

(p̂ij − p̂ik)2 − p̂ij(1−p̂ij)
2nj−1 − p̂ik(1−p̂ik)

2nk−1

m∑
i=1

p̂ij (1− p̂ik) + p̂ik (1− p̂ij)
a.s.−−−−→

m→∞
FST =

θTjj + θTkk
2

. (S1)

S2.3 Generalized HudsonK FST estimator

Here we present the “HudsonK” estimator, which generalizes the Hudson pairwise FST estimator in
Eq. (S1) to n independent subpopulations. Note that for independent subpopulations, the FST of
all the subpopulations equals the mean pairwise FST of every pair of subpopulations:

1

n2

n∑

j=1

n∑

k=1

(
θTjj + θTkk

2

)
=

1

n

n∑

j=1

θTjj = FST.

For that reason, averaging numerators and denominators of the pairwise estimator in Eq. (S1)
before computing the ratio, we obtain the generalized estimator and a limit under independent
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subpopulations of

p̂Ti =
1

n

n∑

j=1

p̂ij , σ̂2
i =

1

n− 1

n∑

j=1

(p̂ij − p̂Ti )2,

F̂HudsonK
ST =

m∑
i=1

σ̂2
i − 1

n

n∑
j=1

p̂ij(1−p̂ij)
2nj−1

m∑
i=1

p̂Ti (1− p̂Ti ) + 1
n σ̂

2
i

a.s.−−−−→
m→∞

FST =
1

n

n∑

j=1

θTjj .

Note that unlike the WC estimator, p̂Ti above weighs every subpopulation equally, so every individual
is weighed inversely proportional to the sample sizes nj of their subpopulation j.

Like F̂WC
ST , F̂HudsonK

ST simplifies to F̂ indep
ST in Eqs. (2) to (4) in the limit of infinite sample sizes

nj →∞, where p̂ij → πij for every (i, j).

S3 Derivation of method-of-moment estimators

S3.1 FST estimator for independent subpopulations

Assuming the coancestry model in Eqs. (5) and (6) for independent subpopulations (θTjk = 0 for
j 6= k), the first and second moments of the IAFs are:

E[πij ] = pTi , (S2)

E
[
π2
ij

]
=
(
pTi
)2

+ pTi
(
1− pTi

)
θTjj , (S3)

E [πijπik] =
(
pTi
)2 if j 6= k. (S4)

FST = 1
n

n∑
j=1

θTjj appears by averaging Eq. (S3) over j:

E


 1

n

n∑

j=1

π2
ij


 =

(
pTi
)2

+ pTi
(
1− pTi

)
FST. (S5)

Since Eq. (S2) has the same value for every j, and Eq. (S4) as well for every j 6= k, we average these

to reduce estimation variance. The results are in terms of p̂Ti = 1
n

n∑
j=1

πij :

E
[
p̂Ti
]

= E


 1

n

n∑

j=1

πij


 = pTi , (S6)

E
[(
p̂Ti
)2]

= E


 1

n2

n∑

j=1

n∑

k=1

πijπik


 =

(
pTi
)2

+ pTi
(
1− pTi

) 1

n
FST. (S7)
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FST also appears in Eq. (S7) because j = k terms are introduced in the double sum. Subtracting
Eq. (S5) and Eq. (S7) in turn from Eq. (S6) results in:

E


p̂Ti −

1

n

n∑

j=1

π2
ij


 = pTi

(
1− pTi

)
(1− FST) ,

E
[
p̂Ti
(
1− p̂Ti

)]
= pTi

(
1− pTi

)(
1− 1

n
FST

)
.

To reduce variance further, we average across loci, giving

E


 1

m

m∑

i=1


p̂Ti −

1

n

n∑

j=1

π2
ij




 = p(1− p)T (1− FST) ,

E

[
1

m

m∑

i=1

p̂Ti
(
1− p̂Ti

)
]

= p(1− p)T
(

1− 1

n
FST

)
,

where p(1− p)T = 1
m

m∑
i=1

pTi
(
1− pTi

)
. Eliminating p(1− p)T and solving for FST in this system of

equations results in the following FST estimator:

F̂ std
ST =

m∑
i=1

(
1
n

n∑
j=1

π2
ij −

(
p̂Ti
)2
)

m∑
i=1

(
p̂Ti
(
1− p̂Ti

)
+ 1

n

(
1
n

n∑
j=1

π2
ij − p̂Ti

)) (S8)

This estimator is simplified noting that 1
n

n∑
j=1

π2
ij appears in the IAF sample variance,

σ̂2
i =

1

n− 1

n∑

j=1

(
πij − p̂Ti

)2
=

n

n− 1


 1

n

n∑

j=1

π2
ij −

(
p̂Ti
)2

 ,

so substituting it into Eq. (S8) recovers Eq. (4) as desired:

F̂ std
ST =

m∑
i=1

σ̂2
i

m∑
i=1

p̂Ti
(
1− p̂Ti

)
+ 1

n σ̂
2
i

.

S3.2 Standard kinship estimator

Here we assume the kinship model in Eqs. (12) and (13). Since Eq. (12) is the same for all individuals
j, we average these first moments to reduce variance,

E




n∑

j=1

wjxij


 = 2pTi ,
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which results in the following estimator of pTi :

p̂Ti =
1

2

n∑

j=1

wjxij .

Each ϕTjk appears once per (j, k) pair in Eq. (13), recast here in terms of the sample covariance:

E
[(
xij − 2pTi

) (
xik − 2pTi

)]
= 4pTi

(
1− pTi

)
ϕTjk.

Variance in the kinship estimate is reduced by averaging across loci, yielding:

E

[
1

m

m∑

i=1

(
xij − 2pTi

) (
xik − 2pTi

)
]

= 4ϕTjk
1

m

m∑

i=1

pTi
(
1− pTi

)
. (S9)

Plugging p̂Ti into Eq. (S9) and solving for ϕTjk recovers Eq. (11) as desired:

ϕ̂T,stdjk =

m∑
i=1

(
xij − 2p̂Ti

) (
xik − 2p̂Ti

)

4
m∑
i=1

p̂Ti
(
1− p̂Ti

) .

S4 Proofs that FST and kinship estimator limits are constants with
respect to the ancestral population T

In our work we calculate the limits of several estimators, which are given in terms of an arbitrary
ancestral population T (not necessarily the MRCA, unless otherwise noted). The apparent paradox
that the limit of an estimator would vary depending on the choice of T is resolved since these limits
are in fact constant with respect to T . All proofs depend on the following IBD identities for change
of ancestral population (see Section 3.4 of Part I for details):

(
1− fAj

)
=
(
1− fBj

) (
1− fAB

)
,

(
1− ϕAjk

)
=
(
1− ϕBjk

) (
1− fAB

)
,

(S10)

where A,B are two possible ancestral populations for the individuals j, k, and A is ancestral to B.

S4.1 Proof that the limit of F̂ indep
ST does not depend on T

Here we study the limit of F̂ indep
ST in Eq. (7). Let S be a reference population ancestral to the

individuals in question and T be another population ancestral to S. Denote the key parameters
relative to S by FSST, θ̄

S and relative to T by F TST, θ̄
T . The equations that relate both quantities
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satisfy our IBD shift identity (which follows by averaging Eq. (S10) over individuals for FST or pairs
of individuals for θ̄T ):

(
1− F TST

)
=
(
1− FSST

) (
1− fTS

)
,

(
1− θ̄T

)
=
(
1− θ̄S

) (
1− fTS

)
.

Solving for the values relative to S gives

FSST =
F TST − fTS

1− fTS
, θ̄S =

θ̄T − fTS
1− fTS

.

The desired equality of the limit for both S and T follows:

n
(
FSST − θ̄S

)

n− 1 + FSST − nθ̄S
=

n
(
FT

ST−f
T
S

1−fTS
− θ̄T−fTS

1−fTS

)

n− 1 +
FT

ST−f
T
S

1−fTS
− n θ̄T−f

T
S

1−fTS

=
n
(
F TST − θ̄T

)

(n− 1)
(
1− fTS

)
+
(
F TST − fTS

)
− n

(
θ̄T − fTS

)

=
n
(
F TST − θ̄T

)

n− 1 + F TST − nθ̄T
.

S4.2 Proof that the limit of ϕ̂T,stdjk does not depend on T

Here we study the limit of the standard kinship estimator ϕ̂T,stdjk in Eq. (14). Let S be a reference
population ancestral to the individuals in question and T be another population ancestral to S.
The equations that relate the terms relative to S and those relative to T follow from Eq. (S10) just
as in the previous subsection:

ϕSjk =
ϕTjk − fTS
1− fTS

, ϕ̄Sj =
ϕ̄Tj − fTS
1− fTS

,

ϕ̄Sk =
ϕ̄Tk − fTS
1− fTS

, ϕ̄S =
ϕ̄T − fTS
1− fTS

.

The desired result follows:

ϕSjk − ϕ̄Sj − ϕ̄Sk + ϕ̄S

1− ϕ̄S =
ϕTjk − ϕ̄Tj − ϕ̄Tk + ϕ̄T

1− ϕ̄T .

S5 Mean coancestry bounds

Here we prove that, for any weights such that wj > 0,
n∑
j=1

wj = 1,

0 ≤ θ̄T ≤ FST ≤ 1,
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and for uniform weights 1
nFST ≤ θ̄T . Furthermore, θ̄T = FST iff θTjk = FST for all (j, k), and

θ̄T = 1
nFST for the independent subpopulations model.

The Cauchy-Schwarz inequality for covariances implies θTjk ≤
√
θTjjθ

T
kk. Therefore,

θ̄T =
n∑

j=1

n∑

k=1

wjwkθ
T
jk ≤




n∑

j=1

wj

√
θTjj




2

≤
n∑

j=1

wjθ
T
jj = FST,

where the second inequality follows from Jensen’s inequality, since x2 is a convex function. Since
θTjj ≤ 1, then FST ≤ 1 as well. Equality in the second bound requires θTjj = FST for all j, and
equality in the first bound requires θTjk = θTjj = θTkk, so that θ̄T = FST requires θTjk = FST for all
(j, k). Since all wj , θTjk ≥ 0, then

0 ≤
n∑

j=1

w2
j θ
T
jj ≤ θ̄T ,

where the second inequality follows from dropping j 6= k terms from the double sum of θ̄T . The case
wj = 1

n gives 1
nFST ≤ θ̄T , with equality for the independent subpopulations model by construction.

S6 Moments of estimator building blocks

Here we calculate first and some second moments for “building block” quantities that recur in our
estimators, particularly terms involving xij and p̂Ti , and which enable us to calculate the limits of
our estimators. Below are examples for genotypes, which follow from Eqs. (12) and (13); calculations
for IAFs follow analogously from Eqs. (5) and (6) (not shown).

E
[
p̂Ti
∣∣T
]

= E


1

2

n∑

j=1

wjxij

∣∣∣∣∣∣
T


 =

1

2

n∑

j=1

wj E[xij |T ] =

n∑

j=1

wjp
T
i = pTi ,

E[xijxik|T ] = Cov(xij , xik|T ) + E[xij |T ] E[xik|T ] = 4
(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

,

E
[
xij p̂

T
i

∣∣T
]

= E

[
1

2

n∑

k=1

wjxijxik

∣∣∣∣∣T
]

=
1

2

n∑

k=1

wj E[xijxik|T ]

= 2

n∑

k=1

wj

(
pTi
(
1− pTi

)
ϕTjk +

(
pTi
)2)

= 2
(
pTi
(
1− pTi

)
ϕ̄Tj +

(
pTi
)2)

,

Var
(
p̂Ti
∣∣T
)

= Var


1

2

n∑

j=1

wjxij

∣∣∣∣∣∣
T


 =

1

4

n∑

j=1

n∑

k=1

wjwk Cov(xij , xik|T ) = pTi
(
1− pTi

)
ϕ̄T ,

E
[(
p̂Ti
)2∣∣∣T

]
= Var

(
p̂Ti
∣∣T
)

+ E
[
p̂Ti
]2

= pTi
(
1− pTi

)
ϕ̄T +

(
pTi
)2
,

E
[
p̂Ti
(
1− p̂Ti

)∣∣T
]

= E
[
p̂Ti
∣∣T
]
− E

[(
p̂Ti
)2∣∣∣T

]
= pTi

(
1− pTi

) (
1− ϕ̄T

)
.
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S7 Derivation of new kinship estimator

To begin the method-of-moments derivation, we compute the raw first and second moments from
the kinship model of Eqs. (12) and (13).

E[xij |T ] = 2pTi ,

E[xijxik|T ] = E[xij |T ] E[xik|T ] + Cov(xijxik|T )

= 4
(
pTi
)2

+ 4pTi
(
1− pTi

)
ϕTjk.

For obtain a symmetric estimator, we also compute the raw moments of 2− xij (which counts the
alternative allele):

E[2− xij |T ] = 2
(
1− pTi

)
,

E [(2− xij)(2− xik)|T ] = 4
(
1− pTi

)2
+ 4pTi

(
1− pTi

)
ϕTjk.

If we solved for pTi using the first moment equations, we would recover the standard kinship estimator
of Eqs. (10) and (11), so we shall avoid this strategy.

To proceed, we average the two second moment equations above. Note that

1

2
(xijxik + (2− xij)(2− xik)) = (1− xij)(1− xik) + 1,

1

2

((
pTi
)2

+
(
1− pTi

)2)
=

1

2
− pTi

(
1− pTi

)
.

Therefore, the symmetric estimator (which gives the same calculation if the reference allele is
switched) is

E [(1− xij)(1− xik) + 1|T ] = 2 + 4pTi
(
1− pTi

) (
ϕTjk − 1

)
⇒

E [(1− xij)(1− xik)− 1|T ] = 4pTi
(
1− pTi

) (
ϕTjk − 1

)
.

A genome-wide estimate is obtained by averaging the previous statistics across loci, resulting in

Ajk =
1

m

m∑

i=1

(xij − 1)(xik − 1)− 1,

E [Ajk|T ] =
(
ϕTjk − 1

)
vTm, where

vTm =
4

m

m∑

i=1

pTi
(
1− pTi

)
.

The new kinship estimator follows from obtaining a consistent estimator of the limit of vTm as m
goes to infinity, and applying it to solve for ϕTjk in the above equation for the expectation of Ajk,
as detailed in Section 5.
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S8 Admixture and independent subpopulations model simulations

S8.1 Construction of subpopulation allele frequencies

We simulate K = 10 subpopulations Su and m = 300, 000 independent loci. Every locus i draws
pTi ∼ Uniform(0.01, 0.5). We set fTSu

= u
K τ, where τ ≤ 1 tunes FST. For the independent sub-

populations model, FST = 1
K

K∑
u=1

fTSu
= τ(K+1)

2K , so τ = 2KFST
K+1 gives the desired FST (τ ≈ 0.18 for

FST = 0.1). For the admixture model, τ is found numerically (τ ≈ 0.90 for FST = 0.1; see last
subsection). Lastly, pSu

i values are drawn from the Balding-Nichols distribution,

pSu
i |T ∼ Beta

(
pTi

(
1

fTSu

− 1

)
, (1− pTi )

(
1

fTSu

− 1

))
,

which results in subpopulation allele frequencies that obey the coancestry model of Eqs. (5) and (6),
with E

[
pSu
i

∣∣∣T
]

= pTi and Var
(
pSu
i

∣∣∣T
)

= fTSu
pTi
(
1− pTi

)
[5], as desired.

S8.2 Random subpopulation sizes

We randomly generate sample sizes r = (ru) for K subpopulations and
K∑
u=1

ru = n = 1000 indi-

viduals, as follows. First, draw x ∼ Dirichlet (1, ..., 1) of length K and r = round(nx). While
minu ru <

n
3K , draw a new r, to prevent small subpopulations (they do not occur in real data). Due

to rounding,
K∑
u=1

ru may not equal n as desired. Thus, while δ = n −
K∑
u=1

ru 6= 0, a random u is

updated to ru ← ru + sgn(δ), which brings δ closer to zero at every iteration. Weights for individ-

uals j in Su are wj = 1
Kru

so the generalized FST matches FST = 1
K

K∑
u=1

fTSu
from the independent

subpopulations model (Section 3.3.2 of Part I), which HudsonK estimates.

S8.3 Admixture proportions from 1D geography

We construct qju from random-walk migrations along a one-dimensional geography. Let xu be the
coordinate of intermediate subpopulation u and yj the coordinate of a modern individual j. We
assume qju is proportional to f(|xu − yj |), or

qju =
f(|xu − yj |)
K∑
v=1

f(|xv − yj |)
.

where f is the Normal density function with µ = 0 and tunable σ. The Normal density models
random walks, where σ sets the spread of the populations (Fig. 5). Our simulation uses xu = u and
yj = 1

2 + j−1
n−1K, so the intermediate subpopulations span [1,K] and individuals span [1

2 ,K+ 1
2 ]. For

the FST estimators that require subpopulations, individual j is assigned to the nearest subpopulation
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Su (the u that minimizes |xu−yj |; Fig. 3D); these subpopulations have equal sample size, so wj = 1
n

is appropriate.

S8.4 Choosing σ and τ

Here we find values for σ (controls qjk) and τ (scales fTSu
) that give sT = 1

2 and FST = 0.1 in

the admixture model. We previously found that θTjk =
K∑
u=1

qjuqkuf
T
Su

and FST =
n∑
j=1

K∑
u=1

wjq
2
juf

T
Su

for the BN-PSD model (Section 6.1 of Part I). In our simulation, wj = 1
n and fTSu

= u
K τ , so

θTjk = τ
K

K∑
u=1

uqjuqku and FST = τ
nK

n∑
j=1

K∑
u=1

uq2
ju. Therefore,

sT =
θ̄T

FST
=

1

n

K∑
u=1

u

(
n∑
j=1

qju(σ)

)2

K∑
u=1

u

(
n∑
j=1

q2
ju(σ)

)

depends only on σ. A numerical root finder finds that σ ≈ 1.78 gives sT = 1
2 . For fixed qju,

τ =
FST

K∑
u=1

u

(
1
n

n∑
j=1

q2
ju

) .

FST = 0.1 is achieved with τ ≈ 0.901.

S9 Prediction intervals of FST estimators

Prediction intervals with α = 95% correspond to the range of n = 39 independent FST estimates.
In the general case, n independent statistics are given in order X(1) < ... < X(n). Then I =

[X(j), X(n+1−j)] is a prediction interval with confidence α = n+1−2j
n+1 [85]. In our case, j = 1 and

n = 39 gives α = 0.95, as desired. Each estimate was constructed from simulated data with the
same dimensions and structure as before (fixed fTSu

and qju; fixed sample sizes for the independent
subpopulations model), but with pTi , p

Su
i , πij , xij drawn separately for each estimate.
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