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Small fly eyes should not see fine image details. Because flies exhibit saccadic visual behaviors 

and their compound eyes have relatively few ommatidia (sampling points), their photoreceptors 

would be expected to generate blurry and coarse retinal images of the world. Here we 

demonstrate that Drosophila see the world far better than predicted from the classic theories. By 

using electrophysiological, optical and behavioral assays, we found that R1-R6 photoreceptors’ 

encoding capacity in time is maximized to fast high-contrast bursts, which resemble their light 

input during saccadic behaviors. Whilst over space, R1-R6s resolve moving objects at saccadic 

speeds beyond the predicted motion-blur-limit. Our results show how refractory 

phototransduction and rapid photomechanical photoreceptor contractions jointly sharpen retinal 

images of moving objects in space-time, enabling hyperacute vision, and explain how such 

microsaccadic information sampling exceeds the compound eyes’ optical limits. These discoveries 

elucidate how acuity depends upon photoreceptor function and eye movements. 
 

INTRODUCTION 

The acuity of an eye is limited by its photoreceptor spacing, which provides the grain of the retinal 

image. To resolve two stationary objects, at least three photoreceptors are needed for detecting the 

intensity difference in between. To resolve two moving objects is harder, as vision becomes further 

limited by each photoreceptor’s finite integration time and receptive field size (Srinivasan & Bernard, 

1975; Juusola & French, 1997; Land, 1997). 

Nevertheless, animals - from insects to man - view the world by using saccades, fast 

movements, which direct their eyes to the surroundings, and fixation intervals between the saccades, 

during which gaze is held near stationary (Land, 1999). Because of photoreceptors’ slow integration-

time, saccades should blur image details and these are thought to be sampled when gaze is stabilized. 

Thus, information would be captured during fixations whilst during saccades animals would be 

effectively blind. This viewpoint, however, ignores fast photoreceptor adaptation, which causes 

perceptual fading during fixation (Ditchburn & Ginsborg, 1952; Riggs & Ratliff, 1952), reducing visual 

information and possibly rendering perception to mean light only. Therefore, to maximize information 

and acuity, it is plausible that evolution has optimized photoreceptor function in respect to visual 

behaviors and needs.  

We have now devised a suite of new experimental and theoretical methods to study this question 

both in time and over space in Drosophila R1-R6 photoreceptors. The Drosophila compound eyes are 

composed of ~750 seemingly regular lens-capped modules called the ommatidia, which should provide 

the fly a panoramic visual field of low optical resolution (Barlow, 1952; Land, 1997). Each ommatidium 

contains eight photoreceptor cells (R1-R8), pointing to seven different directions. The ultraviolet and 

blue-green-sensitive outer photoreceptors, R1-R6, initiate the motion vision pathway, whilst the central 

R7 and R8, which lie on top of each other, detect different colors from one direction (Wardill et al., 

2012). Owing to the eye’s neural superposition principle, R1, R2, R3, R4, R5 and R6, each from a 

separate neighboring ommatidium, also point to the same direction. By pooling their output for synaptic 
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transmission, the photoreceptor spacing (spatial resolution) effectively matches the ommatidium 

spacing (average interommatidial angle, Δφ = 4.5o (Götz, 1964; Land, 1997; Gonzalez-Bellido et al., 

2011) but the signal-to-noise ratio of the transmitted image could improve by √6 (van Steveninck & 

Laughlin, 1996; Zheng et al., 2006). 

Here we show how evolution has improved Drosophila vision beyond these classic ideas, 

suggesting that light information sampling in R1-R6 photoreceptors is tuned to saccadic behavior. 

Our intracellular recordings reveal that R1-R6s capture 2-to-4-times more information in time 

than previous maximum estimates (Juusola & Hardie, 2001a; Song et al., 2012; Song & Juusola, 2014) 

when responding to high-contrast bursts (periods of rapid light changes followed by quiescent periods) 

that resemble light input from natural scenes generated by saccadic viewing. Biophysically-realistic 

model simulations suggest that this improvement largely results from interspersed “fixation” intervals, 

which allow photoreceptors to sample more information from phasic light changes by relieving their 

refractory microvilli (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) -.  

Remarkably, over space, our intracellular recordings, high-speed microscopy and modeling 

further reveal how photomechanical photoreceptor contractions (Hardie & Franze, 2012) work together 

with refractory sampling to improve spatial acuity. We discover that by actively modulating light input 

and photoreceptor output, these processes reduce motion blur during saccades and adaptation during 

gaze fixation, which otherwise could fade vision (Ditchburn & Ginsborg, 1952; Riggs & Ratliff, 1952; 

Land, 1997). The resulting phasic responses sharpen retinal images by highlighting the times when 

visual objects cross a photoreceptor’s receptive field, thereby encoding space in time (see also: Ahissar 

& Arieli, 2001; Donner & Hemilä, 2007; Rucci et al., 2007; Kuang et al., 2012a; Kuang et al., 2012b; 

Franceschini et al., 2014; Viollet, 2014). Thus, neither saccades nor fixations blind the flies, but together 

improve vision. 

Incorporation of this novel opto-mechano-electric mechanism into our ‘microsaccadic 

sampling’-model predicts that Drosophila can see >4-fold finer details than their eyes’ spatial sampling 

limit – a prediction directly confirmed by optomotor behavior experiments. By demonstrating how fly 

photoreceptors’ fast microsaccadic information sampling provides hyperacute vision of moving images, 

these results change our understanding of insect vision, whilst showing an important relationship 

between eye movements and visual acuity. 

 

RESULTS 

These results establish that Drosophila exploit image motion (through eye movements) to see spatial 

details, down to hyperacute resolution. A fly’s visual acuity is limited by how well its photoreceptors 

resolve different photon rate changes, and their receptive field sizes. However, because each 

photoreceptor’s signal-to-noise ratio and receptive field size adapt dynamically to light changes, acuity 

also depends upon the eye movements that cause them. To make these relationships clear, the results 

are presented in the following order:  
1st We show that photoreceptors capture most visual information from high-contrast bursts, and 

reveal how this is achieved by refractory photon sampling and connectivity (Figures 1-5).  
2nd We show that saccades and gaze fixations in natural environment results in such high-contrast 

bursts, implying that eye movements work with refractory sampling to improve vision (Figure 

6).  
3rd We demonstrate that photoreceptors contract to light in vivo and explain how these 

microsaccades move and narrow their receptive fields (Figures 7-8) to sharpen light input and 

photoreceptor output in time.  
4th Collectively, these dynamics predict that Drosophila see finer spatial details than their 

compound eyes’ optical resolution over a broad range of image velocities (Figure 9), and we 

verify this by optomotor behavior (Figure 10). 

Videos 1-4 and Appendixes 1-10 explain in detail the new ideas, methods, experiments and theory 

behind these results. 

 

Breaking the code by coupling experiments with theory 

To work out how well a Drosophila R1-R6 photoreceptor can see the world, we compared intracellular 

recordings with realistic theoretical predictions from extensive quantal light information sampling 
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simulations (Appendixes 1-3), having the following physical limits and properties (Song et al., 2012; 

Song & Juusola, 2014; Juusola et al., 2015; Song et al., 2016): 

 A photoreceptor counts photons and integrates these samples to an estimate, a macroscopic 

voltage response, of light changes within its receptive field.  

 This estimate is counted by 30,000 microvilli, which form its light-sensor, the rhabdomere. 

Each microvillus is a photon sampling unit, capable of transducing a photon’s energy to a 

unitary response (quantum bump or sample) (Henderson et al., 2000; Juusola & Hardie, 2001a; 

Song et al., 2012; Song & Juusola, 2014).  

 Following each bump, the light-activated microvillus becomes refractory (Song et al., 2012; 

Song & Juusola, 2014; Juusola et al., 2015) for 50-300 ms. Therefore, with brightening light, a 

photoreceptor’s sample rate gradually saturates, as fewer microvilli are available to generate 

bumps.  

 Although refractory sampling makes photoreceptors imperfect photon counters, it benefits 

vision by representing a fast automatic adaptation mechanism, reducing sensitivity in 

proportion to background intensity (Song et al., 2012; Song & Juusola, 2014), whilst 

accentuating responses to contrast changes (Song & Juusola, 2014).  

 

As previously described for a variety of other stimuli (Song et al., 2012; Song & Juusola, 2014; Juusola 

et al., 2015), we found a close correspondence between the recordings and simulations (waveforms, 

noise, adaptation dynamics and information transfer) for all the tested stimuli, establishing how 

refractory quantal sampling is tuned by light changes. Conversely, control models without refractoriness 

or based on the Volterra black-box method (Juusola & French, 1997) failed to predict R1-R6s’ 

information sampling and adaptation dynamics. Nevertheless, these limitations and differences gave us 

vital clues into the hidden/combined mechanisms that underpin photoreceptor function (Appendixes 2-

9). We now analyze and explain the key results step-by-step. 

 

High-contrast “saccadic” bursts maximize encoding 

A well-known trade-off of fast adaptation is that it causes perceptual fading during fixation (Ditchburn 

& Ginsborg, 1952; Riggs & Ratliff, 1952), and to see the world requires motion or self-motion: body, 

head and eye movements (Hengstenberg, 1971; Land, 1973; Franceschini & Chagneux, 1997; Schilstra 

& van Hateren, 1998; Blaj & van Hateren, 2004; Martinez-Conde et al., 2013), which remove 

adaptation. However, it remains unclear whether or how the fly photoreceptors’ information sampling 

dynamics is tuned to visual behaviors to see the world better. To start unravelling these questions, we 

first surveyed what kind of stimuli drove their information transfer maximally (Figure 1), ranging from 

high-contrast bursts, in which transient intensity fluctuations were briefer than Drosophila’s normal 

head/body-saccades (Fry et al., 2003; Geurten et al., 2014), to Gaussian white-noise (GWN). These 
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stimuli tested systematically different contrast and bandwidth patterns over R1-R6s’ diurnal encoding 

gamut. 

 
Figure 1. 

Photoreceptors 

respond best to high-

contrast bursts. (A) 

Schematic of 

intracellular recordings 

to repeated bursty light 

intensity time series (20 

Hz bandwidth). 

Responses changed 

little (minimal 

adaptation) during 

bursts. (B) Testing a R1-

R6 photoreceptor’s 

diurnal encoding gamut. 

Means (thick traces) and 

20 individual responses 

(thin; near-perfectly 

overlapped) to 20 

different stimuli; each 

with a specific 

bandwidth (columns: 

from 20 Hz, red, to 500 

Hz, blue) and mean 

contrast (rows). 

Reducing the 

background (BG) of 

Gaussian white-noise 

stimuli (GWN; 2-unit 

peak-to-peak 

modulation) from bright 

(1.5-unit, bottom) to 

dark (0-unit, top) halved 

their modulation, generating bursts of increasing contrast: the lower the BG, the higher the contrast. Left-top: 

responses from (A). Yellow box: maximum information responses. Arrows: dark intervals. Because of half-

Gaussian waveforms, light bursts carried fewer photons (see Figure 2-figure supplement 3). Yet their larger 

responses comply with the stochastic adaptive visual information sampling theory (Song et al., 2012; Song & 

Juusola, 2014; Juusola et al., 2015) (Appendixes 1-3), whereby dark intervals rescue refractory microvilli for 

transducing high-frequency (1-20 ms) saccadic photon surges (of high contrast) into quantum bumps 

efficiently. Thus, larger responses would incorporate more bumps. Recordings are from the same 

photoreceptor. Vertical dotted rectangle (orange square) and horizontal rectangle (black circle): responses for 

contrast and bandwidth analyses in Figure 2A. Similar R1-R6 population data is in Figure 1-figure 

supplement 1. 

 

Intracellular recordings (Figure 1A) revealed that photoreceptors responded most vigorously 

to high-contrast bursts, which contained fast transient events with darker intervals. Figure 1B shows 

the averages (signals; thick) and individual responses (thin) of a typical R1-R6, grouped by the stimulus 

bandwidth and mean contrast. For all the bandwidths (columns), the responses increased with contrast, 

while for all the contrasts (rows), the responses decreased with the increasing bandwidth (left). 

Therefore, the slowest high-contrast bursts (red; top-left) with the longest darker intervals, which 

theoretically (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) should relieve most 

refractory microvilli (Appendixes 1-3), evoked the largest peak-to-peak responses (43.4 ± 5.6 mV; 

mean ± SD, n = 16 cells; Figure 1-figure supplement 1). Whereas the fastest low-contrast GWN (blue; 
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bottom-right), which would keep more microvilli refractory, evoked the smallest responses (3.7 ± 1.1 

mV; n = 4).  

Notably, whilst all the stimuli were very bright, the largest responses (to bursts) were induced 

at the dimmest background (BG0, darkness) and the smallest responses (to GWN) at the brightest 

background (BG1.5) (Figure 1B). Thus, the mean emitted photon rate and light information at the source 

was lower for the bursts and higher for the GWNs (the signal-to-noise ratio of the observable world 

increases with brightening illumination; e.g. Appendix Figures 5D and H). However, in very bright 

stimulation, the global mean light intensity (over the experiment) becomes less critical for good vision 

as the eye self-regulates its own input more. Photons galore are lost to intracellular pupil (Howard et 

al., 1987; Song & Juusola, 2014) and refractory microvilli (Song et al., 2012), which reduce quantum 

efficiency. Although a R1-R6’s receptive field could be bombarded by 106–109 photons/s (in daylight), 

due to the dramatic drop in quantum efficiency, the photoreceptor could only count up ∼80,000–

800,000 quantum bumps/s (Appendix 2). Therefore, the stimulus contrast and bandwidth, which drive 

the dynamic quantum bump rate changes, summing up the photoreceptor output, are confounded with 

changes in mean intensity. And, as such, this stimulus design, by containing four different BGs, makes 

it difficult to see the exact contributions of contrast, bandwidth and mean in controlling the responses.  

Information theoretical analysis (Figure 2 and Figure 2-figure supplement 1) indicated that 

the response differences largely reflected differences in their quantum bump counts. The maximum 

signal power spectra to bursty stimuli could be up to ~6,000-times larger than that of the noise, which 

was effectively stimulus-invariant (Figure 2-figure supplement 2A). Because the noise power 

spectrum largely represents the average quantum bump’s frequency composition (Wong et al., 1982; 

Juusola & Hardie, 2001a; Song & Juusola, 2014), the bumps adapted to a similar size. Here, given the 

brightness of the stimuli, the bumps had light-adapted close to their minimum (Juusola & Hardie, 

2001a). Thereby, the larger responses simply comprised more bumps. Moreover, with Poisson light 

statistics, the response precision - how well it estimated photon flux changes - should increase with the 

square root of bump count until saturation; when more microvilli remained refractory (Song & Juusola, 

2014). Accordingly, signaling performance (Figures 2A, C) increased both with the stimulus 

bandwidth (left) and contrast (right), until these became too fast to follow. Information transfer peaked 

at 100 Hz bursts, which allocated the R1-R6’s limited bandwidth and amplitude range near-optimally, 

generating the broadest frequency (Figure 2A and Figure 2-figure supplement 1A) and (Gaussian) 

voltage distributions (Figure 2B and Figure 2-figure supplement 1B). 

Thus, with the right mixture of bright “saccadic” bursts (to maximally activate microvilli) and 

darker “fixation” intervals (to recover from refractoriness) forming the high-contrast input, a 

photoreceptor’s information transfer approached the capacity (Shannon, 1948), the theoretical 

maximum, where every symbol (voltage value) of a message (macroscopic voltage response) is 

transmitted equally often (Figure 2C and Figure 2-figure supplement 1C). Remarkably, this 

performance (610-850 bits/s) was 2-to-4-times of that for GWN (200-350 bits/s), which has often been 

used for characterizing maximal encoding (Juusola & Hardie, 2001a), and twice of that for rich 

naturalistic stimuli (380-510 bits/s) (Song & Juusola, 2014) (Figure 2-figure supplement 3). GWN, 

especially, lacks longer darker events, which should make microvilli refractory (Song & Juusola, 2014) 

with fewer sampled photons limiting information transfer (Appendixes 2-3). 

 There are two reasons why these information rate estimates, which were calculated from equal-

sized data chunks by the Shannon formula (Eq. 1, Material and Methods), should be robust and largely 

bias-free. First, apart from the responses to 20 Hz high-contrast bursts (Figure 2B, red trace), the 

responses to all the other stimuli had broadly Gaussian signal and noise distributions, obeying the 

Shannon formula’s major assumptions (Shannon, 1948). Second, our previous tests in comparing the 

Shannon formula to triple extrapolation method (Juusola & de Polavieja, 2003), which is directly 

derived from Shannon’s information theory, have shown that for sufficiently large sets of data both 

these methods provide similar estimates even for this type of highly non-Gaussian responses (~5-20% 

maximal differences) (Song & Juusola, 2014; Dau et al., 2016). And, indeed, new tests using additional 

recordings to longer stimulus repetitions (Figure 2-figure supplement 4) indicated the same. Thus 
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here, the Shannon formula should provide a sufficiently accurate information estimate also for the 20 

Hz high-contrast burst responses, making this evaluation fair (see Appendix 2). 
Figure 2. High-contrast bursts 

drive maximal encoding. A R1-R6’s 

information transfer to high-

frequency 100 Hz bursts exceeded 2-

to-4-times the previous estimates. (A) 

Response signal-to-noise ratio (SNR, 

left) to 20 (red), 100 (yellow) and 500 

Hz (blue) bursts, and to 50 Hz 

bandwidth stimuli of different 

contrasts (right); data from Figure 1. 

SNR increased with contrast (right), 

reaching the maximum (~6,000) for 

20 Hz bursts (left, red) and the 

broadest frequency range for 100 Hz 

bursts (yellow). (B) Skewed bursts 

drove largely Gaussian responses 

(exception: 20 Hz bursts, red), with 

100 Hz bursts evoking the broadest 

amplitude range (yellow). (C) 

Information transfer peaked for 100 

Hz stimuli, irrespective of contrast 

(or BG; left), having the global 

maximum of ~850 bits/s (capacity, 

infomax) for the high-frequency 

high-contrast bursts. (D) Encoding 

efficiency, the ratio between input 

and output information (Routput/Rinput), 

was >100% for 20 Hz bursts. Extra 

information came from the 

neighboring cells. Rinput at each BG 

was determined for the optimal mean 

light intensity, which maximized a 

biophysically realistic photoreceptor 

model’s information transfer 

(Appendix 2). Encoding efficiency 

fell with stimulus bandwidth but 

remained more constant with 

contrast. Population dynamics are in 

Figure 2-figure supplement 1. 

 

Simulations reveal network contribution  

These findings were largely replicated by stochastic simulations (Figures 3-4). A biophysically realistic 

photoreceptor model, which contains 30,000 microvilli (Song et al., 2012), sampled light information 

much like a real R1-R6, generating authentic responses to all the test stimuli (Figures 3A-B). Yet, 

markedly, the model lacked the intracellular pupil (or any structural adaptation), which protects 

microvilli from saturation (Howard et al., 1987; Song & Juusola, 2014), and network connections 

(Zheng et al., 2006; Rivera-Alba et al., 2011; Wardill et al., 2012). In real photoreceptors, the pupil 

screens off excess light to maximize information transfer (Howard et al., 1987; Song & Juusola, 2014). 

Similarly, in the simulations, the mean light intensity of each stimulus was optimized (Appendix 2) for 
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maximum information (Figures 4A-C), establishing the photon absorption rate for a R1-R6 

photoreceptor’s best signaling performance (bits/s). 

 

 
Figure 3. Model output is 

realistic over the whole 

encoding range. (A-B) 

Simulated responses of a 

stochastic Drosophila R1-R6 

model to the tested light stimuli 

show similar response 

dynamics to the corresponding 

real recordings (cf. Figure 1 

and Figure 1-figure 

supplement 1). The model has 

30,000 microvilli (sampling 

units) that convert absorbed 

photons to quantum bumps 

(samples). Simulations at each 

background (BG) were set for 

the mean light level (effective 

or absorbed photons/s) that 

generated responses with the 

maximum information transfer 

(Appendix 2). These effective 

light levels should correspond 

to the optimal photomechanical 

screening throughput (by 

intracellular pupil mechanism 

and photomechanical 

rhabdomere contractions, 

Appendix 7), which minimize 

saturation effects (refractory 

microvilli) on a Drosophila 

photoreceptor; see Figure 4. 

Notice that the model had no free parameters - it was the same in all simulations and had not been fitted to data. 

Thus, these macroscopic voltage responses emerged naturally as a by-product of refractory information 

sampling by 30,000 microvilli. Yellow box: maximum information responses. Vertical dotted rectangle (orange 

square) and horizontal rectangle (black circle): responses for contrast and bandwidth analyses in Figure 4. 

 

At its peak, the model transferred 633 ± 20 bits/s (mean ± SD; Figure 4C) for 100 Hz bursts of 

8 x 105 photons/s, with further brightening reducing information as more microvilli became refractory. 

This performance matches that of many real R1-R6s (Figure 2-figure supplement 1C), but is ~200 

bits/s less than in some recordings (Figure 2C). The real R1-R6s, on balance, receive extra information 

from their neighbors (Rivera-Alba et al., 2011; Wardill et al., 2012), which through superposition 

(Zheng et al., 2006) sample information from overlapping receptive fields. In other words, since our 

stimuli (from a white LED) were spatially homogenous, these synaptic feedbacks should be able to 

enhance the system’s signal-to-noise by averaging the photoreceptors’ independent photon count 

estimates from the same visual area, reducing noise (Zheng et al., 2006; Juusola & Song, 2017).  

Moreover, as their rhabdomere sizes (Figures 5A-B) and connectivity vary systematically 

(Rivera-Alba et al., 2011), each R1-R6 receives different amounts of information (Figures 5C-D) (see 

also: Wardill et al., 2012). Here, R6s, with large rhabdomeres (Figures 5B) and gap-junctions to R8 

(Figure 5C), should receive the most (Wardill et al., 2012), suggesting that the best performing cells 
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(e.g. Figure 1 and Figure 2) might be of the R6-type (Figure 5E). And yet whilst R7s also share gap-

junctions with R6s (Shaw et al., 1989), our stimuli contained little UV component to drive them. 

 
Figure 4. Model encodes light 

information realistically. 

Encoding capacity of a stochastic 

photoreceptor model peaks to 

high-contrast bursts with 100 Hz 

cut-off, much resembling that of 

the real recordings (cf. Figure 2). 

(A) Inserts show simulations for 

the bursty input patterns of similar 

high contrast values (left) that 

drove its responses (outputs) with 

maximum information transfer 

rates. Output signal-to-noise 

ratios peaked for 20 Hz bursts 

(red), but was the broadest for 100 

Hz bursts (yellow). Signal-to-

noise ratio rose with stimulus 

contrast (right). (B) The 

corresponding probability density 

functions show that 100 Hz bursts 

evoked responses with the 

broadest Gaussian amplitude 

distribution (yellow). Only 

responses to low-frequency bursts 

(20-50 Hz) deviated from 

Gaussian (skewed). (C) 

Information transfer of the model 

output reached its global 

maximum (infomax) of 632.7 ± 

19.8 bits/s (yellow) for 100 Hz 

(left) bursts (right). 

Corresponding information 

transfer for Gaussian white-noise 

stimuli was significantly lower. 

(D) Encoding efficiency peaked 

for low-frequency stimuli (left), 

decaying gradually with 

increasing contrast. For details 

see Appendix 2. 

 

 

Encoding efficiency for the different stimuli (Figure 2D and Figure2-figure supplement 1D) 

was determined as the ratio between the related photoreceptor and light information rates (Routput / Rinput); 

with Rinput estimated from the simulated Poisson stimulus repeats, which maximized information in R1-

R6 model output (Figures 3B and 4C; Appendix 2). Thus, as Rinput included the photon loss by the 

intracellular pupil and other structural adaptations (Howard et al., 1987; Song & Juusola, 2014), it was 

less than at the light source. Moreover, in vivo, the combined stimulus information captured 

simultaneously by other photoreceptors in the retina network must be more than that by a single R1-R6 

(Zheng et al., 2006). E.g. as summation reduces noise, the signal-to-noise of a postsynaptic interneuron, 
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LMC, which receives similar inputs from six R1-R6s, can be √6-times higher than that of a R1-R6 (van 

Steveninck & Laughlin, 1996; Zheng et al., 2006), but lower than what is broadcasted from the source 

(Song & Juusola, 2014). Thus, information is lost during sampling and processing, with the analysis 

obeying data processing theorem (Shannon, 1948; Cover & Thomas, 1991). Finally, as the LED light 

source’s photon emission statistics were untested (if sub-Poisson, Rinput would be higher), the efficiency 

estimates represented the theoretical upper bounds. 

 
Figure 5. Each R1-R6 has 

a different diameter 

rhabdomere and network 

connections, and thus 

should extract different 

amounts of information 

from the same stimulus. 
(A) Electron micrograph of 

an ommatidium, showing 

R1-R7 rhabdomeres with 

characteristic cross-

sectional area differences. 

(B) R1 and R6 rhabdomeres 

are always the largest and 

R4 the smallest (statistics in 

Appendix 5, Table 2). (C) 

R6 can receive ~200 bits/s of 

network information 

through axonal gap-

junctions from R7/R8 

(Wardill et al., 2012) in the 

lamina about local light 

changes - due to their neural 

superposition. Gap-

junctions between R1-R6 

axons and synapses (Zheng 

et al., 2006; Rivera-Alba et 

al., 2011) in the lamina 

redistribute information 

(Appendix 2). (D) R1-R6s’ 

response waveforms and 

frequency range varied cell-

to-cell; as evidenced by the 

recording system’s low 

noise and the cells’ high 

signal-to-noise ratios 

(~1,000). Here, Cell #17 

encoded 100 Hz bursts 

reliably until ~140 Hz, but Cell #11 only until ~114 Hz. See also Figure 5-figure supplement 1. (E) Maximum 

information (for 100 Hz bursts) of 18 R1-R6s, grouped in their predicted ascending order and used for typifying 

the cells. Because R6s’ rhabdomeres are large (B), and their axons communicate with R7/R8 (C), the cells with 

the distinctive highest infomax were likely this type (blue). Conversely, R3, R4 and R2 rhabdomeres are smaller 

and their axons furthest away from R7/R8, and thus they should have lower infomaxes. Notably, our 

photoreceptor model (Song et al., 2012) (grey), which lacked network information, had a similar infomax. The 

mean infomax of the recordings was 73 bits/s higher than the simulation infomax. 

 

We found that encoding efficiency for both the recordings (Figure 2D and Figure 2-figure 

supplement 1D) and simulations (Figure 4D) weakened with the increasing bandwidth (left) but less 

so with contrast (right). This was because Rinput estimates (Appendix 2) increased monotonically with 

bandwidth (Song & Juusola, 2014) and contrast, while Routput  for bandwidth did not (Figure 2C). 

However, as predicted, some recordings showed >100% efficiency for 20 Hz bursts, presumably due to 
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their extra network information (Figure 5 and Figure 5-figure supplement 1) (Zheng et al., 2006; 

Wardill et al., 2012; Dau et al., 2016). 

A locomoting Drosophila generates ~1-5 head/body-saccades/s, which direct its gaze in high 

velocities to the surroundings (Fry et al., 2003; Geurten et al., 2014). Here, our recordings and 

simulations suggested that the refractoriness in R1-R6s’ phototransduction, together with network 

inputs, might be tuned for capturing information during such fast light changes in time.  

 
Figure 6. A Drosophila’s saccadic 

turns and fixation periods generate 

bursty high-contrast time series 

from natural scenes, which enable 

R1-R6 photoreceptors (even when 

decoupled from visual selection) to 

extract information more efficiently 

than what they could by linear or 

shuffled viewing. (A) A prototypical 

walking trajectory recoded by Geurten 

et al. (2014) (B) Angular velocity and 

yaw of this walk. Arrows indicate 

saccades (velocity ≥ |±200| o/s). (C) A 

360o natural scene used for generating 

light intensity time series: (i) by 

translating the walking fly’s yaw (A-

B) dynamics on it (blue trace), and (ii) 

by this walk’s median (linear: 63.3 o/s, 

red) and (iii) shuffled velocities. 

Dotted white line indicates the 

intensity plane used for the walk. Brief 

saccades and longer fixation periods 

“burstify” light input. (D) This 

increases sparseness, as explained by 

comparing its intensity difference (1st 

derivative) histogram (blue) to that of 

the linear walk (red). The saccadic and 

linear walk histograms for the tested 

images (Appendix 3; 6 panoramas 

each with 15 line-scans) differed 

significantly: Peaksac = 4478.66 ± 1424.55 vs Peaklin = 3379.98 ± 1753.44 counts (mean ± SD, p = 1.4195 × 

10-32, pair-wise t-test). Kurtosissac = 48.22 ± 99.80 vs Kurtosislin = 30.25 ± 37.85 (mean ± SD, p = 0.01861, 

pair-wise t-test). (E) Bursty stimuli (in Figure 1, continuous) had sparse intensity difference histograms, while 

GWN (dotted) did not. (F) Saccadic viewing improves R1-R6s’ information transmission, suggesting that it 

evolved with refractory photon sampling to maximize information capture from natural scenes. Details in 

Appendix 3. 

  

Saccades and fixations increase information capture from natural scenes  

To test this idea more directly, we used published body yaw velocities (Geurten et al., 2014) of a 

walking Drosophila (Figure 6A) to sample light intensity information from natural images (of 

characteristic 1/fn-statistics (van Hateren, 1997a))  (Figure 6B). This resulted in time series of contrasts 

(Figure 6C, blue) that (i) mimicked light input to a R1-R6 photoreceptor during normal visual behavior, 

containing fixations, translational movements and saccadic turns. As controls, we further used light 

inputs resulting from corresponding (ii) linear median (red) and (iii) shuffled (gray) velocity walks 

across the same images (Video 1). These stimuli were then played back to R1-R6s in intracellular 

experiments and stochastic refractory model simulations. 

We found that saccadic viewing of natural images (Figure 6C, i), even without visual selection 

(i.e. without the fly choosing what it gazes), transformed the resulting light input to resemble the bursty 

high-contrast stimulation (Video1), which maximized photoreceptor information (Figures 1-2). Such 

inputs had increasingly sparse light intensity difference (1st derivative) distributions in respect to those 

of the linear walks or GWN stimulation (Figures 6D-E; Appendix 3). Specifically, the saccadic walks 
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contained fixation periods that retained the same light input values for longer durations than the linear 

walks, which lacked these periods, causing the ~63% higher peak in the saccadic histogram (Figure 

6D). Saccadic walking also enhanced the proportion of large intensity differences between two 

consecutive moments, seen as ~18% higher histogram flanks than those for linear walking (p = 3.65 × 

10-9, pair-wise t-test for the combined 0.5-1.0 and -0.5--1 ranges). These dynamics drove refractory 

sampling efficiently (Song & Juusola, 2014), enabling a R1-R6 to better utilize its output range, and 

thus capture more information than through the median or shuffled velocity viewing (Figure 6F; Figure 

6-figure supplement 1; cf. Figure 2-figure supplement 3). 

Altogether, these results (Figures 1-6) imply that saccades and fixations improve a R1-R6’s 

neural representation of the world in time. Furthermore, as behaviors modulate visual inputs in a 

sensorimotor-loop, bursty spike trains from the brain (Franceschini et al., 1991; Franceschini & 

Chagneux, 1994; Tang & Juusola, 2010), which direct the gaze through self-motion, may have evolved 

with photoreceptors’ information sampling dynamics to better detect changes in the world. So when a 

freely-moving fly directs its gaze to visual features that are relevant for its behavior, its R1-R6’s 

information capture may become optimized for the imminent task. 

 

However, visual behaviors should also affect spatial acuity (Srinivasan & Bernard, 1975; Juusola & 

French, 1997; Land, 1997; Geurten et al., 2014). Hence, we next asked how R1-R6s see saccadic light 

changes over space. 

 

Testing acuity at saccadic velocities 

A Drosophila’s head/body-saccades generate fast phasic photoreceptor movements, which ought to blur 

retinal images (Srinivasan & Bernard, 1975; Juusola & French, 1997; Land, 1997). Moreover, saccades 

– when dominated by axial rotation - provide little distance information (Land, 1999) because objects, 

near and far, would move across the retina with the same speed. Therefore, it has been long thought that 

visual information is mostly captured during translational motion and gaze fixation, and less during 

saccades.  

To test this hypothesis, we reasoned that object motion and self-motion shape a photoreceptor’s 

light input the same way. Thus, the influence of eye movements (and motion blur) on a R1-R6’s ability 

to resolve objects could be measured in experiments, where, instead of moving the eye, the objects were 

moved over its stationary receptive field (Figure 7A; Appendixes 4-6). 

Using this approach, we recorded individual R1-R6s' voltage responses (Figure 7B; black 

traces) to a pair of bright dots (each 1.7º in size and 6.8o apart, as seen by the fly), moving at constant 

speed across their receptive field in front-to-back direction. The movements were either fast (205 o/s) 

or double-fast (409 o/s), both within the head/body saccadic velocity range of a walking Drosophila 

(Figures 6A-B: 200-800 o/s) (Geurten et al., 2014), and were presented against a dark or lit background 

(note: during a free flight (Fry et al., 2003), saccadic velocities may reach 2,000 o/s). Importantly, the 

dots’ angular separation was less than the half-width of a R1-R6’s receptive field (Figure 7C) at the 

two backgrounds (∆ρdark = 9.47 ± 1.57º, n = 19 cells; ∆ρlight = 7.70 ± 1.27º, n = 6; mean ± SD; Figure 

7-figure supplement 1 and 2) and 1.5-times the average interommatidial angle (Δφ ~4.5°), which 

should determine Drosophila’s visual acuity (Gonzalez-Bellido et al., 2011). Thus, these fast-moving 

point objects tested the theoretical limit of what a R1-R6 should be able to resolve.  
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Figure 7. Photoreceptors resolve dots at saccadic velocities far better than the classic models. (A)  25-

light-point stimulus array centered at a R1-R6’s receptive field (RF). Each tested photoreceptor saw two bright 

dots, 6.8o apart, travelling fast (205 o/s) or double-fast (409 o/s) in front-to-back direction. (B) Responses 

(black), both at dark (left) or illuminated backgrounds (right), characteristically showed two peaks. In contrast, 

the corresponding classic model simulations (blue) rarely resolved the dots. (C) In the simulations, each 

photoreceptor’s receptive field (or its Gaussian fit) was convolved with its impulse response (1st Volterra 

kernel). The resolvability, D, of the recordings and simulations, was determined by Raleigh criterion. (D) 

Recordings outperformed simulations. (E) hdcJK910 R1-R6s (red), which lacked the neurotransmitter histamine, 

and so network modulation, resolved the dots as well as the wild-type, indicating that the recordings’ higher 

resolvability was intrinsic and unpredictable by the classic models (Appendix 6). (F) To resolve the two dots 

as well as a real R1-R6 does in light-adaptation, the model’s acceptance angle (∆ρ) would need to be ≤3.70o 

(blue trace); instead of its experimentally measured value of 5.73 (black; the narrowest ∆ρ. The population 

mean, grey, is wider). (G) Normalized responses of a typical R1-R6 to a bright dot, crossing its receptive field 

in front-to-back or back-to-front at different speeds. Responses to back-to-front motions rose and decayed 

earlier, suggesting direction-selective encoding. This lead at the half-maximal values was 2-10 ms. See 

Appendixes 4 and 6. 

 

We further estimated each cell’s respective impulse response (Appendix 6). Then following 

the classic theory of compound eyes’ resolving power (Srinivasan & Bernard, 1975; Juusola & French, 

1997; Land, 1997), we calculated each R1-R6’s expected voltage output to the moving dots by 

convolving its impulse response with its measured dark- or light-adapted receptive field. These 

Volterra-model (Juusola & French, 1997) predictions (Figures 7B-C; blue) were then compared to the 

actual recordings (black). 

 

Eyesight beyond the motion blur-limit 

Remarkably in all these tests, the recordings showed distinctive responses to the two dots (Figure 7B), 

as two peaks separated by a trough. The relative magnitude of this amplitude separation was quantified 

as resolvability, using the Raleigh criterion (Juusola & French, 1997) (Figure 7C). However, in marked 

contrast, the model predictions failed to resolve the double-fast dots, instead blurring into one broad 

response in both adapting states (Figure 7D; blue vs. black bars, respectively). The predictions for the 
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fast dots were also poorer than the measured responses. Thus, a photoreceptor’s real resolving power 

was significantly better and less affected by motion blur than predicted by classic theory (Appendix 6). 

We next asked whether this better-than-expected resolving power resulted from synaptic 

interactions (Zheng et al., 2006; Freifeld et al., 2013) by using hdcJK910 mutants (Figure 7E, red traces), 

in which photoreceptors lacked their neurotransmitter, histamine (Burg et al., 1993) (Appendixes 4-6). 

Because hdcJK910 R1-R6s cannot transmit information to their post-synaptic targets (Dau et al., 2016) 

(LMCs, which initiate the motion detection pathways (Joesch et al., 2010), and the amacrine cells), 

neither could these photoreceptors receive any light-driven interneuron feedback modulation (Dau et 

al., 2016). Therefore, if the synaptic interactions improved the wild-type output to the moving dots, 

then hdcJK910 R1-R6s, which lacked these interactions, should show diminished resolvability. But this 

was never observed. Instead, we found that hdcJK910 R1-R6s resolved the dots at least equally well as 

the wild-type (Figure 7D, red). Thus, high acuity did not result from synaptic inputs but was intrinsic 

to photoreceptors. 

We also calculated Δρ needed to explain the spatial acuity of the recordings. The example 

(Figure 7F) is from a R1-R6, which had the narrowest light-adapted receptive field (Δρ = 5.73o) (Figure 

7-figure supplement 2). Its response resolved the two fast-moving dots with a 40.5% dip. However, 

the Volterra model prediction, using its receptive field, only resolved the dots with a 12.5% dip (cf. 

Figure 7D). In fact, for 41.0% resolvability, its Δρ would need to narrow to 3.70o (from 5.73o). Thus, 

for the prediction to match the recording, the receptive field would have to narrow at least by one-third. 

Because the required (predicted) acceptance angles of R1-R6s were always much narrower (≤ 4o) than 

the actual measurements (∆ρdark = 9.47 and ∆ρlight = 7.70; see above), measurement bias cannot explain 

this disparity. 

We further discovered that R1-R6 recordings often showed phasic directional selectivity 

(Figure 7G), with the responses rising and decaying faster to back-to-front than to front-to-back moving 

dots. We asked whether these lag-time differences originated from asymmetric photomechanical 

photoreceptor contractions. Namely, atomic-force microscopy has revealed minute (<275 nm) vertical 

movements on the surface of dissected Drosophila eyes, generated by contraction of individual 

microvilli as PIP2 is hydrolyzed from the inner leaflet of the lipid bilayer (Hardie & Franze, 2012). 

Here, instead, we reasoned that if the ommatidium lenses were effectively fixed and R1-R8s levered to 

the retinal matrix, the contractions (Video 2) might be larger in situ, moving and shaping the 

photoreceptors’ receptive fields along some preferred direction. Such mechanical feedback could then 

reduce light input to R1-R8s, making it more transient and directional. 

 

Microsaccadic sampling of retinal images 

To probe this idea, we recorded in vivo high-speed videos of photoreceptor rhabdomeres (viewed by 

optical neutralization of the cornea) inside the eyes reacting to blue-green light flashes (470 + 560 nm) 
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(Figure 8A). The recordings were performed under far-red (>720 nm) illumination, which is nearly 

invisible to Drosophila (Appendix 7). 

 

 
Figure 8. Microsaccadic rhabdomere contractions and refractory photon sampling improve visual 

resolution of moving objects. (A) High-speed videos showed fast lateral R1-R7 rhabdomere movements to 

blue/green flashes, recorded under far-red illumination that Drosophila barely saw (Wardill et al., 2012). (B) 

Rhabdomeres moved inside those 7 ommatidia (up-right: their pseudopupil), which faced and absorbed the 

incident blue/green light, while the others reflected it. Rhabdomeres moved frontwards 8-20 ms after a flash 

onset, being maximally displaced 70-200 ms later, before returning. (C) Movements were larger and faster the 

brighter the flash, but slower than R1-R6s’ voltage responses. (D) Movements followed R1-R6s’ logarithmic 

light-sensitivity relationship. Concurrently, given the ommatidium optics (Stavenga, 2003b; Gonzalez-Bellido 

et al., 2011), R1-R6s’ receptive fields (RFs) shifted by 0.5-4.0o. (E) Rhabdomeres moved along the eye’s 

horizontal (red) axis, with little vertical components (black), adapting to ~30% contractions in ~10 s during 1 

s repetitive flashing. (F) Moving ommatidium structures. Cone and pigment cells, linking to the rhabdomeres 

by adherens-junctions (Tepass & Harris, 2007), formed an aperture smaller than the rhabdomeres’ pseudopupil 

pattern. Rhabdomeres moved ~2-times more than this aperture, and ~10-times more than the lens. (G-H) 

Simulated light inputs and photoreceptor outputs for the classic theory and new “microsaccadic sampling”-

hypothesis when two dots cross a R1-R6’s RF (i) front-to-back at saccadic speeds. (G) In the classic model, 

because the rhabdomere (ii) and its broad RF (i) were immobile (ii), light input from the dots fused (iii), making 

them neurally unresolvable (iv). (H) In the new model, with rhabdomere photomechanics (ii) moving and 

narrowing its RF (here acceptance angle, ∆ρ, narrows from 8.1o to 4.0o), light input transformed into two 

intensity spikes (iii), which photoreceptor output resolved (iv). (I) New predictions matched recordings (Figure 

8-figure supplement 1). Details in Appendixes 7-8. 

 

We found that 8-20 ms after a flash the rhabdomeres, which directly faced the light source at 

the image center, shifted rapidly towards the anterior side of their ommatidia (Figures 8B). These local 

movements were faster and larger the brighter the flash (Figures 8C), and reached their intensity-
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dependent maxima (0.2-1.2 µm; Figure 8D) in 70-200 ms, before returning more slowly to their original 

positions (Appendix 7 analyses hdcJK910-rhabdomere responses). Because the mean R1-R6 rhabdomere 

tip diameter is ~1.7 µm (Figure 5B), a bright flash could shift it more than its half-width sideways. 

Consequently, the fast rhabdomere movements, whilst still ~3-times slower than their voltage responses 

(Figure 8C, wine), adapted photoreceptors photomechanically by shifting their receptive fields by 0.5-

4.0o, away from directly pointing to the light source. 

Video footage at different eye locations indicated that light-activated rhabdomeres moved in 

back-to-front direction along the eye’s equatorial (anterior-posterior) plane (Figure 8E, red; Video 3), 

with little up-down components (black). Therefore, as each ommatidium lens inverts projected images, 

the photoreceptors’ receptive fields should follow front-to-back image motion. This global motion 

direction, which corresponds to a forward locomoting fly’s dominant horizontal optic flow field, most 

probably explains the phasic directional selectivity we found to opposing image motions (Figure 7F; 

Appendix 8). Thus, the responses to back-to-front moving dots were faster because the dots entered 

and exited each contracting photoreceptor's front-to-back moving receptive field earlier; whereas the 

dots moving in the opposite direction stayed slightly longer inside each receptive field.  

Video analyses further revealed that the first rhabdomere movement was the largest (Figure 

8E), but 1 s dark intervals, as used in Figure 7, could resensitize the photoreceptors for the next (~0.5 

µm) movements. Even <100 ms dark periods rescued noticeable motility (Figure 2-figure supplement 

2E).  

To inspect how rhabdomere contractions affected the cornea lens system’s image projection, 

we scanned ommatidia by z-axis piezo steps, with the imaged focal plane travelling down from the lens 

surface into rhabdomeres (Figure 8F; Video 4), delivering flashes at predetermined depths. Crucially, 

we found that the ommatidium lens stayed nearly still, while specific pigment and cone cells, which are 

connected to the rhabdomere tips by adherens junctions (Tepass & Harris, 2007), formed a narrow 

aperture that moved with the rhabdomeres but only half as much. Thus, as the lens system was immobile 

but the aperture and sensors (rhabdomeres) underneath swung differentially, the light input to the 

moving rhabdomeres was shaped dynamically. This implied that, during saccadic image motion, R1-

R6s’ receptive fields might not only move but also narrow (Appendixes 7-8; Video 2). 

Essentially, light input to a R1-R6 was modulated by the photoreceptor itself (Figure 8F). To 

estimate how these photomechanics influenced encoding, we implemented them in stochastic model 

simulations. We then compared how the predicted light inputs of the classic theory (Figure 8G) and 

the new ‘microsaccadic sampling’-hypothesis (Figure 8H) would drive R1-R6 output during the 

saccadic dot stimulation.  

In the classic theory, the rhabdomere is immobile (ii). Therefore, light input of two moving dots 

was a convolution of two broad Gaussians (i) that fused together (iii), making them irresolvable to 

phototransduction (iv); this also flawed the Volterra-models (Figure 7).  

In the new hypothesis, instead, as microvilli became light-activated (ii), the rhabdomere 

contracted away from the focal point, and then returned back more slowly, recovering from 

refractoriness. And because its receptive field moved and narrowed concurrently (its acceptance angle, 

∆ρ, halved to 4.0o), the light input of two moving dots transformed into two intensity peaks (iii), in 

which time-separation was enhanced by the rhabdomere’s asymmetric motion. Crucially, with such 

input driving the refractory photon sampling model, its output (iv) closely predicted the responses to 

the two moving dots (Figure 8I and Figure 8-figure supplement 1). Interestingly, early behavioral 
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experiments in bright illumination (Götz, 1964) suggested similarly narrow R1-R6 acceptance angles 

(~3.5o). 

 
Figure 9. “Microsaccadic sampling” 

hypothesis predicts visual hyperacuity. 

(A) Simulated R1-R6 output to two dots, at 

different distances apart, crossing the 

photoreceptor’s receptive field at different 

speeds. The yellow backgrounds indicate 

those inter-dot-distances and speeds, which 

evoked two-peaked responses. The 

prediction is that the real R1-R6s could 

resolve (and Drosophila distinguish) these 

dots as two separate objects, whereas those 

on the white backgrounds would be seen as 

one object. The simulations were generated 

with our biophysically realistic R1-R6 model 

(Song et al., 2012; Song & Juusola, 2014; 

Juusola et al., 2015), which now included the 

estimated light input modulation by 

photomechanical rhabdomere movements 

(Figure 8H). (B) The resulting object 

resolution/speed heat-map, using the Raleigh 

criterion, D (Figure 7C), shows the 

stimulus/behavioral speed regime where 

Drosophila should have hyperacute vision. 

Thus, by adjusting its behavior (from gaze 

fixation to saccadic turns) to changing 

surroundings, Drosophila should see the 

world better than its compound eye’s optical 

resolution. (C) Intracellular R1-R6 responses 

resolved the two dots, which were less that 

the interommatidial angle (Δφ = 4.5o) apart 

when these crossed the cell’s receptive field 

at the predicted speed range. Arrows indicate 

the two response peaks corresponding to the 

dot separation. Cf. Figure 9-figure 

supplement 1; details in Appendixes 7-8. 

These results reveal remarkable temporal 

acuity, which could be used by downstream 

neurons (Zheng et al., 2006; Joesch et al., 

2010; Behnia et al., 2014; Yang et al., 2016) 

for spatial discrimination between a single 

passing object from two passing objects. 

 

From microsaccades to hyperacuity 

Because of the close correspondence between R1-R6 recordings and the new hypothesis (Appendixes 

6-9), we used it further to predict whether Drosophila possessed hyperacute vision (Figure 9). We 

asked whether ‘saccade-fixation-saccade’-like behaviors, when linked to refractory photon sampling 

and photomechanical photoreceptor contractions, allowed encoding in time finer spatial details than the 

compound eye’s optical limit (Δφ ~4.5o). R1-R6 output was simulated to two bright dots 1-4o apart, 

crossing its receptive field at different speeds at 25oC.  

We found that if the dots, or a Drosophila, moved at suitable speed, a photoreceptor should 

resolve them well (Figure 9A), with this performance depending upon the inter-dot-distance. When the 

dots/eye moved at 10 o/s, a R1-R6 may capture image details at 1o resolution. But with slower movement 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


17 

 

(≤2.5 o/s), adaptation should fuse the dots together, making them neurally unresolvable. Conversely, 3o-

apart-dots should be seen at 5-100 o/s speeds and 4o-apart-dots even during fast saccades (200-300 o/s). 

Thus, the ‘microsaccadic sampling’-hypothesis implied that Drosophila had hyperacute vision 

over a broad speed range (Figure 9B), and through its own self-motion, could adjust the resolution of 

its neural images. Further comparisons of model outputs with and without refractoriness indicated that 

it extends the speed range of hyperacute vision (Appendix 8). Again, intracellular recordings 

corroborated these predictions (Figure 9C and Figure 9-figure supplement 1), demonstrating how 

acuity could be enhanced by encoding space in time.  

These results meant that the unexpectedly fine temporal responses of R1-R6s (Figures 7-9) 

could be used by downstream neurons (Zheng et al., 2006; Joesch et al., 2010; Rivera-Alba et al., 2011; 

Wardill et al., 2012; Behnia et al., 2014), which can have even faster dynamics (Juusola et al., 1995b; 

Uusitalo et al., 1995; Zheng et al., 2006), for spatial discrimination between a single passing object 

from two passing objects, even if these objects were less than an interommatidial angle apart. The fly 

brain could then integrate information from hyperacute moving objects and use it for directing 

behaviors. 

 
Figure 10. Optomotor 

behavior in a flight 

simulator system 

confirms hyperacute 

vision. Classic open-loop 

experiments using high-

resolution panoramas. (A) 

360o hyperacute black-

and-white bar panorama, 

with 1.16o or 2.88o 

wavelengths ( = 0.58o and 

1.44o inter-bar-distances), 

rotated counterclockwise 

and clockwise (grey, 

arrows) around a tethered 

fly, with a torque meter 

measuring its optomotor 

responses. (B) Controls: 

the same flies’ optomotor 

responses to white (no 

bars) and wide-bar (14.4o 

wavelength) rotating 

panoramas. (C) Every 

Drosophila responded to the hyperacute panoramas (wavelength < interommatidial angle, Δφ, yellow area; 

Figure 10-figure supplement 1), but not to the white panorama (orange), which thus provided the recording 

noise level. The flies optomotor responses were the strongest to the wide-bar panorama (perception index = 1). 

As the flies’ optomotor responses followed the rotation directions consistently, irrespective of the tested bar 

wavelengths, the hyperacute visual panorama did not generate perceptual aliasing. (D) Optomotor responses 

of five flies to hyperacute panorama with 3.9o wavelength, rotating at 50o/s and saccadic speeds of 200 and 

300o/s. (E) Control responses of the same flies to 14.4o wavelength panorama at the same speeds. (F) The flies’ 

ability to follow hyperacute panorama reduces dramatically when the stimulation approaches the 

photoreceptors’ predicted acuity limit, which for ~4o point resolution is just over 300o/s (cf. Figure 9A). Details 

in Appendix 10. 

  

Optomotor behavior confirms hyperacute vision 

To test this prediction, we investigated the spatial resolution of Drosophila vision through their 

optomotor behavior in a conventional flight simulator system, which used brightly-lit high-resolution 

prints for panoramic scenes (Figure 10; Appendix 10). We asked whether tethered Drosophila 

possessed motion vision hyperacuity by recording their yaw torque (optomotor response) to vertical 
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black-and-white bar panoramas with <4.5o wavelengths, which slowly rotated (45 o/s) to clockwise and 

counterclockwise. 

We found that every tested fly responded down to ~1o panoramic bar resolution (Figure 10A 

and Figure 10-figure supplement 1) with their responses becoming smaller the finer its bars (Figures 

10A-C). Importantly, because these responses consistently followed the rotation direction changes, they 

were not caused by aliasing. Thus, optomotor behavior verified that Drosophila see the world at least 

in 4-fold finer detail than what was previously thought. Moreover, when a fine-grained (3.9o) panoramic 

image was rotated faster (Figure 10D), the response declined as predicted (cf. two dots 4o apart in 

Figure 9A). This result is consistent with photoreceptor output setting the perceptual limit for vision 

and demonstrates that Drosophila see hyperacute details even at saccadic speeds (Figures 10D-F). 

 

DISCUSSION 

We have provided deep new insight into spatiotemporal information processing in Drosophila R1-R6 

photoreceptors and animal perception in general. Our results indicate that the dynamic interplay 

between saccades and gaze fixation is important for both the maintenance and enhancement of vision 

already at the photoreceptor level. This interplay, which is commonly observed in locomoting 

Drosophila (Geurten et al., 2014), makes light input to photoreceptors bursty.  

We showed that high-contrast bursts, which resemble light input during a fly’s saccadic 

behaviors, maximize photoreceptors’ information capture in time, and provided evidence that such 

encoding involves four interlinked mechanisms. Light input is first regulated by two processes inside 

photoreceptors: slower screening pigment migration (intracellular pupil, 1-10 s) and much faster 

photomechanical rhabdomere contractions (0.01-1s). These modulations have low noise (Figure 2-

figure supplement 2), enabling refractory photon sampling by microvilli to enhance information intake 

in phasic stimulus components. Finally, asymmetric synaptic inputs from the network differentiate 

individual R1-R6 outputs. Remarkably, over space, these mechanisms further sharpen neural 

resolvability by ~4-fold below the theoretical limit of the compound eye optics, providing hyperacute 

vision. Further analyses imply that these mechanisms with systematic rhabdomere size variations 

combat aliasing (Appendixes 2 and 5).  

Thus, with microsaccadic sampling, a fly’s behavioral decisions govern its visual 

information/acuity trade-off. To see the finest image details it should scan the world slowly, which 

probably happens during normal gaze fixation. But gaze fixation cannot be too slow; otherwise, 

adaptation would fade vision. Conversely, by locomoting faster, in a saccadic or bursty fashion, visual 

information capture in time is increased (see also: Juusola & de Polavieja, 2003), while surprisingly 

little spatial details about its surroundings would be lost.  

This viewing strategy corresponds well with the recent human psychophysics results and 

modeling of ganglion cell firing (Rucci & Victor, 2015), which indicate that microsaccades and ocular 

drift in the foveal region of the retina actively enhance perception of spatial details (Rucci et al., 2007; 

Poletti et al., 2013; Rucci & Victor, 2015). Interestingly, here our findings further imply that, in 

Drosophila, the extraction of phasic stimulus features, which characterize object boundaries and line 

elements in visual scenes, already starts during sampling and integration of visual information in the 

microvilli, at the first processing stage (rather than later on in the retinal network or in the brain). 

Our results make a general prediction about the optimal viewing strategy for maximizing 

information capture from the world. Animals should fixate gaze on darker features, as this resensitizes 

photoreceptors by relieving their refractory sampling units (e.g. microvilli). And then, rapidly move 

gaze across to brighter image areas, as saccadic crossings over high-contrast boundaries enhance 

information intake by increasing photoreceptors’ sample (quantum bump) rate changes/time (Appendix 

9). 

Given the high occurrence of eye/head-saccades in animals with good vision (Land, 1999), it 

seems plausible that their photoreceptors could also have adapted encoding dynamics to quicken 

response modulation, reducing motion blur. Therefore, if information sampling biophysics in rods and 

cones were matched to microsaccadic eye movements, this could provide a mechanistic explanation to 

the old paradox: how saccadic gaze fixation provides stable perception of the world, while curtailing 

motion blur effects. 
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Materials and Methods 

Flies 

2-10 day old wild-type red-eyed (Canton-S and Berlin) fruit flies (Drosophila melanogaster) and 

hdcJK910-mutants were used in the experiments. Other transgenic and mutant Drosophila tests and 

controls are explained in specific Appendixes. Drosophila were raised at 18oC in a 12-hour/12-hour 

dark/light cycle and fed on standard medium in our laboratory culture. 

 

Electrophysiology 

Sharp microelectrode recordings from Drosophila R1-R6 photoreceptors were detailed before (Juusola 

& Hardie, 2001a; Juusola et al., 2016), and we only list the key steps here. Flies were immobilized to a 

conical holder by beeswax (Juusola & Hardie, 2001a) (Figure 1A). A small hole, the size of a few 

ommatidia, was cut in the dorsal cornea for the recording electrode and sealed with Vaseline to prevent 

tissue from drying. R1-R6s’ intracellular voltage responses were recorded to different spatiotemporal 

light patterns (see below) using sharp filamented quartz or borosilicate microelectrodes (120–220 MΩ), 

filled with 3 M KCl. A blunt reference electrode, filled with fly ringer, was inserted in the head capsule. 

The flies’ temperature was kept either at 19 ± 1 or 25 ± 1°C by a feedback-controlled Peltier device, as 

indicated in the figures. The recordings were performed after 1-2 minutes of dark adaptation, using the 

discontinuous clamp method with a switching frequency 20-40 kHz. The electrode capacitance was 

compensated using the head-stage output voltage. To minimize effects of damage and external noise on 

the analysis, only stable recordings of low-noise and high sensitivity were chosen for this study 

(sometimes lasting several hours). Such photoreceptors typically had resting potentials <-60 mV in 

darkness and >45 mV responses to saturating test light pulses (Juusola & Hardie, 2001a). 

 

Light stimulation. We used a high power “white” LED (Seoul Z-Power P4 star, white, 100 Lumens) to 

test individual R1-R6 photoreceptors’ encoding dynamics (Figures 1 and 6F). It was connected to a 

randomized quartz fiber optic bundle (transmission range: 180-1,200 nm), fitted with a lens (providing 

~3° homogeneous light disk as seen by the flies), and attached onto a Cardan arm system for accurate 

positioning at the center of each tested cell’s receptive field. Its light output was driven by an OptoLED 

(Cairn Research Ltd, UK), which utilizes a feedback circuitry with a light-sensor. This LED has red 

component wavelengths, which minimizes prolonged depolarizing afterpotential (PDA) effects. 

Because long recordings can show sensitivity drifts, attributable to muscle activity (Appendix 4), the 

stimulus XY-position was regularly tested and, if needed, re-centered between long stimulus runs. 

 We used a bespoke 25 light-point array to measure individual R1-R6 photoreceptors’ receptive 

fields and responses to moving point objects (bright dots, Figure 7; dark dots, Appendix 9). Again, a 

custom-made Cardan arm system was used to accurately position the array’s center light-point (no. 13) 

at the center of each tested cell’s receptive field. The dot size and the minimum inter-dot-distance, as 

seen by Drosophila, was 1.7o. Details of this device and the recording procedures are given in 

Appendixes 4 and 6. 

 

Stimulus patterns. Single photoreceptors’ diurnal temporal encoding gamut was tested systematically 

over different bandwidth and contrast distributions; using 20 distinct light intensity time series stimuli, 

which were presented at the center of their receptive fields. The used test stimuli was based upon 5 

different 2 s long Gaussian white-noise light intensity time series patterns (generated by Matlab’s randn-

function), which had “flat” power spectrum up to 20, 50, 100, 200, or 500 Hz (Figure 1B), as low-pass 

filtered by MATLAB's filter toolbox, and the same peak-to-peak modulation (2 units). These were then 

superimposed on four backgrounds: BG0 (0 units, dark), BG0.5 (0.5 units), BG1 (1 unit) or BG1.5 (1.5 

units, bright) on a linear intensity scale, giving altogether 20 unique stimulus patterns. As the two lowest 

backgrounds clipped downwards-modulation, prolonging dark intervals, the resulting stimuli ranged 

from high-contrast bursts (c = ΔI/I ~ 1.46 at BG0) to low-contrast Gaussian (c ~ 0.22 at BG1.5).  

As further controls, we tested how well R1-R6 photoreceptors responded to dark contrast bursts 

of different bandwidths (Appendix 9) and to their bright counterparts. In these experiments, R1-R6s 

were adapted for 10 s to BG0.5 and BG1 before repeated stimulation. In addition, we recorded the tested 

cells’ responses to naturalistic light intensity time series (van Hateren, 1997a; Song & Juusola, 2014) 

(NS), selected from van Hateren natural stimulus collection (van Hateren, 1997a) (Figure 2-figure 

supplement 3). We also sampled light intensity time series from panoramic natural images, using three 
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different velocity profiles of a published 10 s Drosophila walk (see Video 1; details in Appendix 3). 

These stimuli were then played back to a R1-R6 photoreceptor by the “white” LED (see above). 

In all these experiments, ≥25 consecutive responses to each repeated stimulus were recorded. 

 

Data acquisition. Both the stimuli and responses were filtered at 500 Hz (KEMO VBF/23 low-pass 

elliptic filter, UK), and sampled together at 1-10 kHz using a 12-bit A/D converter (National 

Instruments, USA), controlled by a custom-written software system, Biosyst in Matlab (Mathworks, 

USA) environment. For signal analyses, if need, the data was down-sampled to 1 kHz. 

 

Analyses 

Because of short-term adaptive trends, we removed the first 3–10 responses to repeated stimulation 

from the analysis and used the most stable continuous segment of the recordings. Information 

theoretical methods for quantifying responses of approximately steady-state-adapted fly photoreceptors 

to different stimuli were described in detail before (Juusola & Hardie, 2001b; Juusola & de Polavieja, 

2003; Song et al., 2012; Song & Juusola, 2014). Below we list the key approaches used here. 

 

Signal-to-noise ratio (SNR) and information transfer rate estimates. In each recording, simulation or 

Poisson light stimulus series (see below), the signal was the mean, and the noise was the difference 

between individual traces and the signal (Juusola & Hardie, 2001a). Therefore, for a data chunk of 20 

responses (n = 20 traces), there was one signal trace and 20 noise traces. The signal and noise traces 

were divided into 50% overlapping stretches and windowed with a Blackman–Harris 4-term window, 

each giving three 500-points-long samples. Because each trace was 2 s long, we obtained 60 spectral 

samples for the noise and 7 for the signal. These were averaged, respectively, to improve the estimates. 

SNR(f), of the recording, simulation, or Poisson light stimulus series was calculated from their 

signal and noise power spectra, <|Sf, |2> and <|Nf, |2>, respectively, as their ratio, where | | denotes the 

norm and <> the average over the different stretches (Juusola & Hardie, 2001a). To eliminate data size 

and processing bias, the same number of traces (n = 20) of equal length (2,000 points) and sampling 

rate (1 kHz; 1 ms bin size) were used for calculating the SNR(f), estimates for the corresponding real 

recordings, photoreceptor model simulations and the simulated Poisson stimuli. 

Information transfer rates, R, for each recording, simulation, or Poisson light stimulus series 

were estimated by using the Shannon formula (Shannon, 1948), which has been shown to obtain robust 

estimates for these types of continuous signals (Juusola & de Polavieja, 2003; Song & Juusola, 2014). 

We analyzed steady-state-adapted recordings and simulations, in which each response (or stimulus 

trace) is expected to be equally representative of the underlying encoding (or statistical) process. From 

SNR(f), the information transfer rate estimates were calculated as follows: 

 

𝑅 = ∫ (log2[𝑆𝑁𝑅(𝑓) + 1])𝑑𝑓
∞

0
     (1) 

 

We used minimum = 2 Hz and maximum = 500 Hz (resulting from 1 kHz sampling rate and 500 points 

window size). The underlying assumptions of this method and how the number and resolution of 

spectral signal and noise estimates and the finite size of the used data can affect the resulting Information 

transfer rate estimates have been analyzed before (van Hateren, 1992b; Juusola & Hardie, 2001b; 

Juusola & de Polavieja, 2003; Song & Juusola, 2014) and are further discussed in Appendix 2. The 

mean and SD of each photoreceptor recording series (20 × 2,000 points) was obtained by estimating R 

from eleven 1,000-point data chunks with 100-point overlaps. 

 

We also tested how the Shannon method’s information transfer rate estimates of bursty responses 

compare with those obtained by the triple extrapolation method (Juusola & de Polavieja, 2003) using 

additional longer recordings. In the triple extrapolation, photoreceptor responses were first digitized 

(Figure 2-figure supplement 4A-B) by dividing these into time intervals, Tw, that were subdivided into 

smaller intervals of tw = 1 ms. This procedure selects “words” of length Tw with Tw/tw “letters.” The 

mutual information between the response S and the stimulus is then the difference between the total 

entropy, Hs: 
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where PS(si) is the probability of finding the i-th word in the response, and the noise entropy HN: 
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where Pi(τ) denotes the probability of finding the i-th word at a time t after the initiation of the trial. 

This probability Pi(τ) was calculated across trials of identical 20 Hz bursty stimulation. The values of 

the digitized entropies depend on the length of the “words” Tw, the number of voltage levels v, and the 

size (as %) of the data file, HT,ν,size. The rate of information transfer was obtained taking the following 

three successive limits (Figure 2-figure supplement 4C-E, respectively): 

 

   (4) 

These limits were calculated by extrapolating the values of the experimentally obtained entropies. A 

response matrix for the analysis contained 2,000 points × 30 trials (note, the 10 first trials from the light 

onset were removed to minimize any adaptation effects). The total entropy and noise entropy of the 

responses were then obtained from the response matrices using linear extrapolation within the following 

parameter ranges: size = 5/10, 6/10,…,10/10 of data; ν = 4, 5,…,20 voltage levels; Tw
-1 = 2, 3,…, 7 

points. As adaptation in photoreceptors approaches steady state, their output varies progressively less 

(Juusola & de Polavieja, 2003). Similarly, the entropies of their responses, when digitized to ≤20 voltage 

levels, ceases to increase with increasing data size, enabling their limits to be extrapolated in control by 

linear fits (Figure 2-figure supplement 4C-F) or Taylor series fits. Consequently, as few as 30 

response traces (each 2,000 points long) provided similar information rate estimates to the Shannon 

method (Figure 2-figure supplement 4G) for 20 Hz burst stimulation. 

 

All data analyses were performed with Matlab (MathWorks). 

 

Measuring photoreceptors’ visual acuity. We measured dark- and light-adapted wild-type R1-R6 

photoreceptors’ receptive fields by their acceptance angles, ∆ρ, using intracellular voltage responses to 

random light-points in a stimulation array. These measurements were compared to those of hdcJK910-

mutants (Burg et al., 1993), in which first-order interneurones receive no neurotransmitter (histamine) 

from photoreceptors and so are incapable of feedback-modulating the photoreceptor output. Both the 

wild-type and mutant R1-R6 photoreceptors’ mean ∆ρ was about twice the mean interommatidial angle, 

∆φ. The stimulus apparatus, the method and result details and theoretical electron micrograph 

comparisons of their mean rhabdomere sizes are explained in Appendixes 4-5. 

 

Spatiotemporal analyses using the classic conventional models. Voltage responses of wild-type and 

hdcJK910 R1-R6s to moving bright dots were evaluated against their respective classic model simulations, 

in which each recorded receptive field was convoluted by the same cell’s impulse response (Srinivasan 

& Bernard, 1975; Juusola & French, 1997) (1st order Volterra kernels). The motion blur effects were 

quantified by comparing the real R1-R6 outputs to their deterministic model predictions. Details of the 

analysis are given in Appendix 6. 

 

Biophysical modeling 
Time series analyses. We used our recently published biophysically-realistic stochastic photon sampling 

model (Song et al., 2012) of a Drosophila R1-R6 photoreceptor to simulate macroscopic voltage 

response to different repeated light intensity time series patterns from a point source (Figures 3-4). The 

model has no free parameters. Its design and the general aims and details of these simulations are given 

in Appendixes 1 and 2. To eliminate data size bias, the signaling properties and performance of the 

simulations were quantified and compared to the corresponding recordings by using the same analytical 

 , , , ,1
lim lim lim w w

w

T v size T v size
S N NS

T v sizew

R R R H H
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routines on the same-sized data-chunks. The models were run using Matlab in the University of 

Sheffield computer cluster (Iceberg). 

For each stimulus, its mean was adjusted to maximize information of the simulated 

photoreceptor outputs, mimicking the action of the photomechanical adaptations (intracellular pupil 

mechanism and rhabdomere contractions; Appendixes 2 and 7). This optimization set the effective 

mean photon rates from 8 x 104 at BG1.5 to 8 x 105 photons/s at BG0 (Figure 3). Thus, each of these 

light levels was considered to represent the optimal daylight input (that survived the photomechanical 

adaptations and was absorbed by a rhabdomere), in which modulation enabled the largest sample 

(bump) rate changes. Otherwise, more of its sampling units (30,000 microvilli) would be either 

underutilized or refractory (saturation). The maximum information rates of the simulated photoreceptor 

outputs closely followed the corresponding mean information transfer rates of the real recordings over 

the whole tested encoding range (Appendix 2). This implies that the central function of the 

photoreceptors’ combined photomechanical adaptations is to maximize their information transfer, and 

that the resulting estimates represent realistic maxima. 

 

Encoding efficiency. A photoreceptor’s encoding efficiency, η, was the ratio between the information 

rates of its voltage output, Routput, and the corresponding effective light input, Rinput: 

 

𝜂 =
𝑅𝑜𝑢𝑡𝑝𝑢𝑡

𝑅𝑖𝑛𝑝𝑢𝑡
      (5) 

 

with Routput and Rinput estimated by the Shannon formula (Eq. 1). Details are in Appendix 2. 

 

Modeling R1-R6 output to moving dots. We developed a new “microsaccadic sampling”-model to 

predict how photomechanical rhabdomere contractions (microsaccades) move and narrow Drosophila 

R1-R6 photoreceptors’ receptive fields to resolve fast-moving objects. Appendix 8 gives the details of 

this modeling approach, which combines the stochastic photon sampling model(Song et al., 2012) with 

additional fixed ommatidium optics and photomechanical rhabdomere contraction parameters. The 

same appendix shows examples of how refractory photon sampling and rhabdomere contractions jointly 

improve visual acuity. 

 

High-speed video of the light-induced rhabdomere movements 

Cornea-neutralization method with antidromic far-red (>720 nm) illumination was used to observe deep 

pseudopupils (Franceschini & Kirschfeld, 1971b) (photoreceptor rhabdomeres) in the Drosophila eye 

at 21 oC. A high-speed camera (Andor Zyla, UK; 500 frames/s), connected to a purpose-built 

microscope system, recorded fast rhabdomere movements in vivo to blue-green light stimuli (470 + 535 

nm peaks), which were delivered orthodromically into the eye. The method details, mutant and 

transgenic Drosophila used and the related image analyses are explained in Appendix 7. 

 

Flight simulator experiments 

Open-loop configuration was used to test hyperacute motion vision. Wild-type flies were tethered in a 

classic torque meter (Tang & Guo, 2001) with heads fixed, and lowered by a manipulator into the center 

of a black and white cylinder (spectral full-width: 380–900 nm). A flying fly saw a continuous 

panoramic scene (360°), which in the tests contained multiple vertical stripes (black and white bars of 

equal width). The control was a diffuse white background. After viewing the still scene for 1 s, it was 

spun counterclockwise by a linear stepping motor for 2 s, stopped for 2 s before rotating clockwise for 

2 s, and stopped again for 1 s. This 8 s stimulus was repeated 10 times and each trial, together with the 

fly's yaw torque responses, was sampled at 1 kHz (Wardill et al., 2012). Flies followed the stripe scene 

rotations, generating yaw torque responses (optomotor responses to right and left), the strength of which 

reflected the strength of their motion perception. The flies did not follow the white control scene 

rotations. The panoramic scenes had ±360° azimuth and ±45° elevation, as seen by the fly. The stripe 

scenes had 1.0 contrast and their full-wavelength resolutions were either hyperacute (1.16° or 2.88o) or 

coarse (14.40o), giving the inter-bar-distances of 0.58o, 1.44o and 7.20o, respectively. The white scene 

has zero contrast. The scene rotation velocity was 45 °/s. 
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Transmission Electron Microscopy 

The fly eye dissection, fixation embedding, sectioning and imaging protocols for EM (Figure 5A) are 

described in Appendix 5. 

 

Statistics 

Test responses were compared with their controls by performing two-tailed t-tests to evaluate the 

difference in the compared data. Welch’s t-test was used to accommodate groups with different 

variances for the unpaired comparisons. In the figures, asterisks are used to mark the statistical 

significance: ns indicates p > 0.05, ∗ indicates p ≤ 0.05, ∗∗ indicates p ≤ 0.01, and ∗∗∗ indicates p ≤ 

0.001. 

 

Software code 

Custom written simulation and analyses software used in this study can be downloaded under GNU 

General Public License v3.0 from: https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper. 
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Figure supplements 

 

 
Figure 1-figure supplement 1. R1-R6 output varies more cell-to-cell than trial-to-trial (cf. Figure 

1) but show consistent stimulus-dependent dynamics over the whole encoding range. (A) The mean 

voltage response and SD of 15 R1-R6 cells to the same repeated 20 Hz bandwidth bursts. Photoreceptor 

output adapts within ~2 s to the stimulation. (B) Population means (thick) and 4-16 mean voltage 

responses of individual photoreceptors (thin traces) to 20 different stimuli; each with specific bandwidth 

(columns: from 20 Hz, red to 500 Hz, blue) and mean contrast (rows). Stimulation changes from 

Gaussian white-noise (GWN; bottom) to bursts (top) with the light background: from BG0 (dark) to 

BG1.5 (very bright). Left top: the traces from (A). The yellow box indicates the responses with the 

highest entropy and information content. Vertical dotted rectangle (orange square) and horizontal 

rectangle (black circle): responses for contrast and bandwidth analyses in Figure 2-figure supplement 

1A. All recordings were done at 25 oC. Compare this data to Figure 1.  
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Figure 2-figure supplement 1. Signaling performance vary cell-to-cell but adapts similarly to 

given stimulus statistics. (A) Response signal-to-noise ratios (SNR) to 20 (red), 100 (yellow) and 500 

Hz (blue) bandwidth (left) saccadic bursts, and to 50 Hz bandwidth stimuli of different contrasts (right); 

color scheme as in Figure 1. SNR increases with contrast (right), reaching (in some cells) ~6,000 

maximum for 20 Hz bursts (left, red). All R1-R6s showed the broadest frequency range for 100 Hz 

bursts (yellow). (B) Highly skewed bursts drove mostly Gaussian responses (exception: 20 Hz, red), 

with 100 Hz bursts evoking the broadest amplitude range (yellow). (C) Information transfer of all cells 

peaked for 100 Hz stimuli, irrespective of the tested contrast (or BG; left), having global maxima 

(infomax) between 600-850 bits/s (yellow box). (D) Mean encoding efficiency (Routput/Rinput) reached 

>100% for 20 Hz bursts, with its extra information coming from the neighboring cells. For determining 

Rinput see Figure 3. Encoding efficiency fell with increasing stimulus bandwidth, but less with contrast. 

Note: encoding efficiency for bursts (ηburst; black trace, left) was lower than for GWNs (ηGWN; grey and 

light grey traces). Because photomechanical adaptations let optimally 8-times brighter intensity 

modulation (photon absorption rate) through for high-contrast bursts (8 x 105 photons/s) than for GWN 

(1 x 105 photons/s), their higher input information is higher; Rinput
burst ≫  Rinput

GWN . Thus, whilst Routput
burst >

 Routput
GWN   , ηburst < ηGWN  (Appendix 2).  
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Figure 2-figure supplement 2. Light-adapted R1-R6 noise is similar for all the test stimuli, with 

its high-frequencies reflecting the mean quantum bump shape and its low-frequencies the 

rhabdomere jitter. (A) Photoreceptor noise (from Figure 1) remained largely constant for all the test 

stimuli; extracted from the responses (output) to stimulus repetition (input); see Methods. (B) 

Corresponding photoreceptor noise of the model (Song et al., 2012; Song & Juusola, 2014) simulations 

was also broadly constant but lacked the recordings’ low-frequency noise in (A). (C) The mean 

simulated noise power ascends with membrane impedance, which here was larger than that in the 

recordings in (A). Yet, the high-frequency parts of the real and simulated noise (>60 Hz), indicating the 

corresponding average light-adapted quantum bump waveform (Wong et al., 1982; Juusola & Hardie, 

2001b, a; Song et al., 2012; Song & Juusola, 2014), sloped similarly. (D) Overlaying these exposed the 

low-frequency noise difference (<60 Hz). Our results (Figure 8) predicted that this difference was a 

by-product of photomechanical rhabdomere and eye muscle movements, which the simulations lacked. 

(E) Mean rhabdomere movement responses (± SD, grey) in five different flies to the same repeated 20 

Hz high-contrast bursts. These were smaller than those to 1 s flashing (Figure 8E, Appendix 7). (F) 

Average variability of the recording series (mean – individual response) shown as rhabdomere 

movement noise power spectra. (G) Mean rhabdomere movement noise (black trace; from F) matched 

its prediction (grey; from D). Therefore, the recordings’ extra noise resulted from variable rhabdomere 

contractions; jittering light input to R1-R6s. Crucially, this noise is minute; for 20 Hz saccadic bursts, 

~1/6,000 of R1-R6 signal power (Figure 2A).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


27 

 

 
Figure 2-figure supplement 3. Strong responses to naturalistic stimulation (NS) carry only about 

half the information of the strongest responses to bursts. (A) The mean (signal; purple) and voltage 

responses (pink) of a R1-R6 photoreceptor to naturalistic light intensity time series. (B) At the light 

source, NS (purple), which is dominated by low-frequency transitions between darker and brighter 

events, had higher power than GWN (grey) or bursty high-contrast stimuli (yellow), but its mean 

contrast (0.58) is between the other two. (C) Signal-to-noise ratio of responses to NS has a similar low-

frequency maximum to responses to bursty 100 Hz stimuli, but lower values at high-frequencies, similar 

to GWN-driven responses (grey). Both of these signaling performance estimates are from the same R1-

R6 in (A). (D) Information transfer rate in photoreceptor output directly depends upon the mean 

stimulus contrast. Photoreceptors encode more information during naturalistic stimulation than during 

GWN stimulation (see also: Song & Juusola, 2014). But encoding can further double during high-

contrast bursts, which utilize better the refractory sampling dynamics of 30,000 microvilli, generating 

the largest sampling rate changes. Significance by two-tailed t-test. For more explanation, see 

Appendix 3. 
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Figure 2-Figure supplement 4. Drosophila R1-R6 photoreceptor output information transfer rate 

estimates to bursty stimuli are consistent. Using triple extrapolation method to estimate entropy rate, 

RS, noise entropy rate, RN, and information transfer rate, R, of photoreceptor output to 20 Hz bursts. (A) 

Mean (black) and 30 voltage responses (light gray) of a photoreceptor to a 2-s-long bursty light intensity 

time series. (B), The responses were digitized to 2–20 voltage levels, ν; shown for 20 levels. Entropy, 

HS, and noise entropy HN, are calculated for T-letters-long words, in which each 1-ms-long letter is a 

voltage level, ν, as explained previously (Juusola and de Polavieja, 2003). (C) 1st extrapolation to 

infinite data size. Entropies of the 10 letter words (top) and 5 letter words (bottom) for 5–10 voltage 

levels fitted with linear trends. Thus, HS
T = 10,ν and HS

T = 5,ν (black and blue ■, respectively, for ν = 5–10) 

are obtained from extrapolation of HS
T = 10,ν,size and HS

T = 5,ν,size for size → ∞ (1/size → 0). Here, the 

probability of 5 letter words is similar for 50–100% of data so size corrections in HS
T = 5,ν are minute, 

but for 10 letter words size corrections impact HS
T = 10,ν slightly more. (D) 2nd extrapolation to infinite 

voltage levels. HS
T,v is shown for words of 1–10 letters, each fitted with its linear trend. HS

T (gray ■s for 

T = 5–10) is obtained from the extrapolation of HS
T,v when ν → ∞ (1/ν → 0); HS

T = 5 = blue ■; HS
T = 

10 = black ■. (E) 3rd extrapolation. Entropy rates obtained from extrapolations to infinitely long words. 

The total entropy rate, RS (red ■), is obtained from a linear extrapolation when T → ∞ (1/T → 0). RN 

(red ●) for the same data. Both RS and RN collapse to 0 when the data are inadequate to provide a 

satisfactory extrapolation of HS
T and HN

T for long words and high voltage resolutions. The graph, 

however, shows enough linearly aligned points for good estimations of RS, RN, and R. (F) Effect of the 

number of voltage levels v used in the 2nd extrapolation on R. For v ≥ 8, the first point for the 2nd 

extrapolation is the fifth voltage level. Linear fits (red) and second-order Taylor series (black) give 

similar estimates (<10% difference) when v = 10–20 for these data. (G) Average R estimates obtained 

from linear (red) or second-order Taylor series (black) fits by the triple extrapolation method (Eq. 4) 
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and from Shannon equation (Eq. 1). These estimates for data in (A) are similar. For 20 voltage level 

data (B), the mean Shannon capacity estimate is only ∼2-5% less than the mean estimates for the full 

response waveforms with n = 30 trials or when extrapolated to infinite data (1/n → 0), implying 

consistency in these estimation methods.  
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Figure 5-figure supplement 1. R1-R6 photoreceptors’ response waveforms and frequency range 

of reliable encoding vary cell-to-cell, and this variation does not reflect recording quality. 

Intracellular responses to the same repeated stimuli recorded in vivo from two different R1-R6 

photoreceptors (Cell #18 and Cell #12) in two wild-type Drosophila. (A) 20 Hz light bursts drove both 

cells vigorously, but the output of Cell #18 rose and decayed faster. Both outputs had maximum signal-

to-noise ratios (SNRmax) > 5,000, but because of its faster response dynamics Cell #18 encoded better 

high stimulus frequencies (B-C) for 100 and 500 Hz light bursts, respectively, Cell #12’s output had a 

higher SNRmax but again laged behind Cell #18’s output. The corresponding information transfer rate 

estimates, Routput, for Cell #18 were 787 bits/s (20 Hz bursts), 850 bits/s (100 Hz) and 625 bits/s (500 

Hz) and for Cell #12: 569 bits/s (20 Hz), 711 bits/s (100 Hz) and 503 bits/s (500 Hz).  

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


31 

 

 

 
 

Figure 6-figure supplement 1. Drosophila R1-R6 photoreceptors generate responses with higher 

information transfer rates to saccadic (bursty) naturalist light intensity time series (NS) than to 

corresponding linear or shuffled stimulation. (A) Mean intracellular voltage responses of a R1-R6 

photoreceptor to Naturalistic light intensities that have been modulated by saccadic (blue), linear (red) 

and shuffled (gray) yaw signals. (B) Simulations of biophysically realistic Drosophila R1-R6 

photoreceptor model (Appendix 1) to the same stimuli. (C) Mean information transfer rates of seven 

R1-R6 photoreceptor outputs to the same stimuli and their population means. These information rates 

are further compared to the corresponding model output rates. Note that every photoreceptor sampled 

most information from the NS with saccadic modulation. 
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Figure 7-figure supplement 1. Dark-adapted wild-type and hdcJK910 R1-R6s’ acceptance angles 

differ marginally. The receptive field of each tested cell was estimated as in Appendix 4, Appendix 

figure 15. (A) Dark-adapted wild-type photoreceptors’ receptive fields (above), shown as the mean of 

their Gaussian fits (black), were ~11% wider than those of hdcJK910 photoreceptors (red). Their receptive 

field sizes (below) were quantified by the corresponding half-maximum widths, giving the mean 

acceptance angles: ∆ρwild-type = 9.47 ± 0.36°; ∆ρhdc = 8.44 ± 0.32°; p = 0.0397, two-tailed t-test. (B) Wild-

type and mutant photoreceptors’ peak responses (above), evoked by a sub-saturating 10 ms light flash 

(grey bar) at the center of the receptive field, showed similar dynamics and amplitudes, V0 (below). 

V0wild-type = 28.77 ± 1.19 mV; V0hdc = 28.11 ± 1.03 mV; p = 0.67, two-tailed t-test. This indicates that 

hdcJK910 phototransduction is functionally intact and wild-type-like. See also (Dau et al., 2016). (C) 

Linear correlation between ∆ρ and V0 of dark-adapted wild-type photoreceptors. Adjusted R-squared = 

0.1043. (D) Linear correlation between ∆ρ and V0 of dark-adapted hdcJK910 photoreceptors. Adjusted R-

squared = 0.072. (A-D) nwild-type = 19; nhdc = 18. (A, B) Mean ± SEM; two-tailed t-test. 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


33 

 

 
 

Figure 7-figure supplement 2. Light-adaptation narrows wild-type and hdcJK910 R1-R6s’ receptive 

fields similarly. Comparing wild-type and hdcJK910 photoreceptors, of which receptive fields were 

assessed in both the dark- and light-adapted states. (A) Their dark-adapted and (B) and light-adapted 

∆ρ values were similar. Dark-adapted: ∆ρwild-type = 9.65 ± 1.06°; ∆ρhdc = 8.16 ± 0.62°; p = 0.258, two-

tailed t-test. Light-adapted: ∆ρwild-type = 7.7 ± 0.52°; ∆ρhdc = 6.98 ± 0.46°; p = 0.323, two-tailed t-test. 

(C) Predictably, their receptive fields narrowed during light-adaptation (only wild-type shown). The 

relative changes between the two adaptation states between were statistically similar in wild-type and 

hdcJK910 photoreceptors. Relative changes, calculated as C =
∆ρDark−∆ρLight

∆ρDark
× 100%. Cwild-type = 18.44 ± 

3.5%; Chdc = 13.68 ± 3.37%, p = 0.347, two-tailed t-test. A-C: Mean ± SEM; nwild-type = 6; nhdc = 8 cells.  
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Figure 8-figure supplement 1. Microsaccadic sampling hypothesis predicts realistic voltage 

output to two bright dots crossing a R1-R6’s receptive field in saccadic speeds. (A) Receptive fields 

of four R1-R6 photoreceptors, measured with 25 light point stimulator (Appendix 4). (B) 

Microsaccadic sampling hypothesis predicts that because the rhabdomeres move photomechanically, 

the photoreceptors’ receptive fields move in the opposite direction and narrow transiently (acceptance 

angles, ∆ρ, change from 8.2-9.5o to 3.5-4.5o). (C) The resulting light input for each tested photoreceptor 

was predicted from its measured receptive field in (A) by the microsaccadic sampling hypothesis. (D 

and E) These inputs then drove our biophysically realistic R1-R6 model, predicting the photoreceptor 

voltage output, which was compared to the corresponding real recordings. The simulated R1-R6 output 

closely resembled the recorded R1-R6 output of the same cells to saccadic two dot stimuli. 
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Figure 9-figure supplement 1. Encoding space in time - intracellular R1-R6 recordings to two 

bright dots crossing the receptive field show how their responses convey hyperacute spatial 

information in time. 25 light-point-array positioned at a R1-R6’s receptive field center, generating two 

bright front-to-back moving dots. (A) Characteristic responses of a R1-R6 at 25 oC to the dots, 1.7, 3.4 

or 6.8o apart, travelling 102 o/s in front-to-back direction. (B) Individual outputs resolved the dots, which 

were less than the interommatidial angle (Δφ = 4.5o) apart (yellow box); resolvability given by the 

Raleigh criterion (Figure 7C). Microsaccadic sampling model (Figure 9) predicted a comparable 

resolvability threshold (dotted line). (C) At lower dot velocities (20-50 o/s), corresponding to normal 

gaze fixation speeds in close-loop flight simulator experiments (Appendix 10), each R1-R6 responded 

to the tested hyperacute dot separations (1.7o and 3.4o) even stronger. Notice the small staircase-like 

steps in voltage responses. These represent light from 25 individual light-guide-ends being turned on/off 

in sequence to generate the moving dots, crossing the receptive field slowly (see Appendix 6). (D) At 

20 o/s velocity, neural resolvability to the tested hyperacute dot separations was between 10-20%. (E) 

R1-R6 output to the two dots, having the same separations as above, but now moving at fast saccadic 

velocity (409 o/s). (F) Although, at such a high speed, R1-R6 output could not resolve the hyperacute 

dot separations (1.7o and 3.4o) consistently, the dots were nevertheless clearly detected when at 5.1o 

apart (cyan bar), which is about Δφ. 
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Figure 10-figure supplement 1. Optomotor behavior in a flight simulator system demonstrates 

that Drosophila see hyperacute visual patterns. (A) 22-35 individual optomotor responses (thin grey 

traces) and their mean (think trace) of the same tethered fly to 45o/s clockwise and counterclockwise 

panoramic field rotations (light grey sections), having a full wavelength of 1.16o (left, black) or 14.40o 

(center, blue), or no-bar (right, orange) stimuli. (B) Every tested fly (n = 9) responded to hyperacute 

(<Δφ ~4.5o) bar stimuli (1,16o and 2.88o, red; having 0.58o and 1.44o inter-bar-distances, respectively) 

consistently. (C) Their maximum (peak-to-peak) responses to the hyperacute stimuli and the no-bar and 

coarse-bar controls. (D) The relative response strength to the hyperacute stimuli varied between 30-

80% of the maximum responses to the coarse-bar stimulus. 
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Video 1: Using a Drosophila’s saccadic walk to extrapolate light input to its photoreceptors from 

natural scenes 

A published recording of a fly’s saccadic walk (Geurten et al., 2014) was used to sample light intensity 

values from 360o panoramic images of natural scenes. We collected three types of light stimuli, resulting 

from: (a) saccadic, (b) median (linear) and (c) shuffled velocities of the walk. 

 

Video 2: Drosophila R1-R8s in dissociated ommatidia contract photomechanically 

Wild-type and trp/trpl-mutant R1-R8 photoreceptors contract photomechanically to light flashes. The 

panels show: top, a sideview of ex vivo wild-type R1-R8 photoreceptors of a single dissociated 

ommatidium contracting to 1 ms bright light flash; bottom left, R1-R8 of a trp/trpl null-mutant, which 

express normal phototransduction reactants but lack completely their light-gated ion channels, 

contracting to a similar flash. Notably, trp/trpl photoreceptors cannot generate electrical responses to 

light, with their eyes showing no ERG signal (Appendix 7). Nonetheless, trp/trpl-mutant 

photoreceptors contract photomechanically (but require ~5 min dark-adaptation between flashes to 

restore their contractility). These observations are consistent with the hypothesis of the light-induced 

phosphatidylinositol 4,5-bisphosphate (PIP2) cleaving from the microvillar photoreceptor plasma 

membrane causing the rhabdomere contractions (Hardie & Franze, 2012). Video playback slowed down 

and down-sampled to reveal the contractions, which otherwise would be too fast to see with a naked 

eye. Each video clip is repeated three times with a running timer giving the time course of the 

contractions. Notice that the longitudinal contractions reduce the photoreceptor length. Thus, in an 

intact compound eye, the rhabdomeres would move inwards, away from the lens, likely narrowing their 

receptive fields (see Appendix 7, Appendix figure 39 and Appendix 8, Appendix figure 44). 

 

Video 3: Drosophila R1-R8 photoreceptors contract photomechanically in vivo, moving back-to-

front inside each observed ommatidium 

We utilized the optical cornea-neutralization technique with antidromic deep-red (740 or 785 nm peak) 

illumination to observe deep pseudopupils (photoreceptor rhabdomeres that align with the observer’s 

viewing axis) in the Drosophila eye. High-speed video captures fast rhabdomere movements to bright 

orthodromic blue-green flashes (470 + 535 nm peaks). The panels show: left, R1-R7 photoreceptor 

rhabdomere tips moving rapidly back-to-front and returning slower to each 10 ms flash, delivered 

repeatedly every second; right, the cross-correlated horizontal (blue) and vertical (red) components as 

the time series of this movement. Grey vertical lines indicate each flash. The rhabdomere movement is 

caused by the photomechanical photoreceptor contractions (not by muscle activity). These in vivo 

movements are large, here 1.7 µm from dark-adapted rest-state; causing up to 5 degree transient shift 

in the R1-R6 photoreceptors receptive fields (Appendix 7). Note average diameter of R1-R6 

rhabdomeres is 1.7 µm (Appendix 5). The high-speed video rate was 500 frames/s. Video playback 

slowed down and down-sampled to reveal the contractions, which otherwise would be too fast to see 

with a naked eye. 

 

Video 4: While R1-R8s contract, the lens above is immobile but a cone-cell aperture, connected 

to the rhabdomere tips by adherens junctions, moves half as much as the rhabdomeres 

We used a z-axis micromanipulator to shift and reposition Drosophila in piezo-steps vertically 

underneath the microscope. This allowed the focused image, as projected on the camera, to scan through 

each studied ommatidium, providing exact depth readings in µm. We then recorded any structural 

movements inside the ommatidia to light flashes at different depths; from the corneal lens down to the 

narrow base, where the cone and pigment cells form an intersection between the crystalline cone and 

the rhabdomere. The left panels show: up, ommatidium lens; middle, basal cone/pigment cell layer; 

down, R1-R7 photoreceptor rhabdomeres tips during and after flash stimulation. The right panels show 

the cross-correlation time series of these high-speed videos: up, the corneal lens and the upper 

ommatidium structures were essentially immobile), and normally remained so throughout the 

recordings; Middle, cone cells that connect to the rhabdomere tips with adherens junctions (Tepass & 

Harris, 2007) showed clear light-induced movements; down, R1-R7 rhabdomeres moved half as much 

as the cone cells above. The high-speed video rate was 500 frames/s. Video playback slowed down and 

down-sampled to reveal the contractions, which otherwise would be too fast to see with a naked eye. 
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Appendix 1: ‘Stochastic adaptive visual information sampling’-theory in brief 

 

Overview 

This appendix describes the basic theoretical principles of how fly photoreceptors sample photons, 

providing central background information for the results presented in the main paper. 

 

Stochastic adaptive sampling of information by R1-R6 photoreceptors 

Many lines of evidence imply that in a Drosophila R1-R6 photoreceptor 30,000 individual refractory 

sampling units (microvilli) integrate exponential photon flux changes (~106-fold) from the environment 

into macroscopic voltage responses of biophysically limited amplitude range (~60 mV) and bandwidth 

(~200 Hz) (Juusola & Hardie, 2001a; Song et al., 2012; Song & Juusola, 2014; Hardie & Juusola, 2015). 

In essence, a light-adapted R1-R6 counts photons imperfectly, which, nonetheless, adds up highly 

reproducible neural representations of light changes within its receptive field (Juusola et al., 2015). 

In this study, we quantify such quantal information processing through large-scale experimental 

and theoretical analyses. Our overriding aim is to analyze R1-R6s’ diurnal encoding range 

systematically; from light bursts to Gaussian white-noise stimulation to point-objects moving across 

their receptive fields at saccadic speeds. Because of the outstanding stability and signal-to-noise ratio 

of the intracellular recordings from in vivo R1-R6s (Juusola & Hardie, 2001a; Zheng et al., 2006; Song 

& Juusola, 2014; Juusola et al., 2016), providing apparent ergodicity, we can directly compare their 

voltage responses to those of biophysically realistic R1-R6 model simulations (Song et al., 2012; Song 

& Juusola, 2014; Juusola et al., 2015; Song et al., 2016), in which stochastically operating microvilli 

sampled similar stimuli (Appendix figure 1). The mechanistic knowledge so obtained about the 

dynamics and limitations of quantal visual information processing provides us with deep new 

understanding of how well Drosophila, and other insect eyes, can see the world. 

 
Appendix figure 1. Schematic of the 

biophysically realistic Drosophila R1-R6 

model, which mimics phototransduction 

by transducing light input (a dynamic 

flux of photons) into macroscopic 

output, light-induced current (LIC). The 

model is modular, containing four parts, 

three of which are shown here. 

Phototransduction occurs within a 

photoreceptor’s light-sensitive part, the 

rhabdomere, which contains 30,000 photon 

sampling units, microvilli (blue bristles). 

Each microvillus contains a full 

phototransduction cascade reactions, and 

can transduce single photon energies 

(green dots) into unitary responses, 

quantum bumps (QB or samples) of 

variable amplitudes. (A) In the 1st module, 

30,000 microvilli sample incoming 

photons. The light input, as photons/s, is 

randomly distributed over them (each row 

of open circles indicate photons being 

absorbed by a single microvillus). (B) In 

the 2nd module, the successfully absorbed 

photons in each microvillus are transduced 

into QBs (a row of unitary events). In each 

microvillus, the success of transducing a photon into a QB depends upon the refractoriness of its 

phototransduction reactions. This means that a microvillus cannot respond to the next photons until its 

phototransduction reactions have recovered from the previous photon absorption, which takes about 50-300 

ms. The photons hitting a refractory microvillus cannot evoke QBs, but will be lost. (C) In the 3rd module, QBs 

from all the microvilli then integrate the dynamic macroscopic LIC. Conversely, the light input (green trace) 

can be reconstructed by adding up all the photons distributed across the 30,000 microvilli.  

Main framework 
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We used our previously published biophysical Drosophila R1-R6 model (Song et al., 2012; Song & 

Juusola, 2014; Juusola et al., 2015; Song et al., 2016) to simulate voltage responses to time series of 

light intensities. The Matlab scripts for this model are downloadable from the repository: 

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/BiophysicalPhotoreceptor

Model. The model contains four modules (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015; 

Song et al., 2016):  

 Random Photon Absorption Model: regulates photon hits (absorptions) in each microvillus, 

following Poisson statistics (Song et al., 2016) (Appendix figure 1A). 

 Stochastic Bump Model: stochastic biochemical reactions inside a microvillus capture and 

transduce the energy of photons to variable quantum bumps or failures (Appendix figure 1B). 

Here, Gillespie algorithm provides discrete and stochastic phototransduction cascade 

simulations with few reactants as every reaction is explicitly simulated. 

 Summation Model: bumps from 30,000 microvilli integrate to the macroscopic light-induced 

current (LIC) response (Appendix figure 1C). 

 Hodgkin-Huxley (HH) Model of the photoreceptor plasma membrane (Niven et al., 2003; 

Vähäsöyrinki et al., 2006): transduces LIC into a voltage response (Appendix figure 2). 

 
Appendix figure 2. Drosophila R1-R6 

photoreceptor membrane’s electrical circuit 

(HH-model). A photoreceptor’s membrane 

potential, Vm, is the difference between the negative 

inside (intracellular) and positive outside 

(extracellular) voltages. Vm can be calculated, using 

Hodgkin-Huxley formalism, whereupon, a 

photoreceptor membrane is modelled as a capacitor, 

Cm, voltage-gated channels as voltage-regulated 

conductances, g, leak channels as fixed 

conductances, reversal potentials for different ion 

species as DC-batteries. Abbreviations: Iksh: Shaker; 

Idr, delayed rectifier; Inovel, novel K+; Kleak: K+ leak; 

Icl, chloride leak currents. The used deterministic 

Drosophila photoreceptor HH-model is adapted 

from (Niven et al., 2003; Vähäsöyrinki et al., 2006). 

 

 

The formalism, assumptions and many tests of the biophysical photoreceptor model, which has 

no free parameters, are given in our previous publications (Song et al., 2012; Song & Juusola, 2014; 

Juusola et al., 2015). All its parameter values can be found and downloaded from: 

http://www.sciencedirect.com/science/article/pii/S0960982212006343 

 

Stochastic quantal models supersede empirical black-box approaches  

Stochastic photon sampling fly photoreceptor model: 

 Has no free parameters 

 Is general - predicts realistic responses to any light stimulus pattern 

 Is transferable - predicts realistic responses of different fly photoreceptors 

 Provides deep mechanistic understanding to light information sampling 

We have shown before that this quantal stochastic modeling approach is general and transferable, and 

therefore directly applicable to quantify photoreceptor functions in different light conditions and fly 

species (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015). Importantly, it does not require 

full knowledge of all molecular players and dynamics in the phototransduction to generate realistic 

responses (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015). From a computational 

viewpoint, the exactness of the simulated molecular interactions is not critical. As long as the 

photoreceptor model contains the right number of microvilli (e.g. 30,000 in a Drosophila and 90,000 in 

a Calliphora R1-R6 photoreceptor), each of which is a semiautonomous photon sampling unit, and the 
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dynamics of their photon-triggered unitary responses (quantum bumps [QBs] or samples) approximate 

those in the real recordings, it will sample and process information much like a real photoreceptor. 

Conversely, this further means that by knowing the number of microvilli and their average QB 

waveform, latency distribution, and refractory period distributions, we can closely predict a fly 

photoreceptor’s macroscopic response to any given light intensity time series stimulus (cf. Figures 3-

4). The same model can then be applied to estimate how well the real photoreceptor output resolves 

moving objects (see Figures 8G-I and 9; Appendix 8 gives the details of this approach). 

 

Deterministic empirical fly photoreceptor models: 

 Fit parameters to specific stimulus sets 

 predict less accurately responses to new stimuli of different input statistics (to which the models 

have not been tuned to before) 

 Cannot provide deep mechanistic understanding of how photoreceptors sample light 

information  

In the conventional empirical “black-box” approaches, the photoreceptor models’ filters, such as linear 

and nonlinear kernels, and static nonlinearities are adjusted to minimize the difference between the 

recorded responses and the model output to a specific stimulus set (light condition) (French et al., 1993; 

Juusola et al., 1995b; Juusola & French, 1997; Friederich et al., 2009). However, because such models 

are not built upon the real cells’ physical quantal information sampling constraints, which change from 

one stimulus statistics to another (Song & Juusola, 2014), they struggle to respond accurately to new 

stimulus statistics. Explicitly, the models lack intrinsic structural information of how quantum bump 

dynamics and microvilli refractoriness must differ during different stimuli. For example, Volterra 

(French et al., 1993) kernels estimated for Gaussian white-noise stimulation will predict less accurately 

responses to bursty light inputs. This is because during bursty light stimulation the fly photoreceptors’ 

quantal information sampling dynamics rapidly adapt to a different regime, where their microvilli 

(sampling units) are less refractory. Hence, the real photoreceptors now integrate macroscopic 

responses from larger sample (QB) rate changes of enhanced rise and decay dynamics. To appropriately 

approximate these new dynamics, the empirical models would need to generate new kernels of different 

temporal profiles, which is impossible without retuning the model parameters. Accordingly, without 

the biophysical knowledge being implemented in their mathematical structure, the classic dynamic 

photoreceptor models fail to predict how well the real photoreceptors resolve moving objects (see 

Figure 7, Appendix 6 and Appendix 8).  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


44 

 

Appendix 2: Information maximization by photomechanical adaptations and connectivity 

 

Overview 

This appendix describes how the ‘stochastic adaptive visual information sampling’-theory (Appendix 

1) predicts and explains the roles of R1-R6 photoreceptors’ photomechanical adaptations and network 

connections in information maximization at different stimulus conditions, as shown in Figures 1-4. 

 

In this appendix: 

 We test the hypotheses that photomechanical adaptations (intracellular pupil and rhabdomere 

contractions; see Appendix 7) and network connections in the Drosophila eye contribute 

importantly to optimizing the capture and representation of visual information. 

 We first estimate through simulations how a R1-R6 photoreceptor’s intracellular pupil and 

rhabdomere contractions are jointly optimized for maximal information sampling by its 30,000 

microvilli. The simulations predict that these mechanisms’ optimal combined photon 

throughput in bright conditions (to be absorbed by an average R1-R6 photoreceptor) should be 

different for different stimuli.  

 We then compare the model predictions to corresponding intracellular recordings and find a 

comprehensive agreement between the theory and mean experiments for all the tested stimuli.  

 This striking correspondence enables us to further estimate how the lamina network shapes 

information transfer of individual R1-R6 photoreceptors.  

 Remarkably, our data and analyses strongly suggest that voltage output is different in each R1-

R6, which are brought together in neural superposition during development to sample light 

changes from a small local visual area.  

 These results are consistent with the hypothesis that the variability in the retinal sampling 

matrix dynamics and topology minimizes aliasing and noise, enabling its parallel processing to 

generate reliable and maximally informative neural estimates of the variable world (Barlow, 

1961; Yellott, 1982; Song & Juusola, 2014; Juusola et al., 2015).  

 Finally, we explain how to calculate a photoreceptor’s encoding efficiency for different light 

stimuli, highlighting the assumptions and limits of this method.  

 

Fly photoreceptors’ pupil mechanism 

In a fly photoreceptor, intracellular screening pigments form its pupil mechanism (Appendix figure 3). 

The pupil protects a photoreceptor’s sampling units (30,000 microvilli in a Drosophila R1-R6) from 

saturation (Howard et al., 1987; Song & Juusola, 2014). At bright light exposure, screening pigments 

migrate to narrow the aperture they form collectively (Franceschini & Kirschfeld, 1971b), shielding off 

excess light from reaching the microvilli. This is important because midday sunshine on a photoreceptor 

may contain 106-8 photons/s, and without the pupil mechanism would deteriorate the encoding function 

of its finite microvillus population (Howard et al., 1987; Song & Juusola, 2014). The pupil opening and 

closing seem modulated by light-driven intracellular Ca2+-concentration changes (Hofstee & Stavenga, 

1996), and show reasonably fast dynamics (from fully open to fully closed within 15 s) (Franceschini 

& Kirschfeld, 1976) for adapting its light throughput to ambient changes. Although our biophysical 

(stochastically operating) Drosophila photoreceptor model (Song et al., 2012; Juusola et al., 2015) lacks 

the pupil mechanism and any other photomechanical adaptations (cf. Appendix 7), their joint effects 

can be predicted through simulations; by assuming that their objective function is to maximize the 

photoreceptor’s information capture. 
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Appendix figure 3. 

Compound eye and 

photoreceptors’ intracellular 

pupil mechanism. (A) 

Drosophila eyes are composed 

of about 800 modular units, 

ommmadia. (B) Each 

ommatidium contains a lens 

system and underneath it 8 

photoreceptor cells: the outer 

receptors, R1-R6, and the inner 

receptors, R7/R8. In the 

electron micrograph, which 

numbers each cell’s rhabdomere 

(light sensitive part), R8 is not 

shown because it lies directly 

below R7. (C) Schematic of the 

intracellular pupil mechanism. 

Left: During dark-adaptation, 

screening pigments (small dots) are scattered in the R1-R7 somata. Middle: R1-R6 light-adapted. Blue-green 

bright light drives the screening pigment migration towards the R1-R6 rhabdomeres (central discs, containing 

30,000 microvilli, photon sampling units, depicted as stripes in the discs), which express blue-green-sensitive 

Rh1-rhodopsin, as their phototransduction rises intracellular Ca2+-concentration. With the pupil closing (seen 

as the dark rims around the rhabdomeres), light input to the microvilli reduces. Note that R7, which expresses 

UV-rhodopsin, is not light-adapted and its screening pigments remain scattered. Right: All photoreceptors 

light-adapted. Bright UV-light closes all pupils because R7s express UV-sensitive Rh3- and Rh4-rhodopsins, 

and in R1-R6s’ Rh1-rhodopsin is electrochemically coupled to UV-sensitive sensitizing pigment. Redrawn and 

modified from (Franceschini & Kirschfeld, 1976; Elyada et al., 2009). 

 

Photomechanical light-screening hypothesis 

We hypothesize that the intracellular pupil, besides affecting a photoreceptor’s angular and spectral 

sensitivity (Stavenga, 2004a) (see Appendix 4), participates in maximizing a photoreceptor’s 

information sampling by optimizing light input intensity to its microvilli in time. Specifically in this 

context, it works together with all other photomechanical adaptations within an ommatidium, including 

the much faster light-induced rhabdomere contractions (Videos 2-4), in protecting the microvilli from 

saturation. Thus, collectively, we consider the photomechanical adaptations (Appendix figure 4) as a 

biological manifestation of a mathematical information maximization function. 

 
Appendix figure 4. Different temporal 

ranges of a Drosophila R1-R6 

photoreceptor’s intrinsic light adaptation 

mechanisms. Photomechanical adaptations, 

such as light-induced intracellular screening 

pigment migration (pupil mechanism, black; 

see Appendix figure 3) and rhabdomere 

contractions (red; see Appendix 7), operate 

with refractory photon sampling by 30,000 

microvilli (blue) and their quantum bump 

dynamics (sample duration and jitter, green; 

see Appendix 1) in modulating light input to 

a photoreceptor, and consequently its voltage output. Together these mechanisms, which work to eliminate 

excess photons, enable efficient encoding of behaviorally important visual information at daylight conditions 

(Figures 1-2) by covering a broad range of temporal light changes; with the pupil and rhabdomere contractions 

being slower than the photon sampling dynamics. 

 

To function optimally, the photomechanical adaptations need to regulate input from the ambient 

illumination so that the temporal light changes they let through would cause maximal sample (quantum 

bump) rate changes (Song & Juusola, 2014). The higher the photoreceptor’s sample rate changes, the 

higher its rate of information transfer (Song & Juusola, 2014). Too bright light would saturate microvilli 
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because most of them would be rendered refractory, reducing their dynamic sample counts. Conversely, 

too dim light would not utilize microvilli population fully, producing low (suboptimal) sample counts. 

Therefore, the optimal light intensity throughput for maximum information capture is somewhere 

between. This value is expected to depend upon five factors: 

 Light intensity time series structure (we consider all the 20 light patterns tested in Figure 1B) 

 Number of microvilli (~30,000 in a R1-R6 Drosophila photoreceptor) 

 Refractory period distribution of the microvilli (full range: 50-500 ms in a R1-R6 Drosophila 

photoreceptor) 

 Quantum bump waveform (sample duration) 

 Quantum bump latency distribution (“sample jitter”) 

Detailed tests and descriptions of why and how these factors contribute to encoding in fly 

photoreceptors are given in our previous publications (Juusola et al., 1994; Henderson et al., 2000; 

Juusola & Hardie, 2001b, a; Juusola & de Polavieja, 2003; Song et al., 2012; Song & Juusola, 2014; 

Juusola et al., 2015). 

 

Hypothesis testing and verification 

To test the photomechanical light-screening hypothesis, we simulated voltage responses to 20 different 

light patterns (Figure 1B) at 15 different light intensity (or brightness) levels, which ranged from 5 x 

104 to 1 x 106 photons/s (5, 6, …, 9 x104; 1, 2, ..., 9 x105; 1 x 106). In each simulation, the stochastic 

photoreceptor model generated 20 independent responses to the given 2-seconds-long (2,000 points) 

light pattern of a given intensity, following the published procedures (Song & Juusola, 2014). These 20 

responses were used to estimate the model’s rate of information transfer for that specific stimulus 

pattern (1/20) at that specific light level (1/15). So all together, we could have simulated 20 repeated 

photoreceptor outputs to 300 (20 x 15) different 2,000-points-long stimulus patterns. But because the 

model’s maximum information transfer rate estimates turned out to be relatively straightforward to 

determine for many light patterns (cf. Appendix figure 5), the total number of simulations never 

reached this limit. Nevertheless, being computationally expensive, the stochastic simulations took 

months to complete. 

Crucially, in all the simulations, the photoreceptor model was exactly the same. Its stochastic 

bump production dynamics (waveform, latency and refractory distributions) were governed by light-

adapted values with every single parameter fixed, and these parameter values were unchanged in each 

simulation. The supplement of the reference (Song et al., 2012) lists these parameter values, which were 

collected from intracellular experiments or logically extrapolated to be biophysically realistic for light-

adapted Drosophila photoreceptors. This supplement is downloadable from: 

http://www.sciencedirect.com/science/article/pii/S0960982212006343 

Figure 3B shows the simulated voltage responses (traces above) that carried the maximum 

information transfer rates for the 20 tested light patterns (traces below) and the corresponding intensity 

levels (as effective photons/s) that evoked them. The simulations match the overall size, appearance 

and dynamics of the real recordings astonishingly well (Figure 1B and Figure 1-figure supplement 

1B), indicating that the photoreceptor model, with its photomechanics optimizing light input intensity, 

samples and integrates light information much like its real-life counterparts. Notice that the optimal 

light intensity is the same for the different bandwidth (20, 50, 100, 200 and 500 Hz) stimuli within one 

BG. But for each BG (BG0, BG0.5, BG1 and BG1.5) this optimum is different. For example, for BG0, 

which results in bursty (high-contrast) stimulation, the optimal light intensity level is ~8 x 105 photons/s. 

Whereas for BG1.5 of low contrast Gaussian white-noise stimulation, this is 10-times lower (~8 x 104 

photons/s).  

We express these intensity levels in units of effective photons/s. This is because, theoretically, 

we have deduced the mean photon throughput that effectively fluxes into microvilli for a Drosophila 

photoreceptor to sample the best estimates of the given light stimuli. In other words, if the 

photomechanical screening mechanisms set the light input intensity for maximal information capture, 

as is our hypothesis, then these light intensity values should also closely approximate the actual photon 

absorption changes that drive phototransduction in the real experiments (as recorded intracellularly 

from wild-type R1-R6 photoreceptors, which have the normal pupil mechanism and photomechanical 

rhabdomere contractility; Figures 1 and Figure 1-figure supplement 1B). Note that as the preceding 
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photomechanical light screening mechanisms eliminate photons, a photoreceptor’s photon absorption 

rates will always be considerably lower than the photon emission rates from the light source. 

Because of the remarkable dynamic correspondence between the experiments (Figures 1-2) 

and the theory (Figures 3-4) over the whole tested encoding space, we now judge that this hypothesis 

must be largely true. Importantly, this realization opens up new ways to analyze photoreceptor function. 

For example, by making the general assumption that the input - photon absorptions (and light emission 

from our LED light source) - follows Poisson statistics, we could further estimate the lower information 

transfer rate bound for each tested light intensity pattern (as absorbed by an average R1-R6 

photoreceptor), and consequently the upper bound for the Drosophila photoreceptor’s encoding 

efficiency (e.g. Figure 2D, Figure 2-figure supplement 1D and Figure 4D). More details about this 

assumption and the analysis are given at the end of this appendix (Appendix 2). 

 

New insight into maximal visual encoding of different stimulus statistics 

The reasons why and how the optimal light intensity input (that drives a photoreceptor’s information 

transfer maximally) is different for bursts and Gaussian white-noise stimulation are summarized in 

Appendix figure 5. Here we assess both cases using data from the stochastic Drosophila R1-R6 

photoreceptor model simulations, starting with light bursts. 

 

Bursts (Appendix figure 5A-D). These light intensity time series characteristically contain periods of 

longer dark contrasts, intertwined with brief and bright contrast events, as shown for 100 Hz bandwidth 

stimulation (Appendix figure 5A, dark-yellow trace). Based on our previous analyses (Song & Juusola, 

2014), longer dark contrasts help to recover more refractory microvilli than equally-bright stimuli 

without these features, improving neural information capture. This makes it more difficult for bursty 

stimuli to saturate the photoreceptor output. By increasing the stimulus intensity 8-fold, here from 1 x 

105 to 8 x 105 effective photons/s, simply evoked larger macroscopic responses. These, thus, integrated 

more samples (bumps); as indicated by the larger (black) and smaller (blue) trace, respectively. 

Because noise changes little in light-adapted photoreceptor output (Juusola et al., 1994; Juusola 

& Hardie, 2001b, a; Song et al., 2012; Song & Juusola, 2014) (Figure 2-figure supplement 2), the 

larger responses to brighter bursts have higher and broader signal-to-noise ratio, SNRoutput(f), (Appendix 

figure 5B). This, in turn, results in higher information transfer rate estimates, Routput (Appendix figure 

5C), following Shannon’s equation (Shannon, 1948): 

 

𝑅𝑜𝑢𝑡𝑝𝑢𝑡 = ∫ (log2[𝑆𝑁𝑅𝑜𝑢𝑡𝑝𝑢𝑡(𝑓) + 1])𝑑𝑓
∞

0
   (A2.1) 

 

Note that with 1 kHz sampling rate used in every experiment, this estimation did not integrate 

information rate for frequencies from 0 to infinite, but from 2 to 500 Hz instead. However, the limited 

bandwidth would not considerably affect estimation results because: (i) high-frequency components 

have SNR << 1 and therefore contain mostly noise. (ii) Whereas even a high SNRoutput(f) contains little 

information in its low-frequency components, below 2 Hz. Note also that we have previously shown 

the generality of Shannon’s information theory for estimating information transfer rates of continuous 

(analogue) repetitive responses, irrespective of their statistical structure (Juusola & de Polavieja, 2003; 

Song & Juusola, 2014). That is, for sufficient amount of data, Shannon’s equation and triple 

extrapolation method, which is free of signal and noise additivity and Gaussian distribution 

assumptions, give comparable rate estimates. Thus, these estimates should evaluate the simulations’ 

relative information rate differences truthfully; i.e. consistently with only small errors. 

Markedly, a photoreceptor’s performance is systematically better to the brighter bursts (black 

line) than to the less bright ones (blue line), irrespective of their bandwidth (Appendix figure 5C). 

Thus, for the brighter bursts, more microvilli are dynamically activated, generating larger sample rate 

changes. These bumps sum up larger (and more accentuated – see (Song & Juusola, 2014)) macroscopic 

responses, packing in more information than the corresponding responses to the less bright bursts. 
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Appendix figure 5. Estimating optimal light 

intensity for 100 Hz high-contrast bursts 

and Gaussian white-noise (GWN) stimuli 

for a R1-R6 photoreceptor’s maximal 

information transfer. We hypothesize that 

the role of photomechanical adaptations, 

which include the intracellular pupil and 

contracting rhabdomere (Appendix 7) of a 

photoreceptor, is to maximize information 

capture of microvilli by dynamically adjusting 

the light input falling upon them. The left side 

of the figure shows how encoding of light 

bursts (A-D) depends upon light intensity; the 

right side shows the same for GWN (E-H). (A) 

Owing to sufficient dark periods, a 

photoreceptor’s sampling units (microvilli) 

have enough time to recover from their 

refractoriness even after they have responded 

to very bright bursts. This enables a 

photoreceptor to maintain a large pool of 

available microvilli to sum up high sample 

(bump) rate changes to any new incoming 

input, generating larger macroscopic 

responses to the brighter bursts (8 x 105 

photons/s, black) than to the less bright bursts 

(105 photons/s, blue). (B) Macroscopic 

responses with larger sample rate changes 

(black trace, grey area) have higher and 

broader signal-to-noise ratios (Song & 

Juusola, 2014). (C) Correspondingly, as the 

sample sizes (bumps) are similar to both 

stimuli (cf. Figure 2-figure supplement 2B), the larger responses carry a higher information transfer rate (Song 

& Juusola, 2014), irrespective of the tested stimulus bandwidth. (D) Therefore, a photoreceptor’s information 

transfer rate to bursty inputs increases with light intensity, until the sample rate changes eventually saturate at 

8 x 105 photons/s; when most of 30,000 microvilli become refractory (i.e. more microvilli are refractory than 

available to be light-activated). (E) A R1-R6 generates similar size responses to the brighter (8 x 105 photons/s, 

black) and the less bright (105 photons/s, blue) GWN inputs. But the response to the less bright input shows 

more high-frequency modulation. (F) Consequently, the response to the less bright input (blue area) has higher 

and broader signal-to-noise ratio than the response to the brighter input (grey area). (G) This is reflected also 

in the photoreceptor’s information transfer rate, regardless of the GWN bandwidth. (H) Information transfer 

rate in macroscopic photoreceptor output to GWN stimulation saturates at 8-times less bright intensity levels 

than to bursts (D), reaching its maximum at  105 photons/s. 

 

However, because a Drosophila photoreceptor has a finite amount of microvilli, each of which 

- once activated by a photon’s energy - stays briefly refractory, its sample rate changes and thus 

signaling performance first increases monotonically until about 6 x 105 photons/s, before gradually 

saturating, and eventually decreasing, with increasing burst brightness (Appendix figure 5D). The 

photoreceptor model’s maximum information transfer rate estimate (Rmax = 631 ± 31 bits/s; marked by 

a square) for 100 Hz bright bursts is reached at the optimal stimulus intensity of 8 x 105 effective 

photons/s. In other words, this is the amount light the photomechanical adaptations, including the 

intracellular pupil mechanism and rhabdomere contractions (see Appendix 7), should let through (to 

be absorbed) in bright daylight for the fly to see bursty real-world events best. The corresponding 

performance estimate with the less bright bursts (105 effective photons/s) is 493 ± 12 bits/s (circle). 

 

Gaussian white noise (GWN, Appendix figure 5E-H). Because GWN lacks long dark contrasts, 

refractory microvilli have fewer chances to recover (Song & Juusola, 2014). Consequently, 

photoreceptor output to GWN begins to show signs of saturation at lower light intensity levels. 

Appendix figure 5E shows responses to 100 Hz bandwidth GWN with the mean intensity of 1 x 105 
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(blue) or 8 x 105 (black) effective photons/s, respectively. Both responses are about the same size, but 

the one to the brighter stimulation carries less high-frequency modulation. As more microvilli become 

refractory, smaller sample rate changes (modulation) map light changes into macroscopic responses. 

(How refractoriness dynamically modulates bump counts and macroscopic response waveforms was 

analyzed in detail recently (Song & Juusola, 2014), and thus is not repeated here). Hence, the response 

to the brighter GWN (black/grey) has lower and narrower signal-to-noise ratio (Appendix figure 5F) 

over the frequency range than the responses to the 8-times less bright GWN (blue). Naturally, the same 

holds true for the photoreceptor’s information transfer rate estimates (Appendix figure 5G); the less 

bright GWN gives consistently a better performance (blue), irrespective of the used stimulus bandwidth. 

Again, the amount of microvilli and their refractoriness curb a photoreceptor’s signaling 

performance. But to minimize their impact on encoding GWN, the photomechanical screening needs to 

be more restrictive, letting in less light. With brightening 100 Hz GWN (Appendix figure 5H), the 

model’s information transfer rate first steeply increases until its peak (Rmax = 369 ± 15 bits/s; marked 

by a circle) at 105 photons/s, and then swiftly declines as progressively more microvilli become 

refractory and fewer samples are being produced. The corresponding transfer rate estimate for 8 x 105 

photons/s GWN is 249 ± 17 bits/s (square). Notice, however, that although these results quantify the 

optimal photon absorption rate for generating maximally informative responses to GWN, such 

performance is far from the models’ estimated information capacity of 631 bits/s (cf. Appendix figure 

5D and Figure 4C). 

 

Simulations’ maximal information transfer largely match those of recordings 

We next compare the maximum information transfer rate estimates (squares) of the model simulations 

to those of corresponding in vivo recordings (circles) for all BG0 (bursts) and BG1 (GWN) stimuli 

(Appendix figure 6A). The simulated performance is very close to the measured mean performance 

for all the tested stimuli, typically falling within the standard deviation of the recordings’ information 

transfer. 

 In further inspection, two interesting observations can be drawn from this data. First, for the 

GWN stimuli, irrespective of their bandwidth, the maximum information transfer rate estimates of the 

model (dotted line) are just a few bits/s (1-10%) higher than the corresponding mean estimates of the 

real recordings (continuous line). These small differences are probably caused by recording noise. 

Second, the simulations to bursty stimuli carry less information than the corresponding best recordings, 

and the recordings show variations in their information transfer. 

 
Appendix figure 6. Information transfer rate 

estimates, Routput, of in vivo recordings and model 

simulations show similar encoding dynamics. 

(A) Comparison of corresponding information 

transfer rates of R1-R6 recordings  and stochastic 

model simulations to light bursts and Gaussian 

white noise (GWN) stimuli of different bandwidths. 

The recorded and simulated information transfer 

estimates correspond closely over the whole tested 

encoding space (cf. Figure 2-figure supplement 1 

and Figure 4). (B) Their differences to light bursts 

help to identify extra information in the recordings, 

which likely comes from the lamina network 

(through gap-junctions (Wardill et al., 2012) and 

feedback synapses (Zheng et al., 2006)) to 

individual photoreceptors. The clear variability 

between different recordings from individual cells (continuous thin lines) indicates that some R1-R6s may 

receive up to 200-250 bits/s of information from the network, whereas others receive less (cyan background). 

Some recordings likely contained more instrumental/experimental noise (pink background), which could 

render their information transfer rates (in particular to low-frequency bursts) less than that of the model; some 

of this noise likely comes from low-frequency eye and photoreceptor movements (cf. Figure 2-figure 

supplement 2). Thick line and error bars give the average information transfer rate difference between the 

recordings and the model (~0-50 bits/s). The data implies that the extra network information to R1-R6s in vivo 

is mostly at high burst frequencies (100-500 Hz). 
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Each R1-R6 receives different amounts of information from the network 

In Appendix figure 6B, the difference in information rate estimates between the corresponding 

recordings and simulations to the bursty stimuli is plotted for each complete recording series (thin lines) 

of individual cells. The thick line gives the mean difference to all these cells’ performance. Most 

noticeably, some photoreceptor cells carry ~100-200 bits/s more information from the bursty stimuli, 

but many other cells also show information rates that surpass the model’s performance (see also Figure 

5). Any information surplus (cyan background) presumably comes from the lamina network (Zheng et 

al., 2006; Wardill et al., 2012); through gap-junctions and feedback synapses from the cells that sample 

information from the same small visual area (due to neural superposition (Vigier, 1907b, a; Agi et al., 

2014)). The photoreceptor model lacks this network information. 

 
Appendix figure 7. Synaptic 

connectivity between neurons within 

a lamina cartridge. Synapse numbers 

color-coded as indicated by the column 

on the right. Large monopolar cells, L1-

L5; amacrine cell, Am; C2 and C3 are 

retinotopic centrifugal fibers from the 

next synaptic processing layer, 

medulla. Image from (Rivera-Alba et 

al., 2011) 

 

 

In fact, each of the six R1-R6s, which pool their inputs in the same lamina cartridge for feed-

forward synaptic transmission, should show different information transfer rates. This is because the 

lamina connections are asymmetric (Appendix figure 7). Electron micrographs have shown that R1, 

R2, R3, R4, R5 and R6 make different amounts of feedback synapses with the lamina interneurons 

(Meinertzhagen & Oneil, 1991; Rivera-Alba et al., 2011). Most feedbacks are provided by neurons 

belonging to the L2/L4 circuits (Meinertzhagen & Oneil, 1991; Rivera-Alba et al., 2011). Whilst same-

cartridge connections are selectively from L2 to R1 and R2 and from L4 to R5, all R1-R6s receive 

feedback signals from L4 of neighboring cartridges. There are further connections from Am to R1, R2, 

R4 and R5, and glia are also synaptically connected to the network (Meinertzhagen & Oneil, 1991; 

Rivera-Alba et al., 2011), but only R6 makes direct gap-junctions (Shaw et al., 1989) with R7 or R8. 

These asymmetric functional connections (Zheng et al., 2006) may largely explain the variability in 

photoreceptor output (Figure 1-figure supplement 1) and information rates (Figure 2-figure 

supplement 1C). 

Our recent work (Wardill et al., 2012) further showed that during naturalistic stimulation R6 

can receive up to ~200 bits/s of information from R8, as channeled through gap-junctions between these 

cells. Therefore, we infer here that the recordings with the highest information transfer rates (~850 

bits/s) were probably of R6-type, which directly receive extra information from its R8y and R7y 

neighbors (Shaw, 1984; Shaw et al., 1989; Wardill et al., 2012) (Appendix figure 8). Conversely, the 

recordings, in which information rates were lower than those of the simulations (Appendix figure 6B, 

pink background), carried presumably more recording/experimental noise, with one potential source 

being minute retinal movements (see Appendixes 4, 6-9). 

Our intracellular recordings establish that during bright light stimulation, the voltage output of 

an individual photoreceptor is highly repeatable (cf. Figure 1). Consequently, our recording system 

could be used to study variability among individual R1-R6 photoreceptors of the fly eye. We discovered 

that for the same stimuli the characteristic output waveforms and frequency distributions of one 

particular cell are typically different to those of another photoreceptor (Figure 5-figure supplement 
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1), even when recorded from the neighboring cells in the very same eye (by the same microelectrode). 

Because the signal-to-noise ratios of the recordings were very high (Figure 2), sometimes over 6,000, 

it was evident that the observed cell-to-cell variability had little to do with the quality of the recordings. 

Hence, in the Drosophila retina, R1-R6s show intercellular variability that is far greater than the 

observed small intracellular variability. 

 
Appendix figure 8. Gap-junction 

spread information. Because of 

axonal gap-junctions between R6 and 

R7/R8 photoreceptors in the lamina 

(Shaw, 1984; Shaw et al., 1989), R1-

R6s that have been genetically 

engineered to express UV-sensitive 

Rh3-rhodopsin (‘UV-flies’) can still 

respond to green light by different 

degrees (Wardill et al., 2012). This 

flow of extra “color”- information can 

be readily identified in intracellular 

responses of different R1-R6 

photoreceptors in the same ‘UV-fly’ to 

very bright UV (385 nm) and green-

yellow (505 nm) flashes. (A) First cell 

responded to UV but not to green. (B) Next cell (likely R6 in the same or neighboring neuro-ommatidium) 

responded to both UV and green. This cell cannot be R7y/p, which are less green-sensitive, or R8y/p, which 

are less UV-sensitive. Inset highlights a hypothetical recording path, somewhere close to the retina/lamina 

border (red arrow), and gap-junctions (black arrows) between photoreceptor axons. Histaminergic L1 and L2 

cells receive visual information from R1-R6 photoreceptors’ output synapses in the same neuro-ommatidium. 

(C) Another cell responded to UV and weakly to green-yellow. Modified from (Wardill et al., 2012). 

 

Collectively, these results strongly suggest that every R1-R6, which is pooled in one lamina 

cartridge under the developmental neural superposition principle (Agi et al., 2014) to transmit 

information about light changes in a small area of visual space to visual interneurons (L1-L3 and Am) 

(Meinertzhagen & Oneil, 1991; Zheng et al., 2006; Zheng et al., 2009; Rivera-Alba et al., 2011), has, 

in fact, its own unique output. Besides asymmetric connectivity within a neuro-ommatidium, some of 

the observed response variations may also reflect different recording locations. For example, 

Drosophila R1-R6s in the front of the eye might show different responsiveness to those at the back, as 

already shown for localized polarization-sensitivity differences (Wernet et al., 2012). Compound eyes 

of many insects exhibit structural adaptations that alter their lens sizes and shapes locally, such as bright 

or acute zones for increasing sensitivity or resolution, respectively (Land, 1998). Furthermore, 

electrophysiological recordings in some fly species suggest that their photoreceptor output vary across 

the eyes and could be tuned to the spatial and temporal characteristics of the light environment (Hardie, 

1985; Laughlin & Weckstrom, 1993; Burton et al., 2001). 

 

Variable sampling matrix protects from aliasing, improving vision 
With each R1-R6 having variable “network-tuned” (and possibly “location-tuned”) encoding properties 

and output, and with each image pixel being sampled through variable size rhabdomeres (see Appendix 

5, Appendix figure 20) and ommatidial lenses (the photoreceptors’ receptive fields vary; see Appendix 

4, Figure 7-figure supplement 1 and interommatidial angles change progressively from front to back 

(Gonzalez-Bellido et al., 2011)), the Drosophila eye should generate reliable neural estimates of the 

variable world. This is because a sampling matrix made out of variable pixels (neuro-ommatidia), in 

which size and sensitivity show random-like constituents: 

 prevents aliasing of image information (Appendix figure 9); see also (Yellott, 1982; Dippe & 

Wold, 1985; Juusola et al., 2015).  

 mixes color information to the R1-R6 motion vision channel, whitening its spectral sensitivity 

(Appendix figure 9E) (Wardill et al., 2012), which is a prerequisite for an optimal motion 

detector (Srinivasan, 1985). 
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Aliasing effects are reduced by sampling faster and/or with finer spatial resolution, and 

eliminated by sampling more than twice over the highest stimulus frequency (Cover & Thomas, 1991). 

The Nyquist–Shannon sampling theorem establishes a sufficient condition for a sample rate that enables 

a discrete sequence of samples to capture all the information from a continuous-time signal of finite 

bandwidth. Specifically, it only applies to a class of mathematical functions having a Fourier transform 

that is zero outside of a finite region of frequencies. This condition, however, cannot be fully realized 

in sensory systems, which show finite spatiotemporal sampling resolution and evolved around 1/fn-

stimulus (Field, 1987; van Hateren, 1997b) distributions of the real-world objects and events. Because 

any physical transformation affects signal and noise equally (data processing theorem (Shannon, 1948; 

Cover & Thomas, 1991)) and because real-world low-pass filters, such as a lens, cannot cut-off sharply 

at an exact point, but instead gradually eliminate frequency components and exhibit a fall-off or roll-

off slope, aliasing effects would not be removed completely in an ordered sampling matrix. Therefore, 

to prevent phantom sensations of aliased signals fooling the brain and perception of physical reality, 

sampling matrixes of sensory systems must entail stochastic variations. 

 
Appendix figure 9. 

Projected image of 

Sine(x2+y2) function is 

used to illustrate the effect 

of aliasing and how 

stochastic variability in 

the sampling matrix 

combats aliasing 

effectively. (A) Sin(x2+y2) 

is plotted with 0.1 

resolution. (B) Under-

sampling the same image by 

an ordered matrix leads to 

aliasing: ghost rings appear 

when the image (of the 

function) is sampled with 

0.2 resolution. Aliasing is a 

critical problem, as the 

nervous system cannot 

differentiate the fake image 

rings from the original real image. (C) Sampling the image (A) with a random matrix may lose some of its fine 

resolution, due to broadband noise, but such sampling is anti-aliasing; sampling with random points at 0.2 

resolution. (D) Color photoreceptor distributions across macaque (Field et al., 2010) (red, green and blue cones; 

left)  and Drosophila retina (Vasiliauskas et al., 2011) (R7y and R7p receptors; right) show random-like 

sampling matrixes, suggesting that this sampling matrix sensitivity randomization would have an anti-aliasing 

role. (E) Crucially, by integrating and redistributing R1-R6 outputs with additional gap-junctional inputs from 

randomized R7/R8 color channels (Wardill et al., 2012) (D and Appendix figure 8) for each image pixel during 

synaptic transmission to LMCs, any broadband sampling noise should be much reduced and the R1-R6 

(motion) channel’s spectral range whitened (Wardill et al., 2012). Note how LMC output peaks before the 

corresponding R1-R6 output. Scale bars: 10 mV / 20 ms. Sub-figure (E) modified from (Wardill et al., 2012). 

 

Whilst temporal and topological sampling matrix variations in retinae combat aliasing (Yellott, 

1982; Juusola et al., 2015), their trade-off is broad-band noise (Dippe & Wold, 1985) (Appendix figure 

9C; the Python script for these simulations is downloadable from: 

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/AntialiasingByRandomisa

tion). This noise, however, is much reduced (or nearly eliminated) by parallel sampling of the same 

information (Song & Juusola, 2014; Juusola et al., 2015). For example, noise reduction occurs naturally 

in the fly eye - both in time and in space. In every R1-R6 photoreceptor, 30,000 microvilli sample 

discrete information stochastically in time, generating virtually aliasing-free macroscopic responses of 

very high signal-to-noise (Figure 5-figure supplement 1). Whereas, across the lamina neuro-

ommatidia of variable connectivity and spectral sensitivity, neural superposition integrates local R1-R8 

signals of overlapping information from each pixel (a small largely aligned area in the visual space) to 
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improve the signal-to-noise ratio of the sampled images (see Appendix 5). Such images should provide 

the brain reliable and maximally informative estimates of the environment. 

 

Estimating a R1-R6’s encoding efficiency 

A photoreceptor’s encoding efficiency, η, is the ratio between the information rates of the voltage 

output, Routput, and the effective light input (photon absorptions), Rinput, that drove it: 

 

𝜂 =
𝑅𝑜𝑢𝑡𝑝𝑢𝑡

𝑅𝑖𝑛𝑝𝑢𝑡
      (A2.2) 

 

As we already had determined the maximum photoreceptor output information rates, Routput (Eq. A2.1; 

Figures 2C, Figure 2-figure supplement 1C and Figure 4C), only the corresponding information rates 

of the effective light stimuli, Rinput, needed to be worked out. Because the output simulations’ maximum 

information rates matched well the corresponding mean rates of the real recordings (Appendix figure 

6A), we had extrapolated successfully each effective light intensity (photon absorption) time series that 

drove the voltage response. Therefore, we could now estimate the rate of information transfer of the 

effective light input by making the following assumptions: 

 Photon emission from the light source (LED) follows Poisson statistics; this may or may not be 

true (see the discussion below).  

 But if true, the effective photons, which survived photomechanical adaptations (Appendix 

figure 4) and were absorbed by a photoreceptor and used for calculating Rinput, should also 

follow Poisson statistics (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015; Song 

et al., 2016). 

 

Photons are thought to be emitted by the light source, such as the LEDs, at random, exhibiting detectable 

statistical fluctuations (shot noise). Such dynamics can be modelled by Poisson statistics (Song & 

Juusola, 2014). Therefore, as each light stimulus trace differs from any other, with their mean equaling 

their variance, we could estimate through simulations their average signals and noise, and signal-to-

noise ratios, SNRinput(f). The corresponding information transfer rates, Rinput, could then be estimated by 

Shannon’s equation (Eq. A2.1). For each tested stimulus pattern, this was done by using the same 

amount of simulated input data as with the output data (2,000 points x 20 repetitions) to control 

estimation bias. More details and examples about Poisson stimulus simulation procedures are given in 

(Song & Juusola, 2014). 

 Notice that currently there are no manmade sensors more efficient than the biological 

photoreceptors themselves for measuring the photon emissions from the LED light source. 

Therefore, we had no good direct methods to measure the LED’s photon rate changes at the 

same level of accuracy as the photoreceptor output that it evoked. Accordingly, calculating 

mutual information directly between the less accurate light input estimate and the more 

accurate photoreceptor output would be both impractical and erroneous. 

 

For the simulated inputs and outputs, the data processing theorem (Shannon, 1948) dictates that Rinput ≥ 

Routput; thus η ≤ 1 (≤ 100%). If not, then one or both estimates are biased or incorrect; information cannot 

be created out of nothing. However, for the efficiency estimates based on the real recordings, it is quite 

possible that Routput > Rinput, and thus η > 1 (> 100%), because R1-R6s receive extra information from 

the network (Appendix figure 7 and Appendix figure 8) that is missing from the Rinput estimates of an 

average R1-R6 photoreceptor’s photon absorptions (cf. Appendix figure 6B).  

 

We recognize that there are methodological limitations and unknowns, which may affect the accuracy 

and consistency of these estimates: 

 Experimental and theoretical evidence suggests that photon output of some light sources might 

be sub-Poisson (Teich et al., 1984); meaning, not maximally random. If this were true for our 

LED, then our approach would slightly underestimate Rinput, used in the experiments, and 

consequently overestimate Drosophila photoreceptors’ encoding efficiency. 

 Shannon’s equation can bias information transfer rate estimates for any corresponding light 

input and photoreceptor output differently. This is because the signal and noise components of 
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the input and output may deviate from the expected Gaussian by different amounts. Even 

though we used systematically the same amount of data for both estimates (20 x 2,000 data 

points), in the cases where light distribution is skewed (bursty stimuli) but the photoreceptor 

output is more Gaussian, it is possible that Shannon’s equation would underestimate input but 

not (or less so) output information, causing us to overestimate efficiency.  

 Small data chunks limit analyses. In the past, we have compared information transfer rate 

estimates, as obtained by Shannon’s equation to those estimated through the triple extrapolation 

method (Juusola & de Polavieja, 2003), which is directly derived from Shannon’s information 

theory. For ergodic data of different distributions, and when appropriately applied, both 

methods provided similar estimates (Figure 2-figure supplement 4) (Juusola & de Polavieja, 

2003; Song & Juusola, 2014). However, the triple extrapolation method works best with large 

sets of data; preferably containing ≥30 responses to the same stimulus (Juusola & de Polavieja, 

2003). In the current study, because of the practical limitations (to map a photoreceptor’s whole 

encoding space within a reasonable time), all the selected recordings and simulations consisted 

responses to 20 stimulus repetitions. This data size was deemed insufficient for an accurate 

estimate comparison between the two methods and was not done here. In the analyses, to 

provide fair comparison between simulations and recordings in all tested conditions, all the data 

chunks (for the recordings, simulations and stimuli) were exactly the same size (20 x 2,000 

points) and they were processed systematically in the same way (apart from the two exceptions 

we discuss next). Therefore, the data-size bias should be under control and the results 

comparable within these limits. 

 Implementation of Shannon’s equation (Eq. A2.1) in digital computers typically requires 

windowing of the data chunks (for signal and noise) before calculating their power spectra 

though Fast Fourier Transfer (FFT). Windowing combats spectral leakage (smearing), but this 

affects especially low-frequency signals, in which information content is low. So this trade-off 

can be considered reasonable, and its effect on most performance estimates is marginal. But 

here as the input and output information transfer is calculated separately, windowing affects 

more 20 Hz GWN light input than its corresponding photoreceptor output. This is because 

windowing clips lower frequency power from 20 Hz GWN input, whereas in the simulated and 

real voltage responses much of this power is nonlinearly translated (through adaptation) to 

higher frequencies, including those over 20 Hz. The simulated light input, of course, carries no 

information on frequencies >20 Hz, but now it has also lost in windowing some of its low-

frequency modulation, which the photoreceptors could translate into high-frequency voltage 

modulation (note, photomechanical phase enhancement can further contribute to this 

nonlinearity, see Appendix 3). For the two lowest intensity levels only, we judge that because 

of this methodological bias, the efficiency estimates for the 20 Hz GWN input-output data 

became unrealistic by a small margin of 10-40 bits/s, implying that Routput > Rinput. Therefore, 

for data to these two stimuli only, we applied box-car windowing (instead of the normal 

Blackman-Harris type), to retain its low frequency information content, and so to reduce this 

bias. 

 

Because of all these possible error and bias sources, a Drosophila photoreceptor’s encoding efficiency 

(η) estimates given in this publication must be considered as upper bounds. Nonetheless, for real 

photoreceptors, it is realistic to expect their maxima to approach 100%, and in some cells (likely R6s) 

be beyond, for the tested low-frequency stimuli (20 Hz). This is because of the extra information from 

the network, which is missing from the simulated mean photon absorption estimates. (Note that in the 

in vivo experiments, the light source emits at each moment 100-10,000-times more photons than what 

can be absorbed by the tested photoreceptor. Thus, the light source’s Rinput
emitted always exceeds a 

photoreceptor’s Rinput
absorbed ). 

Overall, the maximum η values are slightly higher but consistent with our previous 

(conservative) estimates of 90-95%, in which the light input intensity to microvilli was inferred by 

comparing the wild-type photoreceptor performance to that of white-eye mutants, lacking the 

intracellular pupil. Therefore, we conclude (again conservatively) that the error margin of these new 

encoding efficiency estimates may reach ±5%.  
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Appendix 3: Similarities and differences in encoding bursts and other stimuli 

 

Overview 

This appendix explains why the encoding of high-contrast bursts is both highly informative and reliable, 

proving additional insight to the results presented in Figures 1-6. It also explains how we generated the 

different light intensity time series from panoramic images of natural scenes, following a Drosophila‘s 

saccadic walking patterns (Figure 6), and how these stimuli were analyzed and used in the experiments. 

 

Why do bursty responses carry the most information? 

Figure 2-figure supplement 3 shows that R1-R6 photoreceptors can sample more information from 

high-contrast bursts than from naturalistic light intensity time series (1/fn-stimuli). We can explain this 

performance difference by the bursty stimuli’ proportionally more, and more evenly distributed, long 

dark contrasts. Such events enable refractory microvilli to recover efficiently from their previous light-

activation so that large numbers of them are continuously available to sample ongoing light changes; 

i.e. to transduce photons to quantum bumps. This leads to larger sample (quantum bump) rate changes 

and, thus, to a higher rate of information transfer (see also: Song & Juusola, 2014). 

 Moreover, fast high-contrast events survive the slower intracellular pupil mechanism 

(Appendix 2, e.g. Appendix figure 4) and photomechanical rhabdomere contractions (Appendix 7) 

well (Figure 8C). And consequently, fewer photons are being filtered out (lost) from high-contrast 

bursts than from naturalistic stimulation (Figure 2-figure supplement 3B, pink trace) or Gaussian 

white-noise (grey), which adapt the photoreceptors more continuously to the given light background. 

Therefore, at the level of the light source, bursty stimuli can have much lower power than the other two 

stimuli to drive photon-to-quantum bump sampling efficiently by 30,000 microvilli. 

 
Appendix figure 10. Bursts are 

informative. Whilst having similar 

information transfer rates, the 

responses to bursty stimuli (left) 

show higher signal-to-noise ratio 

within brief (10-100 ms) 

perceptually relevant time windows 

than the responses to Gaussian 

white-noise (GWN, right). The data 

are from the same cell. (A) 25 

intracellularly recorded voltage 

responses to repeated bursty and 

GWN light stimuli. Individual 

responses (superimposed) are shown 

in light grey and their mean in black 

traces. Both of these responses series 

carry similar information contents 

(~350 bits/s), as estimated by 

Shannon’s equation (see Eq. A2.1). 

(B) The signal (average response) 

standard deviation (SD) in 10 ms 

windows to bursty stimulation vary 

much more than that to white-noise. 

The noise variability (blue traces) in 

the two sets of responses (SD in 10 

ms time windows) is similar. (C) 

Signal-to-noise ratio is much greater in the responses to light bursts than to white-noise stimulation; it was 

calculated as the ratio between signal SD and noise SD, using 10 ms time resolution. 

 

Relevance of bursty responses for seeing germane visual patterns 
From an information theoretic point of view, the amount of visual information that is encoded by a 

photoreceptor can be similar for bursty (phasic) and Gaussian (tonic) signals (Figure 2C; cf. 20 Hz 0.6-

contrast bursts and 100 Hz 0.32-contrast GWN). However, when signal-detection-theoretic measures 
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are applied, bursts outperform “tonic” GWN signals in indicating visual “things”; i.e. the occurrence of 

perceptually relevant changes in light input. Bursts appear somewhat like all-or-none events (Appendix 

figure 10), having much higher local signal-to-noise ratios in the rising or decaying phases of a 

photoreceptor’s voltage responses (Zheng et al., 2006). They tower over the background noise, making 

their detection much easier than for the tiny blips of the GWN signals. Accordingly, photoreceptors’ 

voltage bursts support robust transmission of behaviorally relevant visual information and should 

further improve the reliability of synaptic transmission and perception (Zheng et al., 2006; Zheng et al., 

2009). 

 

Light intensity time series based on a Drosophila’s walk 

By combining a fly’s movement during free walking (Geurten et al., 2014) with natural image statistics, 

we estimated light intensity stimuli, which a Drosophila R1-R6 photoreceptor would face during 

locomotion through different natural scenes (Figure 6 and Video 1). 

To reproduce a fly’s saccadic movements and fixations during its 10 s walk (Figure 6A), we 

used the published angular velocity data (Geurten et al., 2014) (Figure 6B; Appendix figure 11C). 

This was traced from Figure 1D in (Geurten et al., 2014), using the unobscured section between 0.05-

9.95 s, and re-sampled with 1 ms steps. The velocity was integrated over time to give the yaw signal 

(yaw(t)). Both the velocity and the yaw matched the original published data. Finally, the yaw was 

wrapped between 0o and 360o. 

For generating the light intensity time series stimuli, which a walking fly would experience in 

different surroundings, we used six different 360o panoramic images (high-density digital photographs 

of natural scenes), taken from the internet (Table 1). These natural scenes were arbitrarily chosen from 

Google image search results, and we do not know how representative their image statistics are, for 

example, in respect to the van Hateren database (van Hateren, 1997a). Each image’s left (0o) and right 

(360o) side were stitched together to enable continuous viewing over a full rotation. The images were 

preprocessed in the following way: 

 Because stitching can cause errors (distortions), the lower and upper quarters of the images 

were discarded.  

 The color images (Appendix figure 11A) were reduced to gray scale, and their gamma 

correction was removed, enabling us to use their raw intensity values (Appendix figure 11B).  

 For each image, light intensity values were collected from 15 horizontal line scans taken in 

regular intervals (from top to bottom; Appendix figure 11B). 

 
Table 1. The used six panoramic high-resolution digital images of natural scenes were downloaded from: 

https://commons.wikimedia.org/wiki/File:Swampy_forest_panorama.jpg 

https://commons.wikimedia.org/wiki/File:2014-08-

29_11_51_08_Full_360_degree_panorama_from_the_fire_tower_on_Apple_Pie_Hill_in_Wharton_State_For

est,_Tabernacle_Township,_New_Jersey.jpg 

https://en.wikipedia.org/wiki/File:Helvellyn_Striding_Edge_360_Panorama,_Lake_District_-_June_09.jpg 

https://commons.wikimedia.org/wiki/File:Schleienl%C3%B6cher_Hard_360%C2%B0_Panorama.jpg 

https://farm3.staticflickr.com/2820/9296652749_7c502de9e7_o.jpg 

http://www.bodenstab.org/panorama/images/Green%20Valley/panorama.jpg 

 

As each image spanned 360o horizontally, we could calculate the degree-value between 0o and 

360o for each pixel (intensity) in the horizontal line scans (Intensity(angle)). The pixel intensity values 

(within the chosen horizontal line) were then sampled at the corresponding yaw positions (Appendix 

figure 11D; in degrees) of the fly’s walk for each 1 ms time-bin (Intensity(yaw(t))). This generated 

unique light intensity time series (Appendix figure 11E), which mimicked walk-induced photoreceptor 

stimulation from the given scene. In the sampling, each yaw value was automatically rounded to the 

closest pixels angle value (Appendix figure 11C, blue). Note: this process assumes that, during a free 

walk, the fly head would not rotate or move vertically. The Matlab script is in: 

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/PanoramicIntensitySeries. 

We also generated two sets of control light intensity time series data from the same images. 1st 

control: to compare saccadic movements to linear movements (named linear), we used the same walk’s 

median yaw velocity of 63.3 o/s (median(abs(angularvel(t)))) (Appendix figure 11D, red traces). 2nd 
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control: we shuffled the angular velocity trace values (named shuffled; gray traces); this removed all 

time correlations in the velocity trace without affecting its histogram. Appendix figure 11E shows two 

examples of the saccadic (test) and the two control light intensity time series, taken from two different 

horizontal scan lines (scans 8 and 15 in Appendix figure 11B). 

 
Appendix figure 11. Image 

processing steps. (A) 360o panoramic 

natural images were downloaded 

from the internet. (B) The images 

were reduced to gray-scale and their 

gamma-correction was removed to 

expose their underlying intensity 

differences more accurately. We then 

used 15 evenly spaced horizontal (x-

axis) line scans to sample their 

relative intensity values at different 

vertical (y-coordinate) position. The 

white dotted lines show two of these 

scan lines. (C) Angular velocities 

during a free fly’s walk, from 

(Geurten et al., 2014). (D) These 

velocities were translated to a yaw 

signal (degree values) over time 

(named saccadic: blue trace). Red 

trace shows the linear (median) yaw 

signal, which corresponds to a fly 

walking in one direction with the 

fixed speed of 63.3 o/s. The shuffled 

yaw (gray trace) is generated by 

randomly selecting angular velocity 

values from the recorded walk (in C). 

(E) These three different yaw signals 

(o) were then used to sample intensity 

values from the linear line scans (in B; 

here shown for #8 and #15) at each 1 

ms time-bin, generating unique light 

intensity time series from the 

panoramic image. Here the 

corresponding traces are shown for 

the first 4 s to highlight how 

differences in locomotion cause large 

differences in temporal light 

stimulation (i.e. light input to 

photoreceptors). Video 1 shows how these three different walking (or locomotion) dynamics (saccadic, linear 

and shuffled) affect the image stream to the eyes, using the panoramic “swamp forest” scene (Figure 6C). 

 

Light intensity time series analysis – differential histograms 
Intensity changes for saccadic, linear and shuffled locomotion dynamics were calculated by subtracting 

2 neighboring points in each intensity series (using Matlab “diff”-function). The corresponding 

‘intensity change’-histograms were calculated from all 15 traces per each image. Differential histogram 

was calculated as the mean of the ‘intensity change’-histograms. 

 We found (predictably) that the differential histograms of the saccadic light intensity time series 

were sparser than those of the corresponding linear light intensity time series stimuli (of the same 

median velocity; Figure 6D). This was true for all the tested panoramic images (Appendix figure 12). 

Saccadic sampling (blue traces) “burstified” light input. This was because it increased the proportion of 

rare large intensity differences between two consecutive moments in comparison to linear sampling 

(red); i.e. saccades made the histogram flanks to reach out further. Furthermore, the fixation periods 
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made it more likely that light intensity over the neighboring moments remained similar or the same 

(higher proportion of zero values). These features are obvious in Video 1. 

 
Appendix figure 12. Difference 

histograms of the six panoramic 

images of natural scenes (used in this 

study) as scanned by saccadic (blue) 

and linear (red) yaw signals of the 

same median velocity. Saccadic 

viewing increased the burstiness 

(Video 1) and, thus, sparseness in the 

difference histograms beyond that of 

the linear viewing. This was because 

saccades, proportionally, generated 

more large light intensity variations; 

seen by the extended flanks of the 

histograms. Conversely, fixation 

periods prolonged the periods of 

similar light intensities. Thus, the 

likelihood that the light intensity at 

one moment would be similar or the 

same at the next moment was 

increased; seen by the histograms’ 

higher counts for zero difference.   

 

Selecting the stimulus patters and their playback velocity 

There are important factors to consider when selecting the stimulus series and their playback velocity 

for testing how self-motion affects R1-R6 photoreceptors ability to encode naturalistic stimulation. 

A fly photoreceptor’s information transfer rate is limited by (i) the number of its photon 

sampling units (Howard et al., 1987; Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) 

(30,000 and 90,000 microvilli in a typical Drosophila and Calliphora R1-R6, respectively) and (ii) the 

speed, (iii) reliability (jitter) and (iv) recoverability (refractoriness) of their phototransduction reactions 

(Juusola & Hardie, 2001b, a; Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015). In general, 

the more efficiently the light stimulus utilizes the available microvilli population in generating the larger 

sample (quantum bump) rate changes, the higher the photoreceptor’s information transfer rate (Song & 

Juusola, 2014) (see Appendix 2). Consequently, the efficiency of photon sampling depends upon the 

stimulus speed and statistics (Juusola & de Polavieja, 2003; Zheng et al., 2009; Song et al., 2012; Song 

& Juusola, 2014) (Appendix figure 13). For naturalistic light intensity time series stimulation (NS), 

we have previously shown that: 

 A R1-R6 photoreceptor’s information transfer increases with stimulus playback velocity until 

saturation, when most of its microvilli likely become refractory for most of the time (Juusola 

& de Polavieja, 2003; Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) (Appendix 

figure 13A-C). This information increase results from the increased entropy rate in 

photoreceptor output (Appendix figure 13B), as it reliably packs in more sample rate changes 

in a given time unit. The corresponding noise entropy rate (Juusola & de Polavieja, 2003), 

similar to noise power (Figure 2-figure supplement 2A), remains practically invariable.  

 Sample rate changes in R1-R6 output further depend upon the stimulus structure (Juusola & de 

Polavieja, 2003; Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) (the distribution 

of its dark and bright contrasts). For example, R1-R6 output information peaks at lower 

playback velocity (10 kHz) for NS1, which had fewer long dark-contrast periods (to recover 

refractory microvilli) than for NS2 (>20 kHz), which had more and more evenly spaced dark-

contrasts (Appendix figure 13C). 
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For testing how naturalistic saccadic, linear and shuffled locomotion patterns affect Drosophila R1-

R6s’ encoding performance (Figure 6F), we used the three corresponding light intensity time series 

stimuli (first 8,000-points) from “swampy forest” panorama (line scan #8). These stimulus sequences 

were selected because each of them carried high-contrast modulation. In the intracellular experiments 

and model simulations, these stimuli were repeatedly presented one after another to each tested 

photoreceptor with 4 kHz playback velocity. This stimulus speed was chosen because: 

 It would cover well the broad velocity range of natural visual inputs to photoreceptors, 

including both the slower walking and the faster saccadic flight behaviors. 

 Each stimulus could be presented in 2 s, enabling us to collect 30 responses in 1 min and the 

three different sets of data in 3 min, keeping the recording conditions under control. 

 It evokes high R1-R6 information transfer, which for many high-contrast NS sequences 

approaches their maxima (Juusola & de Polavieja, 2003; Zheng et al., 2009) (cf. Appendix 

figure 13D-E). Theoretically, Drosophila R1-R6 output information rate cannot exceed ~850 

bits/s (Figure 2C), which was evoked by 100 Hz bursts. Such stimulus entailed the right mix 

of bright and dark contrasts to optimally utilize a R1-R6’s frequency and amplitude ranges. 

These stimuli evoked comparable responses (of high information rates) both from R1-R6 

photoreceptors in vivo and the biophysically realistic R1-R6 model (Appendix 1). The recordings and 

the simulations showed consistently that the voltage responses to saccadic (i.e. the most bursty) light 

intensity time series had the highest information transfer rate (Figure 6F; Figure 6-figure supplement 

1). 

 
Appendix figure 13. Photoreceptor 

output information rate depends 

on the speed and temporal 

structure of naturalistic 

stimulation (NS). (A) Intracellular 

voltage responses of a blowfly 

(Calliphora vicina) R1-R6 to a NS 

sequence repeated at different 

playback velocities. (B) The entropy 

rate, RS, of photoreceptor responses 

increases with the playback velocity 

until saturation, whereas the noise 

entropy rate, RN, remains virtually 

unchanged (cf. photoreceptor noise 

power spectra in Figure 2-figure 

supplement 2A). This improves the 

photoreceptor's encoding 

performance. (C) Information 

transfer rate (Shannon, 1948; Juusola 

& de Polavieja, 2003) (R = RS - RN) 

increases with playback velocity for 

four different NS sequence until 

saturation. Such dynamics resemble 

information maximization in 

Drosophila photoreceptor output by 

stimulus bandwidth broadening 

(Figure 2C). However, because 

Calliphora R1-R6s generate quicker 

responses than Drosophila R1-R6s, 

their information transfer saturates at 

considerably higher stimulus 

frequencies (Juusola et al., 1994; 

Juusola & Hardie, 2001b, a; Gonzalez-Bellido et al., 2011; Song et al., 2012; Song & Juusola, 2014), 

suggesting superior encoding performance at high saccadic velocities. (A-C) Data is from (Juusola & de 

Polavieja, 2003) (Figure 5). (D) Drosophila R1-R6 output shows relative scale-invariance to NS pattern speed. 

NS was repeated at different playback velocities and the corresponding intracellular responses of a R1-R6 are 

shown above. Responses to four NS velocities are highlighted (yellow: 1 kHz, 10 s window; cyan: 3 kHz, ∼3.3 
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s window; magenta: 10 kHz, 1 s window; gray: 30 kHz, ∼0.3 s window). (E) The time-normalized shapes of 

R1-R6 output emphasize similar aspects in NS, regardless of the used playback velocity (here from 0.5 to 30 

kHz). R1-R6s integrate voltage responses of a similar size for the same NS pattern, much irrespective of its 

speed. Mean ± SD shown, n = 7 traces. (D-E) Data is from (Zheng et al., 2009) (Figure 4). 

 

Finally, we note that it is possible that in scenes with different spatial structure (particularly lower spatial 

frequency structure), flies would use different turn velocities to bring contrast features into ideal 

sampling range (irrespective of saccades making sampling shorter). Future studies need to explore 

whether such a match with saccade statistics exists.  
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Appendix 4: Spatial resolution (visual acuity) of the Drosophila eye (conventional measure) 
 

Overview 

This appendix describes in detail a new method to measure a Drosophila photoreceptor’s receptive 

field, and provides important background information about the experimental and theoretical results 

presented in Figures 7-9. 

 

In this appendix: 

 We test the hypothesis that in the Drosophila eye visual information is integrated laterally in 

dim conditions, and fed back synaptically to its photoreceptors, contributing to their spatial 

responsiveness. 

 We measure dark- and moderately light-adapted wild-type R1-R6 photoreceptors’ receptive 

fields by their acceptance angles, ∆ρ, using intracellularly recorded voltage responses to light 

flashes, delivered from randomized positions of an orthogonal stimulation array. 

 We compare these measurements to those of histamine-mutants (Burg et al., 1993; Melzig et 

al., 1996; Melzig et al., 1998) (hdcJK910), in which first-order interneurons are blind (receiving 

no neurotransmitter from photoreceptors) and so incapable of feedback-modulating 

photoreceptor output.  

 We show that the average acceptance angles of dark-adapted wild-type photoreceptors are 

10.9% broader than those of the mutant, while light-adapted cells show no such difference.  

 We characterize slow spontaneous retinal movements in the Drosophila eye and show how this 

activity can influence intracellular photoreceptor recordings. 

 Our results suggest that in dim conditions spatial information is pooled in the lamina and fed-

back to wild-type photoreceptors. Such excitatory lateral synaptic modulation, which is missing 

in the mutant, increases spatial sensitivity, broadening the photoreceptors’ receptive fields. 

 

Optical limits of the fly compound eyes’ visual acuity  

Visual acuity is defined as the minimum angle that the eye can resolve. In the fly compound eye, if each 

ommatidium constitutes a sampling point in space, then the eye’s maximal spatial resolution is set by 

the density of its ommatidial array (Snyder et al., 1977). Suppose a regular pattern of black and white 

stripes is presented to a fly. The maximum spatial frequency that the fly can resolve, νs, is achieved 

when one ommatidium points to a black stripe and its adjacent ommatidium points to the next white 

stripe (Appendix figure 14A). Thus, the interommatidial angle (Snyder & Miller, 1977), angle, ∆φ, is 

the key parameter in determining νs. For the compound eyes with hexagonal layout, as is the case of 

most flies, the effective interommatidial angle, ∆φe (Appendix figure 14B), can be calculated as: 

 ∆𝜑𝑒= cos(30°) ∆𝜑 =
√3

2
∆𝜑     (A4.1) 

 

Thus, the upper limit of the fly eye’s visual acuity is given by: 

 

𝜈𝑠 =
1

2(∆𝜑𝑒)
=

1

√3(∆𝜑)
     (A4.2) 

 

Whether this limit is achieved or not depends upon the spatial performance of a photoreceptor (Snyder, 

1977). However, when estimating a photoreceptor’s receptive field, which is quantified by its width at 

half-maximum, or acceptance angle (Warrant & Mcintyre, 1993), ∆ρ, we need to consider several 

contributing factors. 

Firstly, since the ommatidium lens and a photoreceptor’s rhabdomere are very small, optical 

quality is strongly affected by light diffraction, of which airy pattern (the point-spread function) 

depends upon light wavelength, λ, lens diameter, D, rhabdomere diameter, d, and focal distance, f 

(Appendix figure 14C). Theoretically, the blurring functions at the ommatidium lens and rhabdomere 

tip are both Gaussian and therefore can be combined (Snyder, 1977) to yield a simple approximation 

of ∆ρ: 
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 ∆𝜌 = √(
𝜆

𝐷
)

2
+ (

𝑑

𝑓
)

2
      (A4.3) 

 

However, owing to the rather complex waveguide properties of small-diameter rhabdomeres, this 

formula is somewhat inaccurate. Van Hateren (van Hateren, 1984) and Stavenga (Stavenga, 2003b, a) 

found that along a fly photoreceptor’s rhabdomere only a limited number of light patterns (modes) 

could be formed and that this number depends upon the incident angle of light, leading to a smaller 

actual ∆ρ than what Eq. A4.3 implies. 

Another contributing factor is the spatial cross talk, in which a photon escapes the rhabdomere 

it first travels in and enters an adjacent rhabdomere (Horridge et al., 1976). Such an effect is likely to 

happen when the cross-talk index of the ommatidia/rhabdomere structure is less than three (Wijngaard 

& Stavenga, 1975). This was indeed reported for Drosophila (Gonzalez-Bellido et al., 2011), 

suggesting that its neural images might have lower resolution than theoretically calculated from the 

optics. 

Lastly, the intracellular pupil mechanism further affects ∆ρ estimation. Inside each 

photoreceptor cell, there are tiny pigment granules that migrate toward its rhabdomere boundary upon 

light adaptation (see Appendix 2, Appendix figure 3). These pigments absorb and scatter light that 

travels inside the rhabdomere, reducing the light influx absorbable by its rhodopsin molecules 

(Kirschfeld & Franceschini, 1969; Boschek, 1971; Roebroek & Stavenga, 1990). Consequently, the 

pupil mechanism shapes a photoreceptor’s angular and spectral sensitivity (Stavenga, 2004a). 

Moreover, in Appendix 2, we show by experiments and theory that it further helps to maximize a 

photoreceptor’s information transfer; by optimizing the light intensity passing into the rhabdomere. 

 

 
Appendix figure 14. Classic theories of compound eye optics. (A) It is assumed that the minimum angle a 

compound eye can resolve is its interommatidial angle, ∆φ. (B) The effective interommatidial angle of an eye 

with a hexagonal layout, ∆φe, is smaller than its actual interommatidial angle, ∆φ. Eq. A4.1 gives their 

geometrical relation. (C) Light diffraction at the ommatidial lens and the rhabdomere tip strongly affects the 

optical quality of the image pixel that a photoreceptor samples. D = ommatidial lens diameter; d = rhabdomere 

tip diameter; f = focal length; λ = wavelength. Redrawn from (Land, 1997). 

 

Rationale for investigating wild-type and hdc R1-R6s’ receptive fields 
The fly compound eyes are small and size-constrained, presumably to save energy and improve survival 

(Land, 1998; Laughlin et al., 1998; Niven et al., 2007). This puts their sensitivity/acuity trade-off under 

intense evolutional pressure (Snyder et al., 1977; Laughlin, 1989; Nilsson, 1989; Warrant & Mcintyre, 

1992). While an increase in ommatidium size would improve photon capture, it would also result in 

fewer sampling points (image pixels) in the eye, lowering the resolution of its neural responses (neural 

images of the world). In dim conditions, where photon noise is relatively large compared to available 

information (signal), the task to enhance visual reliability and sensitivity becomes challenging. Optical 

mechanisms, including the widening of photoreceptor receptive fields by pupil opening (Williams, 

1982; Laughlin, 1992; Nilsson & Ro, 1994; Stavenga, 2004a), can increase the amount of light collected 

in each ommatidium only to some extent. Yet under dim illumination, insect visual behaviors appear 

remarkably robust (Pick & Buchner, 1979; Warrant et al., 1996; Honkanen et al., 2014), suggesting that 

their eyes’ neural mechanisms could successfully overcome the apparent shortfall in photon supply 

(Warrant, 1999). 

Sensitivity can be increased neurally at the cost of decreasing acuity by (i) increasing 

photoreceptors’ voltage/light intensity gain (Laughlin & Hardie, 1978; Matic & Laughlin, 1981; Song 
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et al., 2012), (ii) increasing their integration time (temporal summation) (Skorupski & Chittka, 2010; 

Song et al., 2012) and (iii) spatially summing information, or reducing lateral inhibition from neural 

neighbors (Srinivasan et al., 1982; van Hateren, 1992c, 1993b). Experimentally, spatial summation has 

been shown to occur in the directionally-selective motion-detecting (DSMD) neurons of the fly lobula 

plate (Srinivasan & Dvorak, 1980), but it is possible that such signals might also reflect upstream 

processing in the earlier optic neuropiles (the lamina, medulla and lobula). 

Although the fly photoreceptor biophysics for adapting temporal summation are well 

characterized (Juusola et al., 1994; Juusola & Hardie, 2001b, a; Song et al., 2012; Song & Juusola, 

2014; Hardie & Juusola, 2015; Juusola et al., 2015) (see Appendixes 1-3), the neural substrate for 

spatial summation is less well understood. In the lamina, electrical couplings by gap-junctions were 

found only between the photoreceptor axons that share the same optical axis (Ribi, 1978; Shaw, 1984; 

van Hateren, 1986; Shaw et al., 1989) in neural superposition. Hence, these presynaptic connections 

probably cannot distribute spatial information. Nonetheless, postsynaptically, the evidence is more 

suggestive. Intracellular responses of the histaminergic interneurons (large monopolar cells, LMCs) to 

narrow (point source) and wide-field light stimuli match well the theoretical predictions of 

spatiotemporal summation (Dubs et al., 1981; van Hateren, 1992a, b). This notion was further 

advocated by the structural study in the nocturnal bee Megalopta genalis (Greiner et al., 2005) lamina, 

which revealed extensive synaptic connections between adjacent cartridges. Finally, early functional 

studies of the housefly (Musca domestica) photoreceptors (Dubs et al., 1981) indicated that quantum 

bumps, recorded to dim light at the behavioral threshold, contain additional small-amplitude events. 

These were judged not to be generated by the impaled cells but by single photon captures in their 

neighbors; with the receptive fields being wider than what were expected from the optics alone (Dubs, 

1982). 

In this appendix, we test whether or how spatial information is integrated laterally and fed back 

synaptically to photoreceptors, contributing to their acceptance angles, ∆ρ. The tight coupling between 

feed-forward and feedback pathways in the photoreceptor-lamina circuit is known to have crucial roles 

in maintaining robust adaptation and temporal coding efficiency (Zheng et al., 2006; Nikolaev et al., 

2009; Zheng et al., 2009). Theoretically, similar spatial information regulation should further improve 

fly vision. Specifically here, we take advantage of Drosophila genetics and compare R1-R6 

photoreceptor outputs of wild-type and hdcJK910 mutant. Synaptic transmission from hdcJK910 

photoreceptors is blocked, making their interneurons effectively blind (Dau et al., 2016). Therefore, 

feedback from the mutant LMCs (and possibly from amacrine cells (Zheng et al., 2006; Hu et al., 2015), 

Am, which also receive histaminergic input from photoreceptors) to R1-R6s cannot contain any lateral 

modulation, neither inhibitory nor excitatory.  

We show that the dark-adapted wild-type R1-R6 photoreceptors’ mean acceptance angles are 

10.9% broader than in the mutant, while no significant differences are found between the light-adapted 

cells. We further show how stimulus history and retinal movements affect the receptive fields in the 

Drosophila eye. Our results suggest that in dim conditions spatial information is pooled in the lamina 

and channeled back to R1-R6 photoreceptors in the form of excitatory synaptic modulation, which 

increases spatial responsiveness by broadening the cells’ receptive fields. 

 

Measurement and calculation of a R1-R6’s receptive field 
A photoreceptor’s receptive field can be estimated electrophysiologically by measuring its intracellular 

response amplitudes, Vn, to a light flash intensity, In, at varying angular positions, αn. From all these 

Vn, In, and αn values generated by a complete scan, the receptive field width can be computed by three 

different methods as comparatively reviewed below. 

 

Method 1. Vn is clamped to a constant value in a closed-loop system, which accordingly vary In for each 

tested light source positions (Smakman et al., 1984; Smakman & Stavenga, 1987). Sensitivity at each 

position, Sn, is then defined by: 

 

𝑆𝑛 =
𝐼𝑜

𝐼𝑛
       (A4.4) 

 

where I0 is the intensity required from a point source at the center of the receptive field. The definition 
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of sensitivity can be equivalently expressed as the light source at an off-axis position. The off-axis 

light intensity needs to be 
1

𝑆𝑛
fold brighter than the axial one to stimulate responses of the same 

amplitude. 

After corresponding Sn was computed for every Sn, the sensitivity-angle relation is fitted by a 

Gaussian function. The width at the half-maximum of this Gaussian curve is called the acceptance 

angle. This is the conventional parameter, ∆ρ, for quantifying the receptive field width. 

 

Method 2, in which the same light flash intensity In is tested at many different angular positions, is the 

most widely used (Wilson, 1975; Horridge et al., 1976; Hardie, 1979; Mimura, 1981; Gonzalez-Bellido 

et al., 2011). Initially, the V/log(I) relation of the impaled photoreceptor is determined at the center of 

its receptive field by presenting logarithmically intensified flashes from a point-like light source 

(through scaled neutral density filters). Vn elicited by the light at each off-axis angle, Vn, is then 

substituted into the V/log(I) function to estimate, Ia, the light intensity that was effectively absorbed by 

the cell’s photopigments. Angular sensitivity, Sn, is given by Eq. A4.5: 

 

 𝑆𝑛 =
𝐼𝑎

𝐼𝑛
       (A4.5) 

 

Gaussian fitting and the acceptance angle calculation are performed as in Method 1. 

Method 2 is based upon the same principle as Method 1, which is to assess the light intensity 

necessary to elicit a criterion response (Warrant & Nilsson, 2006). When the light-point with intensity 

I0 is exactly at the optical axis of the cell, sensitivity is the highest with the response amplitude V0. To 

evoke Vn = V0 by a light source located at an angular position, αn, it is required that the effective 

intensity Ia equals to I0. Given the angular sensitivity formula: 

𝑆𝑛 =
𝐼𝑎

𝐼𝑛
=

𝐼𝑜

𝐼𝑛
       (A4.6) 

 

the necessary intensity In would be 
1

𝑆𝑛
fold brighter than Io. 

Though Method 2 does not require a closed-loop system and is, therefore, less experimentally 

challenging, its effective intensity, Ia, estimation has drawbacks. Fitting V/log(I) function to a small 

number of maximum amplitude values, which are adaptation-dependent, can introduce scaling errors. 

Whilst its underlying assumptions, that the voltage/(effective intensity) relation is static and 

independent of light source position, neglect possible dynamic and lateral interactions between 

neighboring cells. 

Nonetheless, the outcomes of both methods are theoretically independent of photoreceptor 

biophysics and the test flash intensity. Hence, they enable electrophysiological receptive field 

measurements to be compared with those derived from optical, morphological and waveguide theories. 

 

Method 3. Similar to Method 2, each tested photoreceptor is stimulated by the same light intensity 

flashes at different angular positions around its optical axes. Response amplitude Vn to a light flash 

coming from an angle αn is then normalized to the maximum response evoked by the on-axis light 

source, V0. The receptive field is determined by the Gaussian fitting of the relation between ratios Vn/V0 

and incident angle αn. This may yield wider half-maximum widths (∆ρ values) than the acceptance 

angles (Washizu et al., 1964; Burkhardt, 1977) estimated by using Method 1 and Method 2. 

We used Method 3 to estimate R1-R6 photoreceptors’ receptive fields from intracellular 

recordings, despite its disadvantages; the results would depend on the flash intensity and would not be 

fully comparable to other approaches and the previous studies in Drosophila. Our main rationale was 

that this method characterizes “how well the flies see” most directly and reliably, without making any 

assumptions about lateral interactions between photoreceptors and LMC feedbacks. Moreover, the 

method’s limitations should not compromise our objectives to compare the receptive fields in different 

genotypes and to report how these are affected by different light conditions and stimulation history. 

And importantly, these receptive field estimates could be directly used in further calculations to assess 

the same photoreceptors’ theoretical acuity to detect moving objects, as shown in Appendixes 6-8. 

Experimentally, it was also unfeasible to expand our recording set-up either with a closed-loop system 
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(as in Method 1) or with easily exchangeable neutral density filter sets for characterizing V/log(I) 

function (as in Method 2). 

 

25 LED light-point array and LED pads. A R1-R6 photoreceptor’s receptive field was scanned by 

using an array of 25 light-points, mounted on a Cardan arm (Appendix figure 15). Each light-point 

(small light guide end) subtended an angle of 1.7º as seen by the fly, transmitting its light output from 

its specific LED (1/25). The system was controlled by 2 channels, both with voltage inputs ranging 

from 0 V to 10 V. Channel 0 was used to select the light-point while Channel 1 was used to linearly set 

its intensity. 
 

Appendix figure 15. 25 light-point 

stimulus array. Each tested dark-

adapted photoreceptor’s receptive 

field (red Gaussian) was assessed by 

measuring its intracellular responses 

to successive flashes from 25 light-

points. In light-adaptation 

experiments, two 39-LED pads, (on 

both sides of the vertical stimulus 

array) provided background 

illumination. The intact fly was fixed 

inside the conical holder, which was 

placed upon a close-looped Peltier-

element system, providing accurate 

temperature control (at 19 oC). The 

rig was attached on a black anti-

vibration table, inside a black-

painted Faraday cage, to reduce 

noise and light scatter. 

 

 

Appendix figure 16A shows a typical light-point’s spectral density measured at the light-guide end. 

Each light-point had a narrow spectral Peak1 at ~450 nm and a broader Peak2 at ~570 nm, in which 

intensities and wavelengths are listed in Table 2. Based on their relatively small variations, all 25 light-

points provided reasonably uniform light input, except the 4-times brighter No.22 (see below). This is 

because a fly photoreceptor’s response amplitudes differ only marginally until light intensity changes 

several-fold, as defined by the sigmoidal V/log(I) relationship (Matic & Laughlin, 1981). Standard light 

flashes, containing ~2×106 photons/s at Peak1 and ~3×106 photons/s at Peak2, were produced by 

setting Channel 1 to an input value of 2 V. Here, the estimated photon counts are given at the light 

source, not at the level of photoreceptor sampling. Moreover, in the experiments, to evoke subsaturating 

responses, we used a neutral density filter plate to cut the light-point intensity by 100-fold. 
 

Appendix figure 16. Spectral 

properties of the light stimuli. (A) 

Typical spectral density of the light 

impulses delivered by the 25-point 

array. Note the spectra has two 

prominent peaks, named Peak1 

(~450 nm) and Peak2 (~570nm). (B) 

Spectral density of a single LED on 

the two Lamina pads, which were 

used to provide ambient background 

illumination during light-adaptation 

experiments. These spectral intensities (photon counts) were measured by a spectrometer (Hamamatsu Mini 

C10082CAH, Japan). 

 

Light- 

Point 

Peak1 

wavelength (nm) 

Peak1 intensity 

(106 photons/s) 

Peak2 

wavelength (nm) 

Peak2 intensity 

(106 photons/s) 
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No.1 448 2.720 571 2.805 

No.2 452 1.790 570 2.818 

No.3 448 2.618 565 2.900 

No.4 451 1.840 576 3.020 

No.5 451 2.570 575 3.710 

No.6 451 2.214 572 3.640 

No.7 452 1.430 575 2.020 

No.8 446 2.203 570 2.990 

No.9 453 1.465 571 2.350 

No.10 451 3.300 578 5.100 

No.11 453 1.877 575 3.080 

No.12 455 1.763 575 3.020 

No.13 451 2.334 575 3.440 

No.14 451 2.009 576 2.634 

No.15 454 2.400 568 4.480 

No.16 452 2.390 572 4.165 

No.17 455 3.190 566 3.010 

No.18 452 1.990 578 3.320 

No.19 455 1.958 578 3.336 

No.20 454 1.745 569 2.670 

No.21 450 2.642 573 2.314 

No.22 452 9.520 572 13.300 

No.23 452 2.420 575 3.380 

No.24 452 2.658 573 3.284 

No.25 452 1.670 570 2.750 

Table 2. Light flash peak wavelengths and intensities delivered by each of the 25 light-points in the 

stimulus array. The given light intensities were measured at the light source by Hamamatsu Mini 

C10082CAH spectrometer, before 100-fold neutral density filtering. Thus, these values are estimated to be 

102-3-times higher than the corresponding effective photon rates at the level of R1-R6 sampling (see Appendix 

2, Appendix figure 5). Accordingly at the optical axis, the center LED (No.13), with the neutral density filter 

on it, evoked subsaturating (~20-35 mV) responses from Drosophila R1-R6 photoreceptors (Appendix figure 

17). 

 

Light-point No.22 was 4-fold brighter than the others. However, no attempt was made to correct its 

intensity for three reasons. Firstly, it was located at the tested receptive fields’ periphery, and thus had 

limited influence on the measurements. Secondly, because this “error” occurred stereotypically in every 

experiment, the brighter No.22 would not bias the comparative studies (see below). Lastly, having one 

brighter light-point was beneficial for other experiments, as will be shown in Appendix 6. 

Two Lamina LED pads, each with 39 similar LEDs, provided ambient illumination to 

moderately light-adapt the tested photoreceptors. The pads were located at the outer half and outside 

each tested cell’s receptive field (Appendix figure 15). Thus, a large portion of their light projected 
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onto the neighboring photoreceptors. But the pads also illuminated the whole recording chamber, 

revealing its spatial structure and possibly inducing spatial processing in the lamina network. Light 

from each of the pad’s LEDs peaked at 460 nm (Appendix figure 16B), delivering estimated ~2 × 105 

photons/s. 

 

Pseudo-random receptive field scans. Before recording intracellular voltage responses from a R1-R6 

photoreceptor, we located its receptive field center. This was done by flashing the light-point No.13 (at 

the center of the array) and moving the array (with the Cardan arm along its XY-axes) until the 

maximum response amplitude was elicited. The array was then locked at this position.  

In the dark-adaptation experiments, the photoreceptor faced darkness (Appendix figure 17A) 

for 30-60 s before its receptive field was measured. In the light-adaptation experiments, preselected 

background illumination (using the LED pads: Appendix figure 15) was turned on 30-60 s before the 

corresponding receptive field measurement. 
 

Appendix figure 17. Measuring a 

R1-R6 photoreceptor’s receptive 

field with intracellular recordings. 

(A) Schematic Image of how the 

LED stimulus array - seen as 25 

light-points (light-guide-ends in a 

row) was centered by a Cardan arm 

system in respect to the studied 

photoreceptor and the fly eye. (B) 

Channel 0 input was used to select 

the LED (light-point) to be turned on. 

(C) Channel 1 input defined light 

intensity of the selected LED. A 

standard light impulse (flash) was 

produced by a 2 V input, which 

lasted 10 ms. (D) A photoreceptor’s 

intracellular voltage responses to a 

complete receptive field scan. These 

sub-saturating responses were 

recorded at 19 oC. Amplitude Vn of 

each flash response was the local 

maxima. V0 is the amplitude of the 

response to a light flash at the center 

of the receptive field (on-axis). 

 

 

A complete scan of a photoreceptor’s receptive field comprised 25 subsaturating flashes from 

all the light-points, one after another in a pseudo-random order (Appendix figure 17B). Each flash 

lasted 10 ms, and was 490 ms apart from the next one (Appendix figure 17C). Although this inter-

flash-interval largely rescued the photoreceptor sensitivity, spatiotemporal adaptation might have still 

affected their responses. For instance, a flash near the center of the receptive field would light-adapt the 

cell more than one at the periphery, possibly causing the response to the next flash to be artificially 

smaller. Therefore, by randomizing the order of flash positions - with the Matlab command 

randperm(25) - we could reduce this kind of potential adaptation effects. 

Channel 0 input was turned on only when Channel 1 was set to zero V; that is, in the resting 

period when all the light-points were off. Otherwise, the transitions of Channel 0 input values would 

generate running dot images. Each tested photoreceptor’s responses to 2-5 repetitions of pseudorandom 

scans were averaged (Appendix figure 17D) before the acceptance angle (or half-maximum width), 
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∆ρ, of its receptive field was determined (Appendix figure 18). 

 
Appendix figure 18. Estimating a 

dark-adapted Drosophila R1-R6 

photoreceptor’s receptive field and 

its half-width. Flash response 

amplitudes Vn were initially 

normalized to V0, the maximum 

response elicited by an on-axis light-

point. A Gaussian curve was then 

fitted to these normalized values, 

yielding an estimate of the receptive 

field. Half-maximum width of this 

Gaussian function, ∆ρ, defined the 

tested photoreceptor’s acceptance 

angle. The schematic fly eye inset clarifies how a single photoreceptor integrates light from the world spatially 

through its receptive field (green area), whilst being bounded by the ommatidial lens system. For a standard 

measurement, each tested photoreceptor’s intracellular responses to 2-5 repetitions of pseudorandom scans (as 

shown in Appendix figure 17) were averaged. 

 

Gaussian white-noise (GWN) stimuli. Light-point No.13 intensity was controlled by setting Channel 0 

input to 5 V and modulating Channel 1 input with a white-noise time series, which had a mean value of 

2.5 V and cut-off frequency of 200 Hz. With these settings, light-point No.13 emitted 2.5 × 106 

photons/s at Peak1 (451 nm) and 3.75 × 106 photons/s at Peak2 (575 nm) on average (Table 2). But, 

as in other experiments, these intensities were reduced 100-fold by neutral density filtering 

 

Receptive fields of dark-adapted photoreceptors 
In every experiment, we first assessed the recorded photoreceptor’s receptive field after dark-adaptation 

(Figure 7-figure supplement 1A). Wild-type R1-R6s’ mean acceptance angle, measured as their 

receptive fields’ half-maximum width, ∆ρ, was 9.47 ± 0.36º (± SEM, n = 19 cells), ranging from 7.00º 

to 11.65º. Interestingly, hdcJK910 R1-R6’s receptive fields were 10.9% narrower (p = 0.0397, two-tailed 

t-test). Their mean, minimum and maximum acceptance angles were 8.44 ± 0.32º (n = 18 cells), 6.18º 

and 11.50º, respectively. 

Because each photoreceptor’s flash response amplitudes, Vn, were directly used to estimate its 

receptive field (Figure 7-figure supplement 1B), rather than being converted to angular sensitivities 

(see above), the obtained ∆ρ metric depended upon the cell’s output/input characteristics and the test 

flash intensity. To ensure that wild-type and hdcJK910 photoreceptors’ ∆ρ comparison was unbiased by 

variable on-axis light sensitivities, we also compared their maximum response amplitudes, V0, and 

V0/∆ρ relations.  

The corresponding V0 values were very similar (Figure 7-figure supplement 1B) and mostly 

within 20-35 mV sub-saturated linear range of the photoreceptors’ V/log(I) curves (Dau et al., 2016). 

Moreover, in both wild-type and the hdc mutant, the linear correlations between V0 and ∆ρ reflected 

only a weak trend of more sensitive photoreceptors (larger V0) having wider receptive fields (larger ∆ρ) 

(Figure 7-figure supplement 1C, D). 

Together, these findings indicate that the narrower ∆ρ of dark-adapted hdcJK910 photoreceptors 

neither resulted from altered phototransduction nor was an artefact of this measurement method. 

 

Receptive fields of light-adapted photoreceptors 
A photoreceptor’s ∆ρ measured under light-adaptation (at specific ambient illumination; Appendix 

figure 15) should be smaller than during dark-adaption. There are four reasons for this difference: 

 Light-adaptation steepens a photoreceptor’s V/log(I) function (Laughlin & Hardie, 1978; Matic 

& Laughlin, 1981; Eguchi & Horikoshi, 1984). This reduces the difference between I0 and Ia50 

(or the effective intensity that could evoke response amplitude V2
0), which in turn leads to a 

smaller α50 (or the corresponding angular position of Ia50) and thus to a smaller ∆ρ, as reported 

by the chosen method.  
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 Because the test flash intensity was kept unchanged, their contrast would be lower during light-

adaptation than in the dark-adaption experiments, further reducing the Io/Iα50 ratio, α50 and ∆ρ. 

 Light adaptation activates screening pigment migration, narrowing the intracellular pupil (cf. 

Appendix 2, Appendix figure 3). The narrower pupil effectively reduces the amount of light 

from off-axis angles that can be absorbed by rhodopsin-molecules in the rhabdomere (Hardie, 

1979; Smakman et al., 1984; Stavenga, 2004a, b), reducing ∆ρ.  

 Theoretical studies and some experimental data suggest that in dim conditions neural signal 

summation from neighboring cells may enhance sensitivity. But in bright conditions, lack of 

summation, increased lateral inhibition or both improve image resolution (Srinivasan et al., 

1982; van Hateren, 1992c, 1993a; Warrant, 1999; Klaus & Warrant, 2009).  

 

To quantify how moderate ambient light affects the fly eye’s spatial responsiveness, we analyzed the 

receptive fields of six wild-type (n = 6) and eight hdcJK910 (n = 8) photoreceptors both at their dark- and 

light-adapted states. 

 

At the dark-adapted state, the acceptance angles of wild-type and hdcJK910 R1-R6s’ receptive fields, ∆ρ, 

were 9.65 ± 1.06° and 8.16 ± 0.62° (mean ± SEM), respectively (Box 4.8A). However, owing to the 

smaller test and control group sizes than in Figure 7-figure supplement 1A, this average difference 

(15.44%), though similar, was now statistically insignificant (p = 0.258, two-tailed t-test). 

 

At the light-adapted state, under the given ambient illumination (Figure 7-figure supplement 2B), the 

corresponding ∆ρ values were 7.70 ± 0.52º for wild-type photoreceptors and 6.98 ± 0.46º for their 

hdcJK910 counterparts. Thus, light-adaptation significantly reduced ∆ρ values from dark-adaptation (p = 

3.49 x 10-4, paired two-tailed t-test). Switching from the dark- to light-adapted states, wild-type 

photoreceptors’ receptive fields narrowed down by 18.44 ± 3.5% (Figure 7-figure supplement 2C), 

slightly more than those of mutants, which changed by 13.68 ± 3.37%. Yet, none of these parameters 

differed significantly between the wild-type and mutant photoreceptors. 

 

R1-R6 acceptance angles are much broader than the theoretical prediction 

Based on the ommatidium dimensions, as extracted from histological images of fixed/non-living 

retinae, and the waveguide optic theory, Stavenga (Stavenga, 2003b) calculated that the acceptance 

angles or dark-adapted Drosophila R1-R6 photoreceptors should be from 3.8 to 5.0o (as amended for 

16.5 µm diameter ommatidium lens). Yet, our current (∆ρ = 9.47o; Figure 7-figure supplement 1 and 

2) and earlier (Gonzalez-Bellido et al., 2011) measurements (∆ρ = 8.23o; using Method 2 above) clearly 

showed that their acceptance angles in vivo are in fact about twice as large. What kind of physical 

mechanism(s) could explain this discrepancy between the theory and measurements? 

 We briefly introduce here some key points of the new ‘microsaccadic sampling hypothesis’, 

which is examined in detail in Appendixes 7-8. 

 Living R1-R6 photoreceptors are not still but transiently contract to light (Hardie & Franze, 

2012) (Video 3). We show in Figure 8 (see also Appendixes 7-8) that this causes considerable 

horizontal rhabdomere movements (up to 1.4 µm, peaking ~60-150 ms after a flash onset and 

returning back slower). As the lens system stays practically put, the rhabdomere tips shift away 

from the central axis, skewing the light input and narrowing the photoreceptors’ receptive fields 

dynamically.  

 Rhabdomere contractions also move their tips axially; transiently down the focal plane (Video 

2). 

o In a dark-adapted state, rhabdomere tips are elongated upwards (closer to the ommatidium 

lens), and possibly out of focus, collecting light through the lens system over a wider space. 

Thus, R1-R6s’ acceptance angles would be broader for light flashes spaced by normal (500 

ms) intervals, which recover refractory microvilli, returning rhabdomeres to their old 

positions. But during a bright passing light stimulus, which progressively contracts R1-R6s, 

their acceptance angles dynamically narrow as the rhabdomeres draw a bit deeper in the 

retina. 

o At a moderate light-adaptation state (Figure 7-figure supplement 2), the intracellular pupil 
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mechanism has reduced light input and the rhabdomere lengths should occupy a position (or 

set-point), which allows further contractions to light increments (cf. hair cells in the inner 

ear (Howard et al., 1988)). However, here, R1-R6s’ acceptance angles would still be broader 

for flashes with 500 ms intervals. Thus, the rhabdomeres would return to their pre-flash 

positions, which are closer to the lens than during a bright passing light stimulus. 

 Photomechanical R1-R6 contractions are partially levered by the adherence junctions (Tepass 

& Harris, 2007) from their rhabdomeres to the above cone cells and epithelial pigment cells, 

which form the inner wall of the ommatidium underneath the lens (Figure 8F). Thus, as the 

photoreceptors contract to light, their adherence junctions appear to pull the pigments cells, 

moving and narrowing the aperture (and the light beam) in the front of their rhabdomere tips 

(Video 4). 

 

Slow Drosophila retina movements 
Despite a Drosophila’s head and thorax being immobilized to the conical holder (Appendix figure 

17A), its eyes could still move affecting the electrophysiological recordings (Kirschfeld & Franceschini, 

1969). Retinal movements, caused by spontaneous intraocular muscle activity, have been described in 

larger flies (Franceschini et al., 1991; Franceschini & Chagneux, 1994; Franceschini et al., 1995; 

Franceschini & Chagneux, 1997; Franceschini, 1998) and treated by different methods, including 

cooling, anesthesia and fixing their slightly pulled-out antennae (Smakman et al., 1984). 

Here we report possibly related but slower retinal movements in fixed Drosophila preparations 

in vivo. Appendix figure 19A shows an example, in which the optical axis of a R1-R6 photoreceptor 

moved between two consecutive receptive field scans. In the 1st scan, the receptive field center, which 

was localized by the largest flash response, corresponded to the light-point No.12. However, the 2nd 

receptive field scan indicated that the cell’s optical axis pointed toward the light-point No.10. This 

displacement corresponds to an angular movement of ~3o. We found that about 50% of photoreceptors, 

in which receptive fields were scanned more than once (8/18 wild-type and 8/16 mutant cells), displayed 

similar retinal movements in the range of 1-3.5o. Moreover, these movements occurred in both front-

to-back and back-to-front directions, validating that they were not equipment related artefacts; for 

example, not caused by gravitational drift in the 25 light-point stimulus array (Appendix figure 15). 

It has been suggested that recordings from damaged fly photoreceptors may result in (i) 

extraordinarily wide acceptance angles, (ii) diminishing sensitivity (Wilson, 1975), or (iii) markedly 

asymmetrical receptive fields, attributed to artificial electrical coupling between neighboring cells 

(Smakman & Stavenga, 1987). To ensure that high-quality ∆ρ measurements were presented in this 

study, we only considered data from photoreceptors in which intracellular responses were stable and 

repeatable, and their receptive fields reasonably symmetrical. However, we acknowledge that 

Drosophila eye movements can inadvertently affect the receptive field assessment accuracy. 

The slow retinal movements and drifts that shift R1-R6 photoreceptors’ receptive fields are 

likely driven by eye muscle (Hengstenberg, 1971) activity. These movements can modulate light input 

to photoreceptors, causing spontaneous dips and peaks in their output during continuous repetitive 

stimulation, as is sometimes seen during long-lasting intracellular recordings (Appendix figure 19B). 

Because this additional input modulation seems largely occur in the timescale of seconds, it should 

reduce mostly the low-frequency signal-to-noise ratio in the R1-R6 output. In this study, to obtain as 

good estimates as possible of the Drosophila photoreceptors’ encoding capacity, we only used data 

from the very best (most stable) recording series. These recordings (Figures 1-2; Figure 1-figure 

supplement 1; Figure 2-figure supplement 1) showed very little or no clear signs of such 

perturbations. 
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Appendix figure 19. Retinal 

movements in the Drosophila eyes 

shift photoreceptors’ receptive 

fields, modulating their light input 

and hence the transduced voltage 

output. (A) A R1-R6 

photoreceptor’s receptive field 

shifted between consecutive 

measurements to 25 light-point 

stimuli. The 1st scan showed that the 

receptive field center was closest to 

light-point No.12; while in the 2nd 

scan, the peak response was evoked 

by the light-point No.10. The 

difference between the optical axes, 

as indicated by the two scans, was 

~3o. (B) Examples of R1-R6 

photoreceptors’ intracellular 

responses that show slow 

spontaneous voltage drifts, saccades, 

jumps or modulation (red arrows and 

boxes) during repeated light intensity 

time series stimulation from a fixed 

point source. Characteristically, 

these perturbations do not correlate 

with the light stimuli but are 

erratically superimposed on the responses’ normal adapting trends. Because they occur in the time scale of 

seconds and show variable rhythmicity, they are likely caused by intrinsic eye muscle activity. Before the 

recordings, the light stimulus source (3o light-guide-end, as seen by the fly) was carefully positioned at the 

center of each tested photoreceptor’s receptive field. 

 

Furthermore, in Appendixes 7-8, we quantify how all Drosophila photoreceptors exhibit fast 

light-triggered photomechanical micro-saccades, peaking ~100 ms after the stimulus onset and lasting 

0.2-3 s, depending upon the stimulus intensity. These microsaccades directly modulate light input from 

the moving objects and consequently photoreceptor output, and we show through simulations and 

recordings how they can improve the spatiotemporal resolution of neural images (Figures 8 and 9; 

Figure 8-figure supplement 1 and Figure 9-figure supplement 1). 

 

Conclusions 
In this appendix, we described how receptive fields (spatial responsiveness) and acceptance angles (∆ρ) 

of wild-type and synaptically-blind hdcJK910 R1-R6 photoreceptors were estimated, using intracellular 

voltage responses to new light-point array stimulation. Their characteristics in the dark- and moderately 

light-adapted states, and after prolonged light stimulation, were compared to test the hypothesis that 

spatial information summation in the lamina contributes to Drosophila photoreceptor function. We 

found that the dark-adapted wild-type R1-R6s show wider receptive fields. But in steady illlumination, 

the two photoreceptor groups’ ∆ρ-estimates adapted similarly. 

Could the difference between the dark-adapted wild-type and hdcJK910 receptive field widths 

result from recording artefacts? It is well known that LMCs’ hyperpolarizing intracellular responses to 

light pulses depolarize the surrounding extracellular space (Shaw, 1975), seen as the on-transient in the 

electroretinogram (ERG) recordings (Heisenberg, 1971). Theoretically, these signals could be picked 

up by recording microelectrodes, adding artificial components to the intracellularly measured Vn, and 

so making wild-type photoreceptors’ receptive fields appear wider (Hardie et al., 1981). However, we 

can essentially rule out this notion because the Gaussian functions, which quantified the actual 

recordings, were fitted to their real flank amplitudes rather than to zero (Appendix figure 18). 

Consequently, any extra DC component would not affect the resulting ∆ρ-estimates. Furthermore, our 

past comparative study, which included different synaptic mutant flies, failed to find clear signs for 

ERG contamination in high-quality intracellular wild-type photoreceptor recordings (Zheng et al., 
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2006). Whereas by lacking neurotransmitter histamine, hdcJK910 LMCs cannot respond to light (Burg et 

al., 1993; Melzig et al., 1996; Melzig et al., 1998), and thus hdcJK910 photoreceptor recordings cannot 

be ERG contaminated. Hence, we conclude that ERG signals could only have marginal contribution to 

our results at most. 

In fact, the dark-adapted photoreceptors’ ∆ρ-estimates constituted the most reliable data in this 

appendix, with the largest number of samples (nwild-type = 19, nhdc = 18 cells) obtained through consistent 

recording protocols. In every experiment, the receptive field assessment in the dark-adapted state was 

strictly the first examination, following the standard stimulus centering procedure. This minimized any 

potential downgrade in the recording quality or variation in the stimulation history. Notably, our 

estimate of WT Drosophila R1-R6 photoreceptors’ average receptive field half-width in the dark-

adapted state, ∆ρ = 9.47 ± 0.36° (n = 19 cells; see Method 3, above), is reasonably similar to the previous 

estimate of 8.23 ± 0.54° (n = 11 cells) (Gonzalez-Bellido et al., 2011), which was obtained through a 

less stationary recording apparatus/method with more assumptions (see Method 2, above). 

The dominant factors determining a fly photoreceptor’s receptive field are optical, waveguide 

properties and, particularly for the chosen measurement method, the phototransduction characteristics 

(Snyder, 1977; Land, 1997; Stavenga, 2003b, a). For blowflies, it has been shown that the receptive 

field shape can be largely derived from the optical structure dimensions with the waveguide theory 

(Smakman et al., 1984). Given the hdcJK910 mutants’ seemingly normal ommatidial and rhabdomere 

optics, as seen in vivo (Appendix 7) and under electron microscopy (Appendix 5; R1-R6 rhabdomere 

diameters, d, were ~96% of the wild-type), and their wild-type like photoreceptor voltage/intensity 

relations to brief light pulses (Dau et al., 2016), it is reasonable to expect that their ∆ρ-estimates would 

be close to wild-type. This should especially be true in light-adaptation, which is predicted to make 

photoreceptor output more independent of its neighbors (Atick, 1992; van Hateren, 1992c, b). And 

indeed, we found ∆ρ-estimates of the light-adapted wild-type and hdcJK910 photoreceptors alike. But 

because of this conformity, the 10.9% difference between their dark-adapted acceptance angles requires 

an additional explanation. Although at the flanks this difference increases (Figure 7-figure supplement 

1A), it still may seem rather small when compared to the measured cell-to-cell variation within each 

genotype, with the respective maxima being 66% and 88% wider than the minima, and its statistical 

significance becomes less with fewer samples (Figure 7-figure supplement 2A). Nevertheless, the 

finding is conceptually important as it supports an expansion in the classic spatial vision paradigm; 

from the optical constraints to spatial information summation in the network (Stockl et al., 2016). 

The dark-adapted wild-type photoreceptors’ wider receptive fields are consistent with what we 

know about how synaptic inputs are channeled from lamina interneurons to R1-R6 axons 

(Meinertzhagen & Oneil, 1991; Sinakevitch & Strausfeld, 2004; Zheng et al., 2006; Zheng et al., 2009; 

Abou Tayoun et al., 2011; Rivera-Alba et al., 2011; Hu et al., 2015). Thus, the corresponding narrower 

receptive fields of mutant photoreceptors seem most sensibly attributed to the missing excitatory 

feedback modulation from their interneurons (Zheng et al., 2006; Nikolaev et al., 2009; Zheng et al., 

2009; Dau et al., 2016). As shown by intracellular recordings (Zheng et al., 2006; Dau et al., 2016), 

feedforward and feedback signals dynamically contribute to photoreceptor and interneuron outputs in 

vivo. When the probability of light saturation is low, the stronger synaptic transmission in both pathways 

helps to amplify their response amplitudes.  

Therefore, taken together with the findings of Dubs et al. (1981) and Dubs (1982), these results 

suggest that under dim illumination, lateral excitation spreads synaptically within the lamina of the fly 

visual system. Spatial information summation is likely implemented by the first-order interneurons and 

fed back to photoreceptors through connections (Meinertzhagen & Oneil, 1991; Rivera-Alba et al., 

2011) that utilize excitatory neurotransmitters (Zheng et al., 2006; Hu et al., 2015). This model is further 

supported by our anatomical observations (Appendix 5 and Appendix 7), which imply that there are 

no major developmental defects in hdcJK910 retina and that their lens systems and rhabdomere sizes are 

broadly wild-type-like.  
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Appendix 5: R1-R6 rhabdomere sizes, neural superposition and hyperacuity schemes 

 

Overview 

This appendix shows how R1-R6 rhabdomere diameters vary systematically and consistently in 

Drosophila ommatidia and provides supporting background information for the results presented in 

Figures 7-9 and Appendix 4. 

 

In this appendix: 

 We measure wild-type and hdcJK910 histamine-mutant (Burg et al., 1993; Melzig et al., 1996; 

Melzig et al., 1998) R1-R6 photoreceptors’ rhabdomere sizes from the electron micrographs of 

their retinae. 

 We compare these measurements to their electrophysiologically measured receptive field 

estimates (Appendix 4). 

 We show that the mean wild-type R1-R6 rhabdomere diameter, dR1-R6, is only ~4.1% wider than 

in hdcJK910 mutant eyes. This difference may contribute in part to their 10.9% wider average 

acceptance angle (∆ρ) in a dark-adapted state (Appendix 4), but cannot fully explain it (see 

also Appendix 7).  

 We further show that in both phenotypes R1, R3 and R6 rhabdomeres are systematically larger 

than R2 and R4 rhabdomeres. As for the maximum difference, the mean R1 rhabdomere 

diameter (dR1 = 1.8433 ± 0.1294 µm, mean ± SD) is about 18% wider than that of R4 (dR4 = 

1.5691 ± 0.0915 µm, n = 25, p = 2.3419 x 10-11, 2-tailed t-test). 

 These findings imply that each R1-R6 photoreceptor should have a different receptive field size 

(coinciding with their considerable ∆ρ variation seen in Appendix 4, Figure 7-figure 

supplement 1C). 

 Our results further suggest an asymmetric information integration model, in which the neural 

superposition of different-sized overlapping receptive fields (of the neighboring R1-R6s) has a 

potential to contribute in enhancing Drosophila’s visual acuity beyond the presumed optical 

limits of its compound eyes (as revealed by behavioral experiments in Appendix 9). 

 

Readjusting the current theoretical viewpoint 

Neural superposition eyes provide more samples from local light intensity changes for each image pixel, 

represented by large monopolar cell (L1 and L2) outputs. In the conventional viewpoint, each pixel’s 

signal-to-noise improves by √6 because its L1 and L2 receive similar inputs from six “physiologically 

identical” R1-R6 photoreceptors, which sample information from the same small area in the visual 

space. Thus, the conventional assumptions and limits for neural superposition performance are: 

 Each R1-R6 functions virtually identically, generating similar outputs to the same light input 

 Each R1-R6 in superposition has an identical receptive field size and shape 

 The receptive fields in superposition overlap perfectly 

 Each image pixel represents sampling and processing within its inter-ommatidial angle 

 Inter-ommatidial angle sets the visual resolution of the Drosophila eye 

This appendix presents anatomical and theoretical evidence that these assumptions and limits are overly 

simplistic and suggests ways the real neural images could be sharpened beyond them to improve 

Drosophila vision. 

 

Electron micrographs 

Fixation. Flies were cold anaesthetized on ice and transferred to a drop of pre-fixative (modified 

Karnovsky’s fixative (Shaw et al., 1989): 2.5% glutaraldehyde, 2.5% paraformaldehyde in 0.1 M 

sodium cacodylate buffered to pH 7.3) on a transparent agar dissection dish. Dissection was performed 

using a shard of a razor blade (Feather S). Flies were restrained on their backs with insect pins through 

their lower abdomen and distal proboscis. Their heads were severed, probosces excised, and halved. 

The left half-heads were collected in fresh pre-fixative and kept for 2 h at room temperature under 

normal lighting conditions. 

After pre-fixation, the half-heads were washed (2 x 15 min) in 0.1 M Cacodylate buffer, and 

then transferred to a 1 h post-fixative step, comprising Veronal Acetate buffer and 2% Osmium 
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Tetroxide in the fridge (4 oC). They were moved back to room temperature for a 9 min wash (1:1 

Veronal Acetate and double-distilled H2O mixture), and serially dehydrated in multi-well plates with 

subsequent 9 min washes in 50%, 70%, 80%, 90%, 95% and 2 x 100% ethanol.  

Post-dehydration, the half-heads were transferred to small glass vials for infiltration. They were 

covered in Propylene Oxide (PPO) for 2 x 9 min, transferred into a 1:1 PPO:Epoxy resin mixture 

(Poly/Bed® 812) and left overnight. The following morning, the half-heads were placed in freshly made 

pure resin for 4 h, and placed in fresh resin for a further 72 h at 60 oC in the oven. Fixation protocol was 

kindly provided by Professor Ian Meinertzhagen at Dalhousie University, Canada. 

 

Sectioning and staining. Embedded half-heads were first sectioned (at 0.5 µm thickness) using a glass 

knife, mounted in an ultramicrotome (Reichert-Jung Ultracut E, Germany). Samples were collected on 

glass slides, stained using Toluidine Blue and observed under a light microscope. This process was 

repeated and the cutting angle was continuously optimized until the correct orientation and sample depth 

was achieved; stopping when approximately 40 ommatidia were discernible. The block was then 

trimmed and shaped for ultra-thin sectioning. The trimming was necessary to reduce cutting pressure 

on the sample-block and resulting sections, thus helping to prevent “chattering” and compression 

artefacts. Ultra-thin sections (85 nm thickness) were cut using a diamond cutting knife (DiATOME 

Ultra 45o, USA), mounted and controlled using the ultramicrotome. The knife edge was first cleaned 

using a polystyrol rod to ensure integrity of the sample-blocks. The cutting angles were aligned and the 

automatic approach- and return-speeds set on the microtome. Sectioning was automatic and samples 

were collected in the knife water boat. 

Sections were transferred to Formvar-coated mesh-grids and stained for imaging: 25 min in 

Uranyl Acetate; a double-distilled H2O wash; 5 min in Reynolds’ Lead Citrate (Reynolds, 1963); and a 

final double-distilled H2O wash. 

 
Appendix figure 20. R1-R6 

photoreceptors’ rhabdomere sizes 

differ consistently. (A) Electron 

micrographs of a characteristic wild-

type (left) and hdcJK910 (right) 

ommatidia. Each ommatidium 

contains the outer receptors, R1-R6, 

and the inner receptors, R7/R8, 

which can be identified by their 

rhabdomeres’ relative positions. 

Here R8s are not visible because 

these lie directly below R7s. 

Markedly, both wild-type and 

hdcJK910 R1-R6 photoreceptor 

rhabdomere sizes vary 

systematically. (B) The mean 

rhabdomere sizes measured from 25 

ommatidia from 10 flies. hdcJK910 

R1-R6 rhabdomere cross-sectional 

areas are smaller than those of the 

wild-type cells, but show similar 

proportional variations. Error bars 

show SEMs. 

 

 

 

Rhabdomere measurements. Transmission EM images for R1-R6 rhabdomere size comparisons were 

taken below the rhabdomere tips, as sectioned 25 µm down from the corneal surface of the ommatidium 

lens. 25 wild-type and hdcJK910 ommatidia (n = 25) from 10 flies of each phenotype were used to estimate 

R1-R6 rhabdomere sizes. The images were processed with ImageJ software. Because the rhabdomere 

cross-sectional area is often better approximated by an ellipse than a circle (Appendix figure 20A), for 

greater accuracy, its circumference was fitted with an ellipse.  
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For an EM rhabdomere area, A, its mean diameter was then taken:  𝑑 = 2 × √
𝐴

𝜋
. Note that the 

obtained mean rhabdomere diameter estimates are somewhat smaller than the previous estimates, which 

measured the minimum and maximum rhabdomere diameters from edge-to-edge (Gonzalez-Bellido, 

2009; Gonzalez-Bellido et al., 2011). Here, instead, we standardized the measurement protocol to 

reduce d-estimation bias between the wild-type and hdcJK910 electron micrographs to obtain 

straightforward statistical comparisons of their means. Nevertheless, both these and the previous 

(Gonzalez-Bellido, 2009) d-estimates indicated systematic rhabdomere size differences. 

 

R1-R6 rhabdomere sizes differ  

Drosophila R1-R6 photoreceptors’ rhabdomere sizes vary systematically and consistently in each 

ommatidium (Appendix figure 20B). R1 and R6 rhabdomere cross-sectional areas are always the 

largest and R4 rhabdomeres the smallest (Table 3). 

Theoretically, a fly photoreceptor’s receptive field size depends upon its rhabdomere diameter, 

d (Eq. A4.3). This relationship was recently supported experimentally by comparing the rhabdomere 

diameters and acceptance angle estimates, ∆ρ, of Drosophila R1-R6 photoreceptors to those of killer 

fly (Coenosia attenuata), both of which eyes have rather similar ommatidial lens sizes (16–17 vs 14–

20 µm) and focal lengths (21.36 vs 24.70 µm) (Gonzalez-Bellido et al., 2011), cf. Eq. A4.3. In ♀ 

Drosophila, maximum d was ~2 µm and in ♀ Coenosia ~1 µm, while Drosophila’s mean ∆ρ-estimate 

was 8.23 ± 0.54o and Coenosia’s 2.88 ± 0.07o (Gonzalez-Bellido et al., 2011). Thus, the wider 

rhabdomere tip correlates strongly with the wider receptive field. 

Accordingly, with each Drosophila ommatidium hosting R1-R6 rhabdomeres of distinct size 

differences (Appendix figure 20B, left; Table 3), the receptive fields of the neighboring R1-R6, which 

are pooled together in neural superposition, should differ in size and overlap broadly. These 

observations and analysis concur with the broad variability of the intracellularly measured wild-type 

R1-R6s’ receptive field widths (Appendix 4: Figure 7-figure supplement 1A, C).  

However, although collectively the mean wild-type R1-R6 rhabdomere cross-sectional areas 

(Tables 4-5) are larger than their hdcJK910 counterparts (Appendix figure 20B), their corresponding 

diameter differences are small. The average wild-type R1-R6 rhabdomere diameter, (WT dR1-R6 = 1.70 

± 0.15 µm; mean ± SD, n = 150 rhabdomeres; Figure 5) is only ~4.1% wider than in hdcJK910 mutant 

eyes (hdcJK910 dR1-R6 = 1.64 ± 0.10 µm; n = 150 rhabdomeres), as extrapolated from the ellipsoid 

rhabdomere area fits. Thus, hdcJK910 photoreceptors’ smaller average rhabdomere diameters can 

contribute to their ~10.9% narrower ∆ρ (Appendix 4: Figure 7-figure supplement 1A, D), but cannot 

fully explain it (Appendix figure 20B, right).  
 

Significance 

t-test 2-tail 

wild-type 

R1 

wild-type 

R2 

wild-type 

R3 

wild-type 

R4 

wild-type 

R5 

wild-type 

R6 

wild-type R1 N/A 5.3626 x 10-

7 

1.3033 x 10-

4 

3.6882 x 10-

10 

1.5564 x 10-

5 

0.8282 

wild-type R2 5.3626 x 10-

7 

N/A 0.1531 0.0371 0.3760 3.4906 x 10-

7 

wild-type R3 1.3033 x 10-

4 

0.1531 N/A 0.0011 0.5736 1.3187 x 10-

4 

wild-type R4 3.6882 x 10-

10 

0.0371 0.0011 N/A 0.0047 1.2193 x 10-

10 

wild-type R5 1.5564 x 10-

5 

0.3760 0.5736 0.0047 N/A 1.3479 x 10-

5 

wild-type R6 0.8282 3.4906 x 10-

7 

1.3187 x 10-

4 

1.2193 x 10-

10 

1.3479 x 10-

5 

N/A 

Table 3. Statistical comparison of wild-type Canton-S R1-R6 rhabdomere cross-sectional areas. The table 

gives the differences as p-values, calculated for 25 ommatidia of 10 flies at the same retinal depth. Red indicates 

statistically significant difference. R4 rhabdomeres are smaller than the other rhabdomeres, whereas R1 and 

R6 are always the largest. 

 

Significance hdcJK910 R1 hdcJK910 R2 hdcJK910 R3 hdcJK910 R4 hdcJK910 R5 hdcJK910 R6 
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t-test 2-tail 

hdcJK910 R1 N/A 4.7387 x 10-

10 

0.2281 6.3122 x 10-

10 

1.0125 x 10-

10 

0.2335 

hdcJK910 R2 4.7387 x 10-

10 

N/A 7.9300 x 10-

11 

0.7006 0.9897 2.0471 x 10-

10 

hdcJK910 R3 0.2281 7.9300 x 10-

11 

N/A 1.9466 x 10-

10 

5.0272 x 10-

12 

0.9921 

hdcJK910 R4 6.3122 x 10-

10 

0.7006 1.9466 x 10-

10 

N/A 0.6830 4.3275 x 10-

10 

hdcJK910 R5 1.0125 x 10-

10 

0.9897 5.0272 x 10-

12 

0.6830 N/A 1.6775 x 10-

11 

hdcJK910 R6 0.2335 2.0471 x 10-

10 

0.9921 4.3275 x 10-

10 

1.6775 x 10-

11 

N/A 

Table 4. Statistical comparison of hdcJK910 R1-R6 rhabdomere cross-sectional areas. The table gives the 

differences as p-values, calculated for 25 ommatidia of 10 flies at the same retinal depth. Red indicates 

statistically significant difference. R2, R4 and R5 rhabdomeres are smaller than R1, R3 and R6 rhabdomeres. 

 

Significance 

t-test 2-tail 

wild-type 

R1 

wild-type 

R2 

wild-type 

R3 

wild-type 

R4 

wild-type 

R5 

wild-type 

R6 

hdcJK910 R1 0.0014 0.0012 0.1434 1.0091 x 10-

7 

0.0302 0.0015 

hdcJK910 R2 1.8211 x 10-

11 

0.0078 1.5520 x 10-

4 

0.6952 7.1690 x 10-

4 

3.5405 x 10-

12 

hdcJK910 R3 5.1489 x 10-

5 

0.0073 0.4818 1.8478 x 10-

7 

0.1415 3.8432 x 10-

5 

hdcJK910 R4 1.7483 x 10-

11 

0.0051 1.0904 x 10-

4 

0.5015 4.9066 x 10-

4 

3.7421 x 10-

12 

hdcJK910 R5 9.2505 x 10-

12 

0.0056 1.0272 x 10-

4 

0.6710 4.8280 x 10-

4 

1.5313 x 10-

12 

hdcJK910 R6 5.6987 x 10-

5 

0.0083 0.4903 2.8960 x 10-

7 

0.1480 4.3539 x 10-

5 

Table 5. Statistical comparison of wild-type and hdcJK910 R1-R6 rhabdomere cross-sectional areas. The 

table gives the differences as p-values, calculated for 25 ommatidia of 10 flies at the same retinal depth. Red 

indicates statistically significant difference. The wild-type and mutant R3 and R4 rhabdomeres are the same 

size (highlighted in bold); the other wild-type rhabdomeres are larger than their respective counterparts. 

 

Theoretical models for spatial hyperacuity 

In the Drosophila compound eye, R1-R6 photoreceptors’ mean acceptance angle (∆ρ ~9.5o) is on 

average about twice as wide (see Appendix 4) as its mean inter-ommatidial angle (∆φ ~4.5o) (Gonzalez-

Bellido et al., 2011). Such an eye design could potentially facilitate spatial hyperacuity through neural 

image processing. In the vein of previous suggestions for manmade optoelectrical systems (Luke et al., 

2012) and retinae of other species (Zurek & Nelson, 2012), we consider three alternative hypothetical 

scenarios based upon neighboring R1-R6s’ overlapping receptive fields (RFs) (Pick, 1977).  

The first case (Appendix figure 21, left) considers RF variations of the photoreceptors in neural 

superposition. An image of an object (here, a thin 1o vertical bar, grey) stimulates simultaneously eight 

photoreceptors (R1-R8), which gather light information about the same area in the visual space by their 

overlapping RFs (for clarity only R1-R3’ RFs are shown; orange Gaussians). However, because the 

rhabdomere diameters, d, vary considerably and consistently between them (e.g. R1 and R6 rhabdomere 

diameters areas are ~18% wider than those of R4s; Appendix figure 20), so could also be their RF sizes 

(see Appendix 4, Eq. A4.3), causing overlaps. Six of these inputs (R1-R6) are pooled in the lamina. 

Consequently, even a small (1o) displacement of the vertical bar stimulus (grey) could lead to variable 

but specific light intensity modulations in each of the six converging input channels. Their signals to 

LMCs (L1-L3), which in high signal-to-noise conditions transforms input modulations into phasic 

responses (Zettler & Järvilehto, 1972; Järvilehto & Zettler, 1973; Zheng et al., 2006; Zheng et al., 2009; 

Wardill et al., 2012), could therefore be different before and after the bar displacement and possibly 

neurally detectable.  

In the second case (Appendix figure 21, middle), six photoreceptor cells of the same type (say 
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R2s) in the neighboring ommatidia gather light information from the neighboring small visual areas 

(~4.5o apart, as separated by the interommatidial angle), but their receptive fields (~9.5o half-widths) 

overlap; for clarity only three R2s are shown: orange, blue and red. Lateral connections (L4, Lawf and 

Am cells) between lamina neuro-ommmadia could then be used by LMCs to compare their outputs, 

enhancing the spatial resolution of each neural channel (see Appendix 2, Appendix figure 7).  

In the third case (Appendix figure 21, right), R1-R6 photoreceptor cells in the same 

ommatidium gather light information from the neighboring small visual areas, but their receptive fields 

overlap; again for clarity only three: orange (R1), blue (R2) and red (R3) are shown. Lateral connections 

(L4, Lawf and Am cells) between adjacent lamina neuro-ommatidia may enable LMCs to compare their 

outputs, enhancing the spatial resolution of each neural channel. 

 
Appendix figure 

21. Theoretical 

ways to neurally 

improve the 

optical image 

resolution in the 

fly compound 

eyes. Left, neural 

superposition with 

overlapping 

photoreceptor 

receptive fields. 

Middle, same type 

photoreceptors (here R2s) in the neighboring ommatidia (∆φ ~4.5 o) collect light from neighboring visual areas, 

but their receptive fields (RFs) overlap, having twice as large acceptance angles, ∆ρ ~9.5 o. Right, neighboring 

photoreceptors in the same ommatidium collect light from neighboring visual areas with their RFs overlapping. 

By comparing the resulting variable photoreceptor outputs from a small visual object (0.5 o vertical grey bar), 

neural circuitry may resolve objects finer than the inter-ommatidial angle (∆φ). 

 

All these circuit models could theoretically contribute to motion vision hyperacuity, which 

occurs when a stationary Drosophila eye resolves object motion finer than its ~4.5o inter-ommatidial 

angle (the average sampling point or photoreceptor spacing). And crucially, in Appendix 10, we use a 

flight simulator system to demonstrate and quantify Drosophila hyperacute optomotor behavior to sub-

interommatidial stimuli (1-4o). However in Appendix 7-8, we further provide decisive evidence that 

the spatiotemporal resolution of the early neural images is improved by synchronized and coherent 

photomechanical rhabdomere contractions (Hardie & Franze, 2012), which move and narrow R1-R6s’ 

receptive fields. Together with refractory information sampling, this enables photoreceptors to encode 

space in time. Therefore, as the RFs narrow with moving stimuli, this reduces the overlap between the 

neighboring RFs and, consequently, affects the potential resolving power of the circuit models in 

Appendix figure 21.  

We conclude that at the photoreceptor level the overlapping RFs provide neither necessary nor 

sufficient mechanistic explanations for the Drosophila spatiotemporal hyperacuity. However, at the 

lamina interneuron level, such connectivity arrangements may further enhance hyperacute vision. It is 

also possible that any kind of retinal image enhancement would be further coordinated centrally to 

match the visual needs of a locomoting fly. In walking blowflies, intraocular muscles in both the left 

and right eye seem to contract synchronously with increasing rates, causing vergence eye movements 

(Franceschini et al., 1991; Franceschini & Chagneux, 1994; Franceschini et al., 1995; Franceschini & 

Chagneux, 1997; Franceschini, 1998). Finally, we note that in lobula plate motion sensitive cells, 

responses to moving visual stimuli increase with locomotion (Chiappe et al., 2010; Haag et al., 2010; 

Maimon et al., 2010; Tang & Juusola, 2010), although there is currently no evidence to relate this 

phenomenon to hyperacuity, as characterized here. 

 

Possible dynamics arising from connectivity and variable rhabdomere sizes  

Temporal output modulation through gap-junctions between R1-R6 and R7-R8 photoreceptor axons 

could further contribute, as a possible network mechanism, to the acuity improvements that we report 
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in this publication (Figures 7-8; see Appendix 6). Drosophila R1-R6s have larger rhabdomeres, each 

with ~30,000 microvilli, whereas those of R7s and R8s contain only ~15,000. Owing to superposition 

in each neuro-ommatidium, both of these photoreceptor classes integrate photons from the same small 

area in space, but for given light changes, the macroscopic R1-R6 output rises and decays faster than 

those of R7s and R8s. This is because R1-R6 rhabdomeres integrate twice as many samples (quantum 

bumps) from the same stimulus and their membranes have likely smaller time constant (Anderson & 

Laughlin, 2000). Therefore, at each moment in time, R1-R6 and R7-R8 outputs carry a dynamic phase 

difference. If their responses were to antagonize each other through the gap-junctions between R6 and 

R7/R8 axons (Shaw, 1984; Shaw et al., 1989; Wardill et al., 2012), similar to the crosstalk between 

Calliphora R7 and R8 outputs (Hardie, 1984), phasic R1-R6 output components could be enhanced 

even further.  
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Appendix 6: Neural images of moving point-objects (R1-R6 recordings vs. classic predictions) 

 

Overview 

This appendix describes a new method to measure Drosophila photoreceptor output to moving dots, 

and shows how these responses provide much higher visual resolution and motion blur resistance than 

what is predicted by the classic theories, supporting the results in Figures 7-9. 

 

In this appendix: 

 We measure how well dark- and moderately light-adapted wild-type Drosophila R1-R6 

photoreceptors resolve bright dots (point-objects), which cross their receptive fields at different 

speeds.  

 We compare these intracellular recordings to those of histamine-mutants, hdcJK910 (Burg et al., 

1993; Melzig et al., 1996; Melzig et al., 1998), in which first-order interneurons are blind 

(receive no neurotransmitter from photoreceptors) and thus incapable of feedback-modulating 

the photoreceptor output. 

 We further record voltage responses of blowfly (Calliphora vicina) R1-R6 photoreceptors to 

moving point-objects, as an additional test of our experimental setup, stimulus paradigm and 

mathematical analyses, validating this method. 

 We evaluate the wild-type and mutant recordings against their respective classic model 

simulations, in which each recorded receptive field is convolved by the same cell’s impulse 

response. 

 Our results indicate that both wild-type and hdcJK910 R1-R6s resolve moving dots about equally 

well, and significantly better than the corresponding classic model simulations. 

 These findings demonstrate that the classic deterministic photoreceptor models (Srinivasan & 

Bernard, 1975; Juusola & French, 1997; Land, 1997) for resolving moving objects grossly 

underestimate the visual resolving power of real photoreceptors. 

 Consequently, the classic theory overestimates the effects of motion blur on Drosophila vision 

during saccadic behaviors. 

 

Retinal limitations and capacity to resolve moving objects 
A single photoreceptor’s voltage responses can give important insight into neural image processing 

behind a fly’s ability to detect small objects, whether in high-speed chasing flights or against a cluttered 

background (Burton & Laughlin, 2003; Brinkworth et al., 2008). Theoretically, when a point-object 

moves uniformly across an array of photoreceptors, each cell would produce a similar response. But 

these responses would be displaced in time, t, which it takes for the object to travel between two 

adjacent cells’ receptive field centers (Srinivasan & Bernard, 1975). Thus, the response of the whole 

array, as a collective neural representation of the moving point-object, would be a travelling pattern 

with a mirrored waveform. Mathematically, this can be extrapolated from a single photoreceptor’s 

response. We now apply this classic approach to simplify the questions about neural images of moving 

point-objects and compare its predictions to R1-R6s’ spatiotemporal responses. 

First, we consider the problem of neural latency compensation in motion perception. This is 

related to the flash-lag effects observed in humans (Krekelberg & Lappe, 2001; Nijhawan, 2002). Due 

to the inevitable phototransduction delays, every sighted animal should encounter this problem and 

Drosophila is not an exception. At 19 ºC, its photoreceptors’ voltage responses rise ~10 ms from the 

light flash and peak 15-30 ms later (Juusola & Hardie, 2001b). Given that a fly’s saccadic turning speed 

(Fry et al., 2003) in flight can exceed 1,000 o/s, such delays need compensating by network 

computations. Otherwise, neural images of its surroundings could lag behind their actual positions by 

more than 25o, making fast and accurate visual behaviors seemingly infeasible.  

Such compensations have been shown to occur early on in vertebrate eyes. In the tiger 

salamander and rabbit retina, ganglion cells’ firing rates lag behind flashing but not moving bars (Berry 

et al., 1999). Whether similar processing happens in insect eyes is unknown. By analyzing Calliphora, 

wild-type Drosophila and hdcJK910 R1-R6 output to a point-object crossing their receptive fields, we 

find their time-to-peak values broadly similar to those evoked by light flashes. Therefore, these lag 

times are not, or at most weakly, compensated by the signal spread between photoreceptors. 
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Second, we examine whether R1-R6 output to point-object motion displays directional 

preference, as suggested by the asymmetric synaptic feedback to them (Meinertzhagen & Oneil, 1991; 

Rivera-Alba et al., 2011). While both L1 and L2 monopolar cells mediate a major neural pathway in 

the lamina, L2s show richer connectivity. Only L2 projects feedback to R1-R6 and have reciprocal 

connections with L4, which in turn connects to L4s of the neighboring neural cartridges (Braitenberg 

& Debbage, 1974), providing further feedback to photoreceptors (Meinertzhagen & Oneil, 1991; 

Rivera-Alba et al., 2011). We find that whilst the photoreceptors’ peak responses show no clear 

directional preference, their rise and delay time courses to front-to-back and back-to-front moving 

point-objects often differ significantly. Although it is still possible that these differences may in part be 

augmented by the asymmetric network feedback, we show in Appendixes 7-8 that they actually 

originate from photomechanical R1-R8 contractions (Hardie & Franze, 2012).  

Third, we investigate whether network regulation affects R1-R6 cell’s spatiotemporal acuity. 

By using the classic approaches (Srinivasan & Bernard, 1975; Juusola & French, 1997; Land, 1997), 

we estimate the theoretical blur effects and the eye’s ability to resolve bright dots moving at certain 

speeds. Furthermore, we apply the Volterra series, a widely used “black-box” modeling method 

(Marmarelis & Mccann, 1973; Eckert & Bishop, 1975; Gemperlein & Mccann, 1975; Juusola et al., 

1995b; Korenberg et al., 1998), to simulate wild-type and hdcJK910 R1-R6 output to these point-objects 

(Juusola et al., 2003; Niven et al., 2004). Remarkably, the simulations make it clear that these models 

cannot predict the recordings accurately (see Appendix 1 and Figures 7 and 8G-I).  

Spatiotemporal resolution of the eye is thought to be determined by two components with 

special characteristics: the static spatial resolution of light input, as channeled through the optics 

(Srinivasan & Bernard, 1975; Hornstein et al., 2000), and the temporal response dynamics of 

photoreceptors. These characteristics are further influenced by the photoreceptors’ adaptation state and 

synaptic feedback. The classic approaches suggest that because wild-type R1-R6s’ acceptance angles 

(∆ρ) are 10.9% wider than those of hdcJK910 but their response dynamics are similar (see Appendix 4), 

they should produce blurrier images (of wider spatial half-width, S). Moreover, as hdcJK910 R1-R6s lack 

synaptic feedback modulation (Dau et al., 2016), their predicted higher acuity should reflect differences 

in spatiotemporal photon sampling dynamics. Our recordings show, however, that both wild-type and 

hdcJK910 R1-R6s resolve moving dots at least twice as well what the classic theory predicts, and that any 

resolvability difference between these cells largely disappears against a lit background. Thus, in dim 

conditions, lateral summation within the network may sensitize R1-R6 output by trading-off acuity, 

whereas in bright conditions more independent photoreceptor output sharpens neural images. 

Nonetheless, the classic theory cannot account for these dynamics, as it greatly overestimates the effect 

of motion blur on photoreceptor output. 

We later demonstrate in Appendixes 7-8 how and why the model simulations (of this appendix) 

differ from the corresponding recordings. Essentially, this is because the classic theoretical approaches 

do not incorporate two interlinked biophysical mechanisms that are critical for high acuity. (i) Rapid 

photomechanical photoreceptor contractions (Hardie & Franze, 2012) accentuate light input 

dynamically by shifting (front-to-back) and narrowing the cell’s receptive field as moving bright point-

objects enter in its view. While (ii) stochastic refractory photon sampling by microvilli accentuates the 

temporal dynamics in R1-R6 output. These mechanisms work together to improve the acuity and 

resolvability of moving objects far beyond the predictions of the classic models. 

 

Moving visual stimuli 
The 25 light-point array and LEDs pads, which we used for creating images of moving objects and 

providing ambient illumination, respectively, are described in Appendix 4. In the Drosophila 

experiments, the 25 light-point array was placed 6.7 cm away from the fly, subtending an angle of 

40.92o. This gave each light-point (dot) 1.7o size and minimum inter-dot-distance. In the Calliphora 

experiments, these parameters were 17 cm (distance) and 16.73o (viewing angle). 

Images of one moving point-object (dot) were produced by briefly turning each light-point on 

and off, one after another in an incremental (for front-to-back direction) or decremental order (for back-

to-front direction). Accordingly, Channel 0 input was driven with increasing or decreasing “ramp” 

(Appendix figure 24A), while Channel 1 input was set to 2 V. The travelling time of an object, or 

duration of the “ramp”, was between 50 ms and 2 s, resulting in object speeds within naturalistic range 

(Schilstra & Van Hateren, 1999; van Hateren & Schilstra, 1999; Fry et al., 2003): from 20 to 818 o/s for 
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Drosophila and 8 to 334 o/s for Calliphora. 

The ability to resolve two moving point-objects of Drosophila photoreceptors were tested in 

dark-and light-adaptation conditions. In light-adaptation experiments, two 39-LED pads, on both sides 

of the 25 light-point array, provided background illumination (see Appendix 4, Appendix figure 15). 

The two dots in the 25 light-point array were separated by 6.8o (four dark points in between) and moved 

together at different speeds; typically, 205, 409 or 818 o/s. Each stimulus was presented 8-10 times to 

the fly and the resulting photoreceptor responses were averaged before being analyzed. 

 

Gaussian white-noise (GWN) stimuli 
To evaluate how well the classic theory of fly compound eye optics/function (Srinivasan & Bernard, 

1975; Juusola & French, 1997; Land, 1998) explains single Drosophila R1-R6 photoreceptors ability 

to resolve moving dots, we needed to estimate each photoreceptor’s linear impulse response (the 1st 

Volterra kernel) separately. The cell’s voltage response to moving dots could then be predicted by 

convolving each recorded receptive field by the same cell’s impulse response 

Light-point No.13 intensity was controlled by setting Channel 0 input to 5 V and modulating 

Channel 1 input with a Gaussian white-noise (GWN) time series, which had the mean value of 2.5 V 

and cut-off frequency of 200 Hz. With these settings, light-point No.13 delivered 2.5 × 106 photons/s 

at Peak1 (451 nm) and 3.75 × 106 photons/s at Peak2 (575 nm) on average (cf. Appendix 4: Table 2). 

Finally, these intensities were reduced 100-fold by neutral density filtering 

 

Volterra series model of each tested Drosophila R1-R6 
The principal assumptions of the Volterra series method are that the system has finite memory and is 

time-invariant (Schetzen, 1980). That is, (i) the relationship between output (photoreceptor voltage 

response) y(t) and input (light stimuli) u(t) is characterized by an unchanging impulse response and (ii) 

y(t) depends only on current and past values of u(t - τ) → u(t) with limited regression time, τ. The 

continuous form of this input/output relationship is described by the following equation: 

 

𝑦(𝑡) = 𝑘0 + ∫ 𝑘1(𝜏)𝑢(𝑡 − 𝜏)𝑑𝜏 + ∫ ∫ 𝑘2𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)𝑑𝜏1𝑑𝜏2
𝑇

0

𝑇

0

𝑇

0
  (A6.1) 

 

where k0, k1 and k2 are the zero-, first- and second-order time-invariant kernels, which define the 

system’s impulse response. T is the finite system memory limit. 

Note that the model order is not limited, as expressed only up to 2nd-order in Eq. A6.1, but 

instead could be extended arbitrarily further. However, it has been shown that a light-adapted fly 

photoreceptor’s response to GWN light intensity time series stimulation, as used in these experiments, 

can be approximated well by the linear terms (Juusola et al., 1994; Juusola et al., 1995a). 

Therefore, the estimation of system output was simplified to a linear convolution of input with 

zero- and first-order kernels. Each measurement of photoreceptor voltage response and light stimuli 

could be fitted into the discrete and simplified form of Eq. A6.1 as: 

0 1 1 1

0 1 1 1

0 1 1 1
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          

 (A6.2) 

The group of Eq. A6.2, which approximates N  values of photoreceptor output, was then re-arranged 

into matrix form: 
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 (A6.3) 

 Equivalently, Eq. A6.3 could be symbolized as: 
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Y P      (A6.4) 

where vector Y contained a sequence of N output values, P was the regression matrix constructed from 

the lagged input values, and the column θ elements were the kernel values. The problem of determining 

a photoreceptor’s Volterra series model was hence broken down to designing input stimuli ( )u t and 

measuring output values ( )y t to construct matrices P and Y of Eq. A6.4, and estimating θ. 

u(t) was a GWN series with 200 Hz bandwidth, which thus tested the whole frequency range 

of photoreceptor output. Initially, each tested photoreceptor was steady-state-adapted to the chosen light 

background (the average brightness of the GWN stimuli) for 30-60 s (see also Appendix 4). Input was 

then delivered from the light-point No.13, by setting Channel 0 to 5 V and modulating Channel 1 input 

by the GWN series around the mean value of 2.5 V. Each time series was 3-second-long and was 

repeated 8-10 times before the responses were averaged. The first 1.5 s of the recorded data was used 

to estimate the kernel values. 

Photoreceptor output y(t) was sampled at 10 kHz. It was then preprocessed by removing the 

mean value and trends, and down-sampled.  

Once the matrices Y and P of Eq. A6.4 are constructed, there are several approaches to estimate 

θ with minimal error, such as the least squares regression by using Gram-Schmidt orthogonalisation 

(Korenberg et al., 1988; Korenberg & Paarmann, 1989) or Meixner functions (Asyali & Juusola, 2005). 

Here, θ was approximated by the single value decomposition method (Golub & Reinsch, 1970; Lawson 

& Hanson, 1974), in which the factorization of matrix P and the calculation of its Moore-Penrose 

pseudoinverse matrix, P+, were carried out by the command pinv(P) in MATLAB. The linear least-

squares estimation of θ,  , was given by: 

P Y       (A6.5) 

 

The computed kernels and the second half of GWN stimuli were then substituted to Eq. A6.2 to yield 

the model prediction of the photoreceptor response. The accuracy, or fitness, F, of the prediction was 

quantified by the complement of its mean squared error: 

2

2

( ' )
1 1

( )

y y
F MSE

y y


   


     (A6.6) 

where y  were the actual data measured from the photoreceptor voltage response and y’ were the values 

simulated by the mathematical model. 

 

Conventional simulation of intracellular responses to object motion 
After determining and testing the Volterra model, we next approximated the light stimuli (input) 

delivered by the point-objects crossing a photoreceptor’s receptive field. Since a photoreceptor’s 

voltage response was assumed to be linearly correlated to light input, the response amplitudes to the 

subsaturating light flashes during the receptive field scans (see Appendix 4) were also considered linear 

measurements of the effective intensity from each light-point. Therefore, ( )mu t , created by one moving 

point-object, was modelled as 25 intensity steps, in which amplitudes were proportional to their 

corresponding flash responses (Appendix figure 22). The temporal width of each step was calculated 

according to the object speed. Similarly, ' ( )mu t  of two moving point-objects was constructed from the 

superimposition of ( )mu t  and ( )mu t   , where   was calculated according to the point-objects’ speed 

and their separation angle. 
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Appendix figure 22. Estimating 

the light input from a moving 

object. The effective light stimulus, 

which was delivered to a 

photoreceptor by a moving point-

object, was estimated by a linear 

transformation of the cell’s receptive 

field. The width of each intensity 

step was calculated according to the 

point-object speed. 

 

 

Lastly, a photoreceptor’s voltage response to point-object motion was simulated by substituting input 

( )mu t  or ' ( )mu t  and the kernels values to the zero- and first-order terms of Eq. A6.2. 

 

Maximal responses to moving dots lag behind their actual positions 
Neural images in the fly retina, lamina and medulla are generated by retinotopically mapping the 

surrounding light intensity distribution. This means that light coming from each point in space is 

sampled and processed by one neural cartridge (or neuro-ommatidia) (Meinertzhagen & Oneil, 1991). 

While a stationary object might be seen by several photoreceptors belonging to neighboring ommatidia 

due to their large acceptance angles (Appendix 4) and overlapping receptive fields (Appendix 5), the 

object position is almost certainly perceived on the photoreceptor’s optical axis. This position, along its 

corresponding lamina/medulla cartridge below, produces the largest/fastest intracellular responses 

(Appendix figure 23; see also Appendix 4) as it channels the maximum light influx into the 

rhabdomere (see Appendix 2). 
  

Appendix figure 23. A R1-R6 

photoreceptor’s sensitivity is the 

highest at the center of its receptive 

field. (A) Schematic showing how 

subsaturating isoluminant light pulses 

were delivered at different locations 

within each tested photoreceptor’s 

receptive field. (B) The center 

stimulus (light-point No.13) typically 

evoked a response (orange trace) with 

the larger amplitude and faster rise-

time than any stimulation at the flacks 

(light-points No.9 and No.10, 

respectively). (C) Average voltage 

responses of six photoreceptors to 

corresponding center and side 

stimulation. (D) Normalized 

responses make it clear that the 

responses to the center stimulus rise 

faster. (E) Time to the half-width 

response is significantly briefer (p = 1.39 x 10-5) with the center stimulus. However, time-to-peak of the 

responses to center and side light-points shows more variability between individual cells (p = 0.125). Mean ± 

SD; two-tailed t-test; nwild-type = 6 cells. 

 

Furthermore, it is customarily assumed that a moving point-object’s position would be 

associated with the peak of its neural image. However, this does not necessarily mean that a R1-R6’s 

response maximum would indicate the object position. Rather, it is more plausible - especially during 

high signal-to-noise ratio conditions (bright stimulation) - that the lamina circuitry (cf. Appendix 2, 

Appendix figure 9E) would be amplifying more the photoreceptor signal derivative. This is because 

the large monopolar cells (LMCs) are then more tuned to responding to the rate of light changes (Zettler 

& Järvilehto, 1972; van Hateren, 1992b; Juusola et al., 1995a; Zheng et al., 2006).  
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In fact, neural latency might be compensated at the subsequent processing stages in the visual 

system, so that the peak of the travelling network response wave would closely follow the object’s 

actual position, as is the case of the vertebrate ganglion cells (Berry et al., 1999). Theoretically, if such 

“correction” occurred maximally at the single neuron level, it would mark the coincidence of two 

events. (i) The neuron’s response would peak as (ii) the object passes its receptive field center.  

To examine whether, or to what degree, neural images of moving objects are compensated for 

latency at the first processing stage in the fly R1-R6 photoreceptors, we measured their intracellular 

voltage responses while presenting the fly with a bright dot moving at different speeds. 
 

Appendix figure 24. Photoreceptor 

response maxima lag moving 

objects. (A) Channel 1 input was 

driven by an incremental ramp to 

create an image of a bright dot 

(point-object) moving from the No.1 

light-point to the No.25 (front-to-

back). Similar decremental ramps 

were used to produce back-to-front 

motion. (B) Intracellular responses 

of Calliphora photoreceptors to a 

moving point-object showed two 

response peaks: a large peak at t2, 

which corresponded to the moment it 

travelled pass the cell’s optical axis 

at t1, and a smaller peak at t4  caused 

by the exceptional brightness of 

light-point No.22, which was turn on 

at t3. x was the object’s travelling 

time. (C) An example of the linear 

correlation between t2 and x. Below 

each data point is its corresponding 

stimulus (dot) velocity. (D) An 

example of the linear correlation 

between t4 and x. Again, the 

corresponding dot velocities are 

shown. 

 

Appendix figure 24B depicts a typical response waveform of a blowfly (Calliphora vicina) 

R1-R6 to a bright moving dot (the point-object in Appendix figure 24A). Let x be the time needed for 

it to travel through the 25 light-point array, t1 be the moment when the dot pass the cell’s optical axis, 

i.e. the corresponding light-point is turned on, and t2 be when the intracellular response peaks. With 

varying x , and thus the dot speed, t1, can be computed as:  

1t a x       (A6.7) 

where the coefficient a  is a constant. The aim was to align the 25 light-point array so that the point 

No.13 lies at the tested photoreceptor’s receptive field center. Therefore in theory, a is approximately 

0.48. However, the light-point No.13 might, in fact, be off-axis. For example, the cell’s receptive field 

center could lie in between No.13 and No.12, causing inaccuracy in the calculation of a, t1 and lag time 

b, which is given by: 

2 1b t t       (A6.8) 

To overcome this ambiguity, we plotted t2 against x , given that:  

2 1t t b a x b           (A6.9) 

Appendix figure 24C illustrates an example of the relationship between t2 and x obtained from a 

Calliphora R1-R6. The two parameters fitted exceedingly well to a linear relationship (adjusted R-

squared > 0.9999), in which coefficient a and lag time b were found as 0.486 and 14.62 ms, respectively. 

These data show that in this particular case, indeed light-point No.13 was close to the center of the cell’s 
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receptive field and that lag time b was virtually unchanged for different object speeds. The on-axial 

position of the light-point No.13 was later confirmed by 11 receptive field scans, all of which indicated 

that response elicited by a light flash from No.13 was the largest (data not shown). 

The same photoreceptor was also stimulated by repeating a light flash, to which its voltage 

response peaked 15 ms later. The small difference between the lag time of motion response and the 

response time-to-peak to a flash does not readily imply neural network latency compensation. In case 

of the moving stimuli, photoreceptor was stimulated when the dot entered its receptive field, causing 

its intracellular voltage to start depolarizing before the dot reached the cell’s optical axis. Conversely, 

the photoreceptor’s response to light impulse was only elicited after the stimulus onset, making its time-

to-peak slightly longer than the lag time. 

In the classic flash-lag psychological experiment, where a flashing bar and another uniformly 

illuminated one travelled together, the former was perceived to be trailing (Nijhawan, 1994; Brenner & 

Smeets, 2000). Thus, it is probable that at some stage in the visual system, the voltage response peak 

(maximum) caused by moving object would display shorter delay than those elicited by increasing light 

intensity. In the present study, the light-point No.22 was 4-fold brighter than the others, as discussed in 

Appendix 4, and indirectly played the role of the flashing bar, causing a “local peak” in a 

photoreceptor’s voltage response (Appendix figure 24B). Hence, to further examine neural latency of 

R1-R6 output, we next assessed the lag time, b’, corresponding to this peak in the response. Given t3 is 

the moment when No.22 was turned on, which can be calculated as: 

3 't a x       (A6.10) 

and 4t  is the time of the local response peak (Appendix figure 24B), lag time is defined as their 

difference:           4 3'b t t            (A6.11) 

The relationship between t4 and x could also be described by linear fitting with almost zero residue 

(Appendix figure 24D), yielding a’ and b’ values of 0.83 and 13.29 ms, respectively.  

These data exemplify that a photoreceptor’s response maxima, no matter whether caused by a 

point-object moving across its receptive field or by an unexpected increase in light intensity, show 

similar lag time characteristics. Both b and b' were independent of the object speed and comparable to 

the response time-to-peak, as induced by a comparable flash. These features were reproducible and 

general; observed in all 7 tested Calliphora photoreceptors, without exception (Table 6). 

 

Animal 

Flash 

response 

time-to-

peak (ms) 

Peaks corresponding to the 

receptive field center 

Peaks corresponding to the 

light-point No.22 

Lag-time  b  

(ms)  
Adj. R-Sqr  Lag-time 'b  

(ms) 
Adj. R-Sqr 

Calliphora 
14.85 ± 

0.78 

14.6 ± 0.64 
0.99985 ± 

0.00012 
13.9 ± 3.59 

0.99985 ± 

0.00017 

n = 7 n = 5 

Table 6. Response latency to dot motion analyses in Calliphora R1-R6s (Mean ± SD). Intracellular 

recordings were performed at 19 oC. The tested moving dot (point-object) velocities were: 334.6, 167.3, 111.53, 

83.65, 66.92, 55.77, 47.8, 41.83, 37.18 and 33.46 o/sec. 

Animal 

Flash 

response 

time-to-

peak (ms)  

Front-to-back Back-to-front 

Lag-time  b  

(ms) 
Adj. R-Sqr Lag-time  b  

(ms) 
Adj. R-Sqr 

Wild-type 

Drosophila 

23.81 ± 

1.41 

21.41 ± 4.5 
0.99649 ± 

0.0065 
22.54 ± 4.15 

0.99378 ± 

0.007 

n = 12 n = 5 

hdcJK910 24.4 ± 1.08 
21.82 ± 1.36 

0.9992 ± 

0.0008 
23.79 ± 5.72 

0.9978 ± 

0.003 

n = 3 
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Table 7. Response latency to dot motion analyses in Drosophila wild-type and hdcJK910 R1-R6s (Mean ± 

SD). Intracellular recordings were performed at 19 oC. The tested point-object velocities were: 818.4, 409.2, 

272.8, 204.6, 163.68, 136.4, 116.91, 102.3, 90.93 and 81.84 o/s. Note, these statistics are collected from 

individual recordings, not from paired data. 

 

Drosophila photoreceptors’ voltage responses did not clearly exhibit the “local peak” to the 

light-point No.22; possibly owing to their slower temporal dynamics. Nevertheless, the temporal 

position of the “global peak”, measured by t2 of wild-type (n = 12) and hdcJK910 (n = 3) photoreceptor 

outputs, consistently showed linear correlation to x and comparable lag-time/time-to-peak values 

(Table 7). Their corresponding maxima showed slightly larger lag time variations, and thus the linear 

fits were not as error-free as with the Calliphora data. Nonetheless, overall, the mathematical relation 

between their peak response lag time and the object speed appeared similar. The comparable wild-type 

and hdcJK910 R1-R6 output maxima to the tested point-object velocities, as recorded from their somata, 

suggests that their response dynamics mostly reflect similar phototransduction processing, with 

possibly only marginal influence from the lamina network. 

Altogether, these data imply that fly phototransduction machinery (see Appendixes 1-2) 

samples intensity changes and object motion much the same way. Because its peak responses lag behind 

the actual positions of the moving objects, the neural latency of moving objects is most likely 

compensated downstream by image processing within the interneuron networks, starting with the LMCs 

(cf. Appendix 2, Appendix figure 9E). 

 

Response rise and decay to object motion show directional selectivity 
As summarized in Table 7, Drosophila photoreceptors’ maximum responses to a front-to-back or back-

to-front moving bright dot did not exhibit clear signs of latency compensation, as indicated by their 

similar time-to-peak durations (estimated from the population means of individual unpaired recordings). 

Interestingly, in the paired recordings, however, the response rise and decay time-courses often showed 

considerable latency modulation.  

Appendix figure 25 depicts intracellular responses to a moving dot, passing a photoreceptor’s 

receptive field front-to-back and back-to-front at (A) 409, (B) 205, (C) 136 and (D) 102 o/s. Although 

their time-to-peak values appeared similar, the response rise and decay dynamics showed clear 

differences (Appendix figure 25E-H), which correlated with the dot speed and motion direction. We 

shall later show in Appendix 7, using high-speed video recordings of photoreceptor rhabdomeres, that 

their photomechanical contractions (Hardie & Franze, 2012) occur in back-to-front direction. Light 

input modulation by these directional microsaccades can much explain the phasic differences in 

photoreceptor output to different directional point-object motions. 
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Appendix figure 25. Photoreceptor 

output’s time-to-peak is insensitive 

to object motion direction but its 

waveforms rise and decay faster to 

back-to-front motion. Examples of 

intracellular voltage responses of the 

same dark-adapted Drosophila 

photoreceptor to a bright dot (point-

object), which crosses its receptive 

field in back-to-front (green) or front-

to-back (brown) directions (Mean ± 

SEM). The insets show a schematic of 

the compound eye structure, with the 

green Gaussian representing a R1-

R6’s receptive field. (A-D) Voltage 

responses to 409, 205, 136 and 102 º/s 

object speeds, respectively, plotted 

over the whole duration of the 

corresponding stimuli. (E) Whilst the 

similarly timed respective response 

peaks showed no clear directional 

preference, the response waveforms, 

nevertheless, systematically rose and 

decayed earlier to back-to-front 

(green) than to front-to-back motion 

(brown), irrespective of the object 

speed. (F) The response rise-time 

(measured by time to half-maximal 

response), decreased with increasing 

object motion but it was always less to 

corresponding back-to-front (green) 

than front-to-back (brown) motion. 

This delay difference (white bars) was 

significant for all the tested object 

speeds and varied between 2 and 10 

ms (mean ± SEM, 0.01 ≤ p ≤ 2.18 x 

10-14, 9 ≤ n ≤ 12 trials, two-tailed t-

test). (G) Because the response rise 

and decay times changed in unity, the 

resulting response half-widths to 

corresponding back-to-front and front-to-back object motion were largely similar. (H) Accordingly, the 

response half-width decreased with increasing object motion, but showed only small (<4 ms) inconsistent 

differences (bars) between the corresponding back-to-front and front-to-back object speeds. These results are 

consistent with the fast light-induced photoreceptor contractions, which move their receptive fields in front-to-

back direction, as observed directly in high-speed video recordings in vivo (Appendix 7). 

 

When a R1-R6 contracts to light input, its receptive field moves front-to-back (Appendixes 7-

8). Thus, with the ommatidium lens inverting images, its responses to the back-to-front dot motion raise 

systematically slightly earlier (Appendix figure 25E, F). This rise-time lag reduces because the dot 

moves against the receptive field motion, whilst the rise-time lag increases during comparable front-to-

back motion when the dot moves along the receptive field motion. In other words, a dot stayed a bit 

longer within a R1-R6’s receptive field during front-to-back motion than back-to-front motion. Such 

phasic differences were consistently observed in most recordings over the tested speed range. For 

example, 205 o/s back-to-front movement evoked narrower temporal response half-widths in 8/10 R1-

R6s than the opposite movement. Similarly, 409 o/s back-to-front movement evoked narrower temporal 

response half-widths in 6/10 R1-R6s (in 2 cells, these were identical; and wider in 2). 

In summary, a prominent feature of R1-R6s’ voltage responses to opposing object motion 

directions is their similar time-to-peak values. This was found in all somatic recordings of Calliphora 

and Drosophila photoreceptors. Intriguingly, though, we further identified small (2-10 ms) but 
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significant differences in the response rise and decay to front-to-back and back-to-front object motion. 

These phasic differences in photoreceptor output can be largely explained by each cell’s directional 

photomechanical contractions, and we later show how these contribute to improving the fly’s visual 

acuity (Appendixes 7-8). It is plausible that these directional preferences would be further enhanced 

downstream at the level of network processing. During bright stimulation, LMCs respond most strongly 

to the rate of change in photoreceptor output (Juusola et al., 1995a; Zheng et al., 2006; Zheng et al., 

2009; Wardill et al., 2012), with the rich connectivity of the optic lobes proving further possibilities for 

the required phase coding (Meinertzhagen & Oneil, 1991; Rivera-Alba et al., 2011; Wardill et al., 2012; 

Behnia et al., 2014). 

 

Classic theory greatly overestimates motion blur in R1-R6 output 
We showed in Appendix 4 that dark-adapted hdcJK910 photoreceptors have narrower receptive fields 

(acceptance angles) than their wild-type counterparts but broadly similar response dynamics (Figure 7-

figure supplement 1). Thus, the prediction is that hdcJK910 R1-R6s should produce slightly sharper 

neural images than their wild-type counterparts after dark-adaptation. Classic theoretical approaches 

have been used to predict how the spatial and temporal factors might jointly affect visual acuity 

(Srinivasan & Bernard, 1975; Juusola & French, 1997). Accordingly here, we first predict with them 

the motion blur effects on wild-type and hdcJK910 R1-R6 outputs. Later on, we test the ability of these 

cells to distinguish two dots moving together, separated by less than the cell’s acceptance angles. 

Since a fast moving bright dot can stimulate several photoreceptors virtually at the same time 

(Appendix figure 26A), theoretically, it should not be perceived as a single point but a streak, of which 

length is a function of object speed. This motion blur effect is classically quantified by the spatial half-

width S of object’s neural image. Because the spatial response in the retina has a similar waveform with 

the temporal response of a single photoreceptor (Srinivasan & Bernard, 1975; Juusola & French, 1997), 

S can be calculated as: 

hS w T        (A6.12) 

where w  is the object speed and Th (cf. Appendix figure 25G) is the temporal half-width of a single 

photoreceptor response. 
 

Appendix figure 26. Object motion 

blur according to the classic 

theory, applied to the neural 

images in the Drosophila eye as it 

was thought to affect them in the 

past. (A) Hypothetical spatial pattern 

of an instantaneous voltage response 

at an ommatidial array produced by a 

moving point-object. Figure redrawn 

from (Srinivasan & Bernard, 1975). 

(B) Spatial half-width of neural 

image of a moving point-object as a function of its speed in Dim and Bright conditions. For all the tested 

speeds, Shdc were significantly smaller than Swild-type (p = 0.0036-0.049, t-test), except for 205°/s in Bright 

condition, where the statistical test yielded p = 0.137. S was calculated using data at 19 oC.  Mean ± SEM, nwild-

type = 4-15, nhdc = 3-16, two-tailed student test. 

 

Appendix figure 26B illustrates the predicted relationship between the object speed and neural image 

resolution in wild-type and hdcJK910 Drosophila. These estimates imply that the spatial half-width of 

wild-type neural images should be 1-2o wider than that of the hdcJK910 during both the dim and bright 

conditions, reflecting wild-type R1-R6s’ wider acceptance angles (∆ρ) (see Appendix 4, Figure 7-

figure supplements 1A and 2B). This prediction agrees with the previous theoretical works (Srinivasan 

& Bernard, 1975; Juusola & French, 1997), which used similar methods to indicate two distinct regions 

of image resolution. Thus, theoretically, at low object speeds, visual acuity should be mostly determined 

by a photoreceptor’s spatial receptive field, but at high speeds, the motion-blur effect should increase 

rapidly, becoming the dominating factor. The corresponding trend differences (as separated by a thin 

dotted line) suggest that the point-object speed threshold dividing the two regions would be about 100-

120 o/s.  
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Remarkably, however, we next demonstrate how these theoretical predictions greatly 

overestimate motion blur effects in R1-R6 output, and that these cells can, in fact, resolve image details 

finer than the half-width of their receptive fields, even at very high saccadic speeds. 
 

Appendix figure 27. Resolving two 

moving point-objects. (A) Two 

light-points (bright dots) moving 

together were presented in the tested 

photoreceptor’s receptive field at 19 
oC. The dots were 6.8° apart and 

travelled at 409°/s in the front-to-

back direction. For clarity, neutral 

density filters and the LEDs pads 

used for background illumination are 

not shown in this picture. (B) In Dim, 

12 out of 18 wild-type 

photoreceptors could resolve them, 

showing the response waveform 

depicted by the continuous line, with 

the larger trailing peak. While 6 other 

could not distinguish the two objects; 

showing the waveform of by the 

dotted line. In Bright, 5 out of 6 

examined wild-type photoreceptors 

resolved the two dots. (C) Response 

waveform of hdcJK910 R1-R6s 

exhibited two distinct peaks, with the 

leading one was the larger. In Dim, 

15 out of 16 tested mutant 

photoreceptors could resolve the two 

objects and 14 of them displayed this 

waveform. In Bright, all of 8 

recorded hdcJK910 photoreceptor 

responses resolved the objects. D-

values were calculated from the 

amplitude of the smaller peak and the dip in between. (D) In Dim, D-values of hdcJK910 R1-R6 responses were 

significantly larger than their wild-type counterpart. Dwild-type = 4.51 ± 0.67%, Dhdc = 10.5 ± 1.35%, p = 0.00075, 

t-test, nwild-type = 12, nhdc = 15. (E) In Bright, the difference of D-values of the two photoreceptor groups was 

statistical insignificant. Dwild-type = 9.81 ± 1.65%, Dhdc = 16.71 ± 1.86%, p = 0.117, t-test, nwild-type = 5, nhdc = 8. 

(F) Changing from Dim to Bright condition, D-values of wild-type photoreceptors appeared to exhibit larger 

changes than those of mutant photoreceptors. However, the difference was not statistically significant due to 

the large cell-to-cell variation. RC wild-type = 262 ± 126%, RC hdc = 31 ± 11%, p = 0.164, nwild-type = 4, nhdc = 7. 

(D-F) Mean ± SEM, two-tailed student test. 

 

In the second type of experiment, two bright dots, which were less than the half-width of a R1-

R6’s receptive field (6.8o) apart, crossed its receptive field at 409 o/s (Appendix figure 27A). Each 

tested photoreceptor’s ability to distinguish the dots was assessed whether its response showed two 

clear peaks (Appendix figure 27B, solid line) or only one (dotted line). Quite unexpectedly, even at 

the low room-temperature of 19 oC, where phototransduction is slower than at the flies’ preferred 

temperature of 25 oC (Sayeed & Benzer, 1996; Juusola & Hardie, 2001b), 12/18 of wild-type R1-R6 

photoreceptors and 15/16 hdcJK910 R1-R6s could clearly resolve the two dots. (Note that at 25 oC, every 

tested R1-R6 resolved them well; Figure 9-figure supplement 1E-F). Amongst the wild-type 

responses, the trailing peak was often larger than the leading one (Appendix figure 27B, solid line), 

whereas all but one hdcJK910 R1-R6 had the larger leading peak (Appendix figure 27C). This 

observation suggests that excitatory synaptic feedback modulation, which hdcJK910 photoreceptors lack, 

may enhance the second peak in the wild-type responses. Resolvability was further quantified by D-

values: 
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d

D
P

      (A6.13) 

Where P is the amplitude of the smaller peak and d is the depth of the response dip between the two 

peaks (Appendix figure 27C). In darkness, D-values measured from the mutant photoreceptors were, 

on average, more than double those of wild-type (Dwild-type = 4.51 ± 2.33%, Dhdc = 10.5 ± 5.23%), 

indicating that hdcJK910 R1-R6s resolve the two points more clearly than their wild-type counterpart 

(Appendix figure 27D). Under light-adaptation (ambient illumination), while R1-R6s of both 

genotypes exhibited significant improvements in their image resolution (Dwild-type = 9.81 ± 3.7%, Dhdc = 

14.85 ± 6.95%), the difference between the two groups decreased and was at the margin of statistical 

significance (Appendix figure 27E; p = 0.058, t-test). Taking into account only the cells in which D-

values were measured in both dim and bright conditions, the enhancement of D-values to the ambient 

light change was quantified by their relative change: 

Bright Dim

Dim

%C

D D
R

D


       (A6.14) 

On average, wild-type D-values improved by 262%, ranging from 43% to 604%. These changes 

appeared to be markedly larger than those observed in hdcJK910 photoreceptors, which varied from 4% 

to 89% and averaged as 31%. Yet, the difference between the two groups was not statistically significant 

because of the large individual variations (Appendix figure 27F).  

In Figure 7, we further analyze the resolvability of those high-quality wild-type and hdcJK910 

R1-R6s, from which we recorded the impulse response and receptive field measurements at the two 

adapting backgrounds - dim and bright at 25oC, as well as responses to both 205 and 409 o/s moving 

dots. Such data allowed us to compare the classic theory to the real recordings even more thoroughly. 

Together, these results show that the theoretical spatial half-width, S, grossly underestimates 

R1-R6 photoreceptors’ image resolution. Recordings clarify that two bright dots that travel 409 o/s can, 

in fact, be resolved by a single photoreceptor, even when the dots (6.8o separation) are less than the 

photoreceptor’s acceptance angle (∆ρ = 9.5o) apart. Therefore, a R1-R6 photoreceptor’s real spatial 

half-width for the same high (saccadic) speed must be less than half of the theoretical estimate (~15o; 

Appendix figure 26B). In other words, the classic theory overestimates the role of motion blur on 

Drosophila vision, as its R1-R6 photoreceptors resolve fast-moving dots beyond the predicted motion 

blur limit.  

The recordings further indicate, consistent with hdcJK910 R1-R6s’ marginally narrower 

acceptance angles (Appendix 4, Figure 7-figure supplements 1-2), that their spatiotemporal resolution 

is somewhat better than that of wild-type photoreceptors, both in dim and moderately bright conditions. 

However, when ambient light intensity was changed, the spatiotemporal resolutions of wild-type R1-

R6s improved more. Here, possible contributing factors include:  

 Slight (~4%) differences in the photoreceptors’ rhabdomere diameters (see Appendix 5) 

 Dynamic and homeostatic regulation of [Ca2+]i, membrane properties and synaptic feedback 

(Dau et al., 2016) 

 Intracellular pupil (see Appendix 2 and Appendix 4) 

 Differences in photomechanical rhabdomere contractions (see Appendixes 7-8) 

 Electrical coupling between the cells 

Their potential roles are further discussed in Appendixes 7-8 

 

Modeling R1-R6 output by the Volterra series method 
Volterra kernels of each photoreceptor model were computed from the first half (1.5 s) of GWN data 

(https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/VolterraModelOfPhotore

ceptor), before the other half of recorded light stimuli and voltage responses were used to validate the 

model. Because the output simulation accuracy depends upon input statistics and the model 

computation specifications, the system identification process was optimized by selecting suitable 

parameters. 

Firstly, to test whether the selected 200 Hz input bandwidth was appropriate (Appendix figure 

28A), we analyzed the resulting signal-to-noise (SNR) ratio of photoreceptor output (Appendix figure 

28B). SNR decayed below 1 at around 66 Hz; at which point photoreceptor response contained more 
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noise than signal. Thus, the GWN stimuli predictably activated a R1-R6 photoreceptor’s whole 

frequency range. 

Secondly, we assessed different sampling rates. According to the Nyquist-Shannon sampling 

theorem, a signal without frequencies higher than B Hz can be perfectly sampled and reconstructed 

(Shannon, 1948) by sampling rate Fs of 2B Hz. Because the bandwidth of interest was 0-66 Hz, the data 

could be processed, in theory, at any sampling rate from 132 Hz to the recorded rate of 10 kHz, without 

compromising its information content. 

 
Appendix figure 28. Predicting 

responses to Gaussian white noise 

(GWN). (A) GWN light stimulus 

power spectrum with 200 Hz cut-off 

frequency. (B) Signal-to-noise ratio 

(SNR) of a wild-type R1-R6 

photoreceptor’s voltage response at 

19 oC. Here, because the mean 

stimulus intensity was kept well 

within the subsaturating range (100-

times lower than in the experiments 

of the main paper), having 200 Hz 

bandwidth, SNRmax of the 

photoreceptor output was ~20 

(consistent with high-quality 

recordings for this specific stimulus 

condition) (Juusola & Hardie, 

2001a). Noise power exceeded signal 

power at around 66 Hz. hdcJK910 R1-

R6 outputs exhibited similar 

characteristics (data not shown for 

clarity). (C) Examples of kernels 

computed at different sampling rates 

from the same raw data. (D) 

Accuracy of GWN response 

simulation by Volterra series models 

for wild-type and hdcJK910 R1-R6s. 

Fwild-type = 86 ± 2.5%, Fhdc = 86.6 ± 

1.6%. (E) Simulations of Drosophila 

R1-R6 responses to GWN stimuli 

matched the actual data closely. (B, D) Mean ± SEM, nwild-type = 9, nhdc = 8.  

 

We found that higher sampling rates yielded models, which predicted R1-R6 output with 

slightly higher accuracy. However, their kernels also exhibited larger fluctuations, and the kernels did 

not decay to zero over time, most likely due to high-frequency noise. For Fs = 1,000 Hz and higher, 

such fluctuations undermined the physiological meaning of the Volterra 1st-order kernel (Appendix 

figure 28C), which is the photoreceptor’s impulse response (Victor, 1992). Thus, the kernels computed 

from too richly-sampled data would be useful only for response prediction to this particular GWN 

stimulus. 

On the other hand, while computations performed with lower Fs data would produce smoother 

kernels, a low sampling rate would also limit the model’s other applications. For example, Volterra 

series models were used to simulate photoreceptor response to the image of moving objects created by 

the 25 light-point array. For an object moving at 409 o/s, its travelling time across the array was 100 

ms, or 4 ms per light-point. As the simulation required at least 2 data-points per light-point, Fs was 

chosen to be 500 Hz, at which rate reasonably smooth kernels could still be produced (Appendix figure 

28C). Moreover, because the 1st-order kernel values decayed to zero at 50-60 ms, it was deemed that a 

80 ms kernel length was sufficient for the computations. 

Volterra series models, computed from data sampled at 500 Hz, could consistently predict 

response of Drosophila photoreceptors to GWN stimuli (for example, see Appendix figure 28E). On 
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average, the model simulation accuracy, given by Eq. A6.6, was ~86% for both wild-type and hdcJK910 

photoreceptors (Appendix figure 28D). These high F values confirmed that a linear Volterra series 

model could approximate light-adapted Drosophila photoreceptor output to the test stimulation 

appropriately. 

 

Classic theory underestimates how well R1-R6s resolve fast moving dots 
By approximating the light input directly from the receptive field measurements (Appendix figure 22) 

and the corresponding R1-R6 output by Volterra series (Appendix figure 28C), we could estimate each 

tested Drosophila photoreceptor’s responses to moving bright dots. This was done by convolving the 

extrapolated light stimuli with the corresponding impulse responses. 

The model predictions for a single moving stimulus were far less consistent than those for GWN 

stimuli. Appendix figures 29A-B show representative simulations with broadly acceptable and clearly 

unacceptable accuracies, respectively, together with the corresponding intracellular recordings.  

From both the recordings and simulations, we further calculated the theoretical dot motion 

effects on the neural image resolution, or spatial half-width, S (Appendix figures 29C). As explained 

above (cf. Appendix figure 26B), the classic theory can only broadly suggest the relative differences 

between wild-type and mutant performances. Here, its application to the simulations further 

underestimated the spatial half-width predictions of wild-type recordings and over-estimated those of 

the hdc mutant. 

 
Appendix figure 29. Prediction accuracy of the 

Volterra series photoreceptor models to moving 

point-objects varies considerably. (A) Two 

examples of model simulations, which were 

reasonably close to the actual intracellular 

recordings to the tested dot motion. (B) Two 

examples of simulations that clearly differed from 

the recordings. (C) Theoretical predictions of 

photoreceptor output spatial half-width, calculated 

from the recordings and simulations as a function 

of the point-object speed. Mean ± SEM, nwild-type = 

9, nhdc = 8. The theoretical spatial half-widths of the 

simulations differ from those of the recordings. E.g. 

the wild-type recordings (black) predicted 

consistently narrower S than the corresponding 

simulations (blue). The predicted resolvability of 

the resulting neural image, or spatial half-width (S), 

was consistently lower for the simulations than for 

the recordings. (D) Crucially, Volterra series 

models failed to predict how well the actual 

photoreceptor output resolves two close objects 

moving together very fast (shown for 409 and 818 
o/s). For the 818 o/s prediction, we used here the 

fastest impulse response, recorded from another 

cell, but even so, the model still could not resolve 

the two dots. Thus, the actual spatial half-width of 

R1-R6s, limiting Drosophila’s resolving power at 

high image velocities, is about half of that estimated 

in (C). (Note, the dynamic biophysical mechanisms 

causing this difference – both in light input and 

photoreceptor output - are explained in Appendix 8. Recordings and simulations were at 19 oC. 

Most critically, however, Volterra series models consistently failed to predict the fast phasic 

components of the recorded voltage responses, and thus their real resolvability, to two fast moving dots 

(Appendix figures 29D; see also Figure 7). The model simulations, and hence its underlying classic 

theory, always predicted lower resolvability than what we saw in the actual recordings. Further 

investigations (Appendixes 7-8) revealed that this discrepancy reflected the missing biophysical 

mechanisms of the empirical black-box models (see Appendix 1). Specifically, the used photoreceptor 
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models lacked: (i) the photomechanical rhabdomere movements, which shift and narrow a R1-R6’s 

receptive fields, and (ii) the refractory sampling, which allows many microvilli (after the 1st dot) to 

recover from refractoriness (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015) to respond 

to the 2nd dot. Moreover, by tuning and validating the Volterra kernels to GWN stimuli at relative 

steady-state, we inadvertently limited its exposure to (iii) excitatory dynamic synaptic feedback 

modulation (Zheng et al., 2006; Dau et al., 2016), which accentuates sudden changes in photoreceptor 

output. For these reasons, the responses of real R1-R6s, which naturally utilize the given mechanisms, 

showed systematically larger widths and 2nd-peaks, providing higher resolvability.  

We show in Figures 8G-I, Figure 8-figure supplement 1 and Appendixes 7-8 that a new 

biophysically realistic microsaccadic sampling model, which allows for realistic refractory quantal 

phototransduction (Song & Juusola, 2014) and photomechanical rhabdomere contractions (Hardie & 

Franze, 2012), yields (significantly better) theoretical predictions that closely approximate the real R1-

R6 output. Importantly, in Appendix 9, we further show that R1-R6 output to two dark dots, moving 

at saccadic speeds, has the same relative resolution as their output to the corresponding two bright dots. 

Collectively, our results demonstrate that Drosophila photoreceptors resolve fast moving objects far 

better than what was believed previously. 

 

Conclusions 
In this appendix, we used intracellular recordings and classic theoretical approaches to study how fly 

photoreceptors encode moving bright dots. Model simulations about each tested R1-R6s’ 

spatiotemporal responses were compared to the actual recordings to the same stimuli. We found that 

both wild-type and hdcJK910 photoreceptors resolved moving dots nearly equally well, and significantly 

better than the corresponding deterministic simulations. These findings demonstrate that the classic 

dynamic photoreceptor models (Srinivasan & Bernard, 1975; Juusola & French, 1997; Land, 1997), 

which lack knowledge about the underlying phototransduction biophysics and photomechanics, grossly 

underestimate the spatiotemporal resolution of the real cells. 

Animals counter self-motion blur effects by moving their eyes. This compensates for head and 

body movements by keeping the neural image position near stationary as long as possible (Land, 1999). 

Interestingly here, a fly photoreceptor’s response to two moving point-objects represents an opposite 

case where image motion, in fact, improves acuity. In the classic theory, to resolve two stationary 

objects, at least three photoreceptors are required so that the intensity difference in between can be 

detected. Because Drosophila photoreceptors’ interommatidial angles (Land, 1997; Gonzalez-Bellido 

et al., 2011) vary from 3.4o to 9.0o and their average acceptance angle is ~9.5o (Appendix 4), its eye 

should not resolve two point-objects 6.8o apart. Nevertheless, responses of single photoreceptors, during 

even very fast (saccadic-speed) (Geurten et al., 2014) movements, show large enough dips (in their 

temporal dynamics) to indicate that the objects are resolved neurally. In the classic theory instead, the 

outputs of several adjacent photoreceptors had to be processed together to distinguish two moving point-

objects from one stationary object, in which brightness changes over time. This example highlights the 

inseparability of spatiotemporal information processing and acuity.  

The unique advantages of the present study were the bespoke equipment and stimulus 

paradigm. These allowed high-quality photoreceptor recordings with precisely controlled moving point-

objects stimulation. Therefore, we could directly test and compare the theoretically predicted 

relationship between the neural image resolution and the object speed (Srinivasan & Bernard, 1975; 

Juusola & French, 1997) to the experimental data. However, the equipment also had limitations to be 

improved in future research. Wider object speed range is necessary, especially for testing insect eyes 

with fast responses. Owing to the long transient time, each light-point now required 2 ms switching 

period. Consequently, the minimum travelling time was 50 ms and the object speed limit in Calliphora 

experiments was 334 o/s, which is far slower than observed during the flies’ saccadic flight behaviors 

(Schilstra & Van Hateren, 1999; van Hateren & Schilstra, 1999) (2,000-4,000 o/s). Whilst positioning 

the light-point array closer to the fly eye would increase object angular speed, it would compromise 

resolution as fewer light-points would then lie within a tested cell’s receptive field.  

In Appendixes 7-9, we show how both the enhanced resolvability of moving point-objects and 

the phasic modulation of their rising and decaying phases, as was shown here, emerge from the joint 

contributions of photomechanical rhabdomere contraction and its refractory information sampling. 
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Appendix 7: Photomechanical microsaccades move photoreceptors’ receptive fields 

 

Overview 

This appendix describes a new powerful high-speed video recording method to measure 

photomechanical rhabdomere movements in situ, and provides important experimental and theoretical 

background information for the results presented in Figures 8-9. 

 

In this appendix: 

 We utilize the optical cornea-neutralization technique (Franceschini & Kirschfeld, 1971b, a) 

with antidromic deep-red (740 or 785 nm peak) illumination to observe deep pseudopupils 

(photoreceptor rhabdomeres that align with the observer’s viewing axis) in the Drosophila eye. 

We use an ultra-sensitive high-speed camera with a purpose-built microscope system to record 

fast rhabdomere movements across the compound eyes, while delivering blue-green stimuli 

(470 + 535 nm peaks) orthodromically into the eye. 

 We show that light-activation moves rhabdomeres (Video 3) side-ways (horizontally) both in 

dark- and light-adapted eyes. This movement starts after a 8-20 ms delay from the light stimulus 

onset, and reaches its peak in about 70-150 ms. Because these movements have fast onset and 

light intensity-dependency, which are similar to those of the R1-R6 photoreceptors’ 

intracellular voltage responses to comparable stimuli, they must result from individual 

photoreceptors’ photomechanical contractions; see (Hardie & Franze, 2012).  

 We show that trp/trpl-mutant photoreceptors, which have normal phototransduction reactions 

but lack the light-gated ion channels, also contract to light. Since these photoreceptors cannot 

produce electrical responses and thus communicate electrically or synaptically with other cells, 

including eye muscles, their contractility cannot be caused by eye muscle activity but must be 

intrinsic, supporting the earlier hypothesis (of phototransduction reactants interacting locally 

with the plasma membrane) (Hardie & Franze, 2012).    

 We show that light moves rhabdomeres fast in the back-to-front direction, while darkness 

returns them back to their original positions slower. Because the ommatidium lens inverts 

images, R1-R8 photoreceptors’ receptive fields move in the opposite direction - front-to-back 

after light and back-to-front after darkness. Therefore, when front-to-back moving bright dots 

cross the eyes, the photoreceptors’ receptive fields move along. But when bright dots cross the 

eyes in the back-to-front direction, the photoreceptors’ receptive fields move against them (cf. 

Appendix 6).  

 At the level of rhabdomere tips, the horizontal movements can be up to 1.4 µm, as measured 

occasionally in light-adapted eyes. Therefore, given the known optical dimensions, these 

photomechanical microsaccades can rapidly shift R1-R6 photoreceptors’ receptive fields by 

~5o. Remarkably, such a large image pixel displacement reaches the average interommatidial 

angle, ∆φ ~ 4.5-5o, in the Drosophila eye (cf. Appendix 4; Appendix figure 14). 

 We show that the light stimulus also contracts rhabdomeres axially (Video 2; inwardly: 0.5-1.7 

µm), down away from the lens. This transient increase in focal length should contribute in 

narrowing R1-R6’s receptive fields dynamically. We further show that specific cone- and 

pigment-cells inside each ommatidium form an aperture, which is connected to the rhabdomere 

tips. During light stimulation, this aperture moves laterally with the rhabdomeres but only half 

as much (Video 4). And since the ommatidium lens remains practically immobile, the light 

beam falling upon the rhabdomeres is shaped dynamically. These observations mean that a R1-

R6’s receptive field must both move and narrow during dynamic light stimulation.    

 We show that rhabdomeres of hdcJK910 histamine-mutant (Burg et al., 1993; Melzig et al., 1996; 

Melzig et al., 1998) R1-R6 photoreceptors, in which visual interneurons are blind (receive no 

neurotransmitter from photoreceptors), have broadly wild-type-like contraction dynamics, 

again refuting the role of eye muscle activity in the data. But interestingly, their light-sensitivity 

is about 10-fold reduced, similar to their voltage responses (Dau et al., 2016). In part, this may 

reflect hdcJK910 photoreceptors’ smaller size. Given that hdcJK910 rhabdomere diameters are ~4% 

smaller than in wild-type (Appendix 5), their length should also be reduced in the same 

proportion. As the average wild-type R1-R6 is ~100 µm, hdcJK910 R1-R6s should be ~4 µm 
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shorter. And indeed we find in situ that hdcJK910 rhabdomere tips are ~4 µm further away from 

the lens than the wild-type tips. In addition, the higher [Ca2+]i, caused by tonic excitatory 

synaptic feedback overload (Dau et al., 2016), may further affect their mobility, possibly 

retaining them in a slightly more contracted state. 

 

Rapid adaptation caused by light-induced R1-R8 contractions  

Atomic force microscopy (AFM) at the dissected Drosophila eyes’ corneal surface (Hardie & Franze, 

2012) has shown up to 275 nm radial movements to brief light pulses, caused by transient 

photomechanical R1-R8 photoreceptor contractions. Such movements are too small and fast to see with 

the naked eye, and were initially considered: (i) only to participate in gating photoreceptor’s 

transduction-channels, and (ii) possibly too small to affect fly vision in general. In this appendix, we 

use high-speed video microscopy to show that in vivo the underlying photomechanical rhabdomere 

(light sensor) movements are larger both laterally (horizontally: 0.3-1.4 µm) and axially (inwardly: 0.5-

1.7 µm). Because these movements are also synchronous, ubiquitous, robust and reproducible, they 

influence how the fly eyes sample visual information about the world. 

 

High-speed video recordings of light-induced rhabdomere movements  

Dark-adapted dissociated photoreceptors rapidly contract to light (Hardie & Franze, 2012) (Video 2). 

It has been suggested that this contraction results from light-induced phosphatidylinositol 4,5-

bisphosphate (PIP2) cleaving, which modulates their rhabdomere membrane volume and so participates 

in gating the phototransduction-channels (trp and trpl) (Hardie & Juusola, 2015). 

Here, we directly test the hypotheses that (i) the photomechanical photoreceptor contractions 

occur also in intact flies in normal stimulus conditions, and (ii) these movements serve the purpose of 

modulating light input to photoreceptors and thus photoreceptor output. We do this by recording high-

speed video of how Drosophila photoreceptor rhabdomeres move to different light stimuli in vivo, and 

by analyzing and characterizing how these movements affect R1-R6s’ receptive fields. Later on, in 

Appendix 8, we include their light input parameter changes in biophysically-realistic mathematical 

models to predict R1-R6 voltage output to moving visual stimuli. 

 

Imaging setup for recording photomechanical rhabdomere contractions 

We used the optical cornea-neutralization method to monitor how light stimuli evoke Drosophila 

photoreceptor rhabdomere movements. The imaging system was constructed upon an upright 

microscope (Olympus BX51), secured to a XY-micrometer stage on an anti-vibration table 

(MellesGriot, UK) (Appendix figure 30). To minimize light pollution in the recordings, the system 

was light-shielded inside a black Faraday cage with black lightproof curtains in the front, and the 

experiments were performed in a dark room. For collecting and recording deep pseudopupil images, the 

system was equipped with a 40x water immersion objective (Zeiss C Achroplan NIR 40x/0.8 w, ∞/0.17, 

Germany) and an ultra-sensitive high-speed camera (Andor Zyla, UK), respectively. 

 
Appendix figure 30. Microscope 

system for high-speed video 

recording of light-induced 

photoreceptor movements. (A) High-

speed camera (Andor Zyla, UK) 

recorded images of deep pseudopupils 

in the eye of an intact living Drosophila 

under deep-red antidromic illumination 

(here 740 nm LED + 720 nm long-pass 

edge filter underneath the fly head). 

Each studied fly was immobilized 

inside a pipette tip. (B) A 10 ms blue-

green light flash, delivered through the 

microscope system (orthodromically) 

into the left fly eye (above), was used to excite R1-R8 photoreceptors; the inset below shows R1-R7 

rhabdomeres (blue) of one ommatidium just before the flash. (C) Light caused the rhabdomeres to twitch 

photomechanically in back-to-front direction (arrows) after 8-16 ms delay, with the photoreceptors being 
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maximally displaced in ~100 ms from the stimulus onset. Invariably, this was seen as a sudden jump in the 

recorded rhabdomere position (red). (D) The difference in the rhabdomere position (displacement) before and 

after the flash, depended upon the light intensity, ranging between 0.3-1.4 µm; note a typical R1-R6 

rhabdomere diameter is about 1.7 µm (Appendix 5). The frame subtraction (before and after the light flash) 

indicates that only the rhabdomeres that aligned directly with the blue/green light source moved (within the 7 

central ommatidia; yellow area), while the rest of the eye remained immobile. Accordingly, the difference 

image shows little ommatidial walls, as these and other immobile eye structures became mostly subtracted 

away. In contrast, eye muscle activity, which is every so often seen with this preparation (Appendix 4, 

Appendix figure 19) occurs more gradually and moves all the eye structures together. 

 

A Drosophila was gently fastened to an enlarged fine-end of a 1 ml pipette tip by puffing air 

from a 100 ml syringe at the large end until the fly head and ~1/5 of the thorax emerged outside 

(Appendix figure 30A). The head and thorax were carefully fixed (from the proboscis and cuticle) to 

the pipette wall in a preferred orientation by melted beeswax, without touching the eyes. The fly was 

then positioned with a remote-controlled XYZ-fine resolution micromanipulator (Sensapex, Finland) 

underneath the water immersion objective, using both visual inspection and live video stream on a 

computer monitor.  

Antidromic illumination (through the fly head) revealed the deep pseudopupils of the fly eyes. 

It was provided with a high-power deep-red light source (740 nm LED with 720 nm high-pass edge-

filter; or 785 nm LED with ± 10 nm bandpass filter), driven by a linear current LED driver (Cairn 

OptoLED, UK). Note that very bright deep-red illumination, which is a prerequisite for good signal-to-

noise ratio high-speed video imaging, activates R1-R8 photoreceptors only marginally. This is because 

their different rhodopsins’ absorbance maxima are at much lower wavelengths (Britt et al., 1993; 

Wardill et al., 2012). The photoreceptors’ near insensitivity to >720 nm red light was confirmed in vivo 

by ERG recordings (Appendix figure 31). 

Orthodromic light stimulation (through the 40x objective into the eye), which evoked the 

photoreceptor contractions, was delivered by two high-power LEDs: 470 nm (blue) and 545 nm (green), 

each separately controlled by its own driver (Cairn OptoLED, UK). These peak wavelengths were 

selected to activate R1-R6s’ rhodopsin (Rh1) and its meta-form near maximally, and so through joint 

stimulation to minimize desensitization by prolonged depolarizing after-potentials (PDA) (Minke, 

2012). Simultaneous stimuli from the two LEDs were merged into one focused beam by a 495 nm 

dichroic mirror and low-pass-filtered at 590 nm. Pseudopupil signals of the observed fly eye (left or 

right) were split spectrally by another dichroic mirror (600 nm), and essentially only red image intensity 

information (≥600 nm) was picked up by the high-speed camera. 

 
Appendix figure 31. Testing R1-R8 

photoreceptors sensitivity to deep-red 

illumination by electroretinogram (ERG) 

recordings. (A) ERGs were recorded in intact 

Drosophila, placed inside a conical holder, to 1 

s long very bright green (545 nm), red (740 nm) 

and deep-red (740 nm LED with 720 nm high-

performance long-pass filter) pulses. A normal 

ERG contains a large but slow photoreceptor 

(DC) component and the faster on- and off-

transients (Heisenberg, 1971), which signal 

histaminergic transmission to lamina 

interneurons. (B) The very small ERG response 

(wine) to the deep-red pulse indicated very little 

R1-R8 photoreceptor activation. Mean ± SD 

shown, n = 6-7 wild-type flies. 

 

Recording procedures 
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Light stimulus generation was performed by a custom-written Matlab (MathWorks, USA) program 

(Biosyst; M. Juusola, 1997-2015) (Juusola & Hardie, 2001a; Juusola & de Polavieja, 2003) with an 

interface package for National Instruments (USA) boards (MATDAQ; H. P. C. Robinson, 1997–2008). 

The length of the light stimuli (including the continuous deep-red background and the blue/green 

stimulus patterns) was made to match the number of frames to be acquired by the Andor camera, and 

the stimuli were externally triggered by the camera software (Solis). During the recordings, the frames 

were first buffered in the RAM in high-speed and then transferred on the computer’s hard drive. Light 

stimulus intensity could be attenuated by a neutral density filter set (Thorn Labs, USA), covering a 5.3 

log intensity unit range. 

 

Key observations from unprocessed high-speed footage 

High-speed video microscopy (Appendix figure 30A; e.g. Video 3) from intact wild-type Drosophila 

eyes (n >> 100 flies) showed repeatedly and unequivocally that: 

 Full-field light flashes evoked rapid local R1-R7 rhabdomere movements within those 7 

ommatidia, which at the center of the imaged view, faced the blue/green stimulus source 

directly (Appendix figure 32A, orange area). Rhabdomeres in few other neighboring 

ommatidia also moved marginally (yellow area), but not obviously in other ommatidia. This 

meant that only the ommatidia that aligned with the blue/green stimulation absorbed the 

incident light, while those to one side reflected it. This local area, which showed 

photomechanical rhabdomere movements, closely matched Drosophila’ normal pseudopupil 

(Appendix figure 32B). 

 The rhabdomere movement was in the back-to-front direction (Appendix figure 30B-D), 

whilst in darkness, the rhabdomeres returned in front-to-back to their original positions more 

slowly. These dynamics and their directions were similar in both the left and right eye.  

 Because light always moved the rhabdomeres back-to-front, the corresponding neural images 

of the left and the right eye comprise left-right mirror symmetry; i.e. against the vertical 

(sagittal) plane, the rhabdomeres in the left and right eye display mirror symmetric motion. We 

show later in Appendix 8 how this symmetry may allow Drosophila photoreceptors to encode 

orientation information during saccades or image rotation. 

 The rhabdomere movement directions seemed homogeneous (at least in the 1st approximation) 

across each tested eye, appearing similar in its different regions: whether measured at its up, 

down, front or back ommatidia. Such “pixel interlocking” across the whole eye’s visual field 

may help to preserve, or enhance, the neural images’ spatial resolution of the world. 

 
Appendix figure 32. Photomechanical 

rhabdomere movements were localized 

inside those 7 ommatidia that form the 

normal pseudopupil. (A) High-speed video 

recordings in the Drosophila eye showed 

clear rhabdomere displacement before 

(marked blue) and after (marked red) a 

blue/green flash only within 7 ommatidia 

(orange area). This was revealed by 

subtracting the corresponding frame 

contours. The rhabdomeres of these 7 

ommatidia aligned directly with the 

blue/green stimulus, which was carefully 

centered above in the microscope port 

(Appendix figure 30). Marginal rhabdomere 

movements were further detected in 6 other neighboring ommatidia (yellow area). These results meant that 

only the rhabdomeres that faced the centered Orthodromic blue/green stimulus absorbed its light and 

contracted, while the rest of the eye reflected this stimulus and remained immobile. Note that this local 

rhabdomere activation pattern was restricted by the same eye design principle that causes the insect eye 

pseudopupil. (B) The Drosophila eye, in which photoreceptors were made to express green-fluorescence, 

displayed a green pseudopupil only form those 7 ommatidia that directly faced the observer (and the blue light 

source through the microscope lenses). This happened because these ommatidia (their rhabdomeres) both 
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absorbed the incident blue light and their GFP-molecules released green light back to the observer’s 

eye/camera, while the other ommatidia around reflected the blue light. 

 

Image analysis 

To accurately quantify the size and direction of the observed rhabdomere movements in time we devised 

specific image-analysis procedures. First, the stored images (raw data frames of each recording) in the 

hard drive were exported as a tiff stack, in which pixel intensity range was set by the frames’ minimum 

and maximum values, using the camera software (Andor SOLIS). ImageJ software was then used to 

convert the tiff-stack into a single tiff-file. The Matlab scripts to process and analyze the images are 

downloadable from the repository: 

(https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/AnalyzeRhabdomereMov

ement). These methods included (Appendix figure 33A):  

i. Loading the image stack. 

ii. Subtracting the median and mean from each frame and setting its negative values to (0. 0) to 

remove the dark noise background. This process was repeated for every frame. 

iii. Calculating 2D cross-correlation between each frame and the reference frame. 

iv. Selecting the cross-correlation values, which were ≥95% of the maximum (peak) value. This 

was repeated for every frame. 

v. Calculating the weighted average position of the peak by using all the positions of the previous 

selection and using the cross correlation values as weights both in x- and y-direction. This was 

repeated for every frame. 

vi. Subtracting the reference frame position from every frame.  

 
Appendix figure 33. Cross-

correlation image analysis to 

estimate photomechanical R1-R7 

rhabdomere movements. (A) 

Analytical steps are shown for the 

reference frame at time zero (f0), 2 

ms before the 10 blue/green light 

stimulus pulse (red), and for the 

frame at the maximum rhabdomere 

displacement (f49), 98 ms after (dark 

yellow). High-speed camera images 

of rhabdomeres were recorded using 

750 nm red light. (i) Image stacks 

were uploaded, and (ii) the median of 

each frame was subtracted to remove 

its noise background. (iii) 2D cross-

correlation was calculated for each 

frame, and (iv) the values within 5% 

of their peak value were selected. (v) 

The weighted mean peak positions 

gave each frame’s x- and y-positions 

at its specific time point, and their 

distance, sqrt(x2+y2), the total 

rhabdomere displacement (in pixels) 

against the reference frame position. 

Notice that the 2D cross-correlation 

images have flipped x- and y-axis directions (up, U, appears down, D; front, F, appears back, B). (B) The 

resulting rhabdomere displacement distance and the corresponding x- and y-positions are plotted for each frame 

in time at 2 ms resolution (500 frames/s), against the reference frame position, P0(0, 0, 0). A comparable 

(inverted) atomic force microscopy data (cyan) closely matches the rise-time dynamic of the cross-correlation 

rhabdomere displacement estimate, validating our analytical approach. The analysis also implies that well dark-

adapted photoreceptors may respond weakly to deep-red (740 nm) light onset (black trace 0-100 ms). Note R8 

rhabdomere, which lies directly below R7, likely contracts too. 

 

Quantifying rhabdomere travels and their receptive field shifts 
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In this study, the rhabdomere displacement measurements are given in microns (µm) and the resulting 

receptive field movements in degrees (o). Appendix figure 34A shows a whole image of a Drosophila’s 

left eye, as focused upon its rhabdomeres in the center and magnified by the microscope system to use 

the camera’s full 2,048 x 2,048 pixel range. By placing a high-resolution µm-graticule on the same 

focal plane (Appendix figure 34B), we calibrated that the whole image is 303 x 303 µm. After 

converting the recorded rhabdomere displacements from pixels (Appendix figure 33) into microns, we 

then used the published parameters (Stavenga, 2003b) about the Drosophila ommatidium optics 

(Appendix figure 34C) to translate these measurements into corresponding receptive field movements 

in degrees. 

Drosophila ommatidium optical parameters were described by (Stavenga, 2003b) and 

(Gonzalez-Bellido et al., 2011). Its biconvex facet lens focuses light to a rhabdomere (grey rectangle) 

tip. The outer and inner lens curvatures, r1 = -r2, are 11 µm, and its thickness, l1, is 8 µm. Distance from 

lens to the rhabdomere, l2, is 15 µm. Reflective indices, n, for the object space, lens and image space, 

respectively, are: n1 = 1, n2 = 1.45 and n3 = 1.34. 

We used standard ray transfer matrix analysis (Laufer, 1996) to determine optical properties 

between the lens surface, P1, and the rhabdomere tip, P2. Both of these are represented as vectors of 

their positions, y, and angles, θ: 𝑃1 = [
𝑦1

𝜃1
] and 𝑃2 = [

𝑦2

𝜃2
]. Then, the optical system of the facet lens 

follows equation 𝑃2 = 𝑀 𝑃1, where  

 𝑀 = [ 0.23 1.61 ∗ 10−5

−3.63 ∗ 104 0.71
], obtained from the ray transfer matrix analysis. 

The transform matrix clarifies that the distance, y2 (at P2), mostly depends upon the angle θ1 (of 

P1). Thus, 1 µm movement gives 1x10-6/1.61x10-5 = 0.0621 (rad) angular change, which is 3.56 °/µm. 

This movement is an inverse of the visual field movement. Note that by using the comparable optical 

parameter values of (Gonzalez-Bellido et al., 2011) (and considering the normal lens f-value variation 

across the Drosophila ommatidia), gives practically the same movement ratio (± 5% error). 

 
Appendix figure 34. Calibrating the 

rhabdomere displacements in microns 

and their receptive field movements in 

degrees. (A) A whole image of a 

Drosophila’s left eye, the camera chip’s 

full 2,048 x 2,048 pixel range. (B) a high-

resolution graticule placed at the same 

focal plane as the image (A) gives the full 

image size of 303 x 303 µm. Thus 1 pixel 

~ 0.1479 µm. (C) A schematic of the 

main optical components in a normal 

Drosophila ommatidium. Its optical 

properties indicate that a 1 µm 

rhabdomere displacement shifts its 

receptive field by 3.56°. 

 

 

Trp/trpl-mutants confirm the contractions’ photomechanical origin   

We then tested whether the rhabdomere contractions were generated by the photoreceptors themselves 

(photomechanically) or by eye muscle activity. This was done by recording in trp/trpl null-mutants, 

which express normal phototransduction reactants but lack completely their light-gated ion channels. 

Consequently, these photoreceptors did not generate electrical responses to light, and their eyes showed 
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no ERG signal (Appendix figure 35A). Nonetheless, high-speed video recordings revealed that 

trp/trpl-mutant photoreceptors contracted photomechanically (Appendix figure 35B; see also Video 

2). These observations are consistent with the hypothesis of the light-induced phosphatidylinositol 4,5-

bisphosphate (PIP2) cleaving from the microvillar photoreceptor plasma membrane causing the 

rhabdomere contractions (Hardie & Franze, 2012). 

 
Appendix figure 35. Photoreceptors of blind 

trp/trpl null-mutants flies show 

photomechanical contractions. (A) ERGs of 

trpl/trpl mutants show no electrical activity 

indicating that these flies are profoundly blind. 

(B) High-speed video recordings at their 

rhabdomeres show light-induced lateral 

movements, indicating that (i) these 

photoreceptors contact photomechanically and 

(ii) these movements cannot involve eye muscle 

activation. 

  

 

When rhabdomeres move, the ommatidium lens system above stays still 

Using the high-speed video microscopy, we next tested whether the Drosophila lens system or any other 

ommatidium structures moved during the rhabdomere movements (Appendix figure 36). In the 

experiments, a z-axis micromanipulator (Sensapex, Finland) was used to shift and reposition 

Drosophila in piezo-steps vertically. This allowed the focused image, as projected on the camera, to 

scan through each studied ommatidium, providing exact depth readings in µm. We then recorded any 

structural movements inside the ommatidia at different depths; from their corneal lens down to the 

narrow base, where the cone and pigment cells form an intersection between the crystalline cone and 

the rhabdomere tips (Tepass & Harris, 2007). 

 
Appendix figure 36. When 

the rhabdomeres move the 

ommatidium lens stays 

still. (A) High-speed video 

recordings at different depths 

inside ommatidia before and 

after a bright light flash. (B) 

Cornea (ommatidium) lens 

and the optical structures to 

the narrow base of the crystal 

cone remained virtually 

immobile. Below these, the 

cone cells showed movement 

that was half of that seen in 

the rhabdomeres. In the 

schematic, red dots and lines 

indicate adherens junctions 

that link the photoreceptors 

to the pigment and cone 

cells.  
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We found that when the rhabdomeres moved photomechanically (Appendix figure 36B, red 

trace; Video 4) the corneal lens and the upper ommatidium structures were essentially immobile (grey), 

and normally remained so throughout the recordings. However, clear stimulus-induced movements 

were detected at the basal cone/pigment cell layer (orange; also inset) that connects to the rhabdomere 

tips with adherens junctions (Tepass & Harris, 2007). Although it is less clear how much these structures 

reflected the rhabdomere motion underneath or were pulled by it, it is quite certain that they formed an 

aperture in the light path, which moved less than the light-sensors (rhabdomeres) below (orange vs. 

red). In Appendix 8, we analyze how such an interaction might dynamically narrow the R1-R6s’ 

receptive fields to visual motion.  

Overall, these results further verified that in normal stable recordings the used blue/green light 

flash was not evoking eye muscle activity, which would otherwise move the whole eye. 

 

Light intensity-dependence of rhabdomere movements (in vivo dynamics) 

Through a wide-ranging testing regime, we further discovered (Appendix figure 37 and Appendix 

figure 38) that: 

 Light-induced R1-R7 rhabdomere movements were robust and repeatable. Appendix figure 

37A shows 10 trials (thin grey traces) and their mean (black) to a 10 ms bright flash measured 

from the same ommatidium. Between each flash, the eye was dark-adapted for 30 s. 

Characteristically, the rhabdomeres contracted to every light flash without a failure. Whilst 

these movements showed amplitude variations, their dynamic behavior was similar. Here, they 

reached their peak (mean = 0.806 µm, Appendix figure 37B) in about 140 ms and then decayed 

back to the baseline slower, mean τr ~190 ms (Appendix figure 37C). 

 Dark-adapted R1-R7 rhabdomeres’ maximum movement range (Appendix figure 38A-I) was 

considerably larger (0.3-1.2 µm) than the displacement range measured ex vivo by atomic force 

microscope (Appendix figure 38B, AFMmax ≤0.275 µm) (Hardie & Franze, 2012) on the 

corneal surface. This difference is hardly surprising. AFM measures axial (inward) cornea 

displacements, presumably resulting from a large number of simultaneous photoreceptor 

contractions underneath, whereas our high-speed video microscopy method measures 

orthogonal (horizontal) rhabdomere movements locally at their source. Owing to the slight 

excitation caused by the bright 740 nm red-light background needed for in vivo imaging 

(Appendix figure 33B), the actual rhabdomere movements in full dark-adapted conditions 

could be even larger. 
 

Appendix figure 37. Photomechanical 

rhabdomere motion is robust and 

repeatable. (A) Consecutive 

rhabdomere motions (grey thin traces) of 

the same ommatidium and their mean 

(black) to 10 stimulus repetitions (bright 

flash). The mean response recovery is 

fitted with an exponential, τr. (B) Each 

response maximum is shown against its 

time delay (time-to-peak) with the mean 

and SD. (C) Each response recovery 

time constant is plotted against its 

maximum with the mean and SD. 

Recording at t = 20 oC. 
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 The rhabdomere movement recordings (thin grey traces) from single ommatidia of individual 

flies vary more than the corneal AFM data (black traces). The sizable variations in their 

movement range and fine dynamics (such as minor oscillations) imply both considerable trial-

to-trial (Appendix figure 37) and fly-to-fly variability (Appendix figure 38). Much of this is 

clearly physiological, as rhabdomere movement sizes and waveforms to specific stimuli were 

similar in one fly but often slightly different to those seen in another fly. However, because of 

the extreme sensitivity of our method (Appendix figure 33B, providing subpixel movement 

resolution), some of the variations clearly reflected experimental noise. Such noise included 

microscopic mechanical vibrations in the recording system, minute spontaneous eye muscle 

activity (see Appendix 4, Appendix figure 19), and Poisson-noise, in which the image signal-

to-noise ratio - as captured by the camera’s CMOS sensor – reduced the more the faster the 

sampling. Appropriately, the average responses (red) to different intensity flashes were 

smoother, yet still remained much larger than in the AFM data. 
 

Appendix figure 38. Comparing 

optically resolved wild-type 

rhabdomere movements to 

corresponding atomic force 

microscope (AFM) recordings 

from the corneal surface. To ease 

the comparisons, the AFM data is 

inverted. (A) Rhabdomere motion 

within individual ommatidia (grey 

thin traces) and their mean (red) 

evoked by the brightest 10 ms test 

flash are plotted against the largest 

AFM recording (black) to the 

brightest 5 ms test flash (data from 

Hardie and Franze, 2012). The 

rhabdomere movement range is larger 

than what the AFM data suggests. (B) 

AFM recordings to a broad 

logarithmic light flash intensity 

range. (C-I) Rhabdomere movements 

vs. AFM recordings to light flashes of 

broadly comparable diminishing 

intensities. Notice that some 

individual rhabdomere movement 

recordings show minor oscillations 

that could be related to recording 

noise or physiological activity. (J) the 

mean and SD of normalized 

rhabdomere movements to the 

brightest test flash are compared with 

the normalized AFM recordings to 

three different test flash intensities. 

All these AFM recordings fall within 

the SD of the given rhabdomere 

recordings. 

 

 

 The average rise and decay time courses of the normalized rhabdomere movement recordings 

followed closely those of the normalized AMF recordings (Appendix figure 38J). Such 

dynamic conformity strongly suggests that both the methods capture accurately 

photomechanical R1-R8 photoreceptor contractions in their fast natural time resolution. But 

these observations also provided further evidence that ex vivo AFM data underestimate the 

actual magnitude of rhabdomere movements within ommatidia. In fact, it seems possible that 
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to maximize neural images’ spatial resolution, the eye’s architectural design dampens the lens 

system movement, while its sensors (rhabdomeres) contract. This would inadvertently impede 

the AFM signal (axial movement), and any horizontal lens shift (Appendix figure 36), 

measured on the corneal surface. 

 

Estimating light intensity falling upon the rhabdomeres 

Only in 2 out of 21 tested Drosophila eyes, the rhabdomeres moved unmistakably (twitched) to a very 

dim 10 ms blue/green LED flash, in which intensity was reduced ~200,000-fold by neutral density 

filters. Therefore, in these two positive occasions: (i) the resulting response must have been quantal 

with (ii) the 10 ms flash maximally containing ~1-3 absorbed photons. Furthermore, because this flash 

only succeeded in ~1/10 eyes, its average maximum intensity could only be ≤3/10 photons/10 ms, i.e. 

≤0.03 photons/ms. This means that the brightest flash (logI(0)), which was not filtered, could maximally 

contain ≤6,000 photons/ms, or ≤6 million photons/s, making the used light intensity range natural and 

directly comparable to that used for the intracellular recordings (Figures 1-2 and 6-9). 

 This reasoning is in line with the similar LED driver settings used in all the experiments, and 

the similar V/log(I) and (µm)/log(I) functions, which resulted from these experiments. 

 

In vitro rhabdomere movements 

As further controls, we measured photomechanical R1-R8 rhabdomere contractions of freshly 

dissociated ommatidia (Hardie & Franze, 2012) to green (480 nm) light flashes using high-speed video 

recordings with infrared 850 nm background illumination (Appendix figure 39). The benefit of this in 

vitro method was that it provided a clear side-view of the tested wild-type and mutant rhabdomeres, 

enabling us to estimate their axial (longitudinal inward) contraction component; or how much the 

rhabdomere tip moved away from the ommatidium lens (Video 2). In vivo, such fast lengthwise light-

sensor movements should contribute to R1-R6 photoreceptors’ transiently narrowing receptive fields 

(see Appendix 8). 

We found that after dark-adaptation bright flashes could evoke 0.8-1.7 µm longitudinal 

rhabdomere contractions. These were characteristically accompanied by synchronous (about equally 

large) crosswise movement (or twist), which likely forms the basis of the sideways rhabdomere 

displacement; seen during the in vivo recordings (e.g. Appendix figure 30D). 

 
Appendix figure 39. Photomechanical 

rhabdomere contractions in dissociated 

ommatidia. (A) Two frames of high-speed 

video footage of contracting R1-R8 

photoreceptor rhabdomeres in vitro, evoked 

by a bright flash. The size-view imaging 

reveals the size and dynamics of their 

photomechanical lengthwise changes. (B) 

Characteristic maximum longitudinal 

rhabdomere contractions range from 0.8 to 1.7 

µm. Thus, in an intact eye, during contractions 

the rhabdomeres would move inwards, away 

from the lens. This movement is likely to 

move the rhabdomere tips into the 

ommatidium lens’ focal point, narrowing the 

photoreceptors’ acceptance angles (see 

Appendix 8, Appendix figure 44). Notably, 

many rhabdomeres also twist during these 

contractions, providing additional crosswise 

movements. See Video 2. 

 

 

Photomechanical rhabdomere movements vs. R1-R6s’ voltage responses      
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We next compared intracellular wild-type and hdcJK910 R1-R6 voltage outputs, evoked by 10 ms light 

flashes after brief dark-adaptation, to their characteristic rhabdomere movements (Appendix figure 

40A-D). R1-R6 output and rhabdomere motion exhibited broadly comparable delays (or dead-time), 

but overall the rhabdomeres moved considerably slower than how their voltage was changing (cf. the 

thick black traces in A-B, and the thick red traces in C-D for similar flash intensities).The voltage 

responses peaked 25-30 ms from the light onset, and the rhabdomere movements 40-120 ms later. At 

this point, the photoreceptors had almost repolarized back to their dark resting potential (indicated by 

zero ordinate). Moreover, the recordings suggested that for a given flash hdcJK910 rhabdomeres typically 

moved less and returned faster to their original positions than their wild-type counterparts.  

To further characterize their light-dependent differences, we plotted the maximum wild-type 

and hdcJK910 rhabdomere movements of many flies against the corresponding flash intensities over the 

whole tested light range. The analysis revealed that: 

 Both wild-type and hdcJK910 rhabdomere movements increased with flash intensity (Appendix 

figures 40E-F), following a characteristic sigmoidal displacement/logI-relationship. 

 
Appendix figure 40. 

Comparing dark-

adapted wild-type 

and hdcJK910 R1-R6s’ 

photomechanical 

rhabdomere 

contractions to their 

corresponding 

electrophysiological 

responses at 19oC. 

(A) Intracellular 

voltage responses of 

dark-adapted wild-

type R1-R6s to a 10 

ms subsaturating light 

pulse, delivered at the 

center of their 

receptive field. (B) 

Characteristic non-

averaged 

photomechanical 

rhabdomere 

movements 

(displacement in time) 

of a typical wild-type 

fly, as quantified by 

the cross-correlation 

analysis (Appendix 

figure 33) to very dim 

(log(-3.5)), moderate 

(log(-2)) and very 

bright (log(0)) 10 ms 

light flashes. (C) 

Intracellular responses 

of dark-adapted 

hdcJK910 R1-R6s to a 

similar stimulus (as in 

a). (D) hdcJK910 

rhabdomere movements to very dim, moderate and very bright 10 ms flashes are characteristically slightly 

smaller than the corresponding wild-type recordings in (B). (E) The wild-type and  (F) hdcJK910 rhabdomere 

displacements increase with logarithmic light intensity. (G) Mean wild-type rhabdomere movement was larger 

than that of hdcJK910 over the tested intensity range, with the hdcJK910 photoreceptors’ apparent right-shift 

indicating a 10-fold reduced sensitivity. (H) This right-shift is broadly similar to these photoreceptors’ V/LogI 

characteristics, measured from their ERG slow components (Dau et al., 2016). 
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 The average hdcJK910 rhabdomere movements were smaller than those in wild-type eyes. In part, 

this could result from hdcJK910 R1-R6s being smaller than their wild-type counterparts, and 

embedded deeper inside the ommatidia. As their rhabdomere diameters are ~4% smaller than 

those of the wild-type (Appendix 5), their length should also be reduced proportionally; with 

the average wild-type R1-R6 being ~100 µm tall, hdcJK910 R1-R6s should be ~4 µm shorter. 

Accordingly, by using the z-axis micromanipulator (see above), we measured in situ (rest) that 

hdcJK910 rhabdomere tips were 3.5 µm further away from the lens than the wild-type tips 

(hdcJK910: 27.4 ± 1.2 µm; wild-type: 23.9 ± 1.2 µm; n = 6 ommatidia, 6 flies). 

 hdcJK910 rhabdomere contractions further implied reduced sensitivity (Appendix figure 40G), 

seen as a 10-fold right-shift in their displacement/logI-curve in respect to the wild-type data. 

 Interestingly, this sensitivity difference resembles that seen between the wild-type and hdcJK910 

ERGs (Appendix figure 40H). We have recently provided compelling evidence that the 

missing histaminergic (inhibitory) neurotransmission from hdcJK910 photoreceptors to 

interneurons (LMCs and amacrine cells) causes a tonic excitatory synaptic feedback to R1-R6s, 

depolarizing them ~5 mV above the normal wild-type dark resting potential (Dau et al., 2016). 

Thus, hdcJK910 R1-R6s should experience a tonic Ca2+ influx and be permanently in a more 

“light-adapted” state. Here, our results suggested that Ca2+ overload may desensitize the 

biophysical machinery that moves the rhabdomeres, reducing its dynamic range. 

 

Light-adapted rhabdomere motion reflects rhodopsin/meta-rhodopsin balance 

Given the slightly reduced back-to-front rhabdomere mobility of hdcJK910 photoreceptors, we next asked 

whether prolonged light-adaptation itself would reduce wild-type photoreceptors’ rhabdomere 

movement. To study this question, we examined how the rhabdomeres in seven individual flies 

responded to different light impulses at different adaptation states. 

 First, to obtain the baseline responses in each fly eye, we recorded their rhabdomere movements 

to a bright and a very bright full-field green-blue flash after 30 s of dark-adaption (Appendix figures 

41A and B, respectively). As before, we found that the brighter the light flash, the larger and the faster 

their rhabdomere movements were on average.  

Interestingly, however, when the flies were adapted to a moderate or bright blue (470 nm) light 

field for 30 s, which converts most (if not all) rhodopsin Rh1 to its active meta-form (causing PDA, 

prolonged depolarizing afterpotential), the flashes now evoked only weak or no rhabdomere movement 

(Appendix figure 41C-D). Such reduced mobility somewhat resembled that in some hdcJK910 

rhabdomeres (Appendix figure 40D). These observations can be explained, at least in part, with the 

basic molecular model proposed for rhabdomere contraction (Hardie & Franze, 2012). Here, meta-

rhodopsin would continuously activate G-protein and in turn phospholipase C (PLC). PLC would then 

cleave most PIP2 off the microvillar membrane, causing a tonic photoreceptor contraction, which 

facilitates light-gated channel openings and thus increases Ca2+ influx. But because a 10 ms bright green 

(545 nm) light pulse would convert only some fraction of meta-rhodopsin back to its non-activated 

form, this effect would be small proportionally, and could only partially rescue the rhabdomere 

contractibility. 

 

Rhabdomere contractions resensitize refractory sampling units 

On the other hand, under more natural green light-adaptation (Appendix figure 41E-H), the eyes’ 

normal back-to-front rhabdomere contractibility to light increments was retained, and sometimes even 

increased, in respect to their dark-adapted baseline responses (Appendix figure 41A, B). Consequently 

in every fly eye (7/7), the rhabdomeres moved more when green-adapted than when moderately blue 

light-adapted (Appendix figure 41C), as quantified by their flash-induced maximum displacements 

(Appendix figure 41I). 

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 27, 2017. ; https://doi.org/10.1101/083691doi: bioRxiv preprint 

https://doi.org/10.1101/083691


106 

 

Appendix figure 41. Wild-type 

photomechanical rhabdomere 

movement dynamics at different 

light-adaptation states. 

Characteristic non-averaged 

photomechanical rhabdomere 

movements of 7 wild-type flies and 

their means (thick traces) to bright 

(logI(-1); left) or to very bright 

(logI(0); right) light flashes. The 

recordings were performed in relative 

darkness (>720 nm) or when the eyes 

were adapted for 30 s to different green 

(545 nm) or blue (470 nm) light 

intensity levels; from weak (logI(-3)) 

to bright (logI(-1)). (A-B) In dark-

adaptation, consistent with the results 

in Appendix figure 40, the brighter 

the flash, the larger and faster the 

evoked mean rhabdomere movements. 

(C-D) Prolonged blue light exposure 

converted virtually all Rh1-rhodopsins 

to their active meta-form, causing a 

PDA (prolonged depolarizing 

afterpotential). PDA increases the 

photoreceptors’ intracellular calcium 

load, cleaving PIP2 from the plasma-

membrane and so keeping them in a 

contracted state. A very bright green 

flash rapidly converts some of the 

meta-Rh1 back to Rh1, enabling small 

and brief rhabdomere movements, 

which resemble those seen with 

hdcJK910 flies (Appendix figure 40). 

(E-H)  Adaptation to different green-

light intensity levels did not abolish 

rhabdomere movements to light 

increments. These movements can, in fact, be larger than in the same cell’s dark-adapted state, as was seen in 

Fly4 and Fly6 recordings. Notice that a 1.2-1.4 µm rhabdomere displacements means ~4-5o shifts in a R1-R6 

photoreceptor’s receptive field (Appendix figure 33), which can be more than the average Drosophila 

interommatidial angle. 

 

These results indicate that in normal spectrally-broad natural environments, light increments 

(positive contrasts) will evoke fast evasive rhabdomere movements, steering them away from pointing 

directly to a bright light source. This novel photomechanical adaptation should together with the slower 

screening pigment migration (intracellular pupil mechanism, Appendix 2) help to recover (resensitize) 

a rhabdomere’s refractory sampling units (30,000 microvilli). Thus, the rhabdomere movements likely 

participate in optimizing photon sampling for maximum information capture (Appendixes 1-2). This 

further means that a rhabdomere’s state of contraction is constantly being reset to the ongoing light 

input, providing the capacity to respond to the next stimulus increment. Therefore, although being 

slower, in many sense, Drosophila photoreceptors’ mechanical adaptation resembles the inner ear hair-

cells’ adaptive resensitization (Howard et al., 1988; Corey et al., 2004).  
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Appendix 8: Microsaccadic sampling hypothesis for resolving fast-moving objects 

 

Overview 

This appendix describes a new ‘microsaccadic sampling’-hypothesis that predicts a Drosophila 

photoreceptor’s voltage responses to moving dots, and provides important background information 

about the experimental and theoretical results presented in Figures 7-9. 

 

In this appendix: 

 We use our biophysical Drosophila R1-R6 model (Appendix 1), with different degrees of 

photomechanical rhabdomere movements modulating light input (Appendix 7), to simulate 

photoreceptor voltage output to moving bright dots that cross its receptive field in different 

directions, speeds and inter-distances. 

 By comparing the model simulations to intracellular recordings, we reveal the likely 

biomechanics that allow R1-R6s to resolve adjacent dots at saccadic velocities (Appendix 6). 

 We show that when a rhabdomere contracts away from the ommatidium lens’s focal point, its 

receptive field must move and narrow dynamically. Together these processes actively reshape 

both the light input and photoreceptor output to separate and sharpen neighboring visual objects 

in time, improving their resolvability.  

 Crucially, with such photomechanical light input modulation, the model photoreceptor output 

closely approximates that of the real R1-R6s, as recorded to two moving bright dots crossing 

their receptive fields at different speeds (Figures 7-9; Appendix 6). 

 Hence, with refractory photon sampling and photomechanical rhabdomere movements, we can 

correctly predict and convincingly explain visual acuity of R1-R6s to moving objects. 

 

Modeling a R1-R6’s receptive field dynamics to moving dots 

Based on the combined results in Appendix 1-7, we develop a new ‘microsaccadic sampling’-

hypothesis, which predicts how photomechanical rhabdomere contractions (microsaccades) move and 

narrow Drosophila R1-R6 photoreceptors’ receptive fields (RFs) to resolve fast-moving objects. We 

present extensive analytical and experimental evidence to show how these mechanisms operate with 

the photoreceptors’ refractory information sampling to reduce light-adaptation and to increase the 

spatiotemporal resolution of their voltage responses, improving visual acuity. 

 

Using the results in Appendix 1-7, we can now work out the biomechanics, which allow a R1-R6 to 

resolve two close bright dots crossing its receptive field at saccadic speeds. We do this systematically 

by comparing the output of our biophysical model (Song et al., 2012; Song & Juusola, 2014; Juusola et 

al., 2015) (Appendix 1), in which input is modulated by different degrees of rhabdomere 

photomechanics (Appendix figure 42A-C), to the corresponding recorded real R1-R6 output 

(Appendix figure 42D). Specifically, we consider three input modulation models: 

A. Stationary rhabdomere model (receptive field is fixed) 

B. Photomechanical rhabdomere model (receptive field moves) 

C. Photomechanical rhabdomere model (receptive field moves and narrows) 

In the following, to make these different models (A-C) directly comparable, we first present the findings 

for two bright dots, which cross the receptive field at 205 o/s (Appendix figure 42), before generalizing 

the results for a vast range of stimuli and giving more examples. Note that these simulations and 

recordings were performed at 19-20 oC. Later on in this appendix, we show how at the Drosophila’s 

preferred temperature range (24-25 oC) (Sayeed & Benzer, 1996) these dynamics are naturally faster 

(Juusola & Hardie, 2001b) and improve visual acuity further. The scripts for light stimulus calibrations 

and for simulating responses to two moving dots are in the repository: 

https://github.com/JuusolaLab/Microsaccadic_Sampling_Paper/tree/master/CalibrateLightInput-

PhotoreceptorMovement. 

 

A. Stationary rhabdomere model (receptive field is fixed). This approach is broadly analogous to the 

classic theory (Appendix 4 and Appendix 6). It was implemented in four steps (Appendix figure 42A): 

(i) Two bright dots, which were 6.8o apart, crossed a R1-R6’s RF (∆ρ = 8.1o) front-to-back at the 
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saccadic speed of 205 o/s.  

(ii) Concurrently, the ommatidium lens focused their light onto a rhabdomere tip.  

(iii) The resulting dynamic light input at the rhabdomere tip was a convolution of the two dot 

intensities with the cell’s receptive field over time (Srinivasan & Bernard, 1975; Juusola & 

French, 1997).  

(iv) The light input (photons/s) drove the photon sampling and refractory quantum bump (QB) 

production of 30,000 microvilli (Song et al., 2012; Song & Juusola, 2014; Juusola et al., 2015), 

which formed the rhabdomere. The resulting macroscopic photoreceptor output (Hardie & 

Juusola, 2015) dynamically integrated the QBs.  

 
Appendix figure 42. 

Microsaccadic 

sampling-hypothesis 

predicts R1-R6 

output dynamics to 

fast moving bright 

dots. We compare 

stochastic sampling 

model predictions of 

increasingly realistic 

light input modulation 

(A-C to real recordings 

D). In each case, the 

light stimulus is two 

fast moving bright dots 

(i), which cross a R1-

R6’s receptive field 

(RF, half-width = 8.1o) 

front-to-back at 205 o/s. 

The immobile 

ommatidium lens 

focusses their light 

onto a rhabdomere tip 

(ii). But because of 

diffraction, their 

images blur (airy disk). 

Interestingly, however, 

in Drosophila, the airy 

disk half-width (~1.7o 

or ~0.6 µm) is smaller 

than the rhabdomere diameter (~1.7 µm; Appendix 5). The dynamic light input falling upon the rhabdomere 

(iii) is then estimated by convolving the two dot intensities with the cell’s receptive field over time (i). This 

light input is sampled stochastically by 30,000 microvilli, in which quantum bumps integrate the dynamic 

voltage response (iv). (A) In the simulations, where the rhabdomere is stationary during the dots flyby 

(corresponding to the classic theory (Srinivasan & Bernard, 1975; Juusola & French, 1997), ii), their light fuses 

together (iii). This is because the simulated photoreceptor’s RF half-width (8.1o) is wider than the distance 

between the dots (6.8o). Accordingly, the photoreceptor output (iv) cannot distinguish the dots. (B) Next, we 

include the light-induced fast back-to-front rhabdomere movement in the model (ii; as measured in the high-

speed video recordings in Appendix 7, Appendix figure 30), but keep the cell’s RF shape the same. The 

resulting RF movement makes the light input rise and decay slightly later than in the previous case (iii; cf. the 

green and dotted grey (A) traces), but still cannot separate the two dots. The resulting photoreceptor output (iv) 

shows a single peak, which is slightly broader than the output from the immobile cell in (A). (C) In the full 

model, as the contracting rhabdomere jumps away from the focal point (ii), the light input both moves with the 

cell’s RF and dynamically narrows it from 8.1o to 4.0o. These processes differentiate the light input (from the 

dots) into two separate intensity spikes over time (iii), which the photoreceptor output can clearly separate in 

two distinctive peaks (iv). (D) In vivo intracellular photoreceptor recordings from a wild-type R1-R6 to the two 

moving dot stimulus show comparable dynamics to the full model’s prediction. In the simulation, the same 

cell’s RF (i) was moved and narrowed dynamically (ii-iii) according to our hypothesis in (C). This close 

correspondence, which occurred even without the additional response accentuation from the synaptic feedbacks 
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(Appendix 6), implies that Drosophila photoreceptors’ RFs must move and narrow with their photomechanical 

rhabdomere contractions. Appendix figure 44 proposes four mechanisms to narrow RF. 

, 

Characteristically in this approach, input modulation reduced to a single peak as the RF convolution 

fused the light from the two dots together (iii). This made them irresolvable to the discrete photon 

sampling (iv). Specifically here, light input could not separate the two dots because the given receptive 

field half-width (8.1o) was wider than the distance between the dots (6.8o). The resulting model output, 

thus, failed to capture the resolvability of the real R1-R6 output (Appendix figure 42D, iv).  

Markedly, the model prediction (Appendix figure 42A, iv) much resembled those of the 

deterministic Volterra-models, in which similarly broad RFs were used in the calculations (see 

Appendix 6). 

 

B. Photomechanical rhabdomere model (receptive field moves). In this case (Appendix figure 42B), 

we kept the cell’s receptive field shape the same (i; ∆ρ = 8.1o) but included the light-induced fast 

horizontal (back-to-front) rhabdomere movement in the model (ii). The given model parameters (Table 

8) were fixed to closely approximate the experimentally observed rhabdomere movement dynamics 

(see Appendix 7). Here, the following deductions were made: 

 Each photoreceptor contracted independently to light. Although this movement is linked to the 

synchronous contractions of its neighbors inside the same ommatidium, such cooperativity 

makes no difference to the model.  

 Rhabdomere movement started 8 ms after the first dot reached the outer rim of a photoreceptor’s 

receptive field, called the trigger zone. This delay matched both the delay in R1-R6 output 

(Appendix 7: Appendix figure 40A) and the apparent dead-time in AFM data (Hardie & 

Franze, 2012) to a bright light flash (Appendix 7: Appendix figure 38J). The trigger zone was 

14.6o from the photoreceptor receptive field center, matching the typical spatial threshold where 

dark-adapted wild-type R1-R6s responded faintly to subsaturating peripheral light flashes 

(Appendix 4, Figure 7-figure supplement 1A). 

 Maximum horizontal rhabdomere movement was set to be 0.58 µm, corresponding to a 1.6o 

shift in its receptive field. This value is close to the measured average of the maximum light-

induced rhabdomere movements in wild-type fly ommatidia (Appendix 7, Figure 8D). 

 Rhabdomere movements had two phases. In the 1st phase, a rhabdomere moved 1.6o in back-

to-front direction for 100 ms, reaching its maximum displacement. This caused a receptive field 

to shift in the opposite, α (front-to-back) direction. Importantly, the 1st phase could not be 

disturbed. In the 2nd phase: the rhabdomere slowly returned to the original position in 500 ms. 

The 2nd phase could be disturbed. Both the phases followed linear motion. 

 
Table 8. Parameters for modeling a R1-R6’s receptive field (RF) dynamics caused by its rhabdomere 

contraction  

Trigger 

zone: 

trig 

Starting 

RF 

half-

width: 

∆ρstart 

Delay before 

rhabdomere 

motion: lag 

Rhabdomere 

motion: 

(time-to-peak) 

Phase 1 

Resulting 

parallel RF 

shift: 

RFshift 

RF shift 

direction: α 

(front-to-

back) 

Rhabdomere 

motion: 

Phase 2 

Ending 

RF 

half-

width: 

∆ρend 

14.6 o 8.1o 8 ms 100 ms 1.6o 0 500 ms 4.0o 

 

As in the first case, the moving receptive field model (Appendix figure 42B) was implemented for the 

same stimulus in four steps (i-iv):  

(i) Two bright dots, 6.8o apart, crossed a photoreceptor’s RF (∆ρ = 8.1o) front-to-back at the 

saccadic speed of 205 o/s.  

(ii) The ommatidium lens focused their light onto a rhabdomere tip. But here, after 8 ms delay, the 

rhabdomere started to move back-to-front as it contracted photomechanically. 

(iii) The resulting dynamic light input was, therefore, a convolution of the two dot intensities and 

the cell’s receptive field, which moved at different speeds in the same direction (front-to-back). 

(iv) The light input drove the photon sampling and refractory QB production of 30,000 microvilli, 

while the resulting macroscopic photoreceptor output summed up the QBs. 
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We found that the resulting receptive field movement caused (iii) the light input rise and decay 

slightly later than when the rhabdomere was immobile (cf. green and dotted grey traces). However, 

because the two dots were close and crossed the cell’s receptive field fast, the given co-directional 

receptive field motion failed to separate the light from them. Thus, (iv) the resulting photoreceptor 

output showed a single peak, which was slightly broader than the output from the immobile model. 

 

C. Photomechanical rhabdomere model (receptive field moves and narrows). There is a large disparity 

between the measured (Appendix 4: ∆ρ = 7.00 – 11.65º) and the optical waveguide theory derived 

(Stavenga, 2003b) (∆ρ = 3.5 - 5.3o) acceptance angles of dark-adapted R1-R6s. Even Snyner’s simple 

formula (Snyder, 1977) (Appendix 4: Eq. A4.3), which overestimates (van Hateren, 1984; Stavenga, 

2003b) ∆ρ from the measured Drosophila ommatidium optical dimensions, gives a theoretical upper 

bound (∆ρ <5o) that is smaller than the smallest intracellularly measured values.  

Δ𝜌 = (√(
0.545

16
)

2

+ (
1.7

21.36
)

2

) ×
180

𝜋
= 4.9601 ° 

Δ𝜌 = (√(
0.545

17
)

2

+ (
1.7

21.36
)

2

) ×
180

𝜋
= 4.9161°  

These upper bounds for green light (545 nm) were obtained for the smallest and largest ommatidium 

lens (16-17 µm) with average rhabdomere diameter EM measurements (1.7 µm) (Appendix 5), using 

the experimentally estimated focal length (21.36 µm) (Gonzalez-Bellido et al., 2011).  

Moreover, interestingly, Götz estimated from Drosophila optomotor behavior, using the early 

flight simulator system (Götz, 1964), that in bright illumination R1-R6 ∆ρ would be 3.5o. 

To resolve the paradox between the conflicting experimental and theoretical ∆ρ-estimates, 

which in the past were based upon histological measurements of fixed/stained (dead/immobile) retinal 

structures, we hypothesized that the photomechanical rhabdomere contractions not only move a 

photoreceptor’s RF but also dynamically narrow it (Appendix figure 42C). What is more, we reasoned 

that the RF narrowing should depend upon stimulus history; the cell’s ongoing light exposure. 

Therefore, our specific prediction was that when moving bright dot stimuli entered a R1-R6’s RF, the 

resulting dynamic input modulation would transiently sharpen R1-R6 output, improving its temporal 

resolution.  

Again, the feasibility of the hypothesis was assessed by analyzing and comparing the resulting 

biophysical model output to real R1-R6 recordings. The model was implemented in four steps 

(Appendix figure 42C):  

(i) Two bright dots, 6.8o apart, crossed a photoreceptor’s RF (∆ρ = 8.1o) front-to-back at the 

saccadic speed of 205 o/s.  

(ii) The ommatidium lens focused their light onto a rhabdomere tip. After 8 ms delay, the 

rhabdomere started to move back-to-front as it contracted photomechanically. And now, with 

this movement, its acceptance angle, ∆ρ, also narrowed transiently, from 8.1o to 4.0o (Table 8). 

In the model, the further away the rhabdomere moved from its starting position at the focal 

plane, the more its receptive field narrowed (or skewed). 

(iii) The resulting dynamic light input was, therefore, a convolution of the two dot intensities and 

the cell’s RF, which narrowed and moved at different speeds in the same direction (front-to-

back). 

(iv) The light input drove the microvillar photon sampling and refractory QB production, which 

were summed up over the whole rhabdomere to a macroscopic photoreceptor voltage output. 

 

Importantly, the predicted photoreceptor output showed now two distinct peaks, indicating that the two 

dots (iv) were resolved neurally. Moreover, the simulations closely resembled the recordings to the 

similar stimulus (cf. Appendix figure 42C to D).  

In another test (Appendix figure 42D), we estimated the same R1-R6’s light input (iii) from 

its RF (i; through programmed look-up table operations, see Appendix figure 22) and used this to 

predict its output (iv; blue dotted trace). We discovered that the simulated output was indeed similar to 
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the cell’s actual recorded output to the same stimulus (black trace), with the timing of their two peaks 

matching closely. This close dynamic correspondence between the simulations and recordings was 

robust and reproducible in different tested stimulus conditions (Appendix figure 43C-D), meaning that 

the given model structure likely incorporated the basic biophysical mechanisms that R1-R6s use in 

encoding moving stimuli. 

 
Appendix figure 43. 

The hypothesis 

predicts R1-R6 

output to double-fast 

moving point-objects. 
All the parameters of 

the simulations are 

fixed to the 

experimentally 

measured values, 

similar to Appendix 

figure 42. The stimulus 

is the same two bright 

dots, but this time, they 

cross the cell’s 

receptive field (RF) 

double-fast, 409o/s (i). 

(A) Again, if the 

rhabdomere remains 

stationary during their 

flyby (corresponding to 

the classic theory, ii), 

their light fuses (iii), 

and the photoreceptor 

output cannot 

distinguish the dots 

(iv). (B) By including 

the light-induced back-

to-front rhabdomere 

movement (ii) but with 

the same RF shape, the light input broadens slightly (iii), but cannot separate the two dots. Consequently, the 

photoreceptor output (iv) shows a slightly narrower single peak than in the previous case in (A). (C) If, 

however, the rhabdomere contraction (away from the lens’ focal point, ii) moves the RF and actively narrows 

it (from 8.8o to 4.9o), the light input from the dots is transformed into two intensity spikes (iii), which R1-R6 

output separates into two peaks (iv). (D) Corresponding intracellular R1-R6 recordings show comparable 

dynamics to the full model (C). These and other simulations and recordings, which all show good 

correspondence, establish that photoreceptors’ RFs must move and narrow dynamically during light 

stimulation. 

 

In summary, for the biophysical model to match up the real R1-R6 cells in resolving two bright moving 

dots, its receptive field must move and transiently narrow from its original size (Appendix 4: ∆ρstart = 

7.00 - 11.65 º) to the size predicted by the optical waveguide theory (∆ρend = 3.5 - 5.3o). Moreover, 

within this dynamic ∆ρ change range, the resulting model outputs become realistic and robust. Using 

this modeling approach, we could appropriately predict the real photoreceptors’ voltage responses to 

the different moving dot stimuli (Appendix 6), irrespective of the tested dot speed, direction (front-to-

back or back-to-front) and inter-dot distance. For example, by replacing the mean measured rhabdomere 

displacements with some of the larger values (Appendix 7), the simulations resolved moving dots 

similarly well to the recordings even at very high stimulus speeds 400-800 o/s.  

From the neural coding point of view, this broad agreement between our ‘microsaccadic 

sampling’-hypothesis and the experiments makes it almost certain that photomechanical rhabdomere 

contractions (Appendix 7) move and narrow R1-R6 photoreceptors’ RFs to enhance visual acuity. But 

from the viewpoint of reducing light-adaptation, these processes seem like by-products of a simple 
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evasive action, which steers the rhabdomere away from pointing directly to the light source (to recover 

more refractory microvilli; see Appendix 2). Nevertheless, while elementary optics makes it clear why 

a horizontal rhabdomere motion must move a R1-R6’s receptive field in the opposite way, it is harder 

to see what physical mechanisms could narrow it. We next consider four potential processes within the 

ommatidium lens system that could just do this. 

 

What could cause the receptive field narrowing during moving light stimuli? 

Four hypothetical mechanisms, together or separately, could explain the required RF narrowing: 

1. When a rhabdomere moves back-to-front (Appendix figure 44A), it moves away from the 

center axis, which remains fixed because the ommatidium lens system does not move (see 

Appendix 7, Appendix figure 36). Therefore, as the rhabdomere tip moves horizontally 

(Video 3), the light input point-spread function (airy disc) should fall only partly upon it. 

This may clip or skew the rhabdomere’s RF (acceptance angle, ∆ρ), narrowing it. 

2. Besides moving rhabdomeres horizontally (Appendix 7), photomechanical photoreceptor 

contractions also move them 0.5-1.7 µm inwards (Video 2; Appendix figure 44B). In a 

dark-adapted state, the rhabdomeres are elongated towards the lens with their tips possibly 

not being at the focal point. Hence, in this position, the rhabdomeres should collect light 

from broader angles (Appendix 4, from the brief test pulses: Appendix figure 17), and 

partially recover (re-elongate) before the next pulse comes. But during more continuous 

light stimulus, their contraction pulls their tips inwards, towards the possible focal point of 

the lens, which could narrow ∆ρ towards its theoretical values (3.5-5.3o). 

3. Rhabdomere tips are linked by adherence junctions to the cone cells (above them) and 

pigment cells (at their upper corners) (Tepass & Harris, 2007) (Appendix figure 44C). 

When the rhabdomeres contract these connections likely pull the pigment cells above, 

generating a dynamic aperture (Video 4), which moves and possibly tightens, to narrow ∆ρ 

(see Appendix 7, Appendix figure 36). 
 

Appendix figure 44. How 

ommatidium dimensions 

change during light-induced 

photoreceptor contractions. 

The three images show the same 

transverse section of three 

Drosophila ommatidia, with their 

rhabdomeres appearing as six 

darker curvy strips. The 

rhabdomeres contract (cyan 

arrow) to light (yellow arrow, as 

focused by the lens), moving both 

(A) horizontally (back-to-front) and (B) vertically (down arrow), see Appendix 7. Because the rhabdomeres 

are connected to the surrounding structures by adherence junctions (Tepass & Harris, 2007) (red boxes highlight 

the transition areas), their contraction induces (C) moving and possibly narrowing of the aperture (green 

horizontal arrow) formed by the cone and pigment cells, which are directly above the rhabdomeres (lighter blue 

areas). Ultimately, the curvature of the lens and focal distance might also change slightly. Image modified from 

(Gonzalez-Bellido et al., 2011). 
 

4. In dark-adaptation, the waveguide crosstalk between neighboring rhabdomeres could 

broaden their receptive fields. But light-induced horizontal rhabdomere movement may 

eliminate the crosstalk between the neighbors, narrowing ∆ρ towards the theoretical values 

(3.5-5.3o). 

Specific predictions of our new hypothesis and their experimental validations 
The microsaccadic sampling-hypothesis, as implemented by our biophysically realistic photoreceptor 

model (Appendix 1) with combined photomechanical rhabdomere dynamics, makes important 

predictions about the coding benefits of moving and narrowing R1-R6 receptive fields that can be tested 

experimentally. 
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The 1st prediction is that, for a given stimulus or saccadic velocity, R1-R6 output to a back-to-

front moving bright dot should appear before the output to a front-to-back moving dot. This is because 

the back-to-front moving dot should enter and exit a contracting photoreceptor's front-back moving 

receptive field earlier; whereas the dot moving in the opposite direction should stay marginally longer 

inside its RF. Appendix figure 45 compares the theoretical predictions (output simulations) of the same 

three models as earlier (A, B and C; their details are above) and corresponding exemplary intracellular 

recordings (D) for these two stimuli. 

Both the full model simulations (C) and many recordings (D) indicate that this prediction is 

indeed what happens for a R1-R6 with a symmetrical RF (i). The responses (red traces) to back-to-front 

moving dots rise and decay faster than the responses (blue traces) to front-to-back moving dots. Similar 

response dynamics of another intracellular recording series from another R1-R6 are highlighted in 

Appendix 6 (Appendix figure 25). Notice, however, that these results are explicitly true for 

symmetrical receptive fields. If, on the other hand, a R1-R6’s RF was asymmetrical - say, profoundly 

skewed towards the front of the eye, then its response to the front-to-back moving dot might, in fact, 

rise earlier, or there could be little difference between the responses. Thus, it is the mathematical 

relationship between the scale of RF asymmetricity and the scale of the rhabdomere back-to-front 

movement, which ultimately sets whether a front-to-back or back-to-front stimulus would win. Notice 

also that dynamic photomechanical rhabdomere movements and eye muscle activity make RF 

recordings difficult to perform, and consequently, experimental inaccuracies and limitations can 

influence the results. Thus, some of the natural variations in the recordings may result from imprecise 

stimulation control. For example, imperfect positioning of a 25 light-point stimulus array - either off-

center of a cell’s receptive field or if not aligned perfectly parallel in respect to the eye’s back-to-front 

axis - could bias a recording (more about this variation and the cell numbers in Appendix 6). 

 
Appendix figure 45. The new 

hypothesis predicts and the 

recordings show that R1-R6 

output rises and decays 

earlier to a back-to-front 

moving bright dot than to a 

front-to-back moving dot of 

equal velocity. (A) A classic 

model with (i) a symmetrical 

receptive field  and (ii) an 

immobile rhabdomere leads to 

identical (iii) light inputs and 

virtually identical (iv) 

photoreceptor outputs (minute 

differences result from 

stochastic photon sampling), 

respectively, for the dots 

moving in the opposite 

directions. (B) A model with (ii) 

a moving rhabdomere generates 

both dynamic (iii) light input 

and (iv) photoreceptor output, 

which rise and decay earlier for 

the back-to-front moving dot 

(red traces) than the front-to-

back moving dot (blue traces). 

(C) Our full model with 

rhabdomere contraction dynamics that move and narrow its receptive field. This makes the light input and 

photoreceptor output rise and decay faster than in the other two models, with the back-to-front waveforms 

leading the front-to-back counterparts. (D) The intracellular responses of a R1-R6 photoreceptor to the given 

two dot stimuli, as recorded in vivo, show similar dynamics to the full model in (C) with its back-to-front 

signals (red) leading the front-to-back signals (blue). 

 

Interestingly, for both opposing object directions, the narrowing of a R1-R6’s receptive field 
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(Appendix figure 45C-D) makes its voltage responses briefer than what would be the case without this 

process (A-B). Therefore, the resulting faster temporal photoreceptor output dynamics combat the 

effects of motion blur, supporting the theoretical and experimental results in Appendix 6 (Appendix 

figure 29). 

The 2nd prediction is that, for high (saccadic) speeds, R1-R6s resolve two front-to-back moving 

bright dots better than when these move back-to-front (Appendix figure 46). Thus, the normal back-

to-front rhabdomere movement should improve the fly eye’s spatiotemporal resolution during fast 

forward locomotion or object motion. This is indeed what we saw in the full model simulations 

(Appendix figure 46D) and in some stable experimental recordings (Appendix figure 46E). Because 

of the back-to-front rhabdomere movement, which was inverted by the ommatidium lens, the light input 

(Appendix figure 46C) for two front-to-back moving dots were separated further apart as intensity 

spikes (blue trace) than that for the opposite motion (red). Consequently, the resolvability in the 

resulting R1-R6 output (Appendix figure 46D) also became greater for front-to-back moving stimuli. 

This of course further meant that in comparison to the case of the immobile rhabdomere with the same 

narrow acceptance angle (∆ρ = 4o), the neural resolvability of the back-to-front moving rhabdomere, 

which kept the same stimulus longer within its receptive field, would be still better. 

 
Appendix figure 46. Fast rhabdomere 

movements are predicted to improve the 

resolvability of fast front-to-back moving 

objects the most. (A) Two bright dots, 6.8o 

apart, cross a photoreceptor’s receptive field 

(RF;∆ρstart = 8.1o) either in back-to-front (red, 

left) or front-to-back (blue, middle) at 409 o/s 

(i). (B) The new photoreceptor model 

translated the light-induced back-to-front 

rhabdomere motion into concurrent RF 

narrowing (∆ρend = 4.0o) and front-to-back 

movement (as reversed by the ommatidium 

lens). (C) Consequently, the light input from 

the dots was transformed into two intensity 

spikes. These spikes were further apart in time 

for the front-to-back moving dots and for the 

opposing stimuli. (D) The two peaks in in the 

corresponding model-predicted R1-R6 output 

(blue) for front-to-back moving dots 

(highlighted by arrows) indicated that the dots 

were neurally detectable. In contrast, the 

predicted R1-R6 output for back-to-front 

moving dots (red) failed to separate these two 

point-objects at 19oC. (E) An example of 

intracellular recordings from one R1-R6 

photoreceptor to the same two stimuli at 25oC. 

This cell’s voltage responses also resolved the 

front-to-back moving dots better than their 

back-to-front moving counterparts. These and 

other comparable simulations and recordings 

suggest that microsaccadic rhabdomere movements improve the neural resolution (and representation) of fast 

moving visual objects. 

 

Photoreceptors resolve moving object up to high body-saccadic speeds 
We next used the complete photoreceptor model (above) to estimate how well a typical R1-R6 

photoreceptor can resolve two bright dots, which are less than the average acceptance angle (∆ρ) apart, 

moving together at increasingly fast (saccadic) velocities. This time, however, the simulations were 

performed at the flies’ preferred temperature (Sayeed & Benzer, 1996) of 25 oC, rather than at 19oC (as 

in the previous data). We have shown earlier that warming accelerates R1-R6s’ phototransduction 

dynamics and refractory microvilli recovery (Juusola & Hardie, 2001b; Song et al., 2012; Song & 

Juusola, 2014). Because the resulting increase in their sample (quantum bump) rate changes improves 
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information transfer rate (Juusola & Hardie, 2001b; Song et al., 2012; Song & Juusola, 2014), we expect 

here that their output to moving dots should also show improved resolvability. We later compare these 

estimates to the measured head/body-saccade speeds of freely locomoting Drosophila (Fry et al., 2003; 

Geurten et al., 2014). 

 Appendix figure 47 shows the simulated light input (C) and photoreceptor output (D) to the 

dots (6.8o apart) crossing a R1-R6 photoreceptor’s RF (∆ρstart = 8.1o, ∆ρend = 4.0o) in front-to-back 

direction at 205 (left), 409, 600, 700, 800 and 1,000o/s (right). We found that the slower the dots moved 

(A), the better the predicted photoreceptor output distinguished them as two separate events (peaks) in 

time (D). Remarkably, the output resolved the dots at speeds until ~600 o/s (cyan background). As a 

neural threshold for representing sub-RF details, this image speed is indeed very high. It means that 

Drosophila should lose little neural image detail during its normal saccadic body rotations during 

walking; the measured rotation speed range is ~200-800 o/s (Geurten et al., 2014). 

At the higher speeds, the two response peaks fused into one. Notice that because the predicted 

light input (as modulated by the rhabdomere contraction) resolved the dots even at 1,000 o/s (Appendix 

figure 47C), the resolution limit in the photoreceptor output (Appendix figure 47D) resulted from its 

intrinsic signal integration time limit; for the given (experimentally measured) quantum bump size, 

latency and refractoriness distributions (Juusola & Hardie, 2001a; Song et al., 2012; Song & Juusola, 

2014). Notice also how the response amplitude and half-width were reduced more the faster the dots 

crossed the receptive field. Thus, the rhabdomere then simply captured and integrated fewer photons in 

a given time unit. 

 

 
Appendix figure 47. The 

hypothesis predicts that 

at the preferred 

temperature (25 oC) 

Drosophila R1-R6 

photoreceptors can 

distinguish two bright 

dots 6.8 o apart 

travelling together at 

~600 o/s. (A) The starting 

and ending receptive field 

size (RF; ∆ρstart = 8.1o; 

∆ρend = 4.0o) in all the 

simulation was the same. 

(B) in every case, the 

rhabdomere contracted, 

moving and narrowing the 

RF. (C) This translated 

light input into two clear 

sharp peaks. (D) 

Photoreceptor output 

separated the dots as two 

peaks at velocities until above 600 o/s (left, cyan background), indicating that they were neurally resolvable. 

At 700 o/s or higher speeds (right), the dots were not resolved as the outputs had only a single peak. Mean ± 

SD shown, n = 6 repeated stochastic simulations to each stimulus. 

 

Prediction that R1-R6s encode hyperacute images in space-time 

Given that R1-R6 output shows unexpectedly high acuity even at very fast saccadic velocities 

(Appendix figure 47), we asked how well these cells could in fact resolve slower moving point-objects. 

Could a normal R1-R6 encode image details, which were less than the average interommatidial angle 

apart? That is, could Drosophila actually see the world in finer resolution than their compound eyes 

maximum sensor (or pixel) spacing, which is the limit predicted by the classic optical theory (Land, 

1997)? 

 We tested this hypothesis theoretically by using the full ‘microsaccadic sampling’-model 

(Figure 9). In these simulations, two bright dots were now either 1o, 2o, 3o or 4o apart. Thus the dot 
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spacing was less than the Drosophila compound eye’ average interommatidial angle (∆φ ~ 4.5-5o). The 

dots were then moved across a R1-R6 photoreceptor’s RF (∆ρstart = 8.1o; ∆ρ end = 4.0o) at different speeds, 

ranging from 5 (slow gaze fixation) to 400 o/s (very fast body saccade). 

The model predicted that a typical R1-R6 photoreceptor would resolve the dots in hyperacute 

details (Figure 9) over a broad range of velocities. These theoretical predictions were broadly confirmed 

by intracellular recordings (Figure 9-figure supplement 1), whilst flight simulator experiments 

verified that Drosophila indeed have hyperacute vision (Figure 10). 

 

Refractory sampling improves hyperacute motion vision 
To quantify how refractory photon sampling contributes to the sharpening of the macroscopic responses 

during moving hyperacute 2-dot stimuli, we further compared the outputs of two different photoreceptor 

models for the same stimuli (Appendix figure 48), with the brightness as in Appendix figure 42. For 

both cases, the resulting dynamic light input – reflecting the narrowing and moving receptive field, as 

caused by photomechanical rhabdomere contraction - was the same, but the models’ photon sampling 

differed. The test model had 30,000 stochastically operating refractory microvilli and the control was a 

comparable mock model, which converted every incoming photon into a quantum bump.  

 
Appendix figure 48. Refractory 

sampling enhances neural 

resolution for different aspects of 

hyperacute images. (A) Examples of 

simulated macroscopic light-induced 

current responses (normalized LICs) 

of two different photoreceptor 

models. Both models have 30,000 

microvilli. In the 1st model (red), 

every photon causes a quantum bump; 

hence, its photon sampling has no 

refractoriness. In the 2nd model 

(black), photon sampling is 

refractory. Both models are 

stimulated with the same moving two 

bright dots, with their actual light 

inputs being first modulated by 

photomechanical rhabdomere 

contractions (following the 

microsaccadic sampling hypothesis). 

Based on the tests with different 

velocities and inter-dot-distances, 

refractoriness consistently causes a 

phase lead in LIC responses. (B) 

Refractoriness improves response 

resolution for hyperacute stimuli 

(inter-dot-distance <4.5o) at slow 

velocities (≤ 20 o/s). The resolvability, 

D, of the recordings and simulations, 

was determined by Raleigh criterion 

(cf. Figure 7C). (C) An example of how refractoriness can enhance response resolution for larger stimulus 

separations at high saccadic velocities. The difference from the lower peak to the trough is larger in the black 

trace (refractory photon sampling) than in the red trace (complete photon sampling). 

 

Firstly, we found that the refractory sampling consistently improved the response resolution 

beyond that of the control for bright hyperacute dots (inter-dot-distance <4.5o) at slow velocities (≤ 20 
o/s) (Appendix figure 48A-B). Thus, refractoriness enhances neural image resolution during slow self-

motion or when high-resolution objects move slowly. Its effects were particularly well seen in the 

differing rising phases of the normalized light-induced current (LIC) responses of the two models. With 

the slow moving stimuli, the rising responses of the refractory sampling model (black traces) always 

led those of the non-refractory model (red). 
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Additionally, in other trials, we found that when the dots were more than the average acceptance 

angle apart (∆ρstart ≥ 9.5o) but moved across a R1-R6 photoreceptor’s receptive field at very fast saccadic 

speeds (≥ 400 o/s), the refractoriness often enhanced neural image resolution beyond that of the controls 

(Appendix figure 48C). This observation is consistent with our previous finding that stochastic 

refractoriness of light-activated microvilli exerts a memory of past events in bump integration (Song & 

Juusola, 2014). This memory accentuates certain stimulus features relative to others so that a R1-R6 

samples information from different inter-dot-distance/speed-combinations differently. Ultimately, it 

could well be that the real R1-R6s’ refractory photon sampling statistics are adapted (through their 

visual lifestyle) to the statistics of moving high-resolution natural images. Of course, here, the used 2-

dot stimuli and the models, which were isolated from the lamina network feedbacks, are too simple to 

fully explore such statics and the intricacies of hyperacute Drosophila vision. 

 

Horizontal vs. vertical motion hyperacuity 

The two most important biophysical factors of Drosophila photoreceptors, which lead to motion 

hyperacuity - whereupon space is encoded in time - are their sufficiently narrow receptive fields (∆ρend 

< 5o) and refractory photon sampling (quantum bump dynamics). Therefore, theoretically, as R1-R6s’ 

receptive fields should narrow when an object crosses them, irrespective of its motion direction; 

Drosophila is expected to have hyperacute vision for both horizontal and vertical motion.  

However, as we considered in Appendix figure 45, R1-R6 photoreceptors’ neural resolvability 

should be the best for front-to-back moving objects. In this case, due to their back-to-front sweeping 

rhabdomeres, R1-R6s’ receptive field can broaden slightly in horizontal direction. This dynamic may 

in part contribute to the curious observation that L2 monopolar cell terminals’ receptive fields (in the 

medulla) are anisotropic, elongated in horizontal (yaw) direction and narrower in vertical (pitch) 

direction, as measured by calcium-imaging experiments (Freifeld et al., 2013).  

 

Mirror symmetric contractions may also provide navigational heading signal  

As we showed in Appendix 7, light increments evoke mirror symmetric back-to-front rhabdomere 

movements in the left and right fly eye. Interestingly, during fast saccadic body rotations, this 

phenomenon could surprisingly help a fly’s visual orientation (Appendix figure 49). The 

microsaccadic sampling-hypothesis predicts that image rotation causes a phasic difference in 

photoreceptor outputs between the left and the right eye, with the signals always arriving slightly faster 

from the eye, towards which the fly rotates. Because this difference depends upon the rotation speed, it 

could be used for signaling changes in the fly’s heading direction or to improve visual navigation. For 

example, when flying across more homogenous surroundings, such as an open field with few distinctive 

visual landmarks, the central brain could use saccadic turns to recalibrate the fly’s head-direction in its 

internal world map near instantaneously; matching the intended direction to the new direction, as 

pointed by the global phase difference between the left and right eye signals. 
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Appendix figure 49. During a left saccade, signals from the left-eye lead the signals from the right-eye. 

Because incoming light, in both the left and right eyes, contracts their rhabdomeres in the back-to-front 

direction, photoreceptors can transmit information about the field rotation or the fly’s orientation changes to 

the brain. Specifically, the output from the eye towards which the fly turns phase leads, and thus neurally 

signals rotation direction. Here we illustrate the underlying mechanism by using a brief 205 o/s left saccade (in 

a world of 6.8o black-and-white gratings), as an example. (A) During the left saccade, the flow field facing the 

left eye moves back-to-front (red arrow) across its photoreceptors’ receptive fields (i). The image of the moving 

flow field is inverted by the ommatidium lens, and so moves front-to-back (blue arrow) while being sampled 

by the rhabdomere (ii). Light contracts the rhabdomeres in back-to-front direction (red arrow). With the 

projected image and the photon-sampler (rhabdomere) moving against each other, the light input from two 

bright bars (iii) becomes narrowed and accelerated. Accordingly, photoreceptor output shows two prominent 

peaks, in which distance to each other is compacted in time (iv). (B) During the left saccade, the flow field 

facing the right eye moves front-to-back (blue arrow) across its photoreceptors’ receptive fields (i). Again, the 

ommatidium lens inverts the image, which now moves back-to-front (red arrow) over the rhabdomere (ii), 

which contracts in the same direction (red arrow). With the projected image and the rhabdomere moving 

together, the light input from two bright bars (iii) excites the photoreceptor longer, in which output shows two 

prominent peaks elongated in time (iv). (C) The light input to the left eye photoreceptors (red trace) rise and 

decay faster than the corresponding light input (blue trace) to the right eye photoreceptors. (D) R1-R6 output 

in the left eye (red trace) is faster and briefer than the photoreceptor output (blue trace) in the right eye. (E) 

Consequently, by correlating the outputs from the left and right eye photoreceptors in time, the fly brain can 

obtain information about the directional changes in the visual space, in respect to its head orientation. 
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Appendix 9: Microsaccadic rhabdomere movements and R1-R6s’ information capture 

 

Overview 

This appendix describes how photomechanical rhabdomere movements affect Drosophila R1-R6 

photoreceptors’ information capture, compares microsaccadic information sampling of dark and bright 

objects and provides useful background information about the experimental and theoretical results 

presented in Figures 1-9. 

 

In this appendix: 

 We explain why and how rhabdomere movement noise influences R1-R6 output mostly at low 

frequencies, causing relatively little information loss.  

 We test and compare how microsaccadic sampling affects encoding of bursty bright or dark 

image contrasts, using intracellular recordings.  

 We further examine how well R1-R6s encode two dark moving point-objects (dots), and 

compare these recordings with those to corresponding bright moving dots.  

 The results confirm that Drosophila R1-R6 photoreceptors resolve both bright and dark moving 

hyperacute patterns (< interommatidial angle, ∆φ ~ 4.5-5o), and can respond to bright or dark 

point-objects, which are less than their acceptance angles (∆ρ ~ 9.5o) apart, even at high 

saccadic velocities. Thus, microsaccadic sampling hypothesis provides a robust functional 

explanation for Drosophila‘s hyperacute vision (Appendix 10). 

 The results support the idea that a fly’s optimal viewing strategy would involve fixating on dark 

features, which recover refractory microvilli, and then shifting gaze to bright features, to 

maximize information capture. This of course would require that it can neurally shift attention 

(across the eyes) to visual objects of interest, as some results suggest (Tang et al., 2004; van 

Swinderen, 2007; Tang & Juusola, 2010; Paulk et al., 2014; Seelig & Jayaraman, 2015).  

 

Microsaccades accentuate high-frequency resolution but generate low-frequency noise  
Photomechanical rhabdomere contractions (microsaccades; Appendix 7) can maximally shift the center 

of a R1-R6 photoreceptor’s receptive field by ~5o, and through this self-induced light input modulation 

(Figure 8) cause variations (noise) in its voltage output. Such “rhabdomere movement noise” is 

inevitable if the photoreceptor signal is classified and estimated as the average of the repeated responses, 

just as we did in the performance calculations (e.g. Figure 2). 

The condition itself bears resemblance to taking snapshots of a stationary scene from different 

positions and averaging these. The mean image shows an obvious smear, even if the positions were 

only a fraction of a photoreceptor’s receptive field (“pixel”) apart. However, during repeated light 

stimulation, the rhabdomere movements adapt rapidly (Figure 8E, Figure 2-figure supplement 2), 

with this noise affecting less the subsequent performance estimates. Thus, when quantifying the 

photoreceptor performance to repeated light intensity time series stimulation (e.g. Figure 2), we 

removed the first 3-10 responses, in which these movements had the largest effect. In the recordings, 

this noise would then be rather constant across the collected responses. 

Rhabdomere movement noise is missing from the simulated R1-R6 output (Figures 8-9). 

Therefore, given that the stochastic photoreceptor model’s transduction noise is adapted to the mean 

light intensity (Appendix 2), similarly to that of the recordings (Figure 2-figure supplement 2A-B), 

we could isolate it as the difference between the recorded and simulated R1-R6 output (Figure 2-figure 

supplement 2C-D). The analysis suggests that rhabdomere movement noise affects mostly low-

frequency R1-R6 output, reducing its signal-to-noise ratio, and importantly, it effectively matches the 

rhabdomere jitter in high-speed video footage (Figure 2-figure supplement 2E, F). 

The contractions deviate the rhabdomere from directly facing the light source, reducing photon 

influx especially during bright stimulation (Figures 8C-D). Such evasive action, however, has 

surprisingly little detrimental effect on the R1-R6s’ information transfer. This is because bright 

stimulation (>106 photons/s) contains too much light to be transduced by 30,000 microvilli into quantum 

bumps, and R1-R6s actively screen off excess photons to maximize information in their voltage output. 

In Appendix 2, we showed that R1-R6s’ photomechanical adaptations (the contractions and 

intracellular pupil mechanism) are jointly optimized with refractory sampling (to modulate quantum 
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efficiency (Song et al., 2012; Song & Juusola, 2014)) for maximal information intake at different 

stimulus conditions. Moreover, owing to bump adaptation and microvilli refractoriness, which 

accentuate light fast changes in macroscopic voltage output (Song et al., 2012; Song & Juusola, 2014; 

Juusola et al., 2015) (e.g. (Song & Juusola, 2014): Figures 9-10, improving high-frequency resolution), 

slower signals in return become compressed. Importantly, this low-frequency response range (<~10Hz), 

where also rhabdomere movement noise mostly resides (Figure 2-figure supplement 2D), carries 

relatively little information (Song & Juusola, 2014) (about the behaviorally more relevant faster changes 

in the world). 

 

Are saccades and fixations optimized to microsaccadic sampling? 

Recordings and simulations (Figures 1-2) showed unequivocally that R1-R6s information capture is 

maximized for high-frequency saccade-like bursts with dark fixation intervals. This suggests that the 

optimal daytime viewing strategy would be to fixate on dark features in the visual scenes, as this 

recovers refractory microvilli, and then rapidly move gaze to over bright features, as this increases 

quantum bump (sample) rate changes and thus information capture in time. And indeed, in behavioral 

experiments, Drosophila readily fixates on and track dark objects, such as vertical bars (Götz, 1980; 

Tang & Juusola, 2010; Bahl et al., 2013). But because the fly eye photoreceptors sample a continuous 

panoramic view of the world, many of them - at any one time - would unavoidably face bright contrasts, 

which reduce their sensitivity even when their photomechanical adaptations (Appendix 2) operate 

maximally. We therefore also tested by intracellular R1-R6 recordings how encoding of dynamic bright 

or dark contrast changes may differ. 

  
Appendix figure 50. Optimal saccadic 

viewing strategy for maximizing R1-R6 

photoreceptors’ information capture 

requires fixating on darker image features. 

(A) Intracellular responses of a R1-R6 to 

repeated saccadic bright (left) and dark (right) 

bursts. (B) Output to bright saccadic bursts was 

always more vigorous when mixed with dark 

fixation periods (BG, above) than with bright 

periods (middle), irrespective of the stimulus 

frequency distribution. When the same R1-R6s 

were fixated (light-adapted) on a bright 

background (below), they still responded well 

to dark saccadic bursts (of the inverse 

waveforms), but the amplitude range of these 

responses was less than to bright bursts (above, 

dark BG). (C) Corresponding R1-R6 output 

signal-to-noise ratios were the highest for the 

bright-saccadic-burst/dark-fixation-period 

stimuli (black traces). Signal-to-noise ratios 

were lower but alike for the brighter saccades 

with bright fixation periods (grey) and the dark 

saccades with bright fixation periods (light 

grey). (D) Information transfer rates confirmed 

the global maximum for 100 Hz bright 

saccade-like bursts with dark fixations (black bars; cf. Figure 2C). Whilst bright fixation periods reduced 

information (with more microvilli becoming refractory), the bit rates for bright (grey) and dark (light grey) 

saccadic modulation, of equal but opposite contrasts, were similar. 

 

Appendix figure 50A shows examples of consecutive responses recorded from a R1-R6 to repeated 

high-frequency saccadic bright or dark contrast bursts (with 100 Hz cut-off). Expectedly, following the 

stochastic adaptive visual information sampling theory (Appendixes 1-2), the responses to bright 

(positive) contrasts after dark “fixation” periods (background, BG) were significantly larger than those 

to dark (negative) contrasts after bright “fixation” periods. Notice, however, that although in terms of 

absolute light intensity (I) changes (or peak-to-peak amplitude modulation) the two stimuli were equal, 
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the negative bursts had smaller absolute contrast values ( 𝑐 =
∆𝐼

𝐼
 ) than the positive ones. This is because 

the darkening bursts reached their absolute contrast maximum (darkness, -1) only occasionally, whereas 

the corresponding brightening bursts reached higher absolute contrasts (>1; owing to their lower mean 

light intensity). 

To counter this bias, we used three sets of stimuli to examine individual R1-R6s’ response 

dynamics to both positive and negative bursts of equal or different contrast distributions (Appendix 

figure 50B). First (top row), the photoreceptors were stimulated with positive contrast bursts (peak-to-

peak modulation = 1 intensity units), which contained high-frequency saccade-like events on a dark 

background, having different cut-off frequencies (from 20 to 500 Hz, as in Figure 1). In the 2nd set 

(middle), the same stimuli were superimposed on a bright background (1 unit). Finally (bottom), the 

stimulus modulation was inverted (to negative contrast bursts) and superimposed on the same bright 

background (1 unit). Thus, for the 2nd and 3rd sets, the stimulus contrasts were equal but opposite. 

 We found (again in agreement with the theory) that whilst the responses were always the largest 

to positive contrast bursts on a dark background, the corresponding responses to the positive and 

negative contrast bursts on bright background, although smaller, were about the same size (Appendix 

figure 50B). Since we further know that the larger responses contain more quantum bumps (Figure 2), 

with the average bumps light-adapting to about the same size (e.g. Figure 2-figure supplement 2A-

B), the responses’ signal-to-noise ratios (Appendix figure 50C) and information transfer rates 

(Appendix figure 50D) were predictable. R1-R6s’ signaling performance was the greatest to the larger 

positive contrast bursts on a dark background (black), and more than halved to the smaller 

corresponding positive (grey) and negative (light grey) contrast bursts over the test bandwidths. 

Notably, the responses to the opposite but equal positive and negative contrast bursts carried effectively 

equal information contents, underscoring the importance of contrast invariance at the primary visual 

encoding stage (Juusola, 1993; Song et al., 2012; Juusola et al., 2015). 

Therefore, given the fast speed of adaptation (microvilli refractoriness and dynamic quantum 

bump size modulation) and its photomechanical counterbalancing (Appendixes 2, 7), the sensitivity of 

neighboring photoreceptors across the eyes can differ greatly at any one moment, depending upon 

whether they face dark or bright contrasts. This realization also implies that when a fly moves its gaze 

in saccades, the dark and bright spatial contrast differences in the world should be automatically 

translated into large temporal contrast changes between the neighboring retinotopic image pixels 

(neuro-ommatidia). Enhancement of local differences and similarities in neural images by 

spatiotemporal synaptic (Zheng et al., 2006; Freifeld et al., 2013) and gap-junctional (Wardill et al., 

2012) co-processing (including network adaptation (Nikolaev et al., 2009; Zheng et al., 2009)) across 

the first optic ganglia, the lamina and medulla, should further improve object detection and fly vision. 

 

Microsaccadic sampling of bright or dark moving point-objects 

Natural scenes are rich with dark features: shadows, object boundaries, surfaces of lesser reflectance 

etc., which have shaped visual circuit functions, perception and behaviors (Barlow, 1961; Yeh et al., 

2009; Joesch et al., 2010; Ratliff et al., 2010; Kremkow et al., 2014; Song & Juusola, 2014). 

Consequently, a fly’s self-motion generates both dark and bright moving features travelling across its 

eyes. We have shown that R1-R6s can resolve fast-moving and hyperacute bright dots (Figures 7-9 and 

Figure 9-figure supplement 1). But how well can these cells resolve dark moving dots? 

 We studied this question with the 25 light-point stimulus array (explained in Appendix 4 and 

Appendix 6). As before, the stimulus array was first carefully placed at the studied R1-R6’s receptive 

field center, but this time, all the light-points were switched on, and we generated two travelling dark 

points of specified speeds and interdistances. As during these experiments the cells were light-adapted 

(depolarized) by the lit stimulus array, the two moving dark dots evoked hyperpolarizing responses. 

Appendix figure 51A shows R1-R6s’ characteristic responses to two dark (black traces) and 

bright (red) dots of specific speeds (102, 205 and 409 o/s) and interdistances (3.4, 5.1 and 6.8o apart), 

recorded from the same cells. In all these cases, the hyperpolarizing responses resolved the two dots, 

generating two troughs separated by a peak, but these responses were considerably smaller than those 

to the corresponding bright dots. However, when normalized, the photoreceptors’ relative neural 

resolvability of the dark dots matched that of the bright dots (Appendix figure 51B). 
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Thus, in concordance with the behavioral experiments (Figure 10), these and other intracellular 

recordings established that Drosophila R1-R6 photoreceptors see both bright and dark moving 

hyperacute patterns (< interommatidial angle, ∆φ ~ 4.5-5o), and can resolve point-objects, which are 

less than their acceptance angles (∆ρ ~ 9.5o) apart, even at high saccadic velocities. 

 
Appendix figure 51. Comparing R1-R6s’ 

intracellular responses to hyperacute or 

saccadic bright or dark moving dots. (A) 

Mean (thick traces) and individual responses 

(thin) of three individual R1-R6s to two bright 

(red, above) or dark (black, below) dots (of 

different inter-dot-distances and speeds), 

crossing the cells’ receptive fields in front-to-

back direction. Responses to the hyperacute 

dots (3.4o inter-dot-distance) are shown left; 

responses to the saccadic speed stimuli in the 

middle (205 o/s) and right (409 o/s). In all cases, 

these outputs resolved the two dots, but 

predictably the responses were always smaller to the dark dots at the bright background than to the bright dots 

at the dark background (as more microvilli should remain refractory when adapting to bright background). (B) 

The normalized and sign-inverted R1-R6 outputs to dark dots were similar to their normalized outputs to bright 

dots, with both showing equally good Raleigh-resolvability (cf. Figure 7C). Naturally, as the Drosophila eye 

samples light information from each point in space by 8 photoreceptors (due to neural superposition) and 

balances this estimate with those of the neighboring lamina cartridges, its perception/resolvability of 

hyperacute and saccadic image motion is improved further. 

 

Microsaccadic sampling hypothesis and efficient coding 

Our results indicate that R1-R6 photoreceptors’ information transfer adapts to the context of stimulus 

statistics; with refractory microvilli, fast quantum bump adaptation (Henderson et al., 2000; Juusola & 

Hardie, 2001a; Song et al., 2012) and photomechanical microsaccades maximizing encoding of phasic 

information from high-contrast bursts. Remarkably, the extraction of phasic stimulus features, which 

characterize object boundaries and line elements in visual scenes, already starts during sampling and 

integration of visual information in the microvilli, at the first visual processing stage. The darker periods 

in stimuli relieve the effects of microvilli refractoriness, enabling greater sensitivity: more and slightly 

larger samples (quantum bumps) can be generated transiently to the next light change (Figure 1). This 

increases the signal-to-noise ratio of the integrated macroscopic response, especially in its phasic (fast 

rising/decaying) components (Appendix 3, Appendix figure 10). However, unlike later information 

processing in the network, during which presynaptic inputs are often translated to postsynaptic spike-

bursts of high sparseness for specific features, the neural code of photoreceptors must consider all 

stimulus features together. It adapts to allocate information in high-contrast bursts into continuous 

Gaussian broadband voltage signals (Figures 2A-B), utilizing the output range optimally. 

In the viewpoint of efficient coding, stochastic refractory sampling, fast quantum bump 

adaptation and photomechanical contractions benefit vision in three important ways: 

 They exchange redundant information in mean voltage to more useful information in relative 

modulation, enabling photoreceptors to encode reliable estimates of the world within their 

limited output ranges, despite strongly and quickly changing intensities.  

 They lower the metabolic cost of information with fewer bumps integrating a lower membrane 

potential, consuming less ATP (Song & Juusola, 2014).  

 And when linked to bursty saccadic head/body movements, they increase high-frequency 

information capture from the world and reduce motion blur.  

These results further imply that saccadic behaviors enable the fly eye to convey to the fly brain a far 

more efficient and accurate neural image of the variable world than what was believed before. Thus, 

saccades not only contribute to gaze-stabilization (Land, 1973; Fox & Frye, 2014), which historically 

is considered to be their major function (Land, 1999), but they also “burstify” light input for efficient 

and accurate sampling.  
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Appendix 10: Drosophila behavior in a flight simulator system confirms hyperacute vision 
 

Overview 

This appendix describes the used optomotor behavioral paradigm in a classic Drosophila flight 

simulator system to study visual resolution, and provides important background information about the 

experimental and theoretical results presented in Figure 10 in the main paper. 

 

In this appendix: 

 We test in open-loop conditions whether wild-type Drosophila can generate yaw-torque 

(optomotor responses) to hyperacute vertical black-and-white stripe-scenes that rotate 

clockwise and counterclockwise at 45 o/s.  

 Our results clearly indicate that wild-type Drosophila have hyperacute vision (seeing finer 

image details than the average interommatidial angle, ∆φ ~ 4.5, of their compound eyes), with 

the measured behavioral responses closely following the prediction of our new ‘microsaccadic 

sampling’-hypothesis (see Appendix 8). 

 

Testing Drosophila visual behavior in flight simulator system  

Wild-type "Berlin" Drosophila were raised on standard food medium at 25°C and 60% relative 

humidity with a 12-h light and 12-h dark cycle, with light on at 8 a.m. In the experiments, we used 2- 

to 3-day-old female flies. Under cold-anesthesia (lasting < 3 min), a small copper-wire hook was fixed 

with a droplet of UV-light sensitive glue (Loctite) between each fly’s head and thorax. After 

preparation, flies were left to familiarize themselves with their hooks overnight in single vials, which 

provided them water and sucrose. 

A custom-built, computer controlled flight simulator system (Wardill et al., 2012) was used to 

study Drosophila’s optomotor behavior. A tethered Drosophila was connected to the torque-meter 

(Tang & Guo, 2001) by a small clamp holding the copper-wire hook, which fixed the fly’s head in a 

rigid position and orientation, but allowed stationary flight (Götz, 1964; Heisenberg & Buchner, 1977). 

The torque meter transduced yaw torque into electrical voltage.  

A fly, tethered from the torque meter, was lowered by a mechanical micromanipulator in the 

center of a white featureless plastic hollow cylinder (a diffuser). Inside it, we placed high-resolution 

visual patterns (bars, stripe patterns, etc.), which were laser-printed on a transparent film, forming a 

360o panorama around the fly's long axis. The panorama could be rotated around its vertical axis by a 

servomotor. Outside, the diffuse cylinder faced a surrounding ring-shaped light-tube (special full-band: 

350-900 nm) that provided uniform illumination on the panorama. The light intensity during the 

panoramic motion stimulation, although bright, was always less (0.5-1.5 log-intensity units) than the 

direct stimuli used in the intracellular recordings (cf. Figure 1). 

 

Open-loop experiments 
Inside the flight simulator, a flying fly saw a continuous (360o) stripe-scene (black-and-white bars) of 

predetermined spectral and spatial resolution, which was free of motion artefacts, flashing or aliasing. 

After one second of viewing the still scene, it was spun to right (clockwise) by a linear stepping motor 

for two seconds, stopped for two seconds, before rotating to left (counterclockwise) for two seconds, 

and stopped again for a second. This eight-second stimulus was repeated 10-25 times and each trial, 

together with the fly’s coincident yaw torque responses, was sampled at 1 kHz and stored in a PC’s 

hard-drive for later analysis, using custom-written software (Biosyst) (Juusola & Hardie, 2001a). 

Presumably to stabilize gaze, flies tend to follow the scene rotations, generating yaw torque responses 

(optomotor responses to right or left), the strength of which is believed to reflect the strength of their 

motion perception (Götz, 1964; Heisenberg & Buchner, 1977; Wardill et al., 2012). The fixed stimulus 

parameters for moving stripe scenes, as shown in the figures, were: azimuth ±360°; elevation ±45°; 

velocity, 45, 50, 200 or 300 °/s; contrast, 1.0, as seen by the fly. Figure 10A show the averages (n = 9 

flies) of the mean optomotor responses (n = 22-35 trials for each fly). 

We first tested optomotor responses of wild-type flies to black-and-white stripe-scenes (spectral 

full-width: 380-900 nm) of three different spatial resolutions (wavelength: 1.16o, 2.88o and 14.4o), 

rotating at 45o/s, as shown in Figures 10A-C. To verify that air flow, or some hidden features in the 

stimulus panorama, was not affecting optomotor responses, we used the white diffuser cylinder alone, 
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which showed no clear contrast to human eye, as the control stimulus. These control field rotation 

experiments were repeated using the same flies (Figure 10-figure supplement 1). We found by that 

the white control stimulus did not evoke torque responses.  

We also tested optomotor responses of five flies to 3.9o (hyperacute) and 14.4o (control) 

wavelength panoramic stipe-scenes, rotating at 50, 200 and 300 o/s (Figures 10D-F). The results were 

consistent with the predictions of the full photoreceptor model (cf. Figure 9A, two dots 4o apart), which 

incorporated both the refractory photon sampling and photomechanical rhabdomere motion dynamics. 

 

Quantifying optomotor behavior. The optomotor responses of individual flies to the same repeated field 

rotations vary in strength and repeatability (Figure 10-figure supplement 1A), but their visual 

performance to different spatial resolution stripe scenes is clearly different. These differences can be 

quantified by measuring the mean torque response of a single fly to stimulus repetitions and by 

averaging the mean responses of the many flies of the same stripe scene resolution (Figure 10-figure 

supplement 1B; here 9). This reduces noise and non-systematic (arbitrary) trends of single experiments, 

revealing the underlying response strength and optomotor behavior characteristics. These population 

responses are shown in Figure 10 for a straightforward comparison. 

In open-loop experiments, a fly’s torque response returns gradually to baseline after the 

optomotor stimulus stops, but this can take seconds (varying with individual flies). Accordingly, in our 

experiments, which contain only brief 2-s-long inter-stimulus-intervals, the torque responses typically 

recover only fractionally (10-70%) during these still periods toward the baseline. Therefore, for 

comparing the optomotor behavior different stripe scene resolutions, we used the maximum range (or 

peak-to-peak) of the torque response, evoked by the combined leftward and rightward field rotation 

stimulus. The maximum range and variability in the torque responses to the same optomotor stimulus 

are shown with controls in Figure 10-figure supplement 1C and D, respectively. 

Markedly, the optomotor responses to hyperacute stripe-scenes were not caused by aliasing. 

This is because perceptual aliasing (such as the wagon-wheel effect or Moiré patterns), if induced by 

the rotating hyperacute scenes, would have been perceived as slowed down image rotation, eventually 

reversing to the opposite direction (the reverse rotation effect). And thus, if the tested flies had seen 

such motion patterns, they would have consequently followed them slower and rotated against the real 

scene rotation direction. Such optomotor behavior was never observed in our experiments.  

 

Why did the previous behavioral studies not find hyperacute vision? 

In 1976, Buhner probed Drosophila’s visual acuity by stimulating the upper frontal part in one of its 

eyes with small local moving grating patterns (covering about 50 ommatidia) while a fly walked on 

track-ball (Buchner, 1976).  Notably, the aim of his study was not to find the finest resolution what a 

Drosophila can resolve but instead to deduce the likely columnar organization of its directionally 

sensitive elementary motion detectors from a fixed fly’s tendency to follow moving stimulus patterns. 

Thus, this was also an open-loop paradigm, but the used microscope-mediated local grating stimulation 

was very different from the global hyperacute panoramic visual scenes of our study. Specifically, we 

note that in Buchner’s study: 

 Visual acuity was not tested below the interommatidial angle (∆φ ~ 4.5); with the overall results 

deduced by eliminating the presumed boundary elements and contrast attenuation from the data. 

 The used mean stimulus light intensity (luminance; 16 cd/m2) was low. Therefore, the resulting 

image grating at the level of individual photoreceptors would have been dim and spatiotemporal 

signal-to-noise ratio of light input and photoreceptor output low. Based on our intracellular data 

(Juusola & Hardie, 2001a; Song et al., 2012), this dim light intensity would have made it 

practically impossible for R1-R6 photoreceptors to resolve very fine (or hyperacute) visual 

patterns. 

 The sensitivity and the time resolution of the used trackball system (Buchner, 1976) seem 

significantly less than in our bespoke torque meter (Tang et al., 2004), requiring extensive data 

averaging. This would have made it more difficult for the trackball system to resolve the weaker 

(small amplitude) behavioral responses to fine spatial contrast changes (Figure 10A). 

More recently, because of the historical belief that interommatidial angle limits a fly’s visual acuity, 

many experimentalists have started using coarse LED-matrixes, typically with 4.5-5o maximum 
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resolution, to probe visual learning and optomotor responses. As our study here shows, these kinds of 

visual stimuli are very different from the panoramic high-resolution printed scenes with thin continuous 

lines and symbols and thus are expected evoke quite different neural responses.  
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