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Prior	expectations	can	be	used	to	improve	perceptual	judgments	about	ambiguous	stimuli.	
However,	little	is	known	about	if	and	how	these	improvements	are	maintained	in	dynamic	
environments	in	which	the	quality	of	appropriate	priors	changes	from	one	stimulus	to	the	
next.	Using	a	novel	sound-localization	task,	we	show	that	changes	in	stimulus	predictability	
lead	to	arousal-mediated	adjustments	in	the	magnitude	of	prior-driven	biases	that	optimize	
perceptual	 judgments	about	each	stimulus.	These	adjustments	depend	on	task-dependent	
changes	in	the	relevance	and	reliability	of	prior	expectations,	which	subjects	update	using	
both	normative	and	idiosyncratic	principles.	The	resulting	variations	in	biases	across	task	
conditions	and	individuals	are	reflected	in	modulations	of	pupil	diameter,	such	that	larger	
stimulus-evoked	 pupil	 responses	 correspond	 to	 smaller	 biases.	 These	 results	 suggest	 a	
critical	 role	 for	 the	 arousal	 system	 in	 adjusting	 the	 strength	 of	 perceptual	 biases	 with	
respect	to	inferred	environmental	dynamics	to	optimize	perceptual	judgements.	
	
	

Introduction	

	

Perception	is	shaped	by	prior	expectations	(“priors”)	on	the	statistical	structure	of	
the	 sensory	world	 (Bar,	2004;	Edwards,	1965;	Link	and	Heath,	1975;	Maddox	and	Bohil,	
1998;	Seriès,	2013;	Summerfield	and	Egner,	2009).	When	the	environmental	statistics	are	
stationary	 and	well	 known,	 priors	 on	 those	 statistics	 can	bias	 the	perception	of	 relevant	
sensory	 stimuli	 (Fischer	 and	 Peña,	 2011;	 Knill	 and	 Pouget,	 2004).	 For	 example,	 the	
prevalence	of	relatively	slow-	versus	fast-moving	objects	in	the	world	can	lead	to	biases	in	
the	 perception	 of	 object	 speed	 (Stocker	 and	 Simoncelli,	 2006).	 However,	 many	
environmental	statistics	 that	are	relevant	 to	perception	can	be	highly	non-stationary.	For	
example,	 the	 locations	 of	 sources	 of	 sensory	 input	 are	 constantly	 changing	 relative	 to	 a	
given	observer.	The	goal	of	this	study	was	to	examine	how	priors	on	such	dynamic	features	
of	the	environment	are	updated	and	used	to	shape	perception.	

	
To	achieve	this	goal,	we	developed	a	novel	auditory-localization	task	that	required	

human	 subjects	 to	 both	 predict	 and	 report	 the	 perceived	 location	 of	 a	 simulated	 sound	
source	 as	 the	 predictability	 of	 the	 location	 varied	 over	 time	 (Fig.	 1a–c).	 The	 statistical	
structure	of	 the	task	 is	similar	to	ones	we	used	previously	to	show	that	people	can	make	
effective	predictions	 in	dynamic	 environments	by	 adaptively	modulating	 the	 influence	of	
new	 information	 on	 existing	 beliefs	 (Nassar	 et	 al.,	 2010;	 Nassar	 et	 al.,	 2012).	 However,	
unlike	in	those	tasks,	here	we	used	perceptually	ambiguous	stimuli	that	allowed	us	to	focus	
on	 a	 novel	 question:	 how	 do	 dynamic	 fluctuations	 in	 the	 ability	 to	 make	 effective	
predictions	affect	the	magnitude	of	perceptual	biases	towards	expected	stimulus	values?	 In	
principle,	these	perceptual	biases	could	be	adjusted	through	a	form	of	optimal	(“Bayesian”)	
inference	that	takes	into	account	dynamic	changes	in	the	priors	(Knill	and	Richards,	1996;	
Nassar	et	al.,	2010;	Wilson	et	al.,	2010).	Specifically,	as	 long	as	 the	statistical	structure	of	
the	 sampled	 locations	 in	 our	 task	 remain	 stable,	 new	 sounds	 can	 be	 used	 to	 develop	
increasingly	 reliable	priors	 about	 the	 locations	of	 subsequent	 sounds.	These	 increasingly	
reliable	priors	should,	in	turn,	have	an	increasingly	strong	and	beneficial	 influence	on	the	
perception	of	those	sounds,	reducing	localization	errors	(Fig.	1d,e).	However,	the	statistics	
of	 the	 sampled	 locations	 can	 undergo	 abrupt	 change-points	 that	 render	 previously	 held	
priors	irrelevant	to	new	sounds.	These	seemingly	reliable	but	irrelevant	priors	should	not	
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influence	the	perception	of	sound-source	location,	which	under	these	conditions	should	be	
limited	entirely	by	sensory	uncertainty	(Fig.	1f).	
	

We	also	measured	pupil	diameter,	an	index	of	arousal	that	is	thought	to	reflect	the	
activation	 of	 the	 locus	 coeruleus	 (LC)-norepinephrine	 (NE)	 system,	 while	 subjects	
performed	the	task	(Aston-Jones	and	Cohen,	2005;	Joshi	et	al.,	2016).	Pupil	diameter	tracks	
the	 extent	 to	which	 predictions	 are	 updated	 in	 response	 to	 new	 information	 in	 dynamic	
and	 perceptually	 unambiguous	 cognitive	 tasks	 (Nassar	 et	 al.,	 2012).	 Here	we	 tested	 the	
hypothesis	 that	 such	changes	 in	arousal	play	an	 important	 role	 in	 shaping	perception.	 In	
particular,	 we	 examined	 whether	 the	 arousal	 system	 controls	 the	 extent	 to	 which	
perceptual	 judgments	 about	 ambiguous	 sensory	 stimuli	 are	 biased	 toward	 prior	
expectations	in	accordance	with	the	relevance	and	reliability	of	those	expectations.		
	

Our	results	yield	new	insights	into	the	relationship	between	perception	and	arousal.	
We	show	that	the	subjects’	priors	had	a	variable	influence	on	their	perceptual	reports.	This	
variability	was	predicted	by	changes	in	the	relevance	and	reliability	of	those	priors,	across	
task	conditions	and	 individual	 subjects.	These	effects	were	encoded	 in	both	baseline	and	
stimulus-evoked	 changes	 in	 pupil	 diameter,	 such	 that	 larger	 diameters	 corresponded	 to	
less	 influence	of	priors	on	the	perception	of	 that	stimulus.	Taken	together,	 these	 findings	
support	a	fundamental	role	for	pupil-linked	arousal	systems,	 including	the	LC-NE	system,	
in	 adaptively	 adjusting	 the	 influence	 of	 priors	 on	 perception	 in	 accordance	 with	
environmental	dynamics.		
	
Results	

	

	 Twenty-nine	 subjects	performed	both	 the	dynamic	 localization	 task	 (Fig.	 1)	 and	a	
control	 task	 that	 required	 perceptual	 reports	 of	 simulated	 sound-source	 locations	 that	
lacked	predictable,	sequential	structure.	Overall,	the	subjects	tended	to	perform	both	tasks	
in	an	effective	manner,	providing	predictions	on	the	dynamic	task	and	perceptual	reports	
on	both	tasks	that	corresponded	strongly	to	the	simulated	sound-source	locations	(Fig.	2).	
On	the	control	task,	the	Pearson’s	correlation	between	simulated	and	reported	location	had	
median	 [interquartile	 range,	 or	 IQR]	 values	 of	 0.926	 [0.895–0.944]	 across	 subjects	 (Fig.	
2a,d).	On	the	dynamic	task,	there	were	similarly	high	correlations	for	both	the	predictions	
and	perceptual	reports	(predictions	on	non-change-point	trials:	r=0.907	[0.895–0.921],	Fig.	
2b,e;	 perceptual	 reports	 on	 all	 trials:	 r=0.948	 [0.941–0.964],	 Fig.	 2c,f).	 However,	 the	
subjects	 also	 tended	 to	make	 errors	 that	 varied	 considerably	 from	 trial	 to	 trial	 on	 both	
tasks	(Fig.	2g–i).	Subsequent	analyses	focus	on	how	the	subjects	minimized	their	errors	on	
the	dynamic	task	by	exploiting	the	 fluctuating	predictability	of	sound-source	 locations	on	
that	task.	
	
Dynamic,	task-dependent	modulation	of	perceptual	biases	
	

The	 subjects	 used	 both	 sensory	 and	 prior	 information	 to	 guide	 their	 perceptual	
reports	on	the	dynamic	task.	We	measured	performance	in	terms	of	the	variability	of	 the	
distribution	 of	 trial-by-trial	 errors	 (quantified	 as	 the	 standard	 deviation,	 or	 STD,	 and	
denoted	as	!).	This	variability	was	lower	for	perceptual	reports	on	the	dynamic	task	than	
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for	 either:	1)	predictions	 from	 that	 task	 (!!"#$";	 Fig.	 2h),	 or	2)	perceptual	 reports	on	 the	
control	 task	 that	 lacked	 sequential	predictability	 and	 thus	 reflected	more	purely	 sensory	
processing	(!!"#!$%&;	Fig.	2g).	Moreover,	for	individual	subjects,	these	different	measures	of	
variability	were	related	to	each	other,	such	that	perceptual	errors	 from	the	dynamic	task	
were	well	 approximated	using	 the	optimal,	 reliability-weighted	combination	of	prior	and	
sensory	 information	 (!!"#$%&'!! = !!"#$"!! + !!"#!$%&!! ;	 Fig.	 2i).	 This	 result	 implies	 that,	 on	
average,	 the	 subjects	 tended	 to	 not	 only	 use	 these	 two	 sources	 of	 information,	 but	 also	
combine	them	according	to	their	relative	reliabilities	to	optimize	perceptual	performance	
on	the	dynamic	task.	

	
This	integration	of	prior	and	sensory	information	took	into	account	the	changes	in	

the	relevance	and	reliability	of	the	priors	that	occurred	throughout	the	dynamic	task.	These	
changes	 are	 illustrated	 in	 Fig.	 3a,	 which	 shows	 prediction-error	 STDs	 averaged	 across	
subjects	as	a	function	of	the	number	of	sounds	after	a	change-point,	or	SAC,	separately	for	
the	 two	 noise	 conditions.	 Figure	 3b	 shows	 linear	 contrasts	 that	 captured	 the	 salient,	
dynamic	aspects	of	these	changes	for	each	subject	(see	inset	in	Fig.	3e	describing	CP,	Exp,	
and	Noise	 contrasts).	 Specifically,	 on	 change-point	 trials,	predictions	were	 irrelevant	 and	
hence	most	 variable	with	 respect	 to	 the	 subsequent	 sound-source	 location	 (signed-rank	
test	 for	H0:	 the	median	 of	 the	 distribution	 of	 per-subject	 CP	 contrasts,	 which	 compared	
change-points	to	other	trials=0,	p<10!!).	After	change-points,	predictions	became	steadily	
more	 reliable	 as	 the	 number	 of	 sound	 sources	 experienced	 from	 the	 new	 distribution	
increased	 in	 both	 noise	 conditions	 (p<10!! 	for	 Explow	 and	 Exphigh	 contrasts,	 which	
identified	 linear	 trends	 across	 SAC	 2–6	 for	 each	 of	 the	 two	 noise	 conditions).	 The	
predictions	were	also	more	reliable	overall	in	the	low-	versus	high-noise	condition	(Noise	
contrast,	 p<10!! ).	 These	 dynamic	 trends	 were	 consistent	 with	 predictions	 from	 a	
normative	model	of	predictive	inference	that	had	full	knowledge	of	the	generative	statistics	
(Nassar	et	al.,	2010).	The	model,	which	produced	simulated	predictions	that	were	analyzed	
in	the	same	way	as	the	data,	had	task-dependent	effects	that	were	in	the	same	directions	
and	of	 roughly	 the	same	magnitude	as	 the	data,	although	 the	subjects	 tended	 to	produce	
more	variable	predictions	than	the	model	(Fig.	3a,b	diamonds).	
	

These	 task-dependent	 changes	 in	 the	 subjects’	 predictions	 were	 associated	 with	
similar	changes	in	the	variability	of	their	perceptual	reports	(Fig.	3c,d)	and	their	confidence	
in	 those	 reports,	 as	 assessed	 by	 bet	 frequencies	 (Fig.	 3e,f).	 Perceptual-error	 variability	
tended	to	be	higher	for	change-point	trials,	when	predictions	were	irrelevant	(CP	contrast,	
p<10!!),	and	for	the	high-	versus	low-noise	condition	(Noise	contrast,	p<10!!).	Perceptual-
error	 variability	 also	 tended	 to	 decrease	 on	 experiencing	 more	 samples	 from	 the	 new	
distribution,	 with	 a	 reliable	 effect	 across	 individuals	 in	 the	 low-noise	 condition	 (Explow	
contrast,	 p<0.005)	 but	 not	 the	 high-noise	 condition	 (Exphigh	 contrast,	 p=0.4).	 These	
dynamics	 were	 also	 apparent	 in	 the	 subjects’	 betting	 trends	 (Fig.	 3e,f),	 which	 reflected	
trial-by-trial	 awareness	 of	 the	 changes	 in	 perceptual	 variability	 and	 included	 similar	
dependencies	 on	 CP	 (p<10!!),	 Noise	 (p=0.032),	 and	 Explow	 (p=0.03)	 and	 less	 reliable	
dependencies	 on	 Exphigh	 (p=0.07).	 Both	 the	 perceptual	 and	 betting	 effects	 were	
qualitatively	 similar,	 in	 direction	 and	 magnitude,	 to	 theoretical	 values	 computed	 from	
optimal	combinations	of	each	subjects’	changing	priors	(circles	in	Fig.	3a,b)	and	their	fixed	
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sensory	 reliability	 estimated	 from	 the	 control	 task	 (Fig.	 2g;	 see	 also	 Fig.	 1d–f).	 These	
theoretical	values	also	showed	strong	effects	of	CP,	Noise,	and	Explow,	and	smaller	effects	of	
Exphigh	(Fig.	3c–f,	diamonds).		

	
These	behavioral	 dynamics	 reflected	 changes	 in	 the	degree	 to	which	 the	 subjects’	

priors	 biased	 their	 perceptual	 reports.	We	quantified	 perceptual	 bias	 as	 the	 slope	 of	 the	
relationship	between	the	prediction	error	and	the	perceptual	error	measured	on	individual	
trials	(Fig.	4a–c).	A	slope	of	zero	implies	no	relationship	between	the	prediction	error	and	
the	 perceptual	 error,	 and	 thus	 no	 bias	 towards	 the	 prior.	 In	 contrast,	 slope	 values	 that	
increase	towards	unity	imply	increasing	biases	of	the	perceptual	reports	towards	the	prior.	
This	 perceptual	 bias	 varied	 systematically	 as	 a	 function	 of	 task	 conditions.	 Specifically,	
perceptual	bias	was	lower	on	change-points	(CP	contrast,	p<10!!)	and	for	the	high-	versus	
low-noise	condition	(Noise	contrast,	p=0.008).	Perceptual	bias	also	tended	to	 increase	on	
experiencing	more	samples,	although	these	effects	were	variable	across	individuals	and	not	
statistically	 reliable	 in	 the	 low-noise	 condition	 (Explow	 contrast,	 p=0.1;	 Exphigh	 contrast,	
p=0.004).	These	 task-dependent	 changes	 in	 the	biases	were	 comparable	 in	direction	and	
magnitude	 to	 theoretically	 computed	 values	 given	 an	 optimal,	 reliability-weighted	
combination	 of	 the	 task-specific	 predictions	 on	 the	 dynamic	 task	 (circles	 in	 Fig.	 3a)	 and	
fixed	sensory	reliability	estimated	from	the	control	task	(Fig.	2g),	computed	separately	for	
each	 subject	 (diamonds	 in	 Fig.	 4d,e).	 Despite	 these	 comparable	 task-dependent	 trends	
(compare	circles	and	diamonds	in	Fig.	4e),	the	subjects’	perceptual	biases	were	on	average	
smaller	 than	 the	 theoretical	 values	 (compare	 circles	 and	diamonds	 in	 Fig.	 4d).	However,	
overall	performance,	measured	as	perceptual-error	variability,	was	relatively	insensitive	to	
this	 overall	 shift,	 as	 compared	 to	 task-dependent	 adjustments,	 in	 the	 magnitude	 of	 the	
perceptual	biases	(compare	circles	and	triangles	in	Fig.	3c,d).	
	 	
Individual	differences	in	the	modulation	of	perceptual	biases	
	

The	above	analyses	demonstrated	that	 for	 individual	subjects,	dynamic	changes	 in	
the	relevance	and	reliability	of	priors	within	an	experimental	session	were	associated	with	
changes	in	the	degree	to	which	those	priors	biased	perception.	We	identified	similar	effects	
across	subjects,	implying	that	individual	differences	in	perception	can	reflect	differences	in	
how	 priors	 are	 updated	 and	 maintained	 in	 dynamic	 environments.	 Specifically,	 we	
compared	subjects’	overall	biases	to	the	variability	of	their	sensory	and	prediction	errors	
(linear	 regression	of	 the	mean	perceptual	biases	of	 individual	 subjects	 from	non-change-
point	trials	as	a	function	of	the	STD	of	perceptual	errors	from	the	control	task	and	the	STD	
of	prediction	errors	across	non-change-point	trials	from	the	dynamic	task;	F	statistic=7.39,	
p=0.002).	According	to	these	fits	and	consistent	with	Bayesian	theory,	subjects	with	higher	
overall	prior-driven	perceptual	biases	tended	to	have	higher	sensory	variability	(β=0.033,	
t-test	for	H0:	β=0,	p=0.013;	Fig.	5a)	and	lower	prediction	variability	(β=-0.030,	p=0.002;	Fig	
5b).	We	also	found	individual	differences	in	how	perceptual	biases	changed	as	a	function	of	
particular	 task	 conditions,	 and	 that	 those	 differences	 were	 predicted	 by	 subject-specific	
changes	in	priors	under	those	conditions.	Subjects	whose	priors	improved	(i.e.,	became	less	
variable)	 the	 most	 also	 tended	 to	 have	 the	 largest	 increases	 in	 prior-driven	 perceptual	
biases:	 1)	 just	 after	 a	 change-point	 (Fig.	 5e),	 2)	 on	 experiencing	 samples	 from	 a	 new	
distribution	 (in	 the	 low-	but	not	high-noise	 condition;	Figs.	5c	and	d),	or	3)	between	 the	
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high-	and	low-noise	conditions	(Fig.	5f).	Thus,	on	average,	subjects	tended	to	weigh	prior	
and	 sensory	 information	 according	 to	 their	 relative	 reliabilities,	 taking	 into	 account	
variability	in	the	priors	across	task	conditions	and	individual	subjects.	

	
	 To	more	quantitatively	account	for	the	factors	that	affected	perceptual	biases	across	
task	 conditions	 and	 individual	 subjects,	we	 used	 a	 linear	model	 that	 included	normative	
and	non-normative	terms	that	each	were	weighed	according	to	their	contributions	to	each	
subject’s	behavior	(Fig.	6).	The	normative	terms	were	extracted	from	a	Bayesian	model	of	
perception,	which	generated	perceptual	biases	that	minimized	simulated	perceptual	errors,	
given	each	subject’s	variable	predictions	and	sensory	estimates.	These	terms	were:	1)	prior	
relevance,	 which	 reflected	 the	 probability	 that	 the	 current	 sound	 came	 from	 the	 same	
generative	 distribution	 as	 the	 previous	 sound	 (and	 thus	 is	 related	 to	 the	 CP	 effects	
illustrated	in	Figs.	3	and	4;	Fig.	6c);	and	2)	prior	reliability,	which	reflected	changes	in	the	
total	width	of	the	predictive	distribution	relative	to	the	likelihood,	given	new	samples	(and	
thus	 is	related	to	the	Exp	and	Noise	effects	 illustrated	 in	Figs.	3	and	4;	Fig.	6d).	The	non-
normative	terms	included	one	describing	a	fixed	bias	as	a	function	of	the	prediction	error,	
one	to	allow	the	strength	of	perceptual	bias	to	depend	on	reported	confidence	(i.e.,	whether	
the	subject	bet	high	or	not),	and	spatial	terms	to	account	for	the	subjects’	overall	tendency	
to	 give	 perceptual	 reports	 that	were	 biased	 slightly	 towards	 straight	 ahead	 (Fig.	 2f).	 On	
average,	 the	 linear	 model	 captured	 the	 behavioral	 trends	 well	 (Fig.	 6b),	 based	 on	
contributions	of	each	of	the	terms	described	above	that	tended	to	vary	in	magnitude	across	
subjects	(Fig.	6e).	By	comparison,	a	parameter-free	normative	model	captured	some	of	the	
behavioral	 trends	(Fig.	6a)	but	reported	higher	perceptual	biases	 than	subjects	(compare	
red	 points	 and	 bar	 in	 Fig.	 6e),	 particularly	 on	 change-points	 (compare	 green	 points	 and	
bars	in	Fig.	6e).	
	
Modulations	of	perceptual	biases	reflected	in	pupil	diameter	
	

A	key	question	addressed	 in	 this	work	 is	whether	arousal	 systems,	as	 reflected	 in	
pupil	 diameter,	 contribute	 to	 the	 dynamic	modulation	 of	 perceptual	 biases.	 Using	 linear	
regression	 at	 each	 time-point	 relative	 to	 sound	 onset	 (the	 average	 sound-evoked	 pupil	
response	 from	 all	 probe	 trials	 and	 subjects	 is	 shown	 in	 Fig.	 7a),	 we	 found	 that	 pupil	
diameter	 varied	 with	 several	 of	 the	 factors	 from	 the	 linear	 model	 that	 accounted	 for	
behavioral	 biases	 (Eq.	 6;	 Fig.	 7b,c).	 Specifically,	 prior	 reliability	 was	 reflected	 in	 the	
baseline	diameter	before	presentation	of	the	probe	sound,	with	smaller	baselines	reflecting	
more	 reliable	 priors	 (p=0.03,	 brown	 point	 in	 Fig.	 7b).	 However,	 prior	 reliability	 did	 not	
modulate	 the	magnitude	 of	 the	 stimulus-evoked	 pupil	 response,	 after	 accounting	 for	 the	
baseline	 effect.	 In	 contrast,	 prior	 relevance	was	 unrelated	 to	 baseline	 diameter	 but	 was	
robustly	 encoded	 by	 the	 stimulus-evoked	 pupil	 diameter,	 with	 larger	 evoked	 pupil	
responses	 reflecting	 lower	 prior	 relevance.	 This	 effect	 peaked	 around	 the	 time	 of	 the	
maximum	sound-evoked	pupil	response	(permutation	test	for	effect	duration:	duration=1.0	
s,	 p=0.02).	 The	 pupil	 response	 also	 reflected	 the	 subjects’	 upcoming	 bet,	 with	 high	 bets	
corresponding	 to	 larger	 pupil	 diameters,	 particularly	 late	 in	 the	 fixation	 interval	
(duration=1.8	s,	p=0.01).	
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If	 the	arousal	 system	 is	 contributing	 to	 the	dynamic	 regulation	of	 the	 influence	of	
priors	on	perception,	then	pupil	diameter	may	co-vary	with	adjustments	in	prior	influence	
even	after	accounting	 for	all	of	 the	 factors	 in	 the	behavioral	 linear	model	(for	example,	 if	
variability	 in	 internal	 representations	 of	 sound-source	 location	 affect	 both	 behavior	 and	
arousal).	We	 therefore	 included	 the	 residual	perceptual	bias	 from	our	model	of	behavior	
(Fig.	 6)	 in	 our	model	 of	 pupil	 diameter.	 A	 positive/negative	 value	 of	 the	 residual	 biases	
indicates	 that	 the	 subject	 was	 more/less	 biased	 by	 the	 prior	 on	 the	 given	 trial	 than	
predicted	by	the	linear	model.	There	was	a	trend	toward	positive	coefficients	for	this	term	
in	explaining	baseline	pupil	diameter	 (larger	baseline	diameters	corresponded	 to	slightly	
stronger	biases	than	predicted	by	the	behavioral	model;	p=0.06;	Fig.	7b).	In	addition,	there	
was	a	robust	reflection	of	the	residual	bias	term	in	sound-evoked	pupil	response	(smaller	
responses	 near	 the	 peak	 of	 the	 evoked	 response	 corresponded	 to	 stronger	 biases	 than	
predicted	 by	 the	 behavioural	 model;	 duration=1.2	 s,	 p=0.02;	 Fig.	 7c).	 This	 residual	 bias	
effect	 implies	 that	 pupil	 diameter	 reflects	 not	 just	 particular	 factors	 like	 prior	 reliability	
and	 relevance	 that	 can	 be	 used	 to	 make	 effective	 predictions	 in	 dynamic	 environments	
(Nassar	et	al.,	2012),	but	also	the	extent	to	which	those	and	other	factors	are	actually	used	
to	bias	perception	from	one	stimulus	to	the	next.		
	

In	addition	 to	 these	average,	within-subject	effects,	 there	were	also	across-subject	
relationships	 between	pupil	 diameter	 and	perceptual	 biases,	 particularly	with	 respect	 to	
prior	 relevance	 (Fig.	 7d,e).	 We	 constructed	 a	 new	 linear	 model	 to	 account	 for	 these	
relationships.	Because	the	behavioral	 influences	of	prior	relevance	(PE*relevance	term	in	
Fig.	 6e)	 and	 overall	 perceptual	 biases	 (PE	 term	 in	 Fig.	 6e)	 covaried	 considerably	 across	
subjects	 (r=0.77,	 p<10-9),	 we	 included	 in	 the	 pupil	 regression	 two	 individual-difference	
variables	 that	 corresponded	 to	 the	 shared	 and	 unique	 variance	 of	 the	 two	 behavioral	
coefficients.	 The	 effects	 of	 the	 shared	 term	were	 negative	 for	most	 of	 the	measurement	
window	 (Fig.	 7e;	 duration=2.2	 s,	 p=0.01).	 In	 contrast,	 the	 unique-variance	 term	 did	 not	
show	a	 strong	 relationship	 to	 average	pupil	 traces.	This	 result	 implies	 that	 subjects	who	
had	the	strongest	overall	perceptual	biases,	and	modulated	them	most	according	to	prior	
relevance,	tended	also	to	have	the	smallest	stimulus-evoked	pupil	responses.	
	

To	 further	 quantify	 these	 within-	 and	 across-subject	 relationships	 between	 pupil	
diameter	and	task	performance,	we	used	pupil	diameter	to	predict	the	subjects’	perceptual	
biases.	 Specifically,	 we	 created	 three	 normalized	 variables	 to	 reflect	 within-	 and	 across-
subject	variability	in	pupil	responses	at	the	time	of	peak	modulation	for	residual	bias	(2.1	s	
following	 stimulus	 onset)	 along	 with	 their	multiplicative	 interaction.	 Each	 pupil-derived	
variable	was	included	as	a	modulator	of	prediction	errors	in	three	different	linear	models	
of	 perceptual	 errors.	 In	 the	 simplest	 model,	 pupil-derived	 measures	 alone	 predicted	
systematic	differences	in	perceptual	biases	observed	in	the	behavioral	data	(Fig.	8a),	such	
that	biases	were:	1)	larger	for	trials	in	which	pupil	responses	were	smaller	than	average	(t-
test,	p<10-4),	2)	larger	for	subjects	who	had	smaller	than	average	pupil	responses	(p<10-3),	
and	3)	modulated	 from	 trial	 to	 trial	more	 steeply	 for	 subjects	with	 smaller	 overall	 pupil	
responses	(p<0.01;	Fig.	8b).	Consistent	with	these	relationships,	the	pupil-based	measures	
offered	 a	 substantial	 improvement	 to	 the	 base	 model	 in	 terms	 of	 predicting	 behavior	
(likelihood-ratio	 test,	 p<10-7;	 Fig.	 8c).	 The	 pupil-based	 measures	 also	 offered	 an	
explanatory	advantage	when	added	to	more	complex	models	that	accounted	for	direct	fixed	
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effects	 (one	coefficient	 for	all	 subjects)	or	 random	effects	 (one	coefficient	per	 subject)	of	
stability,	reliability,	and	bets	on	perceptual	biases	(p<10-4	for	both	models;	Fig.	8c).	Taken	
together,	 these	 results	 imply	 that	 fluctuations	 in	 pupil	 diameter,	 particularly	 those	
mediated	by	stimuli	and	related	to	context	stability,	can	be	used	to	determine	the	extent	to	
which	perception	is	biased	towards	pre-existing	priors.		
	
Discussion	

	

We	 used	 a	 novel	 auditory-localization	 task	 to	 show	 that	 the	 influence	 of	 prior	
expectations	on	perception	is	regulated	rapidly	and	adaptively	in	changing	environments.	
This	work	 combines	 and	 extends	 several	 lines	 of	 research.	 The	 first	 has	 emphasized	 the	
role	 of	 priors	 on	 the	 perception	 of	 an	 uncertain	 sensory	 stimulus	 (Knill	 and	 Richards,	
1996).	Many	of	 these	 studies	 have	 focused	on	priors	 that	 are	 related	 to	 relatively	 stable	
properties	 of	 the	 environment	 (W.	 J.	 Adams	 et	 al.,	 2004;	 Stocker	 and	 Simoncelli,	 2006),	
although	several	recent	studies	have	shown	that	certain	sensory	or	sensory-motor	priors	
can	be	learned	relatively	rapidly	(W.	J.	Adams	et	al.,	2004;	Berniker	et	al.,	2010;	Burge	et	al.,	
2008;	 Stocker	 and	 Simoncelli,	 2006;	 Tassinari	 et	 al.,	 2006).	 The	 second	 has	 shown	 that	
under	 a	 variety	 of	 conditions,	 individual	 variability	 in	 decision-making	 can	 involve	
differential	 use	 of	 priors	 (Stanovich	 and	 West,	 2000).	 The	 third	 has	 identified	 how	
predictions	are	updated	and	used	to	make	decisions	in	dynamic	environments	(Behrens	et	
al.,	 2007;	 Nassar	 et	 al.,	 2010;	 Wilson	 et	 al.,	 2013).	 The	 fourth	 has	 related	 this	 dynamic	
updating	 process	 to	 changes	 in	 physiological	 arousal	 (Nassar	 et	 al.,	 2012;	 Preuschoff,	
2011).	 We	 showed	 that	 many	 of	 these	 principles,	 including	 dynamic,	 arousal-related	
adjustments	in	predictions,	apply	to	how	priors	are	updated	and	used	to	guide	perception.		

	
These	 principles	 involve	 ongoing	 assessments	 of	 the	 relevance	 and	 reliability	 of	

priors	that	represent	a	form	of	statistical	learning	(Tenenbaum	et	al.,	2011;	Vapnik,	2013).	
We	quantified	this	learning	process	using	two	variables	derived	from	normative	theory	(R.	
P.	 Adams	 and	MacKay,	 2007;	Mathys,	 2011;	 Nassar	 et	 al.,	 2010;	 O'Reilly,	 2013;	 Payzan-
LeNestour	and	Bossaerts,	2011;	Preuschoff	and	Bossaerts,	2007;	Yu	and	Dayan,	2005).	The	
first,	which	we	 termed	 prior	 relevance,	 is	 closely	 related	 to	 unexpected	 uncertainty	 and	
reflects	the	probability	that	a	new	observation	is	consistent	with	recent	history	(Nassar	et	
al.,	2010;	Yu	and	Dayan,	2005).	The	second,	which	we	termed	prior	reliability,	is	a	form	of	
reducible	 uncertainty	 that	 reflects	 ambiguity,	 typically	 resulting	 from	 undersampling,	
about	 the	current	generative	process	(Payzan-LeNestour	and	Bossaerts,	2011;	Preuschoff	
and	 Bossaerts,	 2007).	 Previous	 work	 showed	 that	 new	 information	 exerts	 the	 least	
influence	on	existing	predictions	when	those	predictions	are	the	most	relevant	and	reliable	
(Behrens	 et	 al.,	 2007;	 Nassar	 et	 al.,	 2010).	We	 showed	 analogous	 effects	 for	 perception:	
new	 sensory	 input	 exerts	 the	 least	 influence	 on	 perception,	 relative	 to	 the	 influence	 of	
priors	 (i.e.,	 perceptual	 biases	 are	 largest),	 when	 the	 priors	 are	 the	 most	 relevant	 and	
reliable.		

	
Both	of	 these	normative	 factors,	scaled	according	 to	 their	effects	on	each	subject’s	

behavior,	were	 reflected	 in	modulations	 of	 arousal	 state	 as	measured	by	pupil	 diameter.	
Prior	 reliability	 corresponded	 to	 changes	 in	baseline	pupil	diameter,	 and	prior	 relevance	
corresponded	 to	 changes	 in	 the	 stimulus-evoked	 change	 in	 pupil	 diameter.	 These	
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modulations	were	similar	to	our	previous	findings	in	a	predictive-inference	task	(Nassar	et	
al.,	2012).	Here	prior	relevance	was	the	stronger	effect,	with	larger,	stimulus-evoked	pupil	
dilations	 reflecting	 the	 relatively	 diminished	 effects	 of	 priors	 on	 perception	 just	 after	 a	
change-point.	This	result	is	consistent	with	the	idea	that	transient	increases	in	arousal,	 in	
response	to	surprising	events	or	other	factors,	may	generally	correspond	to	high	sensitivity	
to	immediate	sensory	input,	possibly	from	a	reduced	influence	of	prior	expectations	(Pfaff,	
2006;	 Sara	 and	 Bouret,	 2012).	 This	 result	 encompassed	 both	within-	 and	 across-subject	
effects,	 suggesting	 that	 surprise-related	 modulations	 of	 arousal	 may	 be	 an	 important	
source	of	individual	variability	in	perceptual	abilities.	

	
We	 also	 found	 relationships	 between	 subjective	 confidence,	 perceptual	 biases,	 and	 pupil	
diameter.	We	measured	 confidence	using	 a	post-decision	bet,	which	previously	has	been	
linked	to	the	sensory-driven	decision	variable	that	also	governs	the	speed	and	accuracy	of	
the	perceptual	decision	(Kepecs	et	al.,	2008;	Kiani	and	Shadlen,	2009;	Persaud	et	al.,	2007).	
We	showed	 that	 confidence	 is	 also	modulated	according	 to	 changes	 in	 the	 relevance	and	
reliability	 of	 perceptual	 priors	 that	 affect	 perceptual	 errors.	 This	 modulation	 was	 also	
evident	 in	 pupil	 diameter,	 which	 reflected	 bet	 frequency	 even	 after	 accounting	 for	 the	
normative	 variables	 that	 also	 governed	 the	 perceptual	 biases.	 However,	 this	 extra	 effect	
was	in	the	opposite	direction	as	for	the	normative	factors,	relative	to	the	behavioral	effect:	
high	 bet	 frequency	 corresponded	 to	 larger	 pupil	 diameters	 but	 stronger	 prior	 influence.	
This	pupil	effect	is	somewhat	surprising	given	that	pupil	diameter	can	be	enhanced	under	
uncertain,	 rather	 than	certain,	 conditions	 (Jepma	and	Nieuwenhuis,	2011;	Lempert	et	 al.,	
2015;	 Nassar	 et	 al.,	 2012;	 Satterthwaite	 et	 al.,	 2007;	 Wessel	 et	 al.,	 2011)	 (but	 see	
(Preuschoff,	2011)).	One	possible	explanation	for	this	discrepancy	is	that	the	post-decision	
bet	 led	subjects	to	anticipate	the	increased	reward	or	risk	associated	with	high-bet	trials,	
leading	 to	 stronger	 arousal	 responses	 (Manohar	 and	 Husain,	 2015;	 Satterthwaite	 et	 al.,	
2007).	This	idea	is	supported	by	the	time	course	of	bet-related	pupil	dilations,	which	had	a	
maximal	dilation	immediately	prior	to	the	perceptual	report.	This	 idea	also	highlights	the	
multiple,	 possibly	 interacting	 roles	 that	 the	 arousal	 system	 likely	 plays	 in	 even	 simple	
sensory-motor	tasks	like	this	one.	
	

These	 multiple	 roles	 undoubtedly	 result	 from	 multiple	 mechanisms	 by	 which	
arousal	 affects	 neural	 information	 processing	 (Robbins	 and	 Everitt,	 1995).	 One	 such	
mechanism	 likely	 involves	 cortical	 levels	of	norepinephrine	 (NE),	which	 is	 controlled	via	
neurons	 in	 the	 midbrain	 nucleus	 locus	 coeruleus	 (LC)	 (Aston-Jones	 and	 Cohen,	 2005).	
Firing	rates	of	LC	neurons	correlate	with	pupil	diameter	over	relatively	short	 timescales,	
which	 has	 prompted	 the	 suggestion	 that	 pupil	 diameter	 can	 be	 used	 as	 a	 proxy	 for	 LC	
activity	 (Aston-Jones	 and	 Cohen,	 2005;	 Bouret	 and	 Richmond,	 2015;	 Joshi	 et	 al.,	 2016;	
Nieuwenhuis	et	al.,	2011).	Thus,	 the	 factors	 in	our	task	that	corresponded	to	 larger	pupil	
diameters,	 such	 as	 more	 surprising	 stimuli	 with	 lower	 prior	 relevance,	 may	 also	
correspond	 to	 increased	 LC	 activation.	 This	 activation,	 in	 turn,	 would	 increase	 levels	 of	
cortical	 NE,	 which	 have	 been	 theorized	 to	 signal	 unexpected	 context	 changes	 and	 allow	
neural	representations	to	reorient	rapidly	to	meet	changing	contextual	demands,	possibly	
via	modulations	of	 the	 input/output	gain	of	 individual	 cortical	neurons	 (Aston-Jones	and	
Cohen,	 2005;	 Bouret	 and	 Sara,	 2005;	 MatherClewettSakakiHarleyinpress,	 2015;	 Servan-
Schreiber	 et	 al.,	 1990;	 Yu	 and	Dayan,	 2005).	 In	 principle,	 such	 a	mechanism	 seems	well	
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poised	to	regulate	the	influence	of	prior	expectations	on	sensory	input.	Future	work	should	
test	this	idea	directly.		
	
Experimental	Procedures	
	
		 Human	subject	protocols	were	approved	by	the	University	of	Pennsylvania	Internal	
Review	Board.	29	subjects	(16	female,	13	male)	participated	in	the	study	after	providing	
informed	consent.		
	
Auditory-localization	task	

	
We	 used	 a	 novel	 auditory-localization	 task	 in	 which	 subjects	 heard	 sounds	 with	

varying	 source	 locations	 that	 were	 simulated	 using	 head-related	 transfer	 functions	
(HRTFs)	 from	 the	 IRCAM	 database	
(http://recherche.ircam.fr/equipes/salles/listen/download.html).	 Each	 sound	 was	 a	
sequence	of	five	Gaussian	noise	pulses	bandpass	filtered	between	100	Hz	and	15	KHz.	The	
pulses	were	50	ms	each	with	a	delay	of	10	ms	between	each	pulse.	For	each	subject,	we	
tested	 a	 number	 of	 HRTFs	 during	 the	 initial	 session	 by	 playing	 sound	 sequences	 that	
circularly	traversed	the	entire	horizontal	plane	in	15°	intervals.	We	picked	the	HRTF	that	
was	 reported	 to	 give	 the	most	 uniformly	 circular	 percept	 for	 the	 sound	 sequence.	 Each	
subject	performed	3–6	total	sessions.	
	

Each	 subject	 completed	 two	 tasks	per	 session.	The	 first	was	a	 control	 localization	
task	that	required	the	subject	to	indicate	the	perceived	location	of	simulated	sound	sources	
that	 were	 sampled	 independently	 and	 uniformly	 randomly	 along	 the	 frontal,	 horizontal	
plane.	In	each	of	72	trials,	the	subject	was	required	to:	1)	fixate	for	2.5	s	while	listening	to	
the	auditory	stimulus;	and	2)	 indicate	the	perceived	location	of	the	sound	using	a	mouse,	
which	controlled	a	cursor	that	moved	along	a	semi-circular	arc	on	the	computer	screen	that	
represented	 the	 range	 of	 possible	 sound-source	 locations	 (Fig.	 1).	 Failure	 to	 maintain	
fixation	resulted	in	a	warning	sound	and	trial	break.	Feedback	was	displayed	on	the	screen	
after	the	subject	reported	the	perceived	location.	

	
The	second	task	was	a	dynamic	localization	task	that	required	the	subject	to	report	

predictions,	 perceptions,	 and	 confidence	 judgments	 of	 sound-source	 locations	 that	 were	
generated	from	a	change-point	process	along	the	same	horizontal	plane.	For	this	task,	the	
subject	 listened	to	extended	sequences	of	auditory	stimuli	generated	by	the	change-point	
process,	 paired	 with	 visual	 cues	 indicating	 the	 presented	 source	 location	 on	 the	 semi-
circular	 arc.	 During	 the	 presentation	 of	 these	 sequences,	 no	 action	 was	 required.	
Occasionally,	however,	 the	 sequences	 stopped,	 indicating	 the	 start	of	a	 “probe	 trial”	with	
the	 following	 structure	 (Fig.	 1c).	 First,	 the	 subject	 was	 required	 to	 predict	 the	 angular	
location	of	the	next,	upcoming	probe	stimulus	on	the	arc	using	a	mouse.	Second,	following	
the	prediction,	the	subject	was	required	to	maintain	fixation	for	2.5	s.	The	auditory	probe	
stimulus,	with	no	corresponding	visual	cue,	was	presented	at	the	beginning	of	this	fixation	
period.	Fourth,	after	the	fixation	period	ended,	the	subject	indicated	the	perceived	location	
of	the	probe	stimulus	using	the	mouse	and	the	visual	display.	Fifth,	the	subject	then	bet	on	
the	 accuracy	 of	 the	 perceptual	 report	 (Fig	 1).	 Each	 subject	 performed	 four	 blocks	 of	 the	
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dynamic	task	per	session,	which	 included	~30	probe	trials	each.	Each	session	 lasted	~90	
min.	

	
The	 sequence	 of	 simulated	 sound-source	 locations	 for	 the	 dynamic	 task	 was	

determined	 according	 to	 a	 process	 that	 included	 both	 irreducible	 variability	 (noise)	 and	
abrupt	 discontinuities	 (change-points).	 Source	 locations	 were	 sampled	 from	 a	 Gaussian	
distribution	with	a	standard	deviation	(STD)	that	was	held	constant	within	a	block	of	600	
trials	 (10°	 or	 20°	 for	 the	 low-	 or	 high-noise	 condition,	 respectively)	 and	 a	 mean	 that	
underwent	 abrupt	 change-points	with	 a	 fixed	probability,	 or	 hazard	 rate	 (H),	 of	 0.15	 for	
each	 sound	 sample.	 At	 each	 change-point,	 the	 mean	 of	 the	 generative	 distribution	 was	
resampled	 uniformly	 across	 the	 sound	 space,	 such	 that	 the	 newly	 generated	 source	
locations	were	independent	from	previous	ones.	The	sequence	was	interrupted	for	probe	
trials	 at	 random	 using	 a	 procedure	 that	 ensured	 roughly	 even	 distribution	 of	 probes	
occurring	 1–6	 sounds	 after	 a	 change-point	 (SAC).	 Thus,	 on	 some	 trials	 the	 probe	 sound-
source	 location	 was	 independent	 of	 the	 previous	 stimulus	 sequence	 (SAC=1).	 On	 other	
trials,	 the	 probe	 location	 was	 generated	 from	 the	 same	 distribution	 that	 produced	 the	
immediately	preceding	locations	(SAC=2–6).	

	
Subjects	were	motivated	 to	make	 accurate	 perceptual	 reports	 on	 each	probe	 trial	

through	an	incentive	system.	They	were	instructed	to	bet	high	if	they	were	confident	that	
the	 true	 location	was	within	a	16°	window	centered	on	 their	second	(perceptual)	report,	
and	to	bet	low	otherwise.	A	correct/incorrect	high	bet	resulted	in	a	score	of	(15/-10),	and	a	
correct/incorrect	 low	 bet	 resulted	 in	 a	 score	 of	 (5/-3).	 Subjects	were	 paid	 a	 bonus	 that	
depended	on	their	total	score.		

	
Behavioral	data	analysis:	contrasts	
	

Probe	 trials	 were	 sorted	 into	 twelve	 conditions	 according	 to	 the	 recency	 of	 the	
previous	 change	 point	 (SAC=1–6)	 and	 noise	 condition	 (high/low).	 Perceptual	 and	
prediction	errors	were	 computed	by	 subtracting	 reported	percepts	 and	predictions	 from	
the	 true	 (simulated)	 sound	 source	 location	 for	 each	 trial.	 For	 each	 condition,	 the	 STD	of	
prediction	and	estimation	errors	was	used	as	a	metric	of	average	absolute	error	magnitude.		

	
	To	 quantify	 how	 prediction	 errors,	 estimation	 errors,	 and	 average	 betting	

depended	on	specific	task	conditions,	we	performed	four	orthogonal	linear	contrasts.	Each	
contrast	was	computed	by	multiplying	a	weight	matrix	by	the	measured	prediction	errors,	
estimation	errors,	or	average	betting,	aggregated	according	 to	 the	 twelve	 task	conditions	
for	 a	 single	 subject.	 Weight	 matrices	 were	 mean	 centered	 and	 chosen	 to	 identify:	 1)	
differences	 between	 change-point	 and	 non-change-point	 trials	 (CP);	 2)	 linear	 increases	
with	increases	in	the	number	of	sounds	experienced	following	a	change-point,	from	SAC=2	
to	SAC=5,	in	the	high-noise	condition	(Exphigh);	3)	comparable	linear	increases	in	the	low-
noise	 condition	 (Explow);	 and	 4)	 differences	 between	 the	 high-	 and	 low-noise	 conditions	
(Noise).	Thus,	the	contrasts	provided	a	per-subject	measure	of	how	much	each	behavioral	
measurement	was	modified	according	 to	 these	 factors.	For	Figs.	3–5,	we	considered	only	
sound	sequences	 following	relatively	 large	change-points,	corresponding	to	at	 least	 twice	
the	generative	STD.		
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Behavioral	data	analysis:	perceptual	bias	
	

To	 quantify	 the	 influence	 of	 the	 prior	 on	 the	 perceptual	 report,	we	measured	 the	
slope	 of	 the	 best-fit	 line	 to	 the	 relationship	 between	 prediction	 errors	 (prediction–true	
location)	and	perceptual	errors	(percept–true	location)	for	the	given	task	condition.	Slopes	
close	 to	 one	 indicate	 a	 high	 perceptual	 bias,	 and	 slopes	 close	 to	 zero	 indicate	 low	
perceptual	bias.	To	measure	how	the	perceptual	bias	evolved	as	a	function	of	the	number	of	
sounds	after	a	change-point	(SAC),	we	used	the	 following	 linear	model	and	 included	only	
data	 from	 sequences	 following	 noticeable	 change-points	 (jumps	 of	 at	 least	 twice	 the	
generative	STD):	

	
!""!"#$! = !! + !!!""!"#$,!!!"! +⋯+ !!!""!"#$,!!!"! 		 	 	 	 [1]	
	 	     + !!!""!"#$,!!"# +⋯+ !!"!""!"#$,!!"# + !!"!"#$!"#$%#& 		
	

where	!""!"#$!	is	 the	 perceptual	 error	 and	!""!"#$,!!!"! 	is	 the	 prediction	 error	 on	 change-
point	 trials	 (SAC=1)	 in	 the	 high-noise	 condition,	 and	 so	 on.	 The	 last	 term,	!"#!!"#$%#& ,	
captures	the	slight	bias	in	the	perceptual	reports	towards	center	of	the	screen.	
	
Behavioral	data	analysis:	theoretical	benchmarks	
	

The	theoretically	expected	overall	perceptual-error	STD	per	subject	(abscissa	in	Fig.	
2i)	was	computed	from	an	optimal,	reliability-weighted	combination	of	prior	and	sensory	
information:	σ!!!"#!$%&'(!! =  σ!"#$%&'%()*!! + σ!"#!$%&!! .	 The	 theoretically	 expected	 perceptual-
error	 STD	 per	 subject	 (diamonds	 in	 Fig.	 3c,d),	 given	 their	 corresponding	 predictions	 for	
each	SAC	condition,	was	computed	using	 σ!!!"#!$%&'(!"# !! =  σ!"#$%&'%()*!"# !! + σ!"#!$%&!! .	The	
theoretically	 expected	 betting	 frequency	 (diamonds	 in	 Fig.	 3e,f)	 was	 computed	 as	 the	
probability	mass	contained	in	a	16°	window	centered	at	the	mean	of	a	Gaussian	with	a	STD	
of	 the	 theoretically	 expected	 perceptual	 errors,	σ!!!"#!$%&'(!"# .	 Thus,	 the	 proportion	 of	
expected	 high	 bets	 increased	 with	 narrower	 perceptual	 error	 distributions.	 The	
theoretically	expected	perceptual	bias	per	subject	(diamonds	in	Fig.	4d,e)	was	computed	as	
σ!"#!$%&! [ σ!"#$%&'%()*!"# ! + σ!"#!$%&! ]. In	all	of	the	above,	!!"#$%&'%()*	is	the	STD	of	prediction	
errors	 on	 non-change-point	 trials,	σ!"#$%&'%()*!"# 	is	 the	 STD	 of	 prediction	 errors	 for	 the	
specified	 number	 of	 sounds	 after	 a	 change-point,	 and	!!"#!$%&	is	 the	 STD	 of	 perceptual	
errors	on	the	control	task,	computed	per	subject.	
	
Behavioral	data	analysis:	normative	model	
	

Auditory	 localization	 in	 a	 dynamic	 environment	 can	 be	 posed	 as	 a	 perceptual	
inference	problem	with	the	goal	of	inferring	the	location	of	the	sound	source	on	trial	t	(!!)	
according	 to	 a	 noisy	 internal	 sensory	 representation	 of	 that	 sound	 source	 (!!)	 and	 the	
history	of	previously	experienced	sound	sources	(!!:!!!).	This	problem	can	be	simplified	
by	exploiting	the	conditional	independencies	in	the	Markov	change-point	process	through	
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which	 sound	 sources	 are	 selected	 (see	 Supplementary	 Fig.	 1).	 In	 particular,	 the	 sound	
sources	 locations	 on	 the	 current	 trial	 (!!)	 are	 independent	 of	 those	 on	 previous	 trials	
(!!:!!!)	conditioned	on	the	mean	of	the	generative	distribution	on	the	current	trial	(!!).	In	
turn,	the	mean	of	the	generative	distribution	on	the	current	trial	(!!)	is	also	independent	of	
previous	 observations	 conditioned	on:	 1)	 the	mean	of	 the	 generative	 distribution	 on	 the	
previous	 trial	 (!!!!),	 and	 2)	 a	 latent	 change-point	 variable	 that	 determines	whether	 the	
mean	 is	 resampled	on	 the	current	 trial	 (!!).	Applying	Bayes	rule	 to	 invert	 the	generative	
graph	in	Supplementary	Fig.	1	yields	the	following	inference	equation:	

	

	
! !! !! ,!!:!!! = ! !! !! ! !! !!!! ! !! !!!!,!! ! !!!!!!!! ! !!!! !!:!!!  

! !!,!! !!:!!!!!
	 [2]	

	
where	 the	 likelihood	 ! !! !! 	reflects	 the	 conditional	 distribution	 of	 internal	
representations	 across	 true	 sound	 source	 locations;	! !! !! 	reflects	 the	 conditional	
probability	of	a	sound	source	location	being	generated	from	a	particular	generative	mean;	
! �! �!!!, s! 	reflects	 the	process	 through	which	means	are	resampled	on	change-point	
(s!=1)	trials;	and	! !! 	is	 the	hazard	rate	(H),	which	was	fixed	to	0.15	for	the	task	and	all	
simulations.	The	likelihood	! �! X! 	was	modeled	as	a	normal	distribution	centered	on	X!	
with	a	variance	that	was	fixed	for	each	subject	to	the	variance	of	perceptual	reports	made	
by	 that	 subject	 on	 the	 control	 task	 (�!"#!$%&! ).	! �!!! X!:!!! 	is	 the	 distribution	 over	
possible	 generative	 means,	 which	 can	 be	 updated	 recursively.	 Although	 exact	 Bayesian	
solutions	 to	 this	 recursive	 problem	 exist	 (R.	 P.	 Adams	 and	MacKay,	 2007;	Wilson	 et	 al.,	
2010),	we	use	a	normal	approximation	to	 the	Bayesian	mixture	distribution	with	a	mean	
(!)	 and	 variance	 (!!)	 that	 capture	 the	 key	 dynamics	 of	 normative	 inference	 and	 offers	
better	 descriptions	 of	 human	 behavior	 (Nassar	 et	 al.,	 2010).	 As	 in	 previous	 work,	
predictions	made	using	 this	approximation	were	more	accurate	 than	subject	predictions.	
To	 account	 for	 this	 discrepancy,	 we	 created	 a	 subjective	 prediction	!!"#$ 	by	 sampling	 a	
random	 normal	 variable	 with	 mean	 equal	 to	!	and	 a	 variance	 that	 was	 incremented	 on	
each	 trial	 according	 to	 the	 difference	 in	 variance	 of	 subject	 and	 normative	 prediction	
errors:	
	

σ!"#$! =  !!  + 	Var(X–subject	predictions)	–	Var X– ! 												 	 			 [3]	
	
Thus,	 the	 overall	 model	 incorporates	 the	 prospect	 of	 sub-optimal	 predictions	 about	 the	
sound-source	location	but	implements	Bayesian	optimal	combination	of	these	predictions	
with	incoming	sensory	information	according	to	environmental	dynamics.		
	

Perceptions	and	predictions	from	the	normative	model	were	simulated	by	sampling	
internal	representations	(	!!	)	and	subjective	predictions	(!!"#$ 	)	for	each	trial	according	to	
the	actual	sequence	of	sound	source	locations	experienced.	Descriptive	statistics	for	model	
simulations	were	averaged	across	100	such	simulated	runs.	
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	 In	addition	 to	 simulating	behavioral	data,	 the	normative	model	 also	allowed	us	 to	
extract	latent	variables	that	guide	normative	adjustments	in	perceptual	bias.	In	particular,	
the	model	 adjusts	 bias	 towards	prior	 expectations	 in	 accordance	with	 the	 relevance	 and	
reliability	 of	 those	 expectations.	 The	 relevance	 of	 prior	 expectations	 (!!) 	is,	 in	 our	
generative	 framework,	 equal	 to	 the	probability	 that	 a	 change	point	did	not	occur	on	 this	
trial	given	all	previous	data.	This	probability	was	computed	on	each	trial	by	marginalizing	
Eq.	 2	 over	 all	 dimensions	 other	 than	 s.	 The	 impact	 of	 normative	 priors	 also	 depends	
critically	 on	 their	 reliability	 relative	 to	 that	 of	 the	 likelihood	 distribution	 capturing	 the	
noisy	internal	sensory	representation	(!!):	

	
prior reliability ∶  τ!  = �!"#!$%&!

�!"#!$%&! !�!"#$
! !�!"#$%

! 	 	 	 	 	 [4]	

	
where	τ!	is	 prior	 reliability, �!"#!$%&! 	is	 the	 variance	 of	 perceptual	 reports	 made	 by	 that	
subject	 on	 the	 control	 task,	σ!"#$! 	is	 the	 variance	 on	 subjective	 assessments	 of	 the	
underlying	mean,	and	σ!"#$%! 	is	the	expected	variance	of	sound	source	locations	about	that	
mean.	The	sum	of	the	latter	two	terms	reflects	the	total	variance	on	the	model’s	predictive	
distribution	 over	 possible	 sound	 locations.	 To	 ensure	 that	 these	 latent	 variables	 best	
reflected	circumstances	experienced	by	the	subject,	we	fixed	the	model	predictions	(	!!"#$)	
to	 the	 actual	 subject	 predictions	 from	 each	 trial	 and	 computed	 each	 measure	 as	 the	
expected	value	across	all	possible	values	of	λ!	using	a	grid-point	approximation.	

	
Behavioral	data	analysis:	Linear	model	of	perceptual	bias	

	
To	measure	how	the	prior	bias	was	modulated	by	normative	and	other	factors,	we	

fit	the	following	linear	model	to	data	from	all	change-point	and	non-change-point	trials:		
	

!""!"#$! ! = !! + !!!""!"#$ ! + !!!""!"#$ ! ∙ !! + !!!""!"#$ ! ∙ !!	 	 [5]	
		 +!!!""!"#$ ! ∙ !"# +  !!!"#$!"#$"% +   !!!"#$!"#$%#& 	

	
where	!!	describes	the	overall	prior	bias;	!!	and	!!	describe	the	extent	to	which	the	overall	
bias	 is	 dynamically	 modulated	 by	 the	 prior	 relevance	 and	 reliability,	 respectively	 (see	
above);	!! 	describes	 the	 interaction	 of	 prior	 bias	 with	 betting	 (a	 binary	 variable);	!!	
describes	the	bias	towards	the	center	of	the	screen;	and	!!	captures	the	angular	spatial	bias	
(mean	perceptual	error	at	the	given	angle)	measured	in	the	control	task.	Residuals	from	the	
model	 fit	were	signed	according	 to	 the	prediction	error	on	each	 trial	 to	create	a	 residual	
bias	term	for	use	in	pupil	analysis.		
	
Pupil	measurements	
	

Pupil	diameter	was	sampled	from	both	eyes	at	60	Hz	using	an	infrared	eye-tracker	
built	 into	 the	monitor	 (Tobii	 T60-XL).	 Pupil	 analyses	 used	 the	mean	 value	 from	 the	 two	
eyes	at	each	time	point	measured	during	fixation.	We	excluded	from	further	analyses	trials	
with	 blinks,	 which	 we	 identified	 using	 a	 custom	 blink-detection	 routine	 on	 the	 basis	 of	
pupil	diameter	and	vertical	and	horizontal	eye	position.	The	raw	pupil	diameter	was	low-
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pass	 filtered	 using	 a	 Butterworth	 filter	with	 a	 cut-off	 frequency	 of	 10	Hz.	 These	 filtered	
measurements	were	then	z-scored	in	each	session.	We	also	removed	a	linear	trend	in	the	
average	 pupil	 diameter	 over	 the	 whole	 session	 to	 account	 for	 any	 slow	 drift.	 The	 pupil	
baseline	 for	 each	 probe	 trial	 was	 defined	 as	 the	 mean	 of	 the	 first	 three	 samples	
immediately	preceding	the	measurement	period	for	that	probe	trial.		
	
Linear	model	relating	pupil	diameter	to	behavioral	parameters	
	
	 To	measure	how	the	variables	driving	behavior	were	encoded	in	pupil	diameter,	we	
used	 the	 following	 linear	 model	 to	 explain	 the	 fluctuations	 in:	 1)	 the	 baseline	 pupil	
diameter,	 and	2)	 stimulus-evoked	pupil	 response	 across	 the	 2.5	 s	 following	 the	 auditory	
stimulus:	
	

!"#$% !"#$%&%' =  !!!! + !!!! + !!!"#! + !!!"#$!"#$%&'( +	
!!!"#$%&'( !"#$%&'$ !"#$%&%' + !!!"#$ !"#$% !"#$%&'( !"#$% +	

	 	 	 	 	 !!!! !"# !"#$. !"#$% 	 	 	 	 [6]	
	
where	!!	and	!! are	 the	 reliability	 and	 relevance,	 respectively;	 β1-4	 capture	 relationships	
between	 pupil	 diameter	 and	 the	 computational	 and	 behavioral	 variables	 of	 interest;	 β5-6	
capture	persisting	fluctuations	in	pupil	diameter	that	are	attributable	to	the	previous	trial;	
and	 β7-9	 includes	 a	 set	 of	 three	 low-frequency	 cosine	 components	 for	 each	 session	 that	
capture	variability	due	to	slow	modulations	or	session	based	differences	in	pupil	diameter.	
The	exact	form	of	the	cosine	components	was	 cos ! ∙ ! 2! − 1 /2! ,	where	k=0,1,2;	n	is	
the	trial	number	within	the	session;	and	N	is	the	total	number	of	trials	in	the	session.	When	
this	model	was	fit	to	evoked	pupil	responses,	an	additional	nuisance	variable	was	added	to	
the	explanatory	matrix	that	accounted	for	trial-by-trial	differences	in	baseline	diameter.	
	

Significance	 testing	 for	 evoked	 pupil	 coefficients	 was	 done	 through	 cluster-based	
permutation	testing	to	account	 for	multiple	comparisons	over	 time.	 In	short,	 t-tests	were	
performed	on	each	set	of	coefficient	values	across	subjects	separately	for	each	time	point.	
Cluster	size	was	determined	according	to	the	number	of	contiguous	time	points	for	which	
this	 t-test	 yielded	 p<0.05.	 Cluster	 corrected	 p-values	 were	 determined	 by	 comparing	
cluster	 sizes	 attained	 in	 this	 way	 to	 those	 from	 a	 permutation	 distribution	 of	 maximal	
cluster	sizes	(Nichols	and	Holmes,	2002).		
	
Pupil-predicted	perceptual	bias	
	

Trial-by-trial	pupil	measurements	were	extracted	 for	 the	 time	of	peak	modulation	
for	residual	bias	from	the	behavioral	model,	as	measured	by	the	absolute	group	t-statistic.	
Trial-by-trial	 measurements	 from	 each	 subject	 were	 regressed	 onto	 a	 set	 of	 nuisance	
variables	 that	 included	 explanatory	 variables	 !!! from	 Eq.	 6	 to	 remove	 variance	
attributable	 to	 potentially	 confounding	 factors.	 For	 each	 time	 point,	 residual	 pupil	
measurements	 were	 concatenated	 across	 subjects	 and	 then	 divided	 into	 two	 separate	
variables:	one	variable	accounted	for	average	measurements	for	each	subject	and	one	that	
reflected	normalized	deviations	 from	 the	 average	measurement	within	 each	 subject.	 The	
six	 resulting	 variable	 arrays	 were	 z-scored	 and	 multiplied	 by	 trial	 prediction	 errors	 to	
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create	 a	 predictor	 matrix.	 Trial-by-trial	 perceptual	 errors	 were	 regressed	 onto	 three	
separate	models	with	 and	without	 the	 inclusion	 of	 the	 pupil	 predictor	matrix:	 1)	 a	 base	
model	 including	an	 intercept	 term	and	a	prediction	error	 term	to	capture	 fixed	effects	of	
perceptual	bias	across	all	 subjects	as	well	as	 the	spatial	bias	 terms	described	above;	2)	a	
fixed-effects	 model	 that	 also	 included	 interaction	 terms	 accounting	 for	 modulation	 of	
perceptual	bias	by	prior	 relevance	and	reliability	 the	 subjects’	betting;	 and	3)	a	 random-
effects	model	that	included	all	terms	in	model	2	separately	for	each	subject.		
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Figure	1:	Dynamic	sound-localization	task.	(a)	Subjects	listened	via	headphones	to	noise	
bursts	 with	 virtual	 source	 locations	 that	 varied	 along	 the	 frontal,	 azimuthal	 plane.	 The	
locations	were	sampled	(labeled	arrows)	from	a	Gaussian	distribution	(gray)	with	a	mean	
that	changed	abruptly	on	unsignaled	change-points	(probability=0.15	for	each	sound)	and	
a	STD	of	10°	in	low-noise	blocks,	20°	in	high-noise	blocks.	The	subjects	listened	passively	to	
the	sound	sequence,	except	for	occasional	probe	trials.	All	sounds	except	the	probe	sound	
were	 presented	 simultaneously	with	 their	 corresponding	 locations	 on	 a	 semicircular	 arc	
shown	 on	 the	 isoluminant	 visual	 display,	 allowing	 subjects	 to	 develop	 priors	 on	 sound-
source	 location	 based	 on	 both	 the	 auditory	 and	 visual	 signals	 and	 maintain	 a	 stable	
mapping	 between	 the	 two.	 (b)	An	 example	 trial	 sequence	 showing	 the	mean	 (solid	 line)	
and	 sampled	 (points)	 locations	 over	 50	 trials.	 Vertical	 dashed	 lines	 indicate	 randomly	
selected	 probe	 trials.	 (c)	 Probe-trial	 sequence.	Using	 a	mouse	 to	 control	 a	 cursor	 on	 the	
visual	display,	the	subject	reported:	1)	the	predicted	location	of	the	upcoming	probe	sound,	
followed	by	250-ms	fixation,	presentation	of	the	probe	sound,	then	continued	fixation	for	
2.5	s	to	allow	for	pupil	measurements;	2)	the	estimated	location	of	the	probe	sound;	and	3)	
a	 high	 or	 low	 bet	 that	 the	 true	 location	 was	 within	 a	 small	 window	 centered	 on	 their	
estimate.	 The	 sound	 sequence	 then	 continued	 until	 the	 next	 probe.	 (d–f)	 Schematic	
illustrating	the	changing	reliability	and	relevance	of	priors	for	the	probe	sounds	in	a	and	b,	
as	indicated.	Given	a	fixed-width	likelihood	function,	more	reliable	and	relevant	priors	have	
a	stronger	and	more	beneficial	influence	on	the	percept,	here	represented	as	the	posterior,	
which	is	least	uncertain	(narrowest)	in	e	and	most	uncertain	in	f.	
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Figure	2:	Overall	prediction	and	estimation	performance.	(a–c)	Reported	versus	true	
(simulated)	 sound-source	 angle	 for	 an	 example	 subject	 for:	 (a)	 estimations	 from	 the	
control	task;	(b)	predictions	from	the	dynamic	task	(light	gray	points	indicate	change-point	
trials,	on	which	the	probe	location	was,	by	design,	unpredictable);	and	(c)	estimations	from	
the	dynamic	task,	including	all	trials.	(d–f)	Population	summaries,	plotted	as	in	(a–c),	with	
per-subject	median	values	shown	in	black	and	the	median	of	medians	shown	in	red.	For	the	
dynamic	 tasks,	median	values	were	 calculated	 in	 sliding	20°	windows.	Non-change-point	
trials	were	excluded	from	the	predictions	in	(e).	Note	that	the	subjects’	perceptual	reports	
(d	and	f)	were	biased	slightly	towards	straight	ahead	at	the	far	periphery.	This	bias,	which	
likely	reflected	 learned	expectations	that	sounds	were	only	played	 in	the	 frontal	plane,	 is	
accounted	for	in	later	analyses	(!!	and	!!	in	Eq.	5).	(g–i)	STD	of	the	perceptual	errors	from	
the	dynamic	task	plotted	versus	the	STD	of:	(g)	the	perceptual	errors	from	the	control	task;	
(h)	the	prediction	errors	from	the	dynamic	task;	or	(i)	the	expected	STD	of	the	perceptual	
errors,	 computed	 from	 the	 optimal,	 reliability-weighted	 combination	 of	 the	 control	
perceptual	 errors	 and	 the	 dynamic	 prediction	 errors.	 Points	 in	 g–i	 represent	 data	 from	
individual	 subjects.	 Prediction	 and	perceptual	 errors	were	 computed	with	 respect	 to	 the	
simulated	location	of	the	probe	sound.	
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Figure	3:	Effects	of	 task	dynamics	on	performance.	(a)	STD	of	the	subjects’	prediction	
errors	(filled	circles)	as	a	 function	of	 the	number	of	sounds	after	a	change-point	(SAC)	 in	
the	 generative	mean	 azimuthal	 location,	 plotted	 separately	 for	 the	 two	 noise	 conditions	
(colors,	 as	 indicated;	 generative	 STDs	 are	 shown	 as	 dashed	 lines).	 For	 comparison,	
prediction-error	STDs	are	shown	for	an	approximately	optimal	predictive-inference	model	
(open	diamonds).	Data	from	change-point	trials	(SAC=1)	are	not	shown	because	locations	
were,	 by	 design,	 unpredictable	 on	 those	 trials.	 (b)	 Contrast	 values	 from	 a	 linear	 model	
describing	individual	subject	(circles)	and	the	approximately	optimal	model	(each	diamond	
represents	 analyses	 based	 on	 the	 same	 sound	 sequence	 experienced	 by	 the	 subject	
connected	 by	 a	 line)	 prediction-error	 STD	 in	 terms	 of	 (see	 inset	 in	e):	 1)	 the	 difference	
between	change-point	and	non-change-point	trials	(CP),	2,3)	the	linear	trend	from	SAC	2–6	
for	low-	(Explow)	or	high-	(Exphigh)	noise	trials,	and	4)	the	difference	between	the	two	noise	
conditions	 (Noise).	 (c,d)	 Same	 conventions	 as	 in	 a,b	 but	 for	 perceptual	 errors	 on	 the	
dynamic	 task.	 Diamonds	 represent	 the	 theoretically	 predicted	 STD	 of	 perceptual	 errors	
computed	from	the	optimal,	precision-weighted	combination	of	the	subject-	and	condition-
specific	STDs	of	prior	errors	(circles	in	a,	determined	separately	for	each	subject)	and	the	
subject-specific	estimation-error	STDs	from	the	control	task	(the	median	value	is	shown	as	
a	horizontal	dashed	line;	see	Fig.	2g).	(e,f)	Same	conventions	as	in	a,b	but	for	the	frequency	
of	 high	 bets	 relative	 to	 overall	 betting	 frequency	 per	 subject.	 Diamonds	 represent	 the	
betting	frequency	corresponding	to	the	theoretical	perceptual	errors	in	c,	computed	from	
the	 fraction	 of	 the	 theoretical	 posterior	 distribution	within	 the	 betting	window.	 In	a,c,e,	
circles	 and	 error	 bars	 are	 mean±sem	 of	 values	 measured	 from	 all	 29	 subjects.	 In	 b,d,f,	
points	 are	data	 from	 individual	 subjects.	Asterisks	 indicate	 sign-rank	 test	 for	H0:	median	
value	 from	 the	 subject	 data=0,	p<0.05.	 In	 all	 panels,	 only	 data	 from	 sequences	 following	
noticeable	change-points	(changes	in	mean	of	at	least	twice	the	generative	STD	for	SAC=1)	
were	included.	
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Figure	4:	Effects	of	task	dynamics	on	perceptual	bias.	(a–c)	Example	data	from	a	single	
subject	illustrating	the	quantification	of	perceptual	bias	as	the	slope	of	the	best-fit	line	to	a	
scatter	of	the	perceptual	error	versus	the	prediction	error.	Slopes	close	to	zero	reflect	a	low	
perceptual	bias	 (i.e.,	 the	percept	 is	unrelated	 to	 the	prediction),	as	on	change-point	 trials	
(b).	 Slopes	 closer	 to	 unity	 reflect	 a	 higher	 perceptual	 bias	 (i.e.,	 the	 percept	more	 closely	
matches	the	prediction),	as	on	non-change-point	trials	(c).	(d)	Perceptual	bias	as	a	function	
of	 the	 number	 sounds	 after	 a	 change-point	 (SAC)	 in	 the	 generative	 mean	 azimuthal	
location,	plotted	separately	for	the	two	noise	conditions	(colors,	as	indicated).	Circles	and	
error	bars	are	mean±sem	of	values	measured	from	all	29	subjects.	Diamonds	indicate	the	
theoretically	predicted	perceptual	bias	 from	an	optimal,	 reliability-weighted	combination	
of	 the	 subject-	 and	 condition-specific	 predictions	 (Fig.	 3a)	 and	 the	 subject-specific	
estimates	from	the	control	task	(Fig.	2g).	(e)	Contrast	values	from	a	linear	model	describing	
individual	 subject	 (circles)	 and	 model	 (each	 diamond	 represents	 analyses	 based	 on	 the	
same	sound	sequence	experienced	by	 the	subject	 connected	by	a	 line)	perceptual	bias	 in	
terms	 of	 (see	 inset	 in	 Fig.	 3e):	 1)	 the	 difference	 between	 change-point	 and	 non-change-
point	 trials	 (CP),	 2,3)	 the	 linear	 trend	 from	 SAC	 2–6	 for	 low-	 (Explow)	 or	 high-	 (Exphigh)	
noise	 trials,	 and	 4)	 the	 difference	 between	 the	 two	 noise	 conditions	 (Noise).	 Asterisks	
indicate	sign-rank	test	for	H0:	median	value	from	the	subject	data=0,	p<0.05.	
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Figure	5:	Individual	differences	in	perceptual	bias.	(a,	b)	Relationship	between	overall	
(mean)	perceptual	bias	and	either	overall	localization	ability	(STD	of	perceptual	errors	on	
the	control	task,	a)	or	overall	prediction	ability	(STD	of	prediction	errors	from	non-change-
point	trials	on	the	dynamic	task,	b),	after	accounting	for	the	other	factor	(hence	“residual”)	
via	 linear	regression.	(c–f)	The	dependence	of	perceptual	bias	on	various	task	conditions,	
plotted	as	functions	of	the	dependence	of	prediction-error	STD	on	the	same	conditions:	c,	
d)	the	linear	trend	from	SAC	2–6	in	the	low-noise	(c)	and	high-noise	(d)	condition	(Exp);	e)	
change-point	versus	non-change-point	trials	(CP);	and	f)	high-	versus	low-noise	condition	
(Noise).	 Points	 in	 each	 panel	 represent	 data	 from	 individual	 subjects.	 Lines	 are	 linear	
regressions.	
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Figure	6:	Dynamic	modulation	of	perceptual	bias	by	normative	and	non-normative	

factors.	(a)	Comparison	of	a	parameter-free	normative	model	(ribbons	indicate	mean±SEM	
simulated	perceptual	 bias	 for	 the	 same	 task	 sequences	 experienced	by	 the	 subjects)	 and	
the	 subjects’	behavior	 (points	and	errorbars	are	mean±SEM	across	 subjects),	 shown	as	a	
function	 of	 sounds	 after	 a	 change-point	 (SAC)	 for	 the	 two	 noise	 conditions	 (colors,	 as	
indicated).	(b)	Comparison	of	the	linear	model	shown	in	panel	e	to	behavior.	Conventions	
as	 in	 panel	 a.	 (c,d)	 Dependence	 of	 the	 normative	 factors	 used	 in	 both	 models	 on	 task	
conditions:	 (c)	 prior	 relevance,	 which	 measures	 the	 probability	 of	 the	 current	 sound	
coming	from	the	same	distribution	as	the	previous	sound;	and	(d)	prior	reliability,	which	
measures	the	anticipated	precision	of	the	predictive	distribution	relative	to	the	likelihood	
distribution	prior	 to	 stimulus	presentation.	 (e)	Best-fitting	parameter	estimates	 from	the	
linear	model	 fit	 to	 behavioral	 data	 from	 each	 subject	 (points)	 and	 to	 simulations	 of	 the	
parameter-free	 normative	model	 (thick	 and	 thin	 bars	 indicate	 95%	 confidence	 intervals	
over	 simulated	 subjective	 values	 and	 over	 simulated	 mean	 values	 across	 subjects,	
respectively).	 PE=prediction	 error.	 Asterisks	 indicate	 coefficients	 with	 mean	 values	 that	
differed	from	zero	(t-test,	p<	0.05).		
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Figure	7:	Pupil	diameter	reflects	dynamic	modulations	of	perceptual	bias	within	and	

across	 individual	 subjects.	 (a)	Mean±sem	 of	 per-subject	mean	 evoked	 pupil	 response,	
defined	 as	 the	 pupil	 diameter	 relative	 to	 baseline	 during	 the	measurement	 period.	 (b,c)	
Regression	 coefficients	 from	 a	 linear	model	 accounting	 for	modulation	 of	 baseline	 pupil	
diameter	 (b)	 or	 the	 evoked	 response	 (c)	 at	 each	 time-point	using	as	predictors:	 1)	prior	
relevance,	2)	prior	reliability,	3)	the	upcoming	bet,	and	4)	the	residual	perceptual	bias	from	
the	linear	model	in	Fig.	6d.	Points	and	error	bars	in	b	and	lines	and	ribbons	in	c	represent	
mean±sem	of	values	computed	per	subject	and	thus	represent	within-subject	modulations.	
(d,e)	 Regression	 coefficients	 describing	 the	 relationship	 between	 shared	 or	 unique	
variance	 (colors,	 as	 indicated)	 in	 PE	 and	 PE*relevance	 coefficients	 from	 the	 behavioral	
model	 and	 average	baseline	 (d)	 or	 stimulus	 evoked	 (e)	 pupil	 diameter.	 Points	 and	 error	
bars	 in	 d	 and	 lines	 and	 ribbons	 in	 e	 represent	 the	 correlation	 coefficient	 and	 95%	
confidence	 intervals	 of	 the	 estimate	 and	 thus	 represent	 across-subject	 modulations.	
Abscissa	 in	a,	c,	and	e	represents	time	relative	to	stimulus	onset.	Bold	symbols	 in	b,	d	or	
horizontal	lines	in	c,	e	 indicate	periods	for	which	H0:	value=0,	p<0.05	after	accounting	for	
multiple	comparisons.	
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Figure	 8:	 Pupil	 diameter	 predicts	 perceptual	 bias.	 (a)	 Perceptual	 error,	 sorted	
according	to	the	pupil-predicted	prior	influence	(gray	scale,	as	indicated,	corresponding	to	
the	 bottom	 quartile,	 middle	 50%,	 and	 top	 quartile)	 and	 plotted	 according	 to	 prediction	
error.	 Points	 are	 mean	 values	 computed	 across	 all	 subjects.	 (b)	 Mean±95%	 confidence	
intervals	 for	 pupil	 coefficients	 describing	 within-	 and	 between-	 subject	 effects	 of	 pupil	
diameter,	as	well	as	their	interaction.	See	text	for	details.	(c)	Improvement	in	AIC	achieved	
by	adding	pupil-based	predictors	to	models	that	include:	1)	a	fixed	perceptual	bias	across	
all	subjects	(NE),	2)	a	fixed	perceptual	bias	and	fixed	model-based	effects	of	perceptual	bias	
across	 all	 subjects	 (FE),	 and	 3)	 a	 random	 effects	model	 that	 fits	 all	 bias	 and	modulation	
terms	separately	for	each	subject	(RE,	which	is	equivalent	to	the	normative	linear	model	in	
Fig	6).	Asterisks	indicate	significant	improvements	(likelihood-ratio	test,	p<0.05).		
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