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Abstract 
Summary: NMF algorithms associate gene expression changes with biological processes (e.g., time-
course dynamics or disease subtypes). Compared with univariate associations, the relative  weights of 
NMF solutions can obscure biomarkers identification. Therefore, we developed a novel 
PatternMarkers statistic to extract unique genes for biological validation and enhanced visualization of 
NMF results. Finding novel and unbiased gene markers with PatternMarkers requires whole-genome 
data. However, NMF algorithms typically do not converge for the tens of thousands of genes in 
genome-wide profiling. Therefore, we also developed GWCoGAPS, the first robust Bayesian NMF 
technique for whole genome transcriptomics using the sparse, MCMC algorithm, CoGAPS. This 
software contains additional analytic and visualization tools including a Shiny web application, 
patternMatcher, which are generalized for any NMF. Using these tools, we find granular brain-region 
and cell-type specific signatures with corresponding biomarkers in GTex data, illustrating GWCoGAPS 
and patternMarkers unique ability to detect data-driven biomarkers from whole genome data.  
Availability: PatternMarkers and GWCoGAPS are in the CoGAPS Bioconductor package as of 
version 3.5 under the GPL license.  
Contact: CColantu@jhmi.edu; ejfertig@jhmi.edu 

Supplementary information: Supplementary data is available at Bioinformatics online. 
 
1 Introduction 

Numerous high-throughput studies link gene expression changes to biological processes (BPs) 
including regulatory networks and the cell signaling processes. Previously shown effective at 
deconvoluting multiplexed regulation and gene reuse in BPs (Trendafilov and Unkel, 2011; Kossenkov 
and Ochs, 2009; Ochs and Fertig, 2012), NMF algorithms have identified genes associated with yeast 
cell cycle and metabolism, cancer subtypes, and perturbations to cellular signaling in cancer(Li and 
Ngom, 2013; Brunet et al., 2004; Mejía-Roa et al., 2008; Fertig et al., 2012; Ochs et al., 2009; Fertig et 
al., 2013; Kossenkov and Ochs, 2009; Wang et al., 2006). However, the continuous and 
interdependent nature of many NMF results can make biological inference challenging especially 
when searching for biomarkers or genetic drivers. A method to obtaining genes that uniquely identify 
NMF solutions would eliminate these challenges.  
Here, we develop PatternMarkers, a statistic to take the relative gene weights output from NMF 
algorithms and to return only those genes that are strongly associated with a particular pattern or with 
a linear combination of patterns. Identifying unbiased biomarkers using PatternMarkers requires 
genome-wide transcriptional data. To maximize the potential for novel marker detection, we set out to 
expand the O(1,000) gene limit, which is typical to achieve convergence in NMF, to the O(10,000) 
genes comprising the entire human transcriptome. Currently, NMF methods are highly dependent 
upon the genes selected or compaction methods to limit the size of the data matrices used for analysis 
(de Campos et al., 2013). Therefore, we developed GWCoGAPS, a whole genome implementation of 
CoGAPS (Fertig et al, 2010), a Markov chain Monte Carlo (MCMC) NMF that encodes sparsity in the 
decomposed matrices with an atomic prior (Sibisi and Skilling, 1997). Previously, we demonstrated 
that CoGAPS analysis of datasets containing representative subsets of the genes converge with 
similar patterns. These patterns can then be fixed to a consensus pattern across the datasets to 
provide a robust whole-genome NMF, without the prohibitively large computational cost of NMF 
factorization of a single matrix containing the entire genome. GWCoGAPS takes advantage of parallel 
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computing to massively cut runtime and ensure genome-wide convergence. We also include a Shiny 
web application, patternMatcher, to compare patterns across parallel runs to increase robustness and 
interpretability of the resulting patterns. Using patternMarkers with GWCoGAPS to analyze tissues 
from twelve different brain regions from seven post-mortem individuals from the Genotype-Tissue 
Expression Project (Consortium et al., 2015), we concurrently parsed patterns of expression specific to 
brain regions and cell types to demonstrate the power of these algorithms for biomarker discovery. 
  

2 Methods  
NMF and CoGAPS  
NMF decomposes a data matrix of D with N genes as rows and M samples as columns, into two 
matrices, the pattern matrix P with rows associated with BPs in samples and the amplitude matrix A 
with columns indicating the relative association of a given gene in each BP. CoGAPS is a Bayesian 
NMF that incorporates both non-negativity and sparsity in A and P as described in (Fertig et al., 2010). 
The number of BPs (columns of A and rows of P, K) is an argument to the algorithm. Both the 
PatternMarkers statistic and GWCoGAPS algorithm are in the CoGAPS Bioconductor package as of 
version 3.5. Their code is generalized for other NMF algorithms. 
PatternMarkers 

The patternMarkers statistic finds the genes most uniquely associated with a given pattern or linear 

combination of patterns by computing  , where are the elements of the A matrix 

for the ith gene scaled to have a maximum of one and l is the pth user specified norm. Paternmarkers 
defaults to p=k, such that l is the identity vector and the associated distance is computed separately 
for each of the k patterns. Unique sets are generated by ranking a genes associated distances from 
each norm such that the higher the rank of the gene, the less it is associated with the considered 
pattern. Genes are subset by their lowest ranking pattern or thresholded using the first gene to have a 
lower ranking in another patterns. 
GWCoGAPS  
The GWCoGAPS function automates and parallelizes the whole-genome CoGAPS analysis from  
Fertig et al. (2013) in a single R function. GWCoGAPS has three parameters: the number of sets for 
partitioning the whole genome data, the seed for each Markov Chain, and the method for determining 
the consensus patterns. A new modification to CoGAPS, setting the seed both ensures that each set 
of genes is run with a different set of random numbers and that runs on any dataset are reproducible. 
A default pattern matching function is provided along with a Shiny-based web application 
patternMatcher (Fig 1) for recompiling the parallelized results. Additional runtime options, input, and 
manual implementations are described in the GWCoGAPS vignette.  
GTeX Data 
RPKM level data for the seven samples with most brain regions available was downloaded from 
dbGaP. GWCoGAPS was run for a range of k patterns with k=10 selected and uncertainty as 10% of 
the data as previously described in Fertig et al. (2013). The code to reproduce this analyses as well as 
the GWCoGAPS results are in Supplemental Files 1 and 2.  

 

3 Results / Discussion 

We apply GWCoGAPS to analyze patterns related to biological processes from distinct brain regions 
for different individuals in GTeX. The GWCoGAPS solutions for the initial parallel runs of on of the 
patterns is used to illustrate the strong association between patterns identified from the data subsets 
using the patternMarker Shiny App in Figure 1A. Two of the ten GWCoGAPS patterns for the GTex 
data are illustrated in Figure 1B. The first pattern highlights GWCoGAPS ability to deconvolute tissue 
specific signatures. This pattern uniquely identifies the cerebellum, determined to be the most distinct 
region by the consortium (Consortium et al., 2015). GTEx found that strong individual specific effects 
increases with tissue relatedness as illustrated by their inability to achieve tissue specific clusters of 
the different brain regions by expression alone (Melé et al., 2015; Consortium et al., 2015). By allowing 
for gene reuse across different patterns, GWCoGAPS is able to overcome these effects to isolate the 
cerebellums signature as confirmed by enrichment in cerebellum development (GO:0021549 p=2.1E-
04) and cerebellum morphogenesis (GO:0021587 p=3.4E-03).  
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The second pattern in Figure 1B illustrates PatternMarkers power as inference is difficult from the 
GWCoGAPS result alone. This pattern depicts subpopulations of cells residing in multiple brain 
regions derived from common precursors in the dorsal pallium. Progeny of the dorsal pallium are 
specified by the transcription factors TBr1 and Emx1 (Remedios et al., 2007) ranked second and 
fourth by the PatternMarker statistic for this pattern. Gene set enrichment tests further confirms the 
signature as being enriched for pallium development (GO:0021543 p=1.6E-08. The output of the 
plotPatternMarkers function for both cerebellum and dorsal pallium patternMarkers is given Figure 1C.  

Deconvolution of cell type and tissue specific signatures from aggregate transcriptomics data 
represent a major technical challenge. We have illustrated the unique ability of GWCoGAPS, the first 
whole genome Bayesian NMF, to accomplish this. The manual pipeline and shiny app, 
PatternMatcher, also expanded this methodology to accommodate a wide variety of NMF techniques. 
Finally, the PatternMarkers statistic to derives gene sets uniquely representative of biological 
processes from the continuous gene weights of NMF solutions. Together, PatternMarkers and 
GWCoGAPS represent a major advance in bioinformatic approaches to find data-driven biomarkers 
and genetic drivers in whole genome transcriptomic data.  
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